
Efficient Query Processing for Data Integration

Zachary G. Ives

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2002

Program Authorized to Offer Degree: Department of Computer Science and
Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Zachary G. Ives

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

Alon Halevy

Reading Committee:

Alon Halevy (chair)

Daniel Weld

Dan Suciu

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with “fair use” as

prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this

dissertation may be referred to Bell and Howell Information and Learning, 300 North

Zeeb Road, Ann Arbor, MI 48106-1346, or to the author.

Signature

Date

University of Washington

Abstract

Efficient Query Processing for Data Integration

by Zachary G. Ives

Chair of Supervisory Committee:

Professor Alon Halevy
Computer Science and Engineering

A major problem today is that important data is scattered throughout dozens of sepa-

rately evolved data sources, in a form that makes the “big picture” difficult to obtain.

Data integration presents a unified virtual view of all data within a domain, allowing

the user to pose queries across the complete integrated schema.

This dissertation addresses the performance needs of real-world business and sci-

entific applications. Standard database techniques for answering queries are inappro-

priate for data integration, where data sources are autonomous, they generally lack

mechanisms for sharing of statistical information about their content, and the envi-

ronment is shared with other users and subject to unpredictable change. My thesis

proposes the use of pipelined and adaptive techniques for processing data integration

queries, and I present a unified architecture for adaptive query processing, including

novel algorithms and an experimental evaluation. An operator called x-scan extracts

the relevant content from an XML source as streams across the network, which enables

more work to be done in parallel. Next, the query is answered using algorithms (such

as an extended version of the pipelined hash join) whose work is adaptively scheduled,

varying to accommodate the relative data arrival rates of the sources. Finally, the sys-

tem can adapt the ordering of the various operations (the query plan), either at points

where the data is being saved to disk or in mid-execution, using a novel technique

called convergent query processing. I show that these techniques provide significant

benefits in processing data integration queries.

TABLE OF CONTENTS

List of Figures iii

List of Tables v

Chapter 1: Introduction 1

1.1 The Motivations for Data Integration . 2

1.2 Query Processing for Data Integration . 5

1.3 Outline of Dissertation . 10

Chapter 2: Background: Data Integration and XML 12

2.1 Data Integration System Architecture . 12

2.2 The XML Format and Data Model . 16

2.3 Querying XML Data . 20

Chapter 3: Query Processing for Data Integration 25

3.1 Position in the Space of Adaptive Query Processing 26

3.2 Adaptive Query Processing for Data Integration 28

3.3 The Tukwila Data Integration System: An Adaptive Query Processor . . 33

Chapter 4: An Architecture for Pipelining XML Streams 36

4.1 Previous Approaches to XML Processing 40

4.2 The Tukwila XML Architecture . 42

4.3 Streaming XML Input Operators . 50

4.4 Tukwila XML Query Operators . 58

4.5 Supporting Graph-Structured Data in Tukwila 61

4.6 Experimental Results . 66

4.7 Conclusions . 81

i

Chapter 5: Execution Support for Adaptivity 83

5.1 An Adaptive Execution Architecture . 87

5.2 Adaptive Query Operators . 94

5.3 Experiments . 101

5.4 Conclusions . 107

Chapter 6: Adaptive Optimization of Queries 109

6.1 Convergent Query Processing . 113

6.2 Operators for Phased Execution . 119

6.3 Implementation within Tukwila . 122

6.4 Experiments . 127

6.5 Conclusion . 135

Chapter 7: Tukwila Applications and Extensions 137

7.1 Data Management for Ubiquitous Computing 137

7.2 Peer Data Management . 139

7.3 Integration for Medicine: GeneSeek . 142

7.4 Summary . 143

Chapter 8: Related Work 145

8.1 Data Integration (Chapter 2) . 145

8.2 XML Processing (Chapter 4) . 148

8.3 Adaptive Query Processing (Chapters 5, 6) 152

Chapter 9: Conclusions and Future Directions 158

9.1 Future Work in Adaptive Query Processing 159

9.2 Envisioning a Universal Data Management Interface 161

Bibliography 166

ii

LIST OF FIGURES

1.1 Data warehousing and integration compared 4

2.1 Data integration architecture diagram . 13

2.2 Sample XML document . 17

2.3 XML-QL graph representation of example data 18

2.4 XQuery representation of example data 19

2.5 Example XQuery over sample data . 21

2.6 Results of example query . 22

3.1 Architecture diagram of Tukwila . 33

4.1 Tukwila XML query processing architecture 44

4.2 Example XQuery to demonstrate query plan 46

4.3 Example Tukwila query plan . 47

4.4 Encoding of a tree within a tuple . 48

4.5 Basic operation of x-scan operator . 52

4.6 The web-join operator generalizes the dependent join 57

4.7 X-scan components for processing graph-structured data 63

4.8 Experimental evaluation of different XML processors 69

4.9 Wide-area performance of query processors 71

4.10 Comparison of data set sizes and running times 73

4.11 Scale-up of x-scan for simple and complex paths 74

4.12 Experimental comparison of XML vs. JDBC as a transport 77

4.13 Comparison of nest and join operations 78

4.14 Scale-up results for x-scan over graph and tree-based data 80

4.15 Query processing times with bounded memory 80

5.1 Example of query re-optimization . 86

5.2 Example of collector policy rules . 95

iii

5.3 Performance benefits of pipelined hash join 103

5.4 Comparison of Symmetric Flush vs. Left Flush overflow resolution . . . 105

5.5 Interleaved planning and execution produces overall benefits 106

6.1 Example of phased query execution for 3-way join 115

6.2 Architecture of the Tukwila convergent query processor 123

6.3 Experimental results over 100Mbps LAN 129

6.4 Experimental results over slow network 132

6.5 Performance of approach under limited memory 133

7.1 Example of schema mediation in a PDMS 140

7.2 Piazza system architecture . 141

iv

LIST OF TABLES

4.1 Physical query operators and algorithms in Tukwila 59

4.2 Experimental data sets . 67

4.3 Systems compared in Section 4.6.1. 68

4.4 List of pattern-matching queries . 68

4.5 List of queries used in XML processing experiments 75

6.1 Data sources for experiments . 128

8.1 Comparison of adaptive query processing techniques 157

v

ACKNOWLEDGMENTS

Portions of this dissertation have previously been published in SIGMOD [IFF+99]

and in the IEEE Data Engineering Bulletin [IHW01, ILW+00]. However, these

portions have been significantly revised and extended within this dissertation.

Additionally, portions of Chapter 4 have been submitted concurrently to the

VLDB Journal.

It’s amazing to look back and see how things have changed over the past

few years, how others have influenced me. I’ve been blessed with a brilliant

and incredibly generous group of collaborators and advisors, who’ve given me

great ideas and shaped my research ideas and my thesis work. Special thanks

to my advisors, Alon Halevy and Dan Weld, who let me be creative but kept me

on track, and with whom I’ve had countless stimulating discussions that led to

new ideas. Even more importantly, they taught me choose worthwhile problems

and aim high. I have come to understand just how critical this is in the research

world.

Thanks also to Steve Gribble, Hank Levy, and Dan Suciu for showing me a

broader perspective on my research topics — it really helps to see a problem from

an outsider’s perspective in many cases — and for many fruitful discussions and

arguments. And I am greatly appreciative of the amount of work they put into

preparing me for the interview circuit, despite the fact that I did not have a

formal advisee relationship with them.

I’m also grateful to Igor Tatarinov, Jayant Madhavan, Maya Rodrig, and Ste-

fan Sariou for their contributions to the various projects in which I have partic-

ipated these past few years. I greatly enjoyed their ideas and their enthusiasm,

and I learned a great deal from working with them. Many of these people have

also been invaluable sources of comments on my papers.

A special thank-you is warranted for Rachel Pottinger, who has been a fellow

“databaser” and constant source of encouragement since the beginning — and

vi

to Steve Wolfman as well, who, while not a database person, has been a good

friend and source of feedback. They have been perhaps the best exemplars of

why this department has a stellar reputation as a place to work.

I’d also like to express my appreciation for those who contributed sugges-

tions and feedback to my work, even if they weren’t officially affiliated with it:

Corin Anderson, Phil Bernstein, Luc Bouganim, Neal Cardwell, Andy Collins,

AnHai Doan, Daniela Florescu, Dennis Lee, Hartmut Liefke, David Maier, Ioana

Manolescu, Oren Zamir, and the anonymous reviewers of my conference and

journal submissions. There is no doubt that it is richer and more complete as a

result.

This research was funded in part by ARPA / Rome Labs grant F30602-95-

1-0024, Office of Naval Research Grant N00014-98-1-0147, by National Science

Foundation Grants IRI-9303461, IIS-9872128, and 9874759, and by an IBM Re-

search Fellowship.

vii

DEDICATION

To Mom, Dad, and Joyce, my first teachers, who inspired me to learn about the

world and teach others; to my many teachers, professors, and advisors since, who

helped mold me into what I am today; and to Long, who has given me a new level

of inspiration, support, and motivation. May God grant me the privilege of making as

positive an impact on others as you’ve all had on me...

viii

1

Chapter 1

INTRODUCTION

The processing of queries written in a declarative language (e.g., SQL or XQuery)

has been a subject of intense study since the origins of the relational database sys-

tem, with IBM’s System-R [SAC+79] and Berkeley’s Ingres [SWKH76] projects from

the 1970s. The standard approach has been to take a declarative, user-supplied query

and to try to select an order of evaluation and the most appropriate algorithmic imple-

mentations for the operations in the query — these are expressed within a query plan.

The query plan is then executed, fetching data from source relations and combining it

according to the operators to produce results.

System-R established a standard approach to query processing that is still followed

today. This approach is very similar to compilation and execution of traditional lan-

guages: a query optimizer statically compiles the query into a plan, attempting to pick

the most efficient plan based on its knowledge about execution costs and data, and

then a query execution engine runtime is responsible for executing the query plan.

This paradigm relies on having a rich set of information available to the optimizer:

disk and CPU speeds, table sizes, data distributions, and so on are necessary for good

cost estimation. These statistics are computed offline, and they are expected to stay

relatively constant. They become inputs into the query optimizer’s cost model, which

consists of functions that estimate the cost of each operation given its expected input

data, and which also have a model for composing separate costs. The plan that has the

cheapest estimated cost is generally chosen (although, for reasons of efficiency, not all

optimizers exhaustively enumerate all possible plans).

The System-R model has been extremely successful in practice, and it is well-suited

for domains where computation and I/O costs are predictable, the cost model is highly

accurate, representative statistics about the data are available, and data characteris-

tics are essentially regular throughout the span of query execution. It is poorly suited

for any situations in which these criteria are not satisfied.

2

One area that, unfortunately, falls into this area, is that of data integration. In data

integration (described in more detail in the next subsection), we focus on the problem

of querying across and combining data from multiple autonomous, heterogeneous data

sources, all under a common virtual schema. The data sources typically are not de-

signed to support external querying or interaction with other sources, and each source

is often a shared resource used by many people and organizations. Furthermore, most

interesting data integration applications tend to include data sources from different

administrative domains, scattered through a wide-area network or even the Internet.

As a result, I/O costs are often unpredictable, statistics about the data are difficult to

obtain, and data characteristics could even change as execution progresses.

This dissertation presents and evaluates a set of techniques for adaptively process-

ing queries, which allows a query processor to react to changing conditions or increased

knowledge. In the remainder of this introduction, I motivate the problem of data inte-

gration (below), present my thesis and explain how it addresses the query processing

problem (Section 1.2), and provide an outline of the dissertation (Section 1.3).

1.1 The Motivations for Data Integration

Over the past twenty years, the basic operating paradigm for data processing has

evolved as computing technology technology itself has changed. We have moved from

mainframe-based, centralized data management systems to networks of powerful PC

clients, group servers, and the Internet. Recent trends in research suggest that we

may ultimately be moving to an even more extreme, peer-based model in which all

machines both consume and provide data and computation in a fully decentralized

architecture.

Motivation for these changes has come not merely from more advanced hardware

and networking technologies, but from a natural desire to decentralize control and

administration of data and compute services. Not only does a centralized system gen-

erally form a bottleneck in terms of scaling performance, but the centralized comput-

ing model can be a scalability bottleneck in terms of administration. When data is

“owned” and managed by numerous heterogeneous groups with different needs, a cen-

tral schema is difficult to design, it typically relies on the development of standards

before it can be constructed, and it is slow to adapt to the needs of its members. A de-

centralized collection of autonomous systems, however, can be much more dynamic, as

3

individual components can be separately designed and redesigned to meet the needs

of their small user populations.

It is unsurprising, then, that today most enterprises, institutions, and formal col-

laborations — which typically are comprised of groups that are at least partly au-

tonomous from one another — seldom operate with only centralized, common data

management systems. Instead, individual groups often create their own separate sys-

tems and databases, each with the schema and data most relevant to their own needs.

A recent study indicates that a typical large enterprise has an average of 49 different

databases [Gro01]. Moreover, an organization’s databases seldom represent all of the

data it owns or accesses: in many cases, additional data is encoded in other formats

such as documents, spreadsheets, or custom applications, and often today’s organiza-

tions have collaborations with external entities (or make acquisitions of new groups)

that may share certain data items.

Unfortunately, the common data management model, a decentralized collection of

autonomous, heterogeneous systems typically suffers from a major shortcoming: there

is no longer a single point of access to organizational data that can be queried and an-

alyzed in a comprehensive form. The decentralized computation model provides great

flexibility, but the centralized model provides uniformity and a global perspective.

Two solutions have been proposed to this problem, both of which are end-points

along a broad continuum of possible implementations: data warehousing lies at one

end of the spectrum, and “virtual” data integration at the other. Both approaches take

a set of pre-existing decentralized data sources related to a particular domain, and

they develop a single unified (mediated) schema for that domain. Then a series of

transformations or source mappings are specified to describe the relationship between

each data source and the mediated schema.

Data Integration vs. Warehousing

The primary philosophical difference between a data warehouse and a virtual data in-

tegration system is essentially one of “eager” versus “lazy” evaluation (see Figure 1.1).

In data warehousing, the expectation is that the data changes infrequently or that the

integrated view does not need to be current — and that large numbers of expensive

queries will be posed over the integrated view of the data. Hence, the full contents

of the global schema are precomputed (by evaluating all source mappings), they are

4

ETL Tools

(offline)

Warehouse
DBMS

Application
or

Interactive
User

Interface

XML Source

Legacy Source

Relational Source

Warehoused tables

Query over
Warehouse
Schema

Data in
Common

Format and
Schema Data

Data

Data

Wrappers

(demand-driven)

Data Integration
System

Application
or

Interactive
User

Interface

XML Source

Legacy Source

Relational Source

Query over
Mediated
Schema

Data in
Common
Format

Data

Data

Data

Virtual
mediated
schema

(a) Data Warehouse

(b) Virtual Data Integration System

Results

Results

Offline:
 ETL tool archives data periodically

On demand:
 Query executes over warehouse

On demand:
 Query executes directly over wrapped sources

Figure 1.1: Data warehousing (a) replicates data from sources offline and executes
its queries over the warehoused data. Virtual data integration (b) presents a vir-
tual, mediated schema but fetches the actual data on-demand from the underlying
data sources.

stored in a separate “warehouse” database that will be used for querying, and signif-

icant attention is given to physical warehouse design and indexing, in order to get

the best possible query performance. Refreshing the warehouse is typically relatively

expensive and done offline, using ETL (extract, transform, and load) tools.

Data integration addresses the case where warehousing is impractical, overly ex-

pensive, or impossible: for instance, when queries only access small portions of the

data, the data changes frequently, “live” data is required, data-providing partners are

5

only willing to grant limited access to their data, or the global schema itself may be

changed frequently. In fully virtual data integration, the global schema is strictly a

logical or virtual entity — queries posed over it are dynamically rewritten at runtime

to refer to actual data sources (based on the source mappings), and data is fetched from

the sources (via wrappers) and combined. Data integration has become of increasing

interest in recent years as it has matured, because it has several benefits to the im-

plementer versus warehousing: it supports data sources that may only allow limited

access to data; it supports a “live” view of the data environment; and it can present

multiple versions of a mediated schema at the same time (for instance, to maintain

compatibility with “legacy” queries).

One potential drawback of the virtual data integration approach is that certain

data cleaning and semantic matching operations between sources are too expensive to

perform “on the fly,” and must be computed offline; another is that virtual data inte-

gration may heavily load the data sources. To handle these issues, an implementation

whose characteristics fall between the fully precomputed model of the data warehouse

and the fully virtual model of data integration may be desirable: certain data items

or matching information may be cached, prefetched, or precomputed. In this thesis, I

will consider all of these points (including full warehousing) to fall within the general

category of data integration, but my interests lie in handling those sources that are

not cached.

1.2 Query Processing for Data Integration

Until very recently, the emphasis of research in data integration was on develop-

ing models [BRZZ99, ZRZB01, ROH99], mappings [DDH01, MBR01, HMH01], and

translators or “wrappers” [KDW97, BFG01] for data sources; with additional work on

the problem of translating or “reformulating” [LRO96, Qia96, DG97, FLM99, PL00,

HIST02] queries over the mediated schema into queries over the real sources. These

problems have been addressed well enough to provide a level of functionality that is

sufficient for solving many real-world problems. Now that there are established al-

gorithms and methodologies for data integration, there are two important challenges

remaining to be addressed to make data integration a widespread technology: one

is the problem of defining correspondences between entities at different data sources

(i.e., mappings between different concepts or schema items, but also mappings be-

6

tween entities that appear in different sources with different representations); the

other is the problem of developing system-building techniques that allow a data in-

tegration system to perform well enough that it can be useful in practice. Other re-

searchers [MBR01, BHP00, DDH01, PR01] have started to address aspects of the first

problem; my focus is on the second problem, developing techniques for efficiently an-

swering data integration queries.

As discussed earlier, traditional query processing deals with an environment in

which statistics are computed offline and used to statically optimize a query, which

can then be executed. This generally is effective in a standard database environ-

ment because the data and computing environment are under the strict control of the

database, and they are thus fairly predictable and consistent. Yet even in this context,

many simplifying assumptions must be made during optimization, and there are many

situations in which the traditional model does poorly (e.g., in many circumstances, the

optimizer accumulates substantial error in modeling complex queries).

Even worse, the data integration domain has a number of features that make it sub-

stantially harder than the conventional database management system context. Data

integration typically interacts with autonomous sources and externally controlled net-

works: it becomes difficult to model the expected performance of such data sources

(sometimes even the amount of data it will return is unknown), and the performance

of the network may be unexpectedly bursty. Unpredictability and inconsistency are

the norm in querying remote, autonomous data sources.

Furthermore, traditional query processing tends to optimize for complete results

(i.e., batch-oriented queries). Many data integration applications are interactive, sug-

gesting that early incremental results are particularly important in this context —

suggesting the need for a different metric in query optimization, or at least a different

set of heuristics.

1.2.1 Thesis Statement and Overview

My thesis is that since the data integration domain is inherently filled with uncer-

tainty, static optimization and deterministic execution based on existing knowledge

are ill-suited for this domain — adaptive techniques can provide greatly improved per-

formance. The central question I sought to answer is whether it is possible to develop

adaptive query processing techniques that yield better performance in our domain:

7

they must be sufficiently low-overhead that they will compensate for the fact that

adaptivity is inherently more expensive. I have answered this question by proposing

and experimentally validating novel techniques for utilizing pipelining (defined in the

next section) and adaptivity, which do indeed provide faster and more efficient query

processing for data integration.

In particular, I have found that three techniques are highly beneficial for integra-

tion of XML data, and in fact a necessity for good performance: (1) providing pipelined

execution for streaming XML data as well as relational data; (2) using adaptive opera-

tors, such as the pipelined hash join, to accommodate variations in source data trans-

fer rates; and (3) re-optimizing queries and dynamically splitting execution pipelines

in mid-stream. I motivate, define, and briefly describe each technique below.

1.2.2 The Need for Pipelining

Query execution occurs over a query plan, which describes a sequence or expression

evaluation tree of query operators (as well as the algorithms to use in executing each

operator). In general, any fragment of a query plan can be executed in one of two ways:

as a pipeline, where control flow propagates up the operator evaluation tree one tuple

at a time; or as a series of batch-oriented or blocking operators, where each operator

consumes a table and outputs a table that gets materialized to disk and then fed into

the next operator.

Blocking has one substantial benefit: it executes a plan fragment as a sequence of

separate stages, so not all of the operators’ state information must be in memory si-

multaneously. Furthermore, certain query operations (for instance, coalescing groups

of tuples into sets with the same attribute values) must inherently be blocking, because

they typically must “see” the entire table before they can compute output tuples. How-

ever, when it is feasible, pipelining has a very desirable characteristic for interactive

applications like data integration: it returns initial answers much more quickly.

In a traditional database, query plans are typically divided into a series of pipelines,

where each pipeline is divided from the next by a blocking operation that materializes

its results to disk. This allows the query processor to best use its resources to compute

an answer. For an interactive application, overall speed is typically less a concern

than speed in returning initial answers — so in this context, a good heuristic is to

begin execution with a single pipeline, and develop a strategy for handling memory

8

overflow after some initial answers have been returned.

Extending this concept slightly beyond the flow of tuples between operators, data

should be incrementally processed as source data is streaming into the query proces-

sor’s operators — it should not be a requirement that the data be prefetched from all

sources before query execution can begin. Data transfer time is often a significant

factor in processing network-based queries.

Finally, pipelining provides another benefit beyond returning fast initial answers:

it enables more query operators to be running concurrently, and as a result, a query

execution system has more flexibility in determining which operations should get re-

sources at a particular time. I discuss techniques for adaptive scheduling in the next

section.

Pipelining has been a standard technique employed for standard relational databases,

but the methodology had not been fully translated to the XML realm: in particular, an

XML document sent across the network would need to be read and parsed in its en-

tirety before any query processing could begin. One of my research contributions is a

model for pipelining XML data as it is being streamed across the network — result-

ing in significantly improved performance, as well as more possibilities for adaptive

scheduling and optimization.

1.2.3 The Need for Adaptive Scheduling

An important characteristic of the physical query plans used by query execution en-

gines is that, because they express both an order of algebraic evaluation and specify

a set of deterministic algorithms to be used, they encode a physical scheduling. Gen-

erally, the scheduling of compute cycles to each query operator is done via an iterator

execution model: an operator calls its child’s getNext() method when it needs a new

tuple from the child, and the child in turn calls its child, etc. A given query operator

algorithm consumes and returns tuples according to a predefined order that is hard-

coded into the algorithm.

The iterator model works very well for situations where I/O is relatively inexpen-

sive and inherently sequential, and where free compute cycles are rare. In a standard

database, most I/O operations come from the buffer manager (which often prefetches

data) rather than directly from disk, and typically disk I/Os are not fully parallelizable

(at least if they come from the same disk). Furthermore, if an operation is primar-

9

ily compute-bound, then context-switching from one operation to the next should only

be done in an operation-aware fashion. Thus, in a standard database, execution of

operations according to their own deterministic, embedded logic makes sense.

The network-based query processing domain is considerably different. First, the I/O

bottleneck typically resides at the data source or at some point within the middle of the

network, rather than at the query engine itself — hence, overlapping of I/O operations

from different sources can be done with significant benefit. Second, network I/O delays

are often relatively long, which tends to increase the number of idle cycles within a

particular query. Here, it makes sense not only to overlap multiple I/O operations with

one another, but also to provide flexible or adaptive scheduling: the query processor

should schedule any available work when a particular part of a query plan is I/O-bound

and free cycles are available.

I have proposed two enhanced algorithms for the standard query operations of join

and union, both more appropriate for data integration because they support adap-

tive scheduling of work. Combined with a query optimization step that emphasizes

pipelined execution, my techniques allow the query processor to significantly overlap

I/O and computation for good performance.

1.2.4 The Need for Adaptive Re-optimization

Conventional database query processors must make static decisions at optimization-

time about which query plan will be most efficient. A database query optimizer relies

on a set of parameters defining CPU and I/O costs, as well as statistics describing gen-

eral data characteristics, to calibrate its cost model so it can choose an inexpensive

query plan. These cost values and statistics are typically recorded and periodically

updated offline, and assumed to be stay relatively consistent between the update in-

tervals.

However, cost values and statistics may not stay consistent — CPU and I/O costs

vary as DBMS server load changes, and statistics are often updated rather infre-

quently. As a result, the optimizer may actually choose poor plans. However, most

database implementers have felt that these potential pitfalls were acceptable, espe-

cially since alternative techniques would be too difficult to design and implement.

In the data integration context, the weaknesses of the standard query processing

approach are exacerbated. First, data transfer speeds are unpredictable: network

10

congestion may delay data as it is sent from autonomous sources, and additionally the

sources themselves may be overloaded at unexpected moments. Second, it is typically

difficult to maintain statistics about the data within the sources: the sources were

typically not designed to cooperate with a data integration system, and thus they do

not export any sort of statistics-sharing interfaces. Ideally, the data integration system

can gather statistics on its own, but this is not always possible: some sources do not

hold relational data, and the amount and type of data they return will vary depending

on how they are queried; some sources only expose small portions of their data on

demand, in response to a specific query, making it difficult to estimate the overall

amount of data at the source; some sources are updated frequently, rendering past

statistics irrelevant very quickly.

The problems caused by the data integration environment clearly suggest that

static optimization decisions, based on pre-existing knowledge, are inadequate. In-

stead, I believe that a query plan must be chosen adaptively. In particular, the query

processor can choose an initial query plan, which it will continue to refine as it mon-

itors actual query execution costs and statistics. This allows the system to deal with

factors that vary over the course of execution, as well as factors that stay consistent

but are unknown prior to execution.

My major contribution in this area is a novel set of techniques called convergent

query processing, which allows an existing query plan to be changed in mid-stream, or

even split into multiple stages, at virtually any point during execution. This flexibility

is attained without imposing significant overhead, and I demonstrate how standard

database query processing techniques can be leveraged in this context.

Together, the techniques I propose in this dissertation provide great flexibility in

the scheduling of query processing work, and do so with minimal overhead and early

initial answers. They are especially well-suited to our target domain of data integra-

tion, and certain techniques such as convergent query processing may also be useful

in more traditional database contexts.

1.3 Outline of Dissertation

The remainder of this dissertation is structured as follows.

Chapter 2 provides background about data integration and XML. It introduces the

basic components of a data integration system and cites relevant work in these areas.

11

It also describes the basics of the most popular XML data models and query languages.

Chapter 3 provides an overview of the considerations for adaptive query processing

and the specific contributions of my thesis. It also presents an overview of the Tukwila

data integration system, which utilizes the proposed techniques and has formed an

evaluation platform for my work.

In Chapter 4, I describe an XML query processing architecture for pipelined query

execution, including query operators that incrementally consume data from an XML

stream and produce tuples that are fed into pipelined query plan. I also present the

complementary operators that convert from tuples back into XML.

Chapter 5 describes the components of a query execution engine that are required

for an adaptive query processing architecture. I describe the infrastructure that sup-

ports my adaptive query optimization techniques, and I present a basic set of query op-

erators for performing joins and unions in a wide area context, with emphasis on adap-

tive scheduling. I present an extension to the pipelined hash join that supports over-

flow resolution, as well as a variant of the union for handling mirrored data sources.

Chapter 6 then describes and evaluates techniques for performing adaptive re-

optimization to improve a query plan at runtime. I detail an approach to re-optimizing

at pipeline boundaries, and I present convergent query processing, a novel means of

re-optimizing an executing pipeline.

Chapter 7 describes the impact of the Tukwila system: I provide an overview of

how my query processor has been used in a number of research projects and real ap-

plications at the University of Washington and in the Seattle area.

I discuss related work in Chapter 8 and conclude with some ideas for future explo-

ration in Chapter 9.

12

Chapter 2

BACKGROUND: DATA INTEGRATION AND XML

The remainder of my thesis assumes a working knowledge of the basic concepts

of data integration and XML. This chapter sets the context by providing the neces-

sary background information. I begin with a discussion of the components of a data

integration system and follow with a discussion of querying XML.

2.1 Data Integration System Architecture

As discussed in the introduction, the key attributes of a data integration system are

its ability to present an integrated, mediated schema for the user to query, the ability

to translate or reformulate this query to combine information from the various data

sources according to their relationships with the mediated schema, and the ability to

execute this query over the various local and remote data sources. A data integration

system varies somewhat from a standard database system: it has little or no physical

storage subsystem and usually no capability for expressing updates, but it needs query

translation capabilities and the ability to fetch data from remote sources. The typical

components of a data integration system are illustrated in Figure 2.1, and they consist

of the following:

Application or Interactive User Interface

Typically, the initiator of queries and consumer of answers will be an interactive, GUI-

based user interface, custom application logic, or a web-based application. In general,

this data consumer requires early initial answers so it can provide early feedback to

the user. Furthermore, many applications will be posing ad-hoc, exploratory queries

that may be terminated before they complete.

Query Reformulator

The initial query will typically be posed in terms of a mediated schema, a single uni-

fied schema. Schema mediation relies on expressing the relationships between the

13

Cache

Data Source
Catalog

Cacheable
XML Source

Legacy Source

Dynamic XML Source

Wrapper

Query
Reformulation

(Rewriting &
Source

Selection)

Query
Processing

(Optimization &
Execution)

 XML

XML

XML

Source
Descriptions

Reformulated
Query

Application
or

Interactive
Interface

Query over
Mediated
Schema

Source
Statistics

XML Results

Figure 2.1: Data integration architecture diagram. The application or user interface poses
a query over the mediated schema. The reformulator uses data from the data source catalog
to rewrite this query to reference real data sources. The query processor finds an optimal
plan for executing this query, then fetches data from the sources (in some cases through a
wrapper or cache) and combines it to return the maximal set of answers.

global schema and the data sources through view definitions. Two classes of tech-

niques have been proposed: local-as-view, which defines sources as views over the

mediated schema, and global-as-view, which defines the mediated schema as a view

over the sources (see [Hal01] for more details). Global-as-view mediation has the ad-

vantage that mediated-schema queries can be simply merged with the view definitions

(“unfolded”) to get the full query. Local-as-view requires more complex query reformu-

lation [LRO96, Qia96, DG97, FLM99, PL00, HIST02], but has been shown to be more

expressive — thus most modern data integration systems use it (or a hybrid of the two

techniques, as in [FLM99, HIST02]). Work in query reformulation algorithms has been

a major focus of database researchers at the University of Washington: UW authors

have contributed the bucket [LRO96] and MiniCon [PL00] algorithms.

The existing work in query reformulation has been on conjunctive queries over

purely relational data. However, the most natural data model for integrating multiple

schemas is that of XML (see [FMN02a]), since this data model is general enough to

accommodate hierarchical, object-oriented, document, and relational data sources. We

expect, therefore, that a data integration query will typically be posed in XQuery [BCF+02],

the standard query language being developed for XML. Based on recent trends in the

database theory community, I expect that query reformulation will soon be extended

14

to handle more general XML data. Thus, for the purposes of my work, I have assumed

the eventual creation of a query reformulator for XQuery (or a subset thereof). In fact,

recent research on the Piazza project has begun to adapt the MiniCon algorithm to

work with a conjunctive subset of XQuery [HIST02].

Data source catalog

The catalog contains several types of metadata about each data source. The first of

these is a semantic description of the contents of the data sources. A number of projects,

including [DDH01, MBR01, HMH01], have focused on developing techniques for auto-

matic or semi-automatic creation of mappings between data sources and the mediated

schema of the data integration system.

Data source sizes and other data distribution could also be recorded alongside the

information about the mappings, but this will only feasible if the data source changes

infrequently and can be “probed” in a comprehensive way; I do not expect this to be

the common case. In a few cases, a system may have even further information de-

scribing the overlap between data values at different sources. A model for reasoning

about overlap is described in [FKL97], and describes the probability that a data value

d appears in source S1 if d is known to appear in source S2. This can be used alongside

cost information to prioritize data from certain data sources.

Attempts have also been made to profile data sources and develop cost estimates

for their performance over time [BRZZ99, ZRZB01], and to provide extensive models

of data source costs and capabilities [LRO96, CGM99, LYV+98, ROH99].

Query processor

The query processor takes the output of the query reformulator — a query over the

actual data sources (perhaps including the specification of certain alternate sources) —

and attempts to optimize and execute it. Query optimization attempts to find the most

desirable operator evaluation tree for executing the query (according to a particular

objective, e.g., amount of work, time to completion), and the query execution engine

executes the particular query plan output by the optimizer. The query processor may

optionally record statistical profiling information in the data source catalog. In this

dissertation, I describe how adaptive techniques and pipelining can be used to produce

an efficient query processor for network-bound XML data.

15

Wrappers

Initial work on data integration predates the recent efforts to standardize data ex-

change. Thus, every data source might have its own format for presenting data (e.g.,

ODBC from relational databases, HTML from web servers, binary data from an object-

oriented database). As a result, one of the major issues was the “wrapper creation

problem.” A wrapper is a small software module that accepts data requests from the

data integration (or mediator) system and fetches the requested data from the data

source; then converts from a data source’s underlying representation to a data format

usable by the mediator. Significant research was done on rapid wrapper creation, in-

cluding tools for automatically inducing wrappers for web-based sources based on a

few training examples [KDW97, BFG01], as well as toolkits for easily programming

web-based wrappers [SA99, LPH00]. Today, the need for wrappers has diminished

somewhat, as XML has been rapidly adopted as a data exchange format for virtually

any data source. (However, the problem has not completely disappeared, as legacy

sources will still require wrappers to convert their data into XML.)

Data Sources

The data sources in an integration environment are likely to be a conglomeration of

pre-existing, heterogeneous, autonomous sources. Odds are high that none of these

systems was designed to support integration, so facilities for exchanging metadata and

statistics, estimating costs, and offloading work are unlikely to be present. Sometimes

the sources will not even be truly queryable, as with XML documents or spreadsheets.

Additionally, in many cases the sources are controlled by external entities who only

want to allow limited access to their data and computational resources. At times, these

access restrictions may include binding patterns, where the source must be queried for

a particular attribute value before it returns the corresponding tuples1.

The data sources may be operational systems located remotely and running with

variable load — hence, the data integration system will often receive data from a given

source at an indeterminate and varying rate. The data integration system must be

able to accommodate these variations, and should be able to “fall back” to mirrored

sources or caches where appropriate.

1An instance of this is a web form from Amazon.com, where the user must input an author or title
before the system will return any books

16

Another important issue related to external data sources is that of semantic match-

ing of entities. Multiple data sources may reference the same entity (for instance,

a user may be a member of multiple web services). Frequently, these different data

sources will have a different representation of identity, and an important challenge

lies in determining whether two entities are the same or different. This problem is

far from being solved, but some initial work has been done on using information re-

trieval techniques for finding similarity [Coh98] and on probabilistic metrics [PR01].

In many cases, however, semantic matching is straightforward enough to be done in

exact-match fashion, or users may supply matching information. For these situations,

we merely need a common data format.

XML has emerged as the de facto standard for exchanging information, and virtu-

ally any demand-driven data integration scenario is likely to be based on XML data

requested via HTTP. Most applications already support some form of XML export ca-

pabilities, but legacy applications may require wrappers to export their data in XML

form. A key characteristic of XML is its ability to encode structured or semi-structured

information of virtually any form: relational and object-oriented data, text documents,

even spreadsheets and graphics images can be encoded in XML.

2.2 The XML Format and Data Model

XML originates in the document community, and in fact it is a simplified subset of

the SGML language used for marking up documents. At a high level, XML is a very

simple hierarchical data format, in which pairs of open- and close-tags and their con-

tent form elements. Within an element, there may be nested elements; furthermore,

each element may have zero or more attributes. From a database perspective, the

difference between an attribute and an element is very minor — attributes may only

contain scalar values, an attribute may occur only once per element, and attributes are

unordered with respect to one another. Elements, on the other hand, may be repeated

multiple times, may include element or scalar data, and are ordered with respect to one

another. An example XML document representing book data is shown in Figure 2.2.

An XML document is fully parsable and “well-formed” if every open-tag has a

matching close-tag and the details of the XML syntax are followed. However, typically

the XML document structure is constrained by a schema. There are two standards for

specifying schemas in XML: DTDs and XML Schemas.

17

<db>
<book publisher="mkp">
<title>Readings in Database Systems</title>
<editor>Stonebraker</editor>
<editor>Hellerstein</editor>
<isbn>123-456-X</isbn>

</book>
<book publisher="mkp">
<title>Transaction Processing</title>
<author>Bernstein</author>
<author>Newcomer</author>
<isbn>235-711-Y</isbn>

</book>
<company ID="mkp">
<name>Morgan Kaufmann</title>
<city>San Mateo</city>
<state>CA</state>

</company>
</db>

Figure 2.2: Sample XML document representing book and publisher data.

The DTD, or Document Type Definition, establishes constraints on XML tags, but

does so in a very loose way. A DTD is essentially an EBNF grammar that restricts the

set of legal XML element and attribute hierarchies. The DTD also explicitly identifies

two special types of attributes: IDs and IDREFs. An ID-typed attribute has a unique

value for each document element in which it is contained — this forms, in essence, a

key within the scope of a document. IDREF and IDREFS-typed attributes, correspond-

ingly, form references to particular IDs within a document. An IDREF contains a single

reference to an ID; an IDREFS attribute contains a list of space-delimited IDs. The

XML specification mandates that no IDREFs within a document may form dangling

references.

XML Schema is a more recent standard intended to supplant the DTD. The primary

benefits of Schema are support for element types and subclassing, support for richer

type information about values (e.g., integers, dates, etc.), and support for keys and

foreign keys. Unfortunately, Schema is a very complex standard with many related

18

db

#1

#2

#8
mkp

company b
oo

k
book

Readings
In Database
Systems

123-456-X

#3
#4 #7

title
 ISBN

ed
ito

rs

na
m

e
 publisher

Principles
of Transaction
Processing

235-711-Y

#9

#10

titl
e IS

B
N

publisher

Morgan Kaufmann

San Mateo

#14 #15 #16

na
m

e state

city

#5

Stonebraker
Hellerstein

name

#6

CA

authors

na
m

e

#12

name

#13

#11

Bernstein

Newcomer

Figure 2.3: XML-QL graph representation for Figure 2.2. Dashed edges represent
IDREFs; dotted edges represent PCDATA.

but slightly different idioms (e.g., different types of inheritance, support for structural

subtyping and name subtyping), and there is no clean underlying data model that

comes with the standard.

There have been numerous proposals for an XML data model, but two are of par-

ticular interest to us. The first proposal, a mapping from XML into the traditional

semistructured data model, is interesting because it provides graph structure to an

XML document; however, it does not capture all elements of the XML specification.

The second proposal, the W3C XML Query data model, is tree-based but incorporates

all of the different details and idiosyncrasies of the XML specification, including pro-

cessing instructions, comments, and so forth. The XML Query data model is an at-

tempt to define a clean formalism that incorporates many of the core features of XML

Schema.

2.2.1 The XML-QL Data Model

Today, with the advent of proposed standards, the XML-QL query language [DFF+99]

has lost favor, so one could argue that its data model is irrelevant. However, the data

model is a mapping from XML to a true semi-structured data model, and thus it has

some interesting features that are missing from recent standards — features that may

be important for certain applications.

In the XML-QL data model, each node receives a unique label (either the node’s

19

db

book

book
company

Readings
In Database
Systems

123-456-X

title

isbn

 publisher="mkp"

Principles
of Transaction
Processing

235-711-Y

title

isbn

publisher="mkp"

Morgan Kaufmann

San Mateo

name city state

editor

Stonebraker
Hellerstein

editor

CA

author author

Bernstein Newcomer

ID="mkp"

Figure 2.4: Simplified XQuery data model-based representation for Figure 2.2.
Dashed edges illustrate relationships defined by IDREFs; dotted edges point to text
nodes.

ID attribute or a system-generated ID). A given element node may be annotated with

attribute-value pairs; it has labeled edges directed to its sub-elements and any other

elements that it references via IDREF attributes. Figure 2.3 shows the graph repre-

sentation for the sample XML data of Figure 2.2. Note that IDREFs are shown in the

graph as dashed lines and are represented as edges labeled with the IDREF attribute

name; these edges are directed to the referenced element’s node. In order to allow for

intermixing of “parsed character” (string) data and nested elements within each ele-

ment, we create a PCDATA edge to each string embedded in the XML document. These

edges are represented in Figure 2.3 as dotted arrows pointing to leaf nodes.

XML-QL’s data model only has limited support for order: siblings have indices that

record their relative order, but not absolute position, so comparing the order of arbi-

trary nodes is difficult and requires recursive comparison of the ancestor nodes’ rela-

tive node orderings (starting from the root). Furthermore, XML-QL’s data model does

not distinguish between subelement edges and IDREF edges — therefore, a given graph

could have more than one correct XML representation.

2.2.2 The XML Query Data Model

The World Wide Web Consortium’s XML Query (XQuery) data model [FMN02b] is

based on node-labeled trees, where IDREFs exist but must be dereferenced explicitly.

The full XQuery model derives from XML Schema [XSc99], or at least a cleaner ab-

20

straction of it called MSL [BFRW01]. This data model has many complexities: ele-

ments have types that may be part of a type hierarchy; types may share portions of

their substructure (“element groups”); elements may be keys or foreign keys; scalar

values may have restricted domains according to specific data types; and the model

also supports XML concepts such as entities, processing instructions, and even com-

ments. Furthermore, any node in the XQuery data model has implicit links to its

children, its siblings, and its parent, so traversals can be made up, down, or sideways

in the tree.

For the purposes of this thesis, most of XQuery’s type-related features are irrelevant

to processing standard, database-style queries, so I will discuss only a limited subset

of the XQuery data model, which focuses on elements, attributes, and character data

and which includes order information. Figure 2.4 shows a simplified representation

of our example XML document using this data model, where a left-to-right preorder

traversal of the tree describes the order of the elements.

2.3 Querying XML Data

During the past few years, numerous query languages for XML have been proposed,

but recently the World Wide Web Consortium has attempted to standardize these with

its XQuery language specification [BCF+02]. The XQuery language is designed to

extract and combine subtrees from one or more XML documents. The basic XQuery

expression consists of a For-Let-Where-Return clause structure (commonly known

as a “flower” expression): the For clause provides a series of XPath expressions for

selecting input nodes, the Let clause similarly defines collection-valued expressions,

the Where clause defines selection and join predicates, and the Return clause creates

the output XML structure. XQuery expressions can be nested within a Return clause

to create hierarchical output, and, like OQL, the language is designed to have modular

and composable expressions. Furthermore, XQuery supports several features beyond

SQL and OQL, such as arbitrary recursive functions.

XQuery subsumes most of the operations of SQL, and general processing of XQuery

queries is extremely similar, with the following key differences.

21

<result> {
FOR $b IN document("books.xml")/db/book,

$t IN $b/title/data(),
$n IN $b/(editor|author)/data()

RETURN <item>
<person>{ $n }</person>
<pub>{ $t }</pub>

</item>
} </result>

Figure 2.5: XQuery query that finds the names of people who have published and
their publications. The For clause specifies XPath expressions describing traversals
over the XML tree, and binds the subtrees to variables (prefixed with dollar signs).

Input Pattern-Matching (Iteration)

XQuery execution can be considered to begin with a variable binding stage: the For

and Let XPath expressions are evaluated as traversals through the data model tree,

beginning at the root. The tree matching the end of an XPath is bound to the For

or Let clause’s variable. If an XPath has multiple matches, a For clause will iterate

and bind its variable to each, executing the query’s Where and Return clause for each

assignment. The Let clause will return the collection of all matches as its variable

binding. A query typically has numerous For and Let assignments, and each legal

combination of these assignments is considered an iteration over which the query ex-

pression should be evaluated.

An example XQuery appears in Figure 2.5. We can see that the variable $b is

assigned to each book subelement under the db element in document books.xml; $t

is assigned the title within a given $b book, and so forth. In my thesis work, I assume

an extended version of XPath that allows for disjunction along any edge (e.g., $n can be

either an editor or author), as well as a regular-expression-like Kleene star operator

(not shown).

In the example, multiple match combinations are possible, so the variable binding

process is performed in the following way. First, the $b variable is bound to the first

occurring book. Then the $t and $n variables are bound in order to all matching

title and editor or author subelements, respectively. Every possible pairing of $t

and $n values for a given $b binding is evaluated in a separate iteration; then the

22

<result>
<item>
<person>Stonebraker</person>
<pub>Readings in Database Systems</pub>

</item>
<item>
<person>Hellerstein</person>
<pub>Readings in Database Systems</pub>

</item>
<item>
<person>Bernstein</person>
<pub>Transaction Processing</pub>

</item>
<item>
<person>Newcomer</person>
<pub>Transaction Processing</pub>

</item>
</result>

Figure 2.6: The result of applying the query from Figure 2.5 to the XML data in
Figure 2.2. The output is a series of person-publisher combinations, nested within
a single result root element.

process is repeated for the next value of $b. We observe that this process is virtually

identical to a relational query in which we join books with their titles and authors — we

will have a tuple for each possible 〈title, editor|author〉 combination per book. The

most significant difference is in the terminology; for XQuery, we have an “iteration”

with a binding for each variable, and in a relational system we have a “tuple” with a

value in each attribute.

XML Result Construction

The Return clause specifies a tree-structured XML constructor that is output on each

iteration, with the variables replaced by their bound values. Note that variables in

XQuery are often bound to XML subtrees (identified by their root nodes) rather than

to scalar values. The result of the example query appears in Figure 2.6.

One of the primary idioms used in XQuery is a correlated flower expression nested

within the Return clause. The nested subexpression returns a series of XML elements

23

that satisfy the correlation for each iteration of the outer query — thus, a collection

of elements gets nested within each outer element. This produces a “one-to-many”

relationship between parent and child elements in the XML output. Note that this

particular type of query has no precise equivalent in relational databases, but it has

many similarities to a correlated subquery in SQL.

Traversing Graph Structure

Finally, as we pointed out earlier in our discussion of the XML data model, some XML

data makes use of IDREF attributes to represent links between elements (the dashed

lines in Figure 2.3). IDREFs allow XML to encode graph-structured as well as tree-

structured data. However, support for such capabilities in XQuery is limited: while

XQuery has “descendant” and “wildcard” specifiers for selecting subelements, its ->

dereference operator only supports following of single, specified edges. These restric-

tions were presumably designed to facilitate simpler query processing at the expense

of query expressiveness. For applications that require true graph-based querying, ex-

tensions to XQuery may be required, and these extensions will give us a data model

that looks more like that for XML-QL. We discuss these features in more detail in

Chapter 4.

2.3.1 Querying XML for Data Integration

To this point, we have discussed the general principles of querying an XML document

or database, including data models, query languages, and unique aspects. Our dis-

cussion has assumed that the XML data is available through a local database or a

materialized data source, e.g., an XML document on a local web server.

However, the data integration context provides an interesting variation on this pat-

tern: sometimes XML data may be accessible only via a specific dynamic query, as the

result of a “virtual XML view” over an underlying data source (e.g., an XML publishing

system for a relational database, such as [FTS99, CFI+00], or a web forms interface,

such as those at Amazon.com). This query may need to request content from the data

source according to a specific value (e.g., books from Amazon with a particular author).

In other words, a data integration system may need to read a set of values from one

or more data sources, then use these to generate a dynamic query to a “dependent”

data source, and then combine the results to create a query answer. XQuery currently

24

supports a limited form of dynamic queries, based on CGI requests over HTTP, and

the Working Group is considering the addition of special functions for fully supporting

these features under other protocols such as SOAP.

Now that the reader is familiar with the basic aspects of data integration and XML

query processing, we focus on the problem of XML query processing for data integra-

tion.

25

Chapter 3

QUERY PROCESSING FOR DATA INTEGRATION

The last chapter presented the basic architecture of a data integration system and

discussed several motivations for adopting the XML data format and data model stan-

dards. The construction of data integration systems has been a topic of interest to both

of my advisors, who developed the Information Manifold [LRO96] and Razor [FW97].

These systems focused on the problems of mapping, reformulation, and query planning

for relational data. My thesis project, Tukwila, builds upon the techniques developed

for these systems and the rest of the data integration community, with a new emphasis:

previous work established the set of capabilities that a basic data integration system

should provide and developed techniques for effective semantic medation. However,

they typically focused on issues other than providing the level of scalability and per-

formance necessary to be used in real applications. In the data integration domain,

queries are posed over multiple autonomous information sources distributed across a

wide-area network. In many cases, the system interacts directly with the user in an

ad-hoc query environment, or it supplies content for interactive applications such as

web pages. The focus of my thesis has been on addressing the needs of this type of

domain: building a data integration query processing component that provides good

performance for interactive applications, processes XML as well as relational data,

and handles the unique requirements of autonomous, Internet-based data sources.

As I discuss in previous chapters, modern query processors are very effective at

producing well-optimized query plans for conventional databases, and they do this by

leveraging I/O cost information as well as histograms and other statistics to compare

alternative query plans. However, data management systems for the Internet have

demonstrated a pressing need for new techniques. Since data sources in this domain

may be distributed, autonomous, and heterogeneous, the query optimizer will often

not have histograms or any other quality statistics. Moreover, since the data is only

accessible via a wide area network, the cost of I/O operations is high, unpredictable,

and variable.

I propose a combination of three techniques, which can be broadly classified as

26

adaptive query processing, to mitigate these factors:

1. Data should be processed as it is streaming across the network (as is done in

relational databases via pipelining)1.

2. The system should employ adaptive scheduling of work, rather than using a

deterministic and fixed strategy, to accommodate unpredictable I/O latencies and

variable data flow rates.

3. The system should employ adaptive plan re-optimization, where the query

processor adapts its execution strategy in response to new knowledge about data

sizes and transfer rates as the query is being executed.

In the remainder of this chapter, I provide a more detailed discussion of how these

three aspects interrelate. I begin with a discussion of the adaptive query processing

space and where my work falls within this space, then in Section 3.2 I provide a sketch

of how my thesis contributions in adaptive query processing solve problems for data

integration, and I conclude the chapter with an overview of my contributions in the

Tukwila system, which implements the adaptive techniques of my thesis.

3.1 Position in the Space of Adaptive Query Processing

Adaptive query processing encompasses a variety of techniques, often with different

domains in mind. While I defer a full discussion of related work to Chapter 8, it is

important to understand the goals of my thesis work along several important dimen-

sions:

Data model To this point, most adaptive query processing techniques have focused

on a relational (or object-relational) data model. While there are clearly important re-

search areas within this domain, other data models may require extensions to these

techniques. In particular, XML, as a universal format for describing data, allows for

hierarchical and graph-structured data. I believe that XML is of particular interest

1Note that our definition of “streaming” does not necessarily mean “infinite streams,” as with some
other recent works, e.g. [DGGR02a].

27

within a data integration domain, for two reasons. First, XML is likely to be the pre-

dominant data format for integration, and it poses unique challenges that must be

addressed. Second, the basic concepts from relational databases often are insufficient

for XML processing. For instance, there has been no means of “pipelining” XML query

processing as the data streams across the network2. As a second example, the notions

of selectivity and cardinality have a slightly different meaning in the XML realm, since

the number of “tuples” to process depends on the XPath expressions in the query.

Remote vs. local data Traditional database systems have focused on local data. Re-

cent work in distributed query processing has focused on techniques for increasing the

performance of network-bound query applications, including [UFA98, UF99, IFF+99,

AH00, HH99]. The focus of my thesis has been on remote data, although many of the

techniques can be extended to handle local data as well.

Large vs. small data volumes Data warehouses and many traditional databases

concentrate on handling large amounts of data (often in the tens or hundreds of GB).

In contrast, most previous work on data integration systems and distributed databases

has concentrated on small data sources that can easily fit in main memory. My focus

is on “mid-sized” data sources: sources that provide tens or hundreds of MB of data,

which is enough to require moderate amounts of computation but which is still small

enough to be sent across typical local-area and wide-area networks. I believe that

typically, most data sources will be able to filter out portions of their data according to

selection predicates, but that they will be unlikely to perform joins between their data

and that of other sources — hence, the amount of data sent is likely to be nontrivial.

First vs. last tuple For domains in which the data is used by an application, the

query processor should optimize for overall query running time — the traditional fo-

cus of database query optimizers. Most of today’s database systems do all of their

optimization in a single step; the expectation (which does not generally hold for large

query plans [AZ96] or for queries over data where few statistics are available) is that

the optimizer has sufficient knowledge to build an efficient query plan. The INGRES

optimizer [SWKH76] and techniques for mid-query re-optimization [KD98] often yield

2SAX parser events can be viewed as a form of pipelining, but they do not do query processing.

28

better running times, because they re-optimize later portions of the query plan as more

knowledge is gained from executing the earlier stages. I have studied re-optimization

both as a way to speed up total running time (last tuple) and as a way of improving

time to first tuple. My work has also emphasized pipelined execution as a heuristic

that typically speeds time to first tuple.

Re-use of results and statistics Data may often be prefetched and cached by the

query processor, but the system may also have to provide data freshness guarantees.

Caching and prefetching are well-studied areas in the database community, and the

work on rewriting queries over views [Hal01] can be used to express new queries over

cached data, rather than going to the original data sources. My thesis work does not

directly investigate caching, but our work on Piazza (see Chapter 7) investigates the

use of caching mechanisms in network-based query processing. Related to caching of

data, it is also possible to “learn” statistical models of the content at data sources, as

in [CR94], or patterns of web-source access costs, as in [BRZZ99, ZRZB01]. My thesis

work can take advantage of cached results or statistics when they are available, but

the emphasis is on working well even when they are not.

3.2 Adaptive Query Processing for Data Integration

As mentioned above, I have proposed a three-pronged strategy to providing a compre-

hensive solution to network-based query processing. I describe these dimensions in the

following subsections, and I describe how my contributions differ from previous tech-

niques within each dimension. A more comprehensive section on related work appears

in Chapter 8.

3.2.1 Pipelining XML Data

XML databases [Aea01, XLN, Tam, GMW99, FK99b, SGT+99, AKJK+02, KM00, BBM+01]

typically map XML data into an underlying local store — relational, object-oriented,

or semistructured — and do their processing within this store. For a network-bound

domain where data may need to be re-read frequently from autonomous sources to

guarantee “freshness,” this materialization step would provide very poor performance.

Furthermore, deconstructing and reconstructing XML introduces a series of complex

operations that limit opportunities for adaptivity. Thus it is imperative that an XML

29

data integration system not materialize the data first, but instead support processing

of the data directly.

Contrasting with databases, the tools from the XML document community (in par-

ticular, XSLT processors) have been designed to work on XML data without materializ-

ing it to disk — they typically build a Document Object Model (DOM) parse tree of the

single XML document to be processed, and then they match XSLT templates against

this document and return a new DOM tree. Note that they are limited by main mem-

ory and they typically only work over a single document. More significantly, they do

not provide incremental evaluation of queries: first the document is read and parsed,

then it is walked, and finally output is produced. Since network data transfer and XML

parsing are both slow, it is desirable to incrementally pipeline the data as it streams

in, much as a relational engine can pipeline tuples as they stream in. This capability

would improve pure performance, and it would also enhance the number of possibil-

ities for adaptive scheduling of work and for re-optimization, since more concurrent

operations would be occuring.

In order to provide incremental, pipelined evaluation of XML queries, a system

must be able to support efficient evaluation of regular path expressions over the incom-

ing data, and incremental output of the values they select. Regular path expressions

are a mechanism for describing traversals of the data graph using edge labels and

optional regular-expression symbols such as the Kleene-star (for repetition) and the

choice operator (for alternate subpaths). Regular path expressions bear many similar-

ities to conventional object-oriented path expressions, and can be computed similarly;

however, the regular expression operators may require expensive operations such as

joins with transitive closure.

The first contribution of my thesis is a query processing architecture that focuses

on pipelining XML data in a way that is similar to relational query execution. A key

contribution is the x-scan operator, which evaluates XPath expressions across incoming

XML data, and which binds query variables to nodes and subgraphs within the XML

document. X-scan includes support for both tree- and graph-structured documents,

and it is highly efficient for typical XML queries. It combines with the other adaptive

query features proposed in my thesis to rapidly feed data into an efficient query plan,

and thus return initial data to the user as quickly as possible.

30

3.2.2 Adaptive Operator Scheduling

A physical query plan generally contains both an algebraic order of evaluation (i.e.,

an evaluation tree specifying operator precedence) for the query data, as well as a set

of physical algorithms that establish a physical order of evaluation (e.g., nested loops

join defines that the “inner” table be iterated over before the “outer” table). Adaptive

operator scheduling techniques preserve the current algebraic query plan, but modify

which operators are physically scheduled first or which tuples are processed earliest.

An example of an adaptive operator is the pipelined hash join, or double pipelined

join [RS86, WA91], which runs the child subtrees of the join and their parent in sepa-

rate concurrent threads (which are scheduled by the operating system or the database

itself). Another example is one aspect of query scrambling [UFA98], which resched-

ules a portion of a query plan when an initial delay is encountered. Finally, dynamic

pipeline scheduling [UF01] allows a query plan to prioritize the processing of certain

tuples to produce early output.

Adaptive scheduling produces no benefits if the query is completely I/O-bound and

all data has been fully processed. On the other hand, it is extremely beneficial for

queries that are what might be termed “scheduling-bound” — where the default schedul-

ing prevents the plan from doing work it might otherwise be able to perform — and it

is also helpful if the query is CPU-bound and the system wishes to prioritize certain

results.

A key characteristic of operator scheduling is that it affects query performance over

the currently available tuples, but does not affect the overall amount of work the CPU

must perform to complete the query. Hence, a scheduling change is in some sense a

“low-risk” decision, as it does not incur a future penalty.

In data integration, adaptive scheduling can be extremely beneficial, because a

complex pipelined query plan typically encounters situations in which a particular

query operator is I/O-bound, but some other operator could be doing work. Here, the

query processor can block the I/O-bound operator and switch to the one that can make

progress, and it can do this without needing to consider the possibility of incurring a

penalty.

My contributions in the area of adaptive operator scheduling are a variant of the

pipelined hash join that supports dynamic destaging when it runs out of memory, as

well as a query operator called the dynamic collector, which adaptively reads tuples

31

from mirrored or overlapping sources according to source priority and availability.

3.2.3 Adaptive Query Plan Re-Optimization

Changing the algebraic plan order (or the physical algorithms being used within the

query plan) is much more significant than changing plan scheduling, because this has

a long-term effect on overall plan performance. This is because future tuples must be

processed not only within the new plan, which has a set of intermediate results with

which it must be combined, but they must also be combined with all data in previous

plans. Depending on the sizes of the intermediate results in all of the plans, some

computation may be extremely inexpensive, and other computation may be extremely

costly. The decision to change a plan should generally be made when new selectivity

or cardinality values are discovered and the original cost estimates for the query are

known to be based on invalid assumptions and likely to lead to high cost.

Instances of plan modification include the operator synthesis stage of query scram-

bling [UFA98], dynamic re-optimization [KD98], the eddy [AH00], and convergent

query processing [IHW].

Changing a query plan can be a costly operation, and it tends to waste work, so

most prior techniques enabled adaptivity between pipelines — when a fragment of

a query plan completed, techniques such as choose nodes or dynamic re-optimization

could change the remainder of the query plan. This prevented the possibility of redoing

computation, and meant that the emphasis of these efforts was on choosing the optimal

points at which to break pipelines, as well as on deciding when to re-optimize. The

initial Tukwila system built similar capabilities into the query optimizer and execution

engine. However, my co-authors and I found several significant problems:

• Re-optimization is required because the query optimizer generally has too few

statistics to select a good query plan. Unfortunately, in many cases, it also has

too few statistics to select a good point at which to break a pipeline.

• One of the desiderata for data integration is early initial answers. Breaking a

query plan into multiple pipelines increases the amount of time before a first

answer is delivered.

• Even with re-optimization, query execution might take a very long time if the

initial pipeline was poorly chosen.

32

Clearly, a better solution would be one that could re-optimize the current pipeline,

rather than merely a future one. Not only would this eliminate the need for an a priori

decision about where to break the pipeline, but it would actually allow the entire query

to be executed in a single pipeline (producing faster initial answers), and it would also

allow the system to switch from a bad initial plan to a better one. It is important,

however, that this set of adaptive capabilities be provided in a way that does not detract

from average-case performance. More specifically, we would also like the following

features:

• The ability to take advantage of any existing statistics or samples from tables

when they are available.

• Low overhead beyond that of standard query processing techniques.

• Efficient re-use of available data, and minimal re-execution of work.

• The ability to support not only standard select, project, and join operators, but

also aggregation optimizations, and potentially to use more sophisticated query

rewrite techniques (e.g., [MP94]).

The eddy algorithm of [AH00] supports frequent dynamic re-optimization of a query

plan, but focuses on re-optimizing as each new tuple that enters the system. As a

result, it relies on a greedy heuristic that does not support aggregation or complex

queries, and one which cannot take advantage of existing statistics. Furthermore, ed-

dies, at least in their current implementation, are less efficient than traditional query

processing techniques because of the inherent overhead in re-optimization and in rout-

ing tuples through operators.

The third contribution of my thesis is a technique called convergent query process-

ing, which allows for adaptive re-optimization that meets the basic desiderata listed

above. It can take advantage of existing cost information and data statistics, but can

also infer statistics and costs for situations where it does not have them. It provides

great flexibility in the kinds of re-optimizations that are possible, but minimizes re-

dundant work. Finally, the decision making can be done with low overhead, as the

system can re-optimize in the background and at periodic intervals.

33

P0

P1

P0

P1

Status
Monitor

Physical
Phase
Plans

Cost-
annotated
Optimizer
Phase
Plans

Optimization Execution

Candidate
Optimizer Plans

Execution
Status

Cost
Estimates

Executing
Phase PlanGlobal Statistics

Re-optimization
Trigger

Query
Results

Event
Handler

Rule
Trigger

Re-Opt.
Trigger

Figure 3.1: Architecture diagram for Tukwila query processor: Tukwila contains
tightly interlinked optimization and execution components. The optimizer can be
re-invoked by triggering certain rules, or when a status monitor determines that a
plan should be re-optimized in mid-stream.

3.3 The Tukwila Data Integration System: An Adaptive Query Processor

In order to validate the techniques proposed in my thesis, both experimentally and

for real-world applications, I have built an adaptive query processor as the core of the

Tukwila data integration system. The current Tukwila implementation is a complete

data integration environment except that it is not typically coupled with a query refor-

mulator module: it accepts reformulated XQueries over XML data sources, it requests

data from these sources via HTTP or NFS requests, and it combines the source XML to

form new results. In other work, my co-authors and I have also combined the Tukwila

system with the MiniCon reformulator algorithm of [PL00] to form a complete system

with a mediated schema, which works for conjunctive relational queries. (Tukwila

has also been the query processor for a number of other projects at the University of

Washington, as I discuss in Chapter 7.)

34

3.3.1 Novel Architectural Features

The focus of my thesis work has been on the query processing component of Tukwila,

illustrated in Figure 3.1. So far as I am aware, the Tukwila query processor is the first

system to be engineered with the express goal of building an adaptive query processor.

Key architectural aspects of Tukwila include the following:

• An architecture that emphasizes pipelined query execution, in order to produce

early first results. Our system typically begins with a single pipelined query

plan, and it can read and process XML as it streams across the network. Since

a single pipeline may run out of resources, my architecture include capabilities

for handling memory overflow and for adaptively splitting a single pipeline into

multiple stages once a significant portion of computation has completed.

• Support for multithreaded execution of queries, in order to facilitate adaptive

scheduling. Unlike most traditional, iterator-based query processors, my system

is not forced to rely on deterministic scheduling, and instead it can selectively

attempt to overlap I/O and computation to more effectively utilize available data

and resources.

• Novel algorithms for network-based and pipelined query processing, including:

(1) a variant of the pipelined hash join [RS86] that supports overflow resolution

and the dynamic collector, (2) a specialized version of the relational union that,

upon data source failure, can switch from the original data source to its mirrors

or alternates, (3) an XPath pattern-matching operator, x-scan, which produces

variable bindings in pipelined fashion over streaming XML data, and (4) an op-

erator, indirect-scan that generalizes the relational dependent join operator for a

web- and XML-oriented environment.

• Mechanisms for efficiently switching query plans in mid-execution of a pipeline,

as well as at the interface between two separate pipelines. One of the key chal-

lenges in building the Tukwila execution engine was providing mechanisms for

efficiently passing data along pipelines (using techniques such as sharing space

in the buffer pool between operators), but also enabling a query plan to be modi-

fied in mid-execution.

35

• Close coupling between the query optimization and execution components. The

optimizer and execution engine expose their data structures to a status monitor

that periodically reads query execution cost and selectivity information and uses

this to update the query optimizer’s cost model. If the actual values diverge sig-

nificantly from the estimates, a query re-optimization operation may be triggered

in the background.

• An event handler for responding to important runtime events. The event handler

provides a way of responding to data source failures, network delays, and memory

overflow. The event handler is capable of initiating a complete re-optimization of

the query. Note that the event handler operates at a lower granularity than a

handler for traditional database triggers or active rules: it responds to events at

the physical level rather than the logical level, and it can also modify the behavior

of query operators or initiate a change in query plans.

• An extended version of the System-R cost-based optimizer algorithm ([SAC+79])

that can be used not only to create initial query plans, but also to periodically re-

optimize an executing query plan when better statistical information is available.

• Support within both the cost-based query optimizer and the query execution sys-

tem for sharing of data structures across different query plans within an exe-

cution sequence. These capabilities are used to avoid repeating computation of

results in a query execution sequence that consists of multiple plans.

Adaptive behavior during query execution is key in situations where I/O costs are

variable and unpredictable. When data sizes are also unpredictable, it is unlikely that

the query optimizer will produce a good query plan, so it is important to be able to

modify the query plan being executed. As a result, Tukwila supports incremental re-

optimization of queries during particular plan execution points.

In the following chapters, I provide a detailed discussion of each of the novel aspects

of my work, and supplement this discussion with an experimental evaluation of the

techniques within the Tukwila system.

36

Chapter 4

AN ARCHITECTURE FOR PIPELINING XML STREAMS

For many years, a wide variety of domains, ranging from scientific research to elec-

tronic commerce to corporate information systems, have had a great need to be able to

integrate data from many disparate data sources at different locations, controlled by

different groups. Until recently, one of the biggest obstacles was the heterogeneity of

the sources’ data models, query capabilities, and data formats. Even for the most basic

data sources, custom wrappers would need to be developed for each data source and

each data integration mediator, simply to translate mediator requests into data source

queries, and to translate source data into a format that the mediator can handle.

The emergence of XML as a common data format, as well as the support for simple

web-based query capabilities provided by related XML standards, has suddenly made

data integration practical in many more cases. XML itself does not solve all of the

problems of heterogeneity — for instance, sources may still use different tags or ter-

minologies — but often, data providers come to agreement on standard schemas, and

in other cases, we can use established database techniques for defining and resolving

mappings between schemas. As a result, XML has become the standard format for data

dissemination, exchange, and integration. Nearly every data management-related ap-

plication now supports the import and export of XML, and standard XML Schemas

and DTDs are being developed within and among enterprises to facilitate data sharing

(instances of these are published at the BizTalk and OASIS web sites1). Language- and

system-independent protocols such as the various web services standards, Microsoft’s

.NET [NET01] initiative, and Sun’s JXTA [JXT01] peer-to-peer protocols use XML to

represent transactions and data.

Processing and integrating XML data poses a number of challenges. In many data

integration applications, XML is merely a “wire format,” the result of some view over

a live, dynamic, non-XML source. In fact, the source may only expose subsets of its

data as XML, via a query interface with access restrictions, e.g., the source may only

1See www.biztalk.org and www.xml.org.

37

return data matching a selection value, as in a typical web form. Since the data is

controlled and updated externally and only available in part, this makes it difficult

or impossible to cache the data. Moreover, the data sources may be located across a

wide-area network or the Internet itself, so queries must be executed in a way that is

resilient to network delays. Finally, the sources may be relatively large, in the 10s to

100s of MB or more, and that may require an appreciable amount of time to transfer

across the network and parse. We refer to these types of data sources as “network-

bound”: they are only available across a network, and the data can only be obtained

through reading and parsing a (typically finite) stream of XML data.

To this point, integration of network-bound, “live” XML data has not been well-

studied. Most XML work in the database community has focused on constructing XML

repositories and warehouses [Aea01, XLN, Tam, GMW99, FK99b, AKJK+02, KM00,

BBM+01, SGT+99], exporting XML from relational databases [FTS99, FMS01a, CFI+00],

adding information retrieval-style indexing techniques to databases [NDM+01, FMK00],

and on supporting query subscriptions or continuous queries [Aea01, CDTW00, AF00]

that provide new results as documents change or are added.

Clearly, both warehousing and indexing are useful for storing, archiving, and re-

trieving file-based XML data or documents, but for many integration applications,

support for queries over dynamic, external data sources is essential. This requires

a query processor that can request data from each of the sources, combine this data,

and perhaps make additional requests of the data sources as a result. To the best of

my knowledge, no existing system provides this combination of capabilities. The Web

community has developed a class of query tools that are restricted to single-documents

and not scalable to large documents. The database community’s web-based XML query

engines, such as Niagara and Xyleme, come closer to meeting the needs of data integra-

tion, but they are still oriented towards smaller documents (which may be indexable

or warehoused), and they give little consideration to processing data from slow sources

or XML that is larger than memory.

As discussed in previous chapters, query processing for data integration poses a

number of challenges, because the data is not tightly controlled or exclusively used by

the data integration system. The query optimizer will often have little or no access

to statistics about the data, and it likely has a very limited model of the data source’s

performance. The lack of initial knowledge and the continued variation in conditions

38

suggest that static query optimization is inappropriate for the data integration do-

main. Later in this dissertation, I present techniques for improving performance by

adapting the query plan in mid-execution and for exploiting parallelism and flexible

scheduling of its constituent operators. However, even without a detailed discussion of

these techniques, it is evident that the best execution model for network-bound data is

one in which data can be read off the input stream and immediately pipelined through

the query plan. This model presents a number of significant benefits for data integra-

tion and for enabling adaptivity:

• A single execution pipeline does not require materialization operations, or pre-

parsing or preprocessing of an XML document, so initial answers will be returned

more quickly. This satisfies an important desideratum for interactive data inte-

gration applications.

• A single pipeline provides the most opportunities for exploiting parallelism and

for flexibly scheduling the processing of tuples.

• A single pipeline processes all of the data sources at once, providing the most in-

formation about the data distributions and performance of the data sources, and

about the selectivity of query subplans. Hence, it provides the most opportunities

for learning about and adapting to query execution costs.

Pipelining and adaptive query processing techniques have largely been confined to

the relational data model. One of the contributions of this chapter is a new XML query

processing architecture that emphasizes pipelining the XML data streaming into the

system, and which facilitates a number of adaptive query processing techniques.

As described in Chapter 2, XML queries operate on combinations of input bindings:

patterns are matched across the input document, and each pattern-match binds an in-

put tree to a variable. The query processor iterates through all possible combinations

of assignments of bindings, and the query operators are evaluated against each suc-

cessive combination. At first glance, this seems quite different from the tuple-oriented

execution model of the relational world, but a closer examination reveals a useful cor-

respondence: if we assign each attribute within a tuple to a variable, we can view

each legal combination of variable assignments as forming a tuple of binding values

(where the values are XML trees or content). In this chapter, I describe an XML query

39

processing architecture, implemented in the Tukwila system, which exploits the cor-

respondence between the relational and XML processing models in order to provide

adaptive XML query processing capabilities, and thus to support efficient network-

bound querying, even in the presence of delays, dynamic data, and source failures.

This architecture includes the following novel features:

• Support for efficient processing of scalar and structured XML content. Our archi-

tecture maps scalar (e.g., text node) values into a tuple-oriented execution model

that retains the efficiencies of a standard relational query engine. Structured

XML content is mapped into a Tree Manager that supports complex traversals,

paging to disk, and comparison by identity as well as value.

• A pair of streaming XML input operators, x-scan and web-join, that are the en-

ablers of our adaptive query processing architecture. Each of these operators

transforms an incoming stream of XML data into an internal format that is

processed by the query operators. X-scan matches a query’s XPath expressions

against an input XML stream and outputs a set of tuples, whose elements are

bindings to subtrees of XML data. Web-join can be viewed as a combination of an

x-scan and a dependent join — it takes values from one input source, uses them

to construct a series of dynamic HTTP requests over Internet sources, and then

joins the results.

• A set of physical-level algebraic operators for combining and structuring XML

content and for supporting the core features of XQuery [BCF+02], the World Wide

Web Consortium XML query language specification, which is nearing completion.

In this chapter, I describe Tukwila’s architecture and implementation, and I present

a detailed set of experiments that demonstrate that the Tukwila XML query process-

ing architecture provides superior performance to existing XML query systems within

our target domain of network-bound data. Tukwila produces initial results rapidly

and completes queries in less time than previous systems, and it also scales better to

large XML documents. The result is the first scalable query processor for network-

bound, live XML data. I validate Tukwila’s performance by comparing with leading

XSLT and data integration systems, under a number of different classes of documents

40

and queries (ranging from document retrieval to data integration); I show that Tuk-

wila can read and process XML data at a rate roughly equivalent to the performance

of SQL and the JDBC protocol across a network; I show that Tukwila’s performance

scales well as the complexity of the path expressions is increased; and we show that

Tukwila’s x-scan operator can scale well to large (100’s of MBs) graph-structured data

with IDREFs.

The remainder of this chapter is structured as follows. Section 4.1 begins by

describing standard techniques for XML query processing, and finishes by presenting

the Tukwila architecture and emphasizing its differences. I then describe the XML

query operators in Section 4.4, and how they can be extended to support a graph data

model in Section 4.5. Section 4.6 provides experimental validation of our work. I

conclude in Section 4.7.

4.1 Previous Approaches to XML Processing

As discussed in Chapter 2, the XML data model and XQuery language are considerably

more complex than simple relational query processing because of their reliance on

path expressions. In particular, the hierarchical nature of XML typically means that a

document can be normalized to a single relational table, but a set of tables that have

parent-child foreign-key relationships.

People have generally attempted to handle the XML processing problem using one

of four methods: (1) focus on techniques for “shredding” XML into tables, combining

the tables, and re-joining the results to produce XML output; (2) make a few modifi-

cations to object-oriented or semi-structured databases, which also inherently support

hierarchy, so they support XML; (3) use a top-down tree-traversal strategy for execut-

ing queries; (4) use a custom wrapper at the source end for index-like retrieval of only

the necessary content. Before I describe the Tukwila architecture, it is useful to briefly

examine these previous approaches and assess their strengths and weaknesses. For a

more comprehensive discussion of related work, please see Chapter 8.

Relational databases Research projects at INRIA [FK99a, MFK+00], AT&T Labs

(STORED [DFS99] and SilkRoute [FTS99, FMS01b]), IBM Almaden [CFI+00, SKS+01,

TVB+02], and the University of Wisconsin [SGT+99] focused on the problems of map-

ping XML data to and from relational databases. Today, all of the major relational

41

DBMS vendors build upon this work and provide support some form of XML export

(e.g., [Rys01, BKKM00]). In general, results suggest that a relational database is

generally not ideal for storing XML, but when the XML data either originates from

relational tables or is slow to change, it may be an acceptable solution. Significant

benefits include scalability and support for value-based indexes; drawbacks include

expensive document load times and expensive reconstruction of XML results. The re-

lational query optimizer can improve performance significantly if the XML query maps

to simple SQL, but it frequently makes poor decisions for more complex queries, since

it does not understand XML semantics [ZND+01].

Object-oriented and semi-structured databases Several major commercial OODBs,

including Poet and ObjectStore, have been adapted to form new XML databases. They

provide some benefits over strictly relational engines because their locking and in-

dexing structures are designed for hierarchical data; however, OO query optimizers

are still generally relatively weak. The Lore semi-structured database [GMW99],

which has a number of special indexing structures, has also been adapted to XML

(though performance was shown to be poor relative to a relational system storing

XML [FK99a]). Numerous native XML databases [KM00, BBM+01, AKJK+02, MAM01]

are also under development. Most of these systems focus on issues relating to effi-

ciently storing and traversing hierarchical objects, as well as on indexing. For more

details, please see the discussion of related work in Chapter 8.

Web-oriented DOM processors The techniques mentioned above focus on storage

and retrieval of XML content. Of course, XML is expected to also be a format for

content transmission across networks, and some of this content will be of a transient

nature — there is a need for systems that format, query, combine, and present it with-

out storing it. For this domain, an entirely different class of query processors has been

developed. These processors, such as the XT, Xalan, and MSXML XSLT engines and

the Niagara system from the University of Wisconsin [NDM+01] typically work by

parsing an XML document into an in-memory DOM tree; then they traverse the tree

using XPath expressions, extract the specified content, and combine it to form a new

document. For transient data of small size, this performs much better than storing the

data on disk and then querying it; however, it is limited by available memory, and it

cannot begin producing answers until after the input document has been parsed. (For

42

a large document over a slow Internet connection, this may be a significant delay.)

Other web-oriented processors The MIX system from the University of California-

San Diego [BGL+99] is web-based, but has a “pull-based” lazy XML evaluation method

where the query processor can request specific regions from the data from the medi-

ator as required. This allows for better scalability than the DOM approach, but suf-

fers from two potential problems. First, it requires a custom wrapper at the source,

which processes the pull-based messages. Second, one of the major costs in wide-area

communication is round-trip time, and the pull-based method requires considerable

communication between data source and consumer.

4.2 The Tukwila XML Architecture

Our intent in designing the Tukwila system is to provide the scalability and query

optimization of a full-fledged database while maintaining the interactive performance

characteristics of the web-based systems. We want to be able to support naive pro-

ducers of XML content, but also to take advantage of more complex systems that can

process queries (or portions of queries) directly.

I defer a discussion of Tukwila’s query optimization features to Chapter 6, and in-

stead I shall focus on the query execution architecture and operators in the remainder

of this chapter.

The Tukwila architecture is based on the following observations:

1. The basic execution model of XQuery is very similar to that for relational databases:

XQuery evaluates the WHERE and RETURN clauses over every possible combina-

tion of input bindings, and each combination of bindings can be viewed as a tuple.

2. The FOR and LET clauses bind input variables using XPath expressions, which

typically are traversals over XML parse tree structure, occasionally with selec-

tion or join predicates. The majority of XPath expressions traverse in the down-

ward (“forwards”) direction, which matches the order in which a parser encoun-

ters the XML elements as it reads an input stream.

3. The majority of selection and join predicates in XQuery tend to involve scalar

(text node) data, rather than complex XML hierarchies. Bindings to hierarchical

43

XML data are most commonly used only in the RETURN clause.

4. The majority of XML processors use DOM-based parsers, which must construct

the entire XML parse tree before query processing begins. Incremental pars-

ing, combined with pipeline-based execution2 as in relational databases, would

produce significant benefits. First, it can reduce the time to first answers, as

results percolate through the query plan more quickly. Second, the increased

parallelism of pipelined operators allows for adaptive scheduling, which allows

the query processor to overlap I/O with computation [IFF+99] and prioritize im-

portant work [UF01].

Based on these observations, we have designed an architecture that is particularly

efficient for common-case query execution.

4.2.1 The Tukwila Execution Engine

The core operations performed by most queries are path matching, selecting, pro-

jecting, joining, and grouping based on scalar data items. Our engine can support

these operations with very low overhead, and in fact it can approximate relational-

engine performance in simple queries. Our query execution engine also emphasizes

a relational-like pipelined execution model, where each “tuple” consists of bindings to

XML content rather than simple scalar attributes. This gives us the time-to-first-tuple

benefits cited previously, and it has the benefit of leveraging the best techniques from

relational query processing.

A high level view of the Tukwila architecture is illustrated in Figure 4.1. The query

optimizer passes a plan to the execution engine; at the leaf nodes of this plan are x-scan

operators. The x-scan operators (1) retrieve XML data from the data sources, (2) parse

and traverse the XML data, matching regular path expressions, (3) store the selected

XML subtrees in the XML Tree Manager, and (4) output tuples containing scalar val-

ues and references to subtrees. The tuples are fed into the remaining operators in the

query execution plan, where they are combined and restructured. As it flows through

the operators near the top of the query plan, each tuple is annotated with information

describing what content should be output as XML, and how that content should be

2Note that while not all operators are pipelineable, a fairly large class of queries can be answered with
pipelined operators.

44

Binding
Tuples

Query
Operators

XML
Generator

Query
Optimizer

X-scan
Operators

XML
Data

Partly Tagged
Data

XML
Data

Temp
Storage

Tukwila XML Engine

XML
Sources

Page
Manager

.

.

.

<sub>
 <val>1</val>
 <val>2</val>
</sub>

<sub>
 <val>1</val>
 <val>2</val>
</sub>

XML Tree
Manager

Query
Plan

User
Application

Query

Figure 4.1: Architecture of the Tukwila query execution engine. After a query plan
arrives from the optimizer, data is read from XML sources and converted by x-scan
operators into output tuples of subtree bindings. The subtrees are stored within the
Tree Manager (backed by a virtual page manager), and tuples contain references to
these trees. Query operators combine binding tuples and add tagging information;
these are fed into an XML Generator that returns an XML stream.

tagged and structured. Finally, the XML Generator processes these tagged tuples and

returns an XML result stream to the user.

In a sense, the “middle portion” of our architecture (represented by the “Query Op-

erators” box and the Page Manager) resembles a specialized object-relational database

core. Tuples contain attribute values that have been bound to variables; these values

can be scalar, and stored directly within the tuple, or they can be XML structures,

similar to CLOBs (character large objects) in an OR database — XML structures are

stored separately from the tuple, in an XML Tree Manager, which is a virtual memory

manager for XML subtrees. (Note that we do not attempt to support any other object-

oriented types, nor do we implement methods.) The tuples being pipelined through

the query plan contain references to subtrees within this Tree Manager, so if multiple

variables are bound to an XML tree, the data does not need to be duplicated. Our query

operators can manipulate both references within the Tree Manager and values embed-

ded within the tuple, so both object-based and value-based operations are possible —

including grouping, nesting, and aggregation. XML subtrees can be reference-counted

and garbage-collected when all tuples referring to them have been processed by the

system.

The Tukwila architecture allows us to leverage a number of components from the

relational world, such as most of the basic memory management strategies and oper-

45

ators; it is also straightforward to make use of adaptive query processing operators

when these are appropriate for the query semantics. We discuss Tukwila’s query oper-

ators later in this chapter.

4.2.2 Pipelining XML Data

One of the virtues of the flat relational model is its extreme flexibility as a representa-

tion. For example, since relations are order-independent, joins can be commuted and

non-order-preserving algorithms can be used. Techniques for query decorrelation can

be used. Predicates can be evaluated early or late, depending on their selectivity.

A hierarchical data model, such as XML, is often more intuitive to the data con-

sumer (since it centers around a particular concept), but the natural model of execution

— breaking a query by levels in the hierarchy — is not necessarily the most efficient.

Even more restrictive than hierarchy is ordering: by default, XQuery is very proce-

dural, specifying an order of iteration over bindings, an implicit order of evaluating

nested queries, and so forth.

One possible execution model for XQuery would resemble that for nested relations,

and in fact “recursive” algebras for nested relations, in which all operators can operate

at any level of nesting in the data, have been proposed and implemented (e.g., [HSR91,

Col89]). However, we have a preference for mapping XML — even hierarchical XML

— into something more resembling the “flat” relational model: an XML document gets

converted into a relation in which each attribute represents the value of a variable

binding, and position is encoded using counter or byte-offset information. Each such

binding may contain arbitrary XML content; but unlike in a nested relational model,

the query may only manipulate the top level of the structure. Nested structure must

be expanded before it can be manipulated.

This architecture allows us to directly leverage relational query execution and opti-

mization techniques, which are well-understood and provide good performance. More-

over, we believe that, particularly in the case of data integration, we can get better

performance from an execution model that preserves structure but has “flat” query

operators, for three key reasons. First, many data integration scenarios require sig-

nificant restructuring of XML content anyway — hence, it makes little sense to spend

overhead maintaining structure that will be lost in the end. Second, we can make

the unnesting and re-nesting operations inexpensive: our x-scan algorithm provides a

46

FOR $b IN document("books.xml")/db/book,
$pID IN $b/@publisher,
$t IN $b/title/data(),
$pub IN
document("amazon.xml")/book/item,
$t2 IN $pub/title/data(),
$p IN $pub/source,
$pi IN $p/@ID,

$pr IN $pub/price/data()
WHERE $pr < 49.95

AND $pID2 = $pID
AND $t = $t2

RETURN <book>
<name>{ $t }</name>,
<publisher>{ $p }</publisher>

</book>

Figure 4.2: Query returning titles and publishers for books priced under $49.95 at
Amazon. The plan for this query is shown in Figure 4.3.

low-overhead way to unnest content, and we can insert additional metadata into every

tuple to make it easy to re-nest or re-order values. Third, we believe that there is an

inherent overhead in building algorithms that preserve multiple levels of hierarchy,

and as a result we feel a “RISC” philosophy is most appropriate.

Example 4.2.1 Figure 4.3 shows a physical query plan and the tuple encoding for

the simple XQuery of Figure 4.2. The x-scan operators at the leaves convert XML to

streams of tuples by binding variables to the nodes matched by regular path expres-

sions. General query operators such as selects and joins are performed over these tu-

ples: first we select Amazon publications priced less than $49.95, and then we join

the results with books on the publisher and title values. Once the appropriate

binding values have been selected and joined, an output XML tree must be generated

with the variables’ content. The output operator is responsible for replicating the sub-

tree value of a given binding to the query’s constructed output. The element operator

constructs an element tag around a specified number of XML subtrees. In the figure,

the output subtree is shown at different stages of construction — first we output $t

and insert a name element above it; then we output $p and a publisher element tag

47

X-scan X-scan
$b = db/book
$pID = $b/@publisher
$t = $b/title

$pub = book/item
$t2 = $pub/@title
$p = $pub/source
$pi = $p/@ID
$pr = $p/price

books amazon

$pID = $pi,
$t = $t2

Output

Element

Output

Element

Element

$t

<name>, 1

$p

<publisher>,1

<book>,2

publisher

name

name

name

book

$pr < 49.95
prt2 pip

b pID t prt2 pip

b pID t prt2 pip

b pID t prt2 pip

b pID t prt2 pip

b pID t prt2 pip

b pID t prt2 pip

publishername

prt2 pip

b pID t

Result

<book>
 <publisher>...

pub

pub

pub

pub

pub

pub

pub

pub

Figure 4.3: Query plan for Figure 4.2 includes a pair of x-scan operators to compute
the input bindings, a join across these sources, and a series of output and element

operators that copy the desired variables to the output and construct XML elements
around them.

around it; finally, we take both of these subtrees and place them within a book ele-

ment. As a last step, the stream of tuples is converted back into a stream of actual

XML. 2

In subsequent sections, we describe in detail how Tukwila encodes XML structural

information, including tags, nested output structure, and order information.

Encoding XML Tags

In XQuery, a single RETURN clause builds a tree and inserts references to bindings

within this tree. The tree is in essence a template that is output once for each binding

48

book

lst fst adnm

publishername
lst fst adnm

name/2 publisher/2 book/2lstfst nmad

Bindings Constructed XML Result Tree

Figure 4.4: Encoding of a tree within a tuple, for the query of Figure 4.3. The en-
coding is done in bottom-up fashion, so each parent element needs only to specify
its number of children. (The arrows are for visualization only.) The tree “leaves” are
references to attributes containing bindings.

tuple.

In Tukwila, we need to encode the tree structure and attach it to each tuple. We do

this by adding special attributes to the tuple that describe the structure in a right-to-

left, preorder form. The benefit of this encoding is that we do not need pointers from

parent nodes to children — instead, each non-leaf node specifies a count of how many

subtrees lie underneath it, and the decoding algorithm simply expands each subtree

recursively.

Figure 4.4 shows this schematically: the tree in the right half of the figure is en-

coded as the tuple in the left half. The leftmost 4 entries in the tuple are the values of

the variable bindings, which contain data values but are not directly part of the XML

document under construction. The XML fragment represented by this tuple can be

decoded as follows: we start at the rightmost item in the tuple (book); this represents

a book element with two children (indicated by the “/2” in the figure), and we output

a <book> tag. We traverse to the leftmost child of the element by moving left by 2

attributes; this yields a <name> with 2 children. Again, we traverse the left child –

here, we are instructed to output the fst attribute. Next we visit the sibling, lst, and

output its value, and so on.

Of course, the encoding mentioned above assumes that there are no 1 : n parent-

child relationships in the returned output (every element occurs once for every combi-

nation of input bindings). It is very common for XQueries to contain correlated nested

49

subqueries, which embed many results within each iteration of the outer query.

Encoding Nesting

As mentioned previously, although we want to capture hierarchical nesting of XML

results, we do not actually encode it using nested relations. Instead, we flatten or

denormalize the results: a single parent tuple with n child tuples is represented by

n “wide” tuples with both parent and child information. The XML hierarchy could

be decoded by grouping together all tuples with the same parent content. However,

that approach does not support proper bag semantics, since duplicate parents will be

combined, and it is fairly costly since all parent attributes must be matched. Instead

of adopting that approach, we insert an additional attribute that encodes the parent’s

sequence ID, and group tuples by this ID to find all of the children with a common

parent.

Note that this flattened encoding gives the query processor the opportunity to ar-

bitrarily re-order tuples at any point, potentially distributing consecutive data items

anywhere in the tuple stream, as long as it performs a sort at the end. It is worth

noting that this tuple encoding approach has some similarities to the “outer union”

encoding implemented in [CFI+00, SSB+00] and in Microsoft SQL Server’s FOR XML

EXPLICIT mode; however, we encode the branches of the subquery hierarchy rather

than the XML data hierarchy. As a result, we seldom have null values in our tuple

stream.

Encoding Order

All of Tukwila’s path-matching algorithms can insert attributes that record both the

position of a binding, by encoding its byte offset within the XML stream, and its or-

dering relative to any other matches for the same variable. Note that these are two

distinct concepts, especially when references are used. By adding an ordinal attribute,

Tukwila may use non-order-preserving join operators but still maintain XQuery or-

dered semantics: it simply sorts the data before outputting it.

Generating XML Output

Converting from a tuple stream to an XML stream requires several steps: (1) tra-

verse the XQuery RETURN clause constructor embedded within a tuple, outputting

50

the appropriate structure, (2) retrieve and embed any referenced XML subtrees, and

(3) correctly output hierarchical XML structure which may span multiple tuples. The

first step, traversing the tree structure embedded within a tuple consists of starting

at the rightmost output attribute and recursively traversing the tuple-encoded tree,

as described in Section 4.2.2. Each time a leaf node is encountered, the second step

is performed: the referenced XML subtree is retrieved from the Tree Manager and

replicated to the output.

The first two steps above are used when all values encoded within a tuple are to be

output; this is not necessarily the case if grouping or nesting attributes are present.

If nested structure is being represented, then each tuple will actually consist of data

for the parent relation followed by data for the child relation. Clearly, the parent data

should only be output once for the entire group. This is easily determined by testing

whether the parent ID attribute has changed between successive tuples.

Groups can be grouped or nested, so this process scales to arbitrary depth. More-

over, XQuery semantics are outer-join-like, so it is possible to have a publisher with no

books. In this case, the book attributes in the tuple are set to null values, and the XML

decoder simply outputs the publisher attributes with no book content.

In the next two sections, we describe the Tukwila query operators, which make

use of this tuple-based encoding. We begin with the operators that produce the tuple

stream: the x-scan and web-join operators.

4.3 Streaming XML Input Operators

It is Tukwila’s support for streaming XML input that most differentiates it from other

XML query processors. This support is provided by two different operators that take an

input XML stream and a set of XPath expressions, and they return “tuples of trees” rep-

resenting the combinations of variable bindings that match the XPaths. The simpler

operator, x-scan, performs XPath matching over a specified input document. The web-

join operator adds further mechanisms for supporting data-dependent queries: like

the dependent join in a relational system, it is provided with a stream of “independent

tuples.” A web-based (e.g., HTTP) query string is generated by inserting values from

the current tuple into a query generating expression; this query request is performed,

and the resulting XML document is then pattern-matched against XPath expressions.

Finally, the matching bindings are combined with the original independent tuple to

51

produce a cartesian product. X-scan is used for querying static or predetermined web

sources, and web-join allows Tukwila to dynamically query and combine numerous

sources.

The intuition behind the streaming XML input operators is that an XPath expres-

sion greatly resembles a regular expression (where the alphabet consists of element

and attribute labels), and this can be simulated by a finite state machine. Tukwila

uses an event-driven (SAX) XML parser to match input path expressions as an XML

stream is being parsed; a variable binding is created each time a state machine reaches

an accept state. Bindings are combined to form tuples, which are pipelined through the

system, supporting output of XML results as the data stream is still being read.

While using a finite state machine to match XPath expressions seems natural, the

algorithms for supporting the details of XPath, combining the bindings, and support-

ing efficient execution are quite complex. To the best of our knowledge, Tukwila is

unique in creating pipelinable XML query results directly from a data stream, and in

using finite state machines to do so — and as a result it shows significant performance

and scalability benefits over other systems. Systems such as Niagara fetch and parse

an entire input XML document, construct a complete DOM representation in memory,

and finally match path expressions across the tree and pass the results through query

operators. XSLT processors such as Xalan, MSXML, and XT are similar, but use a re-

cursive pattern-matching semantics rather than a set of query operators. Most other

XML query processors are designed to operate on XML in a local warehouse. One in-

teresting system that is not a query processor but bears some resemblance to Tukwila

is the DBIS system and its XFilter [AF00] operator3. DBIS takes XML documents and

determines whether they meet specific XPath expressions, and it “pushes” those that

do to “subscribing” users. DBIS performs document filtering rather than query pro-

cessing, so XFilter, an operator with a binary (match/non-match) return value, differs

substantially from x-scan in its functionality. The XML Toolkit [GMOS02] builds upon

the XFilter work, but proposes a “lazy” approach to building deterministic finite state

machines from nondeterministic path expressions.

We now present the details of the streaming XML input operators, beginning with

x-scan.

3In fact, the XFilter and x-scan operators were developed concurrently.

52

ELEMENT: book
 ATTRIB: pub...
 ...
...
ELEMENT: name
TEXT: Stonebr...

SAX Events

State Machines

Bindings
Binding
Tuples

XML Tree Manager

<db>
 <book publisher...
 <title>Read...
 <editors>
 <name>Ston...
 ...

XML Stream

db: {
 book: {
 @publisher...
 title: {Read...
 editors: {
 name: {Ston...
 ... b

t

#1 n

Re...

St...

He..

b n t

#1

#1

Re...

Re...

St...

He..

(a) X-scan process

Mb:

Mn:

Mt:

1 2 3

4
5

db book

editor

7 8
title

6

author

(b) State machines for Fig. 2.5 query

Figure 4.5: X-scan takes an XML document and maps it into the XML Tree Man-
ager, while simultaneously running state machines over the parse tree. Each state
machine creates variable bindings, and these must be combined to produce binding
tuples. Solid arcs in (b) denote state transitions on the label; dashed arcs denote
dependencies between machines.

4.3.1 X-scan Operator

Given an XML text stream and a set of regular path expressions as inputs, x-scan

incrementally outputs a stream of tuples assigning binding values to each variable. A

binding value is typically a tree — in which case the tuple contains a reference to data

within the Tukwila XML Tree Manager — but if it is a scalar value, this value may be

“inlined” directly within the tuple. A depiction of x-scan’s data structures appears in

Figure 4.5: the XML stream is processed by an event-driven SAX parser, which creates

a series of event notifications. The XML data is stored in the XML Tree Manager

and is also matched against a series of finite state machines (responsible for XPath

pattern matching). These state machines produce output binding values, which are

then combined to produce binding tuples.

53

Basic XPath expressions are a restricted form of regular path expressions4. Thus

x-scan converts each XPath expression into a regular expression and generates its

corresponding nondeterministic finite state machine, which it then converts into a de-

terministic machine, for reasons discussed later in this section. XPath expressions

originating at the document root are initialized to the active mode, and the active ma-

chines’ states are updated as x-scan encounters subelements and attributes during

document parsing. Figure 4.5(b) shows the state machines created for the example

query of Figure 2.5.

Initially, only the top-level machine (Mb in our example) is active. When any ma-

chine reaches an accepting state, it produces a binding for the variable associated with

it. The machine then activates all of its dependent state machines, and they remain

active while x-scan is scanning the value of the binding. In our example, the machines

Mn and Mt remain active while we scan children of b.

Associated with each machine is a table for binding values. As a machine reaches

an accept state, it adds an entry containing its bound subtree value, and also an asso-

ciation with the entry’s parent binding (shown in Figure 4.5(a) as a dashed arrow from

parent to child)5. In our example, Mb’s table would just store values of b, while Mn

and Mt would store author/editor names and titles, respectively, and these would be

associated with their corresponding b values. The final output of x-scan is essentially

a join of the entries maintained by the machines, done for matching parent-child pairs

(this is done in a data-driven, rather than iterator, model, as with a pipelined hash

join [WA91]).

We illustrate the execution of x-scan on our example data of Figure 2.3. Suppose

Mb is initialized to machine state 1, which takes the XML root as its start position.

The root node is a virtual node representing the entire document, and its only child

is the db node. X-scan follows the edge to the db node, setting Mb to state 2. Next,

x-scan can follow one of two outgoing edges to book nodes. It chooses the leftmost

one (Readings in Database Systems), causing it to set Mb to state 3. Mb is now in

an accepting state, so x-scan writes the reference to the current node into Mb’s table,

suspends Mb, and activates Mn and Mt. The editor element takes Mn from state 4

4We shall discuss additional, non-path-oriented XPath features later in this section

5The implementation can store subtrees by value or reference. For expository simplicity, we write as
though nodes are stored by ID-based reference and attributes are stored by value.

54

to 5, which is an accepting state for Mn. Hence, x-scan writes “Stonebraker” and

a pointer from the current book. In the meantime, Mt follows the arc to the title

element, putting its machine into state 8, which is also an accepting state. Hence,

the tuple 〈title1,book1〉 will be written into Mt’s table. From this node, no (non-

text) children remain for exploration, so x-scan pops the stack and backs up the state

machines. It sets Mb to state 2, where it can continue to explore the second book node,

proceeding as before. 2

To this point, we have described how x-scan performs simple path expression match-

ing. However, XPath supports capabilities beyond mere path matching, and these fea-

tures are also provided by x-scan.

Querying order (node indexing): XPath expressions may restrict bindings based

on ordering information, such as a constraint on a subelement’s index number (e.g.,

“2nd paragraph subelement”) or on the relative positions of bindings (e.g., $a BEFORE

$b). X-scan supports both capabilities: the x-scan state machines are annotated with

counters to keep track of element indices, and the output of the x-scan can include both

a binding and its index or its absolute position. A select operator can then filter out

tuples based on order.

Selection predicates: Another useful capability in x-scan is the ability to apply cer-

tain selection predicates over the variable bindings and their subtrees. These can be

simple predicates over values (e.g., “bind $b to book titles with the value ‘Transac-

tion Processing’ ”) — similar to “sargable predicates” [SAC+79]. Additionally, x-scan

supports existential path tests (e.g., return books only if they have titles). Existential

quantification of a path is similar to any other path expression, except that its binding

is not returned. (Other forms of existential quantification are possible, and they can

be implemented using correlated subqueries and traditional relational techniques.)

Node test functions: XPath expressions often include node tests, which restrict the

type of XML node being selected (common instances include text(), comment(), and

processing-instruction()). Similarly, an XPath edge with an at-sign prefix ()

represents an attribute node. All of these conditions are expressed within the x-scan

state machines as restrictions on the XML nodes to be matched.

55

Traversing in reverse: Our current implementation of x-scan does not evaluate

the XPath “parent” axis, i.e., it does not traverse backwards through the tree. Instead,

the Tukwila query optimizer rewrites path expressions with the parent operator by

splitting them into a parent-binding and a child-binding. Conditions are evaluated on

the child, and if they are met, the parent is used. (While this process may at times

be less efficient than supporting a true “parent” traversal, we expect use of the parent

axis to be uncommon.)

Efficiency enhancements: In x-scan, we include a number of optimizations to boost

XML parsing and processing performance. First, we avoid processing XML content

(i.e., handling SAX parser messages) when the state machines are inactive — it is

important to avoid unnecessary copying and handling of string data. Additionally, the

instant it becomes evident that a subtree cannot satisfy an XPath expression (e.g., it

does not meet a sargable predicate or is missing an attribute), we deactivate the state

machines until the next subtree is reached.

Expected complexity of state machines: While x-scan uses deterministic finite

state machines — which can be exponentially larger than the nondeterministic ma-

chines from which they are derived — XPath expressions tend to be short (queries to

depth of more than 6-8 seem to be rare). Furthermore, XPath only supports a restricted

version of regular path expressions: instead of Kleene closure, XPaths are limited to

simpler “wildcard” and “descendent” operations.

Handling memory overflow Typically, x-scan needs very little working space — it

outputs a stream of binding tuples (i.e., sets of subtrees) and little state needs to be

maintained between the production of any two tuples. However, there are two cases

where it may run out of memory.

First, the XML data that is still being referenced may be larger than memory. Since

the XML Tree Manager is a paged data structure, segments of this data are swapped

to and from disk as needed. Of course, as a result, a large XML file could produce

“thrashing” in the swap file during query processing. However, our experiments in

Section 4.6 suggest that this is typically avoided, which we attribute to two factors.

First, the system supports “inlining” of scalar values: string, integer, or other “small”

data items are embedded directly in the tuple, avoiding the dereferencing operation.

56

Typical query operations in XQuery are done on scalar rather than complex data (e.g.,

joining or sorting are frequently based on string values); thus these operations often

only need data that has been inlined. Large, complex tree data is typically only re-

quired at the XML generation stage, when the final results are returned. A second

mitigating factor is that many XML queries tend to access the input document in se-

quential order, and the Tree Manager therefore can avoid re-reading data that has

been paged out. For purposes of comparison, we point out that a paged DOM-based

approach would have similar behavior to our scheme (except that in-memory repre-

sentation of XML is larger in a DOM tree, typically at least 2-4 times larger, because

of DOM’s heavyweight nature); a mapping from XML to relations (“shredded XML”)

typically requires a significant amount of materialization in the first place, and often

incurs heavy costs whenever it needs to perform joins to recreate irregular structure.

The second memory overflow case, which may occur for trees with high fanout, is

when sibling XPaths each have many bindings, and x-scan must return all combina-

tions. To take the query of Figure 2.5 as an example, we might somehow have many

authors and alternative titles per book, and x-scan would have to return every possi-

ble title-author pairing for each book. To accomplish this, x-scan maintains the current

value of b, plus tables for n and t bindings. As values of n are added, they are combined

with b and all existing values of t; and the process works similarly for new values of

t. Each time a new value of b is encountered, the tables can be flushed and the pro-

cess restarted. In an extreme case, the tables may grow larger than memory — this

case can be handled in a manner similar to the pipelined hash join overflow strategies

of [UF00, IFF+99].

4.3.2 Web-Join Operator

The x-scan operator is analogous to the sequential table scan in relational databases,

and to the “wrapper fetch” operation in relational data integration: it allows the query

processor to read through an XML document and extract out the relevant content. If

the source has more sophisticated query capabilities, certain operations may in fact be

“pushed” into it via the x-scan HTTP query request.

In distributed query processing, sometimes it is beneficial to make use of a depen-

dent join operator instead of more traditional table scan and join operators. Instead

of requesting data independently from two sources and then joining it, the depen-

57

XPath
expressions

Input tuple

Query
generating
expression $a $b

Query request
to data source

http://site.org/
$a?val=$b

$c = root/"subpath"
$d = $c/...
...

XML
Query
Result

Binding
tuples

Joined output tuples

x-scan

Figure 4.6: The web-join operator takes each input tuple and substitutes its values
into a query generating expression. This expression becomes a web request that
queries a data source; its results are matched against a set of XPath expressions by
an x-scan operator. The resulting tuples are joined with the original input tuple to
produce a set of results for later query processing.

dent join reads data from one source, sends this data to the other source and requests

matching values, and then combines the data from the two sources. This operation

is particularly useful in two cases: one is if the join with the second source is highly

selective, so much less data is transferred using the dependent join. The second is

when the source requires input values before it will return an answer (e.g., the source

may be an online bookseller with a web forms interface that requires an author or

title), this is equivalent to the notion of “binding patterns” in relational data integra-

tion [RSU95, KW96, LRO96].

In a web context, a query to a data source is generally provided using one of two

means: via an HTTP request (GET or POST) or via a SOAP call with some form of

query (perhaps an XQuery). For both of these domains, we propose the web-join opera-

tor. Web-join (Figure 4.6) is intuitively similar to the combination of an x-scan operator

with a relational-style dependent join: it receives an input tuple stream and a query

generating expression (shown in the lower left of the Figure as a string with two un-

derlined parameters, $a and $b). The parameters in the query generating expression

will be instantiated with values from the input tuple stream, and the resulting query

string will be evaluated as a URI string, HTTP POST sequence, or SOAP envelope.

58

The XML resulting from the request is now evaluated against XPath expressions by

an embedded x-scan operator. Now, each of the resulting binding tuples is joined with

the original tuple and output. The process repeats for each tuple of the original input

stream.

Web-join is an important operator for querying dynamic sources, especially ones

with embedded Xlinks or URIs. It also allows our query processor to do “lazy” eval-

uation: Tukwila can request some initial data, execute filtering operations on it, and

then request additional content for those elements that remain.

4.4 Tukwila XML Query Operators

The previous section presented the query operators that are responsible for mapping

an XML data stream into a stream of tuples. Now we describe the query operators

that process this data. A logical query algebra usually is designed to be expressive and

minimal. In contrast, the set of physical query operators needs to have predictable

performance (to make the optimizer’s cost model easier to build) and in efficient imple-

mentations for specific contexts (where the optimizer should choose the most appropri-

ate implementation).

As we have constructed the physical algebra for Tukwila, we have focused on pro-

viding efficient support for executing a relatively expressive “core” of XQuery: our focus

to this point has not been on supporting the full language. Currently, we do not sup-

port recursion, typechecking, or conditional assignments. We have also implemented

only a small subset of the proposed XQuery function library. However, we feel that the

current implementation is sufficient to demonstrate how common-case queries can be

executed quickly, and that it can eventually be extended to include the absent features.

The complete list of operators is summarized in Table 4.1, and I provide more detail

below.

Streaming Input The x-scan and web-join streaming input operators were already

discussed in Section 4.3.

Path Evaluation The follow operator is a path traversal operator. It takes as input

a binding tuple, evaluates an XPath (which may involve following an IDREF or even an

XLink) originating at one of the bindings, and returns a sequence of 0 or more binding

59

Table 4.1: Physical query operators and algorithms in Tukwila

Name Class Function

x-scan streaming input Match input path expression
web-join streaming input Query based on bound vars.

follow path evaluation Evaluate XPath over binding

select combination/filter Filter tuples by predicate
project combination/filter Discard bindings
hybrid hash join combination/filter Equijoin
pipelined hash join combination/filter Equijoin
merge join combination/filter Ordered equijoin
nested loops join combination/filter Order-preserving join
union combination/filter Relational-style union
collector combination/filter Union with fail-over
assign combination/filter Evaluate expression

distinct 2nd-order Remove duplicates
sort 2nd-order Reorder tuples
aggregate 2nd-order Compute aggregate over group

nestChild nesting Correlated nesting of elements
group nesting Group and restructure sets of elements

output result Output binding to XML
element result Create XML element
attribute result Create XML attribute

tuples. Since x-scan has very little overhead, follow is primarily useful when following

XLinks or references within a graph-structured document6.

Combination/filter Most of these operators are almost identical to the standard

relational equivalents. One notable exception is the collector operator, which we first

proposed in [IFF+99]: it starts reading from one or more data sources, but can switch to

alternate sources depending on availability and performance. We have one additional

operator, assign, which adds a new attribute (and binding) to a tuple, assigning it

the result of some scalar expression. This expression may be posed in terms of other

bindings (e.g., a string concatenation).

6We expect that XLink reference traversal will be less frequently used than the other operations, and
hence we have defined but not yet implemented the follow operator.

60

Second-order The second-order operators all process sets (or bags) of tuples. The

only nonstandard operator is aggregate, which takes a stream of tuples representing

subquery content nested within parent query content and, for each parent, computes

an aggregate value across all of its children. This is very similar to the relational

GROUP BY operator, with two exceptions: (1) the grouping information is already

present, as the result of a group operator as discussed below, and (2) the nested data

within the group is preserved rather than discarded.

Nesting These operators are also second-order, but we separate them because they

have a special role in our XML encoding. The group operator hierarchically restruc-

tures tuples: for each set of tuples that have an identical set of grouping attribute val-

ues, the operator conceptually outputs a single tuple with these grouping attributes,

plus an embedded subtable with tuples of the non-grouped attributes. In Section 4.2.2,

we described how this nested structure is encoded within “flat” tuples; we provide each

tuple-group with a unique ID, and this becomes the identifier for the “parent tuple,”

while all non-grouped attributes are the “child tuple.” Group is primarily useful for

providing a relational-style group-by, or for extracting common structure from “flat”

XML.

Nested FLWR query expressions are a basic idiom in XQuery, and we handle this

case with our nestChild operator, which has semantics very similar to a relational

left outer join. NestChild takes a parent and a child tuple stream, plus a correlation

predicate. For each parent tuple, nestChild finds the set of child tuples meeting the

predicate and groups them with the parent tuple. At the same time, it groups the

parent’s XML subtree together with all of the children’s XML subtrees. (We note that

many nested relational algebras and their derivatives include a unary operator called

“nest” which is closer in nature to our group operator than our nestChild. Systems

with that type of algebra must perform least two operations — join and “nest” — to

achieve the same effect as our nestChild, and end up doing redundant work.)

Whereas the join operator is typically allowed to output results in any order, nestChild

semantics require a nested loops join-like ordering, where all child values are returned

with their parent. We encode the “hierarchical tuple” as described in Section 4.2.2,

which preserves enough information to determine whether any two “flat” tuples con-

tain the same parent tuple. Using this approach, if we use order-preserving operators,

we can pipeline the encoded structure all the way to the output result; otherwise, we

61

must use a hashing or sorting algorithm to cluster tuple groups together before we

convert them to XML.

Result These operators are responsible for creating the output for the XQuery. They

construct the output XML tree and are applied using a postfix ordering. An output

operator always creates a leaf node in the output; it simply outputs the result of a

binding as a string value. attribute wraps the result of the last output node within

the specified XML attribute name (which may be a literal or the value of a binding).

element constructs an XML element around the last k nodes (which may be the result

of previous output, attribute, or element operations), where k is a constant specified by

the query and the attribute’s label may be either a literal or the value of a binding.

With this basic set of operations, Tukwila can execute the core, database-like subset

of XQuery that avoids conditionals, recursive functions, and type information. Addi-

tionally, whereas XQuery is a heavily tree-oriented query language, we can also sup-

port graph-structured data in Tukwila, as I describe in the next section.

4.5 Supporting Graph-Structured Data in Tukwila

To this point, we have presented the Tukwila query processing system under the as-

sumption that our data is completely tree-structured and that this structure is mir-

rored in the XML element/attribute hierarchy. However, the XQuery data model and

language do support limited forms of encoding graphs in XML, through the use of

IDREF attributes (within a document) and XLinks (outside a document). In this sec-

tion, we briefly describe some of the issues involved in supporting these operations.

4.5.1 Join-Based Traversal

The conventional way to evaluate an IDREF is to use a join operation: for example, sup-

pose we allow only a single IDREF in each XPath. To evaluate these expressions, take

all XPaths and separate them into “pre-IDREF-traversal” and “post-IDREF-traversal”

steps. Do an x-scan of the input document with the pre-IDREF XPaths. In parallel,

do an x-scan over the same document for all elements that have IDs, and evaluate the

post-IDREF XPaths. Now join the results based on matches between the last IDREF

of the first x-scan and the originating ID of the second x-scan. Similar techniques can

62

be used to support k IDREFs in each XPath. XQuery does not support Kleene closure

over IDREFs, so a query must have a fixed number of reference traversals and this

technique can always be made to work.

The join-based traversal method is effective for following links in many situations,

but it has two potential drawbacks. First, standard join algorithms will not “short-

circuit” once an IDREF is matched to its target ID, i.e., they do not “know” that there

should be precisely one match to every IDREF. Alternative means of traversing IDREFs,

which we discuss next, can move to the next reference as soon as the current reference

has been matched once — fully pipelining the results. Second, the join-based traversal

only works for IDREFs or XLinks that all belong to the same target document.

4.5.2 Follow-Based Traversal

A second option, which supports both IDREFs and XLinks, is to use the Tukwila follow

operator. In following an IDREF, follow does an XPath match against an in-memory

XML document that was output from a prior x-scan and returns a set of bindings. For

IDREF traversal, follow makes use of an index of ID elements that was created by the

x-scan operation. This index is further described below.

Follow is intuitively an x-scan that operates on “tuples of trees” rather than on XML

documents. Given a set of path expressions and an input tuple stream (as well as the

XML trees it references), follow adds new variable bindings to each of its input tuples

by evaluating the path expressions against the trees within the tuple. If a pattern

matches multiple subtrees within the tuple, a set of tuples will be returned, one for

each possible binding combination. (This operator is essentially a special case of the

map operator in some object-oriented algebras.)

Follow is the only reasonable option for evaluating XLinks. At each link, it opens

the referenced document and evaluates the XLink path expression to select out the

desired XML data, then matches the remainder of the query’s XPath against this doc-

ument fragment, in a manner similar to x-scan or web-join.

4.5.3 Graph Traversal with X-scan

As we shall see in our experimental evaluation, x-scan’s state machine infrastructure

adds very little overhead in performing XPath matching against an XML tree. Hence,

any XPath traversal across a document’s tree structure should generally be done at

63

ELEMENT: book
 ATTRIB: pub...
 ...
...
ELEMENT: name
TEXT: Stonebr...

SAX Events

State Machines

Bindings
Binding
Tuples

XML Tree
Manager

<db>
 <book publisher...
 <title>Read...
 <editors>
 <name>Ston...
 ...

XML Stream

db: {
 book: {
 @publisher...
 title: {Read...
 editors: {
 name: {Ston...
 ... b

t

#1 n

Re...

St...

He..

b n t

#1

#1

Re...

Re...

St...

He..

Structural
IndexID index

ID2

. .
 .

ID1
ID3

Unresolved
IDREFs

. .
 .

.
:

Figure 4.7: Graph-based execution of x-scan uses 3 new data structures (upper left).
The ID index records the positions of each ID within the XML data graph; the unre-
solved index maintains a list of IDREFs that have not been resolved; the structural
index physically encodes element, attribute, and reference relationships.

the x-scan level. Traversals across IDREFs can also be done at the x-scan level, and

as we shall see later, this performs reasonably for moderately sized documents that do

not contain large numbers of references. We now discuss the extensions necessary for

traversing IDREFs in x-scan.

The first difference is the addition of three new data structures, shown in the upper

left corner of Figure 4.7:

• ID index: records the IDs of all elements and their matching locations in the XML

data. It is used to facilitate resolution of IDREFs in the graph.

• Unresolved-ID index: maintains a list of references to not-yet-seen element IDs

(to be resolved as they are found later in the input).

• Structural index: provides an index of the XML graph, corresponding to Fig-

ure 2.3, but without the data values at the leaves. This is not necessary, but

speeds x-scan’s traversal through the graph in memory.

When x-scan is run on a graph-structured XML source, it generates a structural

index, which is a trie-like index of the XML graph structure (i.e. the subelement and

IDREF links). This index allows x-scan to quickly traverse back through XML structure

64

in evaluating references. In addition, as we explain below, the construction of the

structural index continues even when we need to suspend the state machines because

of unresolved IDREFs. This index is intended only to last for the lifespan of the query,

so it is built in memory and paged out only as necessary. (We expect that x-scan will

generally only be used to traverse moderately-sized graph data, and will be supplanted

by follow or joins for larger documents, so paging of this index should seldom occur.)

Each node in the index contains information about an element (its ID and an offset

into the original XML data file so that the node’s source can be accessed quickly) as

well as pointers to all subelements, attributes, and IDREFs of the element. Essentially,

the index structure looks like the graph of Figure 2.3 except that data values such as

those in the leaf (PCDATA) nodes are not stored.

In addition, x-scan creates the ID index, which records all the IDs that it has en-

countered so far, mapping from ID to entry in the structural index, and the unresolved-

ID index which records all IDs that have not yet been seen in the input, and lists all

referrers to each such ID.

X-scan’s general execution proceeds similarly to the tree-structured case, except

when an element with references is encountered, and the references are to be traversed

by the regular path expression. If the reference is to an element that has already been

parsed (a backward reference), the state machines are run over the reference’s target

in the structural index, and then parsing continues.

Forward References

On occasion x-scan will encounter an IDREF edge which points “ahead” to a node which

has not yet been parsed. When x-scan hits a forward reference, it pauses all state ma-

chines 7 and adds an entry to the list of unresolved IDREF symbols, specifying the

desired ID value and the referrer’s address. However, x-scan continues reading the

XML source and building the structural index. Once the target element is parsed, x-

scan fills its address into each referring IDREF in the structural index, removes the

entry from the list of unresolved IDREFs, and awakens the state machines and pro-

ceeds. Although this approach causes x-scan output to stall as it waits for a reference

to be resolved, our empirical results have shown that with the help of the structural

7Conceptually, x-scan could continue state machine operation until the reference target is found, then
insert the target, return all of the matches found afterwards, and continue normal operation; but for
simplicity of coding, our implementation does not do this.

65

index, x-scan “recovers” quickly. In the worst case, x-scan should still do at least as

well as a DOM-based query processor — as with DOM, it builds a structure in memory

that can be quickly traversed; however, unlike the DOM implementations with which

we are familiar, x-scan can still execute when this structure must be paged to disk

because it exceeds virtual memory.

Cycles

In order to avoid cyclic traversals of references, x-scan maintains a history of nodes

visited by each automaton state in a given path traversal. X-scan uses deterministic

automata, so if a machine re-visits a node that it has encountered in the same state

along the same path, this is a cycle and can be aborted.

4.5.4 General Guidelines for Reference Traversal

There are a number of ways of supporting graph-structured data within the Tukwila

system. Each of these methods has different capabilities and performance results; we

now present a set of guidelines by which an optimizer can choose the best mechanism

for evaluating XPaths in the graph context.

We begin by noting that the x-scan operator is very efficient on strictly tree-structured

data, so we believe it will seldom make sense to use either the join or follow methods to

traverse anything but IDREFs or XLinks. Thus, the query processor should use x-scan

to evaluate the segment of an XPath before (or after) a reference traversal.

The type of reference being evaluated now becomes important: as was noted earlier,

the join method does not work for evaluating XLinks. Our x-scan implementation does

not follow XLinks, either, because such a traversal is quite expensive and probably

should not be done as a leaf-level operation. Thus, for XLinks, the follow operator is

the only option.

For documents with a low number of IDREFs, the x-scan traversal approach works

well. Once a large number of IDREFs must be evaluated, however, the join and follow

alternatives look more promising. The follow operator is a unary operator, and only

requires one scan of a given document; however, it traverses through the XML data

(which may result in thrashing if the document is larger than memory). The join oper-

ator is less likely to cause thrashing, since it combines tables that are each completed

in a single pass — but it requires two separate scans of the input document.

66

4.6 Experimental Results

Now that we have seen the details of the Tukwila query engine for both tree-structured

and graph-structured data, we move to our experimental validation of the system.

Our implementation was written in C++. We originally wrote the system for Windows

2000 using the Apache Xerces-C XML parser at the core of our x-scan implementa-

tion. Later, we migrated to a slightly slower Linux machine using James Clark’s expat

1.95.1, which performed faster XML parsing. In the experiments below, we used the

expat-based implementation for comparing XML pattern matching experiments (Sec-

tion 4.6.1), and we relied on the Windows machine for the compute-bound and memory

scalability experiments, since it was faster and had more memory.

Our system architecture is based on a client-server model, with a Java client that

submits queries using SOAP over HTTP, then reads and times the XML results. Most

experiments measured the performance of the Tukwila engine on an 866MHz Pentium

III machine with 1GB RAM (of which we allocate only a subset to Tukwila) under Win-

dows 2000 server; but as mentioned above, for the studies of XML pattern matching

performance in Section 4.6.1, we instead ran Tukwila on an 800MHz Pentium III with

256MB RAM under Red Hat Linux 7.1. In all cases, XML documents were served

via HTTP from our web server, a dual Pentium II 450MHz system with 512MB RAM,

running Windows 2000 and IIS 5. The web server and query processing machine com-

municated via 100Mb fast Ethernet, with each machine on a separate subnet within a

larger-scale network. Experiments were run once for “warm-up” and repeated at least

7 times, and error bars are included for queries where the confidence interval is less

than 95%.

Experimental data sets were chosen to encompass a range of different XML data

classes, and are listed in Table 4.2. They include real documents, real semistruc-

tured data, semistructured data generated with the recent XMark XML query bench-

mark [SWK+02], synthetic data with references, and relational tables saved in XML

format. The synthetic data with references was the only data set that we created our-

selves; it was designed to have random variation in depth and distribution of IDREFs.

The data set was generated using the following process: replicate a “core” XML subtree

a specified number of times, and then randomly attach it to different points within the

current document, with probability 15% that it attaches to the root. Afterwards, the

designated number of IDREF edges were added between random pairs of endpoints.

67

Table 4.2: Data sets used in experiments.

Name Size Description

religion 7MB Concatenation of Bosak’s collection of religious texts
(bible, quran, Book of Mormon)

xmark-50 59MB 0.5-scale-factor XMark auctions file
xmark-1000 118MB 1.0-scale-factor XMark auctions file
xmark-500 596MB 5.0-scale-factor XMark auctions file
dmoz 341MB Open directory (dmoz) RDF hierarchy

dblp-proc 155KB DBLP list of conference proceedings
dblp-pubs 8.9MB DBLP list of conference publications
dblp-conf 39MB DBLP complete conference information
dblp-cj 61MB DBLP complete conference and journal information

customer-10 0.5MB TPC-H 10MB (0.01-scale-factor) customer table in XML
orders-10 5.4MB TPC-H 10MB (0.01-scale-factor) orders table in XML
lineitem-10 32MB TPC-H 10MB (0.01-scale-factor) lineitem table in XML
customer-100 5.2MB TPC-H 100MB (0.1-scale-factor) customer table in XML
orders-100 53MB TPC-H 10MB (0.1-scale-factor) orders table in XML
lineitem-100 324MB TPC-H 100MB (0.1-scale-factor) lineitem table in XML

synth 100K-100MB Data from synthetic generator (see text)

Since we are proposing a new model for query execution, we begin by comparing

Tukwila’s performance with that of systems using more traditional approaches. Later,

we look at scalability and the performance of Tukwila on database-style operations

including join; we examine how hierarchically nesting XML content limits performance

because it restricts order; and we look at how Tukwila’s x-scan algorithm can be used

to support IDREF traversal for graph-structured data.

4.6.1 XML Extraction Queries

Clearly, the core operation at the heart of any XML processor is the pattern-matching

and XML content extraction step, and in fact this is where Tukwila’s approach differs

from other implementations. Our first set of experiments focuses on comparing the

relative performance of Tukwila with other systems when extracting XML content

with XPath expressions. Our suite of queries is described in Table 4.4, and consists

of a mix of text-oriented and path-oriented queries over different types of hierarchical

documents and semistructured data. (We examine performance on more regular XML

68

Table 4.3: Systems compared in Section 4.6.1.

Name Implemented Domain Description

Xalan 1.1 C++ Doc Apache XSLT processor, built over Xerces-C parser
XT 19991105 Java Doc James Clark’s XSLT processor
MSXML 4.0 C++ Doc Microsoft parser and XSLT processor toolkit
Niagara 1.0 Java XML-DB University of Wisconsin XML integration system
Tukwila 1.0 C++/Java XML-DB XML engine described in this paper

Table 4.4: List of queries used for comparing pattern-matching performance.

Nbr. Input Query

Q1 religion All chapter 5’s in Book of Mormon (medium trees)
Q2 religion All chapters 8+ in Book of Mormon (medium trees)
Q3 religion Sura titles with “Mormon” from Book of Mormon (single result)
Q4 religion Suras in Quran with “The” in title (large trees)
Q5 xmark-50 XMark query Q1 (extract person0 data)
Q6 xmark-50 XMark query Q2 (extract bidder 1’s bid increases)
Q7 dmoz Return all topic IDs in Open Directory structure RDF file

data from relational systems in the next section.)

See Table 4.3 for details on the systems in our comparison; all except for Tukwila

are main-memory-only XML engines. We included three popular XSLT processors in

our study: the Apache Xalan-C system, James Clark’s XT engine (which was gener-

ally rated as one of the faster XSLT engines), and the XSLT processor in Microsoft’s

MSXML 4.0 toolkit (which has been heavily optimized and is considered to have the

fastest parser and XSLT engine available). We also wanted to compare with data in-

tegration systems, so we included the December 2000 version of the Niagara system

(as of this time, the latest version that is publicly available). Early in the development

of Tukwila, we also compared our performance against the Lore System [GMW99], an

XML repository; at the time, Tukwila significantly outperformed Lore. Unfortunately,

Lore is no longer being distributed, and therefore we omit it from our comparison,

because it would be unfair to compare with an outdated version of Lore.

Figure 4.8 shows the results for the queries in two graphs: part (a) shows the time

to the initial 5 answers, as a way of measuring quick feedback to the user; part (b)

69

1.
6

1.
4 2.

2

1.
0

17
.7

15
.1

1.
8

1.
8

1.
83.

2

3.
1

2.
8

3.
04.

1

4.
1

3.
9

3.
9

1.
6

8.
8

8.
3

XXXX XX XX

38
5.

9

49
.2

X

43
.0

XXX0

20

40

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Query

R
u

n
n

in
g

 t
im

e
(s

ec
)

Tukwila
Niagara
MSXML
Xalan
XT

* **

(a) First 5 tuples returned (queries marked with a * have fewer than 5 tuples total).

2.
4

2.
5

2.
2

1.
6

15
.1

1.
8

1.
8

1.
93.

2

3.
1

2.
8

3.
0

43
.0

4.
1

4.
1

3.
9

3.
9

17
.7

10
6.

9

16
.7

10
.3

XXXX XX XX

54
5.

5

49
.2

X XX X0

20

40

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Query

R
u

n
n

in
g

 t
im

e
(s

ec
)

Tukwila
Niagara
MSXML
Xalan
XT

(b) Total query time

Figure 4.8: Experimental comparison of XML queries shows that Tukwila has equal
or better total running time (and better time to first tuples) for a variety of XML
extraction queries.

70

shows the overall query completion time. Note that queries Q3, Q5, and Q6 all had

fewer than 5 answers, so they have identical timings.

We make several observations about the results. First, although Tukwila was run

on a slower machine (800MHz vs. 866MHz) with less memory (256MB vs. 1GB) than

all of the other systems, it nearly matched or significantly outperformed all of the

other engines documents across the entire suite of queries. Microsoft’s MSXML pro-

cessor lives up to its reputation as being a very fast engine, and it is actually faster

by a margin of half a second for the queries over the relatively small religion doc-

ument — we attribute this to the additional overhead Tukwila incurs to optimize its

queries. For larger documents, however, such as the XMark document, Tukwila is sub-

stantially faster overall, and is especially faster for Query Q7. Q7 clearly demonstrates

that Tukwila is the only processor to scale to large XML data files: our system com-

fortably processed the 324MB dmoz XML document on a 256MB machine in less than

a quarter the time that MSXML (needing most of the 1GB of RAM in its experimental

configuration) did. No other systems were able to accommodate the large document.

Surprisingly, although our suite of queries was relatively simple, some of the queries

could not be executed on all systems. Niagara does not support the XML-QL LIKE

predicate or index variables, so we could not express queries Q3, Q4, and Q5. MSXML

executed query Q2 with incorrect results (returning no answers). Several query pro-

cessors failed with the XMark document (generating what appear to be spurious parse

errors), and nearly all failed on the large dmoz document (running out of memory even

on a 1GB system).

Overall, x-scan’s support for pipelined operation over data streams results in much

better time to initial tuple (in general returning 5 answers in approximately 2 seconds,

except in the cases where there were fewer than 5 answers to be returned), and in

fact the incremental processing model improves overall execution time as well. We

also observe that the Niagara system, which has largely focused on producing partial

answers in order to return early results, can only produce those results after it has

finished loading and parsing an XML document — Niagara would benefit significantly

from the x-scan operator.

71

3.
3

9.
4

9.
5

1.
1

83
.7

82
.0

11
.0

10
.7

10
.7

10
.2

10
.1

9.
8 11

.9

10
.9

11
.0

10
.8

10
.8

X X X X

13
.9

9.
7

X XX

92
.4

88
.3

X X0

20

40

60

80

100

Q1 Q2 Q3 Q4 Q5 Q6

Query

R
u

n
n

in
g

 t
im

e
(s

ec
)

Tukwila
Niagara
MSXML
Xalan
XT

(a) First 5 tuples

9.
6

9.
4

9.
5

9.
5

82
.0

11
.0

10
.7

11
.5

10
.2

10
.1

9.
8 11

.9

92
.4

88
.3

10
.9

11
.0

10
.8

10
.8

83
.7

23
.1

17
.1

XXXXX XX X X0

20

40

60

80

100

Q1 Q2 Q3 Q4 Q5 Q6

Query

R
u

n
n

in
g

 t
im

e
(s

ec
)

Tukwila
Niagara
MSXML
Xalan
XT

(b) Total query time

Figure 4.9: In the wide-area context, Tukwila’s architecture provides even greater
performance improvements when compared to the other systems.

72

Slow links

Our first experiment measured general query processing performance across a local

area network; however, wide-area query processing is one of the focal points of the Tuk-

wila project. Thus our second experiment repeats the previous queries in a bandwidth-

constrained environment. We simulated these conditions by artificially adding a 50ms

delay to the initial request for a document (representing a slightly longer round-trip

time), plus a 15ms delay per 16KB of data sent (limiting the throughput of the connec-

tion). This delay was sufficient to inject 960 msec of delay per MB of data transferred,

giving us about 1MB per second or 8Mbits per second as our approximate transfer rate.

We repeated all of the queries of the previous section except for the dmoz query, which

we judged to be too huge for anyone to want to transfer in this situation.

Performance results are in Figure 4.9. As expected, Tukwila’s incremental output

greatly improves the time to initial answers, but the overall query completion time also

shows a relative performance gain versus the other query processors. Since Tukwila

does filtering and construction of content in parallel with reading, it manages to use the

network delay times to help compute answers; in contrast, the other query engines are

idle during delays, since they cannot process results until after the parse is complete.

Scale-up

A point of emphasis in our design of the Tukwila architecture has been scalability

to large XML documents. While most XML files on the Web are currently only tens

of KB in size, as XML matures, querying and integration of data between groups or

enterprises is expected to become commonplace — and such data will be consider-

ably larger. In many of these situations, the query processor may be servicing many

outstanding requests simultaneously, so each query must run with limited resources.

Moreover, current query processors’ in-memory representations of XML data are sub-

stantially larger than the original XML data — e.g., the XT processor required over

260MB of memory to load and scan the 39MB DBLP XML file in query Q4 of the pre-

vious subsection; even a server with 1GB of memory cannot handle many such queries

simultaneously.

Tukwila avoids this pitfall by supporting out-of-core execution. Many aspects of

the Tukwila architecture (e.g., external sorts, grouping operators, hash and pipelined

hash joins) will scale in predictable ways, as they are well-understood components of

73

0

90

180

270

360

0 100 200 300 400 500 600 700

Data Size (MB)

R
u

n
n

in
g

 T
im

e
(s

ec
)

Religion/Q1
Religion/Q2
Religion/Q3
Religion/Q4
Xmark/Q5
Xmark/Q6
Dmoz/Q7
TPCH Orders, Qty > 32
TPCH Lineitem, Cust <= 1234

Relational data (dense)

Semistructured data (more sparse)

Figure 4.10: An X-Y plot of running times versus data sizes shows that Tukwila
yields relatively consistent and linear performance. Note that queries over rela-
tional data, which is typically more “dense,” result in a higher slope than more
sparse semi-structured data.

relational query engines. As observed in Section 4.4, most query operations take place

over scalar data values rather than subtrees, and these values are likely to be inlined

within the tuple — hence page faults in the XML Tree Manager are not likely to greatly

affect performance.

The main concern for scalability, then, is the x-scan operator and the data struc-

tures it uses. We investigated the performance of x-scan for both simple path expres-

sions and more complex ones (i.e., those with more bindings and a Kleene-star operator

in them), across a variety of document sizes.

We took all of the queries from the previous section, plus two selection queries over

relational data and plotted the running times versus the data sizes in Figure 4.10.

We note that an interesting dichotomy emerges: the relational tables, which are quite

“dense” with many tuples and many XPath matches, seem to yield running times that

all fall on the approximately same line at the left of the plot. Likewise, the other

queries over sparser semi-structured data seem to follow a different line with a lower

slope. As we would hope, Tukwila’s performance appearance appears to scale approx-

74

0

80

160

240

320

0 7000 14000 21000 28000
Document Size (KB)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Kleene, Completion
Simple, Completion
DOM Parse

Figure 4.11: Scale-up results for query completion time on synthetic data for simple
path query, Kleene-* query, and DOM parse. (Time to first 5 tuples was under 2
seconds.)

imately linearly, with the slope determined by the number of pattern matches that

occur.

Figure 4.11 shows performance over a range of synthetic data, generated as de-

scribed at the beginning of this section. We observe that the time required to process

a simple query grows at a rate only slightly faster than it takes to parse the XML

and build a DOM tree (the approach taken by previous systems); x-scan state-machine

operation and Tree Manager overhead within Tukwila is fairly low. Kleene query ex-

ecution times grow at a significantly faster rate than the simple query, but this query

produces many more tuples because it consists of two sibling Kleene-star path expres-

sions — the cartesian product of these two bindings must be returned for each common

subtree. The increase in execution times is closely approximated by the growth rate in

the number of tuples produced.

75

Table 4.5: Queries with database-style selection (Q8-Q9) and join (Q10-Q11) opera-
tions using relational data mapped into XML.

Nbr. Class Input Query

Q8 Rel. Sel. 5MB TPC-H Orders for Customer “1234”
Q9 Rel. Sel 31MB TPC-H LineItems with Quantity > 32

Q10 Rel. Join 5MB x 0.5MB Join TPC-H Orders for Customer key < “1234”
with all Customers

Q11 Rel. Join 31MB x 7MB Join TPC-H LineItems with Orders

4.6.2 Database-Style Operations

One of the major sources of data is, of course, relational databases, and there is sig-

nificant interest in sharing relational data in the XML format. An important concern

is the amount of overhead incurred by “adding XML into the loop.” Do we lose a great

deal by querying over an XML view, rather than over traditional relational data? To

answer this question, we compared three different means of processing selection and

join queries:

• XMLified SQL, where we sent a SQL selection or join query to a database at the

server (DB2 UDB 6.1 running on a 450MHz web server), read the data via Java

JDBC and sent it as tuples across the network to our mediator, which added

XML tags around the tuples and returned the results to our client. The rela-

tional database was fully indexed. This approach is similar to those adopted by

the SilkRoute [FTS99] and XPERANTO [CFI+00] mediator layers, which wrap

an XML view interface over relational systems, except that we do not translate

queries.

• Relational Mediator, in which all tuples from the tables were simply read from

JDBC and returned to the original Tukwila system, which executed a relational

query and then converted the data to tagged XML.

• Tukwila, which took materialized XML views of the relational tables, read them

via HTTP, and did XML query processing over the data using the techniques

described in this paper.

76

As Figure 4.12 illustrates, the Tukwila and Relational Mediator approaches tended

to have very comparable running times, despite the fact that the XML-ified input ta-

bles were considerably larger. Moreover, the overhead inherent in JDBC and Java

socket I/O (even given the fast 100Mbps network) appear to be more substantial than

we had anticipated, so processing the query at the server was not necessarily a win. As

expected, selection queries are significantly faster when done within the database en-

gine. However, both join queries execute more slowly when done inside the relational

engine. We attribute this to the fact that JDBC was a bottleneck in our experiments

and the join results were larger than the sum of the combined inputs — as a result, it

was more efficient to read the original tables separately and join them within the medi-

ator. Likewise, it was essentially as efficient to read and process the XML version of the

data as it was to read the data through JDBC. We conclude that the choice of whether

to push an operation into a data source depends greatly on the communication-link

costs, even when we are choosing between querying data in its original relational form

or converting it to XML first.

While we do not claim that JDBC is the fastest method for exchanging relational

data (and we acknowledge that many modern databases provide other means of ex-

porting XML), we observe that its performance is acceptable for many business and

scientific applications. Since Tukwila performs similarly for the equivalent queries,

we believe that x-scan-based XML data exchange also provides sufficient performance

for real-world applications. Moreover, the Tukwila XML-based engine provides greater

interoperability because it can combine relational and non-relational data.

Nesting Data

As we observed in Section 4.2.2, the operation of hierarchically nesting XML child

elements within a parent element is very similar to a left outer join in relational

databases. However, a nesting operation has an important constraint, which is that

the elements must appear contiguously, clustered by parent. Clearly, maintaining this

grouping incurs some overhead, and we wanted to examine how significant this was.

A general practice in query optimization, especially for network-based data, is to

use the smaller join relation as the inner relation, and the larger as the outer relation.

Not only does this reduce memory overhead in algorithms such as the hash join, but

it also produces initial results earlier (assuming roughly equivalent transfer rates be-

77

1.
6

0.
2

0.
5

0.
32.
6

1.
1 4.
1

1.
9

1.
3

1.
2

1.
6 4.
7

0

20

40

60

80

100

120

140

Q8 Q9 Q10 Q11

T
im

e
to

 5
 T

u
p

le
s

(s
ec

)
Tukwila
Relational Mediator
XMLified SQL

(a) First 5 tuples

11
.5

72
.7

14
.0

82
.2

12
.0

79
.9

13
.0

84
.6

1.
3

31
.9

17
.8

12
8.

8

0

20

40

60

80

100

120

140

Q8 Q9 Q10 Q11

T
o

ta
l Q

u
er

y
T

im
e

(s
ec

)

Tukwila
Relational Mediator
XMLified SQL

(b) Total query time

Figure 4.12: Experimental comparison of relational queries shows that Tukwila
performs nearly as well over data mapped into XML as the comparable relational-
model integration system. In-SQL execution, included for comparison only, was
better for the selection query but not for the joins.

78

0

25

50

75

100

10 20 30 40
Size of Papers List (MB)

R
u

n
n

in
g

 t
im

e
(s

ec
)

Nest Proceedings - Complete
Nest Proceedings - First 5
Proceedings - Complete
Proceedings - First 5

Figure 4.13: Comparison of nest and join operations combining DBLP papers and
proceedings. Nest requires the (larger) inner relation to be read first, thus it has
much longer time-to-first-results and slower overall time than the optimal join.

tween sources) because the hash join must block until it has finished reading its inner

relation. Unfortunately, since a nest operation is used to create a 1 : n hierarchical

relationship, it must place the larger join relation as the inner relation so it can iterate

over it for each parent tuple. We can see in Figure 4.13 that as a result, nest performs

more slowly than a hash join that has been commuted to the opposite configuration. In

fact, the hash join completes its execution in the same amount of time as nest takes to

output the first 5 tuples.

This suggests that performance in interactive applications, where first answers are

most important, would be considerably improved if it were possible to do the nest the

same manner as the join, i.e., if we did not have to maintain the parent-based order-

ing constraints on its output tuples. However, if we output results without preserving

order, we must ultimately sort the data to get it into its proper form. We are exper-

79

imenting with a user interface in which the final sort operation is performed at the

client-side on a periodic basis, which frees the query processor to stream out results in

any order and provide faster feedback to the user.

4.6.3 Supporting Graph-Structured Data

Although most of today’s XML queries traverse the document as a tree, there are many

potentially interesting uses of XML as a representation for semistructured graphs, en-

coding edges as both elements and IDREFs. Thus, the x-scan operator has a number

of features designed for querying graphs. Previous work on IDREF traversal has typ-

ically been done using the join or follow approaches described in Section 4.5, but we

now examine the use of x-scan as an alternative.

X-scan Traversal of IDREFs

In our comparison of strategies for evaluating graph-style references, we suggested

that x-scan could be used on moderately sized documents that had low numbers of ref-

erences. In Figure 4.14, we see execution times of x-scan across synthetic documents of

different sizes. The different lines represent execution times when the ratio of IDREFs

to elements is 1:8, 1:4, 1:3, and for comparison we include the execution time for a typi-

cal tree-traversing query, which does not build the structural index, over the mid-sized

(1:4-ratio) documents. For proportionately low numbers of references, we see that the

overhead in supporting graphs is relatively low; and even with fairly high numbers

of traversed IDREFs, running times are reasonable, especially since initial results are

output quickly. With a 1:3 ratio of IDREFs to elements, Tukwila takes 90 seconds to

return 193,000 leaf nodes from a 7MB synthetic graph. In contrast, the tree version of

the same query yields only 55,000 leaf nodes. As the ratio of IDREFs gets even higher

— not shown in the graph — the XML graph begins to approach full connectivity, and

x-scan spends large amounts of time doing repeated evaluations. Clearly, in these

situations, the join- or follow- based approach is more appropriate.

Graph Traversal with Limited Memory

We also examined in detail the performance characteristics of x-scan, particularly

those related to paging data to disk. For simple tree-based queries, memory con-

straints are typically not an issue — Tukwila needs only to maintain state and sub-

80

0

30

60

90

0 2000 4000 6000
Document Size (KB)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

1:3 References:Elements
1:4 References:Elements
1:8 References:Elements
Traverse Tree Only

Figure 4.14: Scale-up results for Kleene-* graph query on synthetic data, with tree
query shown for reference.

0:00
1:12
2:24
3:36
4:48
6:00
7:12
8:24
9:36

10:48
12:00

20
M

B

40
M

B

10
0M

B

25
0M

B

20
M

B

40
M

B

10
0M

B

25
0M

B

20
M

B

40
M

B

10
0M

B

25
0M

B

DBLP 39MB Synth 51MB Synth 103MB

XML file and size, and XML Tree Manager memory allotted

E
xe

cu
ti

o
n

 T
im

e
(m

in
:s

ec
)

8MB for Indices
90MB for Indices
250MB for Indices

Figure 4.15: Query processing times with restrictions on XML tree memory (x-axis)
and index buffer memory (bar shades). Index buffer size impacts performance more
than tree memory.

81

trees for a limited amount of time, i.e. until all tuples referencing the subtrees have

passed through the pipeline. Thus, for example, when we queried the the 159MB Open

Directory Project topic hierarchy for all topic aliases, query processing times were ap-

proximately 7 minutes 43 seconds whether Tukwila was given 20MB of memory or

250MB. Results were similar for tree-style queries over other data sets such as DBLP.

Additional experiments demonstrated that the performance bottleneck was clearly in

the areas of network I/O and parsing — saving a locally cached copy of the input XML

document to disk (from a separate thread) added no perceptible time overhead to the

query.

Our final experiment, in Figure 4.15 measures the performance of x-scan graph

traversal across large XML data files when the amount of memory available to the

Tree Manager and the structural index are constrained. Data sets on the graph include

two synthetic data sets of 103MB and 51MB, each with a 1:8 element-to-IDREF ratio,

and the DBLP conference data set with cross-references from papers to conferences

as IDREFs8. Our experiments do include a data set in which most of the referenced

items are relatively clustered (DBLP) and one in which they are randomly distributed

throughout the document (the synthetic data). In all cases, the structural index ranged

in size from two to three times the data set size. We separately adjusted the size of the

index’s memory allocation and the Tree Manager’s allocation, to see how greatly each

affected performance. In general, the variations in memory had less of an impact than

one might expect — we attribute this to the fact that the query processor is generally

network-bound, and hence can make use of free CPU and disk cycles. Moreover, as

expected, the size of the index buffer affects performance more than the size of the

Tree Manager. A final observation is that, as expected, the DBLP data set, with a

fairly strong locality of references, is basically not impacted by memory, whereas the

synthetic data with its randomized reference targets is somewhat more affected.

4.7 Conclusions

In order to build an effective data integration system, we need the ability to query

remote data sources whose content is sent across the network in XML. This requires

8We also attempted to use the Open Directory data file, but were unable to successfully “clean” the
document by removing elements unacceptable to the Xerces parser, while still maintaining IDREF link
integrity.

82

the following capabilities:

• the ability to query, combine, and restructure the content of XML documents of

arbitrary size,

• the ability to combine data from multiple sources, including data that is the result

of dynamically computed queries

• support for a “streaming” or pipelined query processing model that produces re-

sults as soon as possible.

In this chapter, I have described the Tukwila XML query engine, which meets the

above requirements with the following features:

• an architecture which extends tuple-oriented, relational techniques such as pipelin-

ing, as well as recently developed adaptive query processing techniques for network-

based relational data, to work efficiently on XML;

• two key operators, x-scan and web-join, that map XML data (from both static and

dynamically queried sources) into tuples in a streaming fashion;

• and a set of basic operators for combining and restructuring tuples of XML sub-

trees into new XML content.

In subsequent chapters, I discuss techniques for adaptive scheduling and query op-

timization, and make use of this basic execution system as the experimental platform.

Note that adaptivity is especially important in the XML context because not only are

statistics generally unavailable in data integration, but the database community does

not have good cost models and statistical models for XML query processing.

83

Chapter 5

EXECUTION SUPPORT FOR ADAPTIVITY

In the previous chapter, I presented a basic architecture for processing network-

bound XML data in a pipelined fashion. Pipelining is an important capability in a

network-based query engine, because it allows the query engine to process data much

earlier, and allows the engine to be running multiple tasks in parallel. Moreover, Tuk-

wila’s pipelined architecture allows us to leverage existing techniques from the rela-

tional database literature.

However, pipelining of XML is not itself sufficient to provide good performance for

data integration query processing when coupled with a standard database query en-

gine. Standard relational engines use deterministically scheduled query operator al-

gorithms and an iterator architecture to execute the query plan specified by a static

query optimizer. There are three reasons why this approach is inappropriate for data

integration:

• Absence of statistics: statistics about the data (e.g., cardinalities, histograms)

are central to a query optimizer’s cost estimates for query execution plans. Since

data integration systems manipulate data from autonomous external sources,

the system has relatively few and often unreliable statistics about the data. As

a result, a query optimizer that selects a plan before runtime may choose a plan

that is poorly scheduled or sub-optimal.

• Unpredictable data arrival characteristics: unlike traditional systems, data

integration systems have little knowledge about the rate of data arrival from the

sources. Two phenomena that occur frequently in practice are significant initial

delays before data starts arriving, and bursty arrivals of data thereafter. Hence,

even if the query optimizer is able to determine the best plan based on total work,

the data arrival characteristics may cause the query plan and the iterator-based

execution model to be inefficient in practice [UFA98].

• Overlap and redundancy among sources: as a result of the heterogeneity of

84

the data sources, there is often significant overlap or redundancy among them.

Hence, the query processor needs to be able to efficiently collect related data

from multiple sources, minimize the access to redundant sources, and respond

flexibly when some sources are unavailable. These capabilities are not supported

in standard database systems, which have a fixed, generally small number of

tables without overlap or the expectation of failure.

These problems can only be solved by using adaptive query processing techniques.

Adaptive optimization techniques can replace a poor query plan in mid-execution, and

they can be combined with adaptive execution techniques that can change query plan

scheduling — which also addresses the second problem listed above. Adaptive tech-

niques can also be used to make use of overlapping and redundant data sources: they

can switch from one set of sources to an alternate set depending on runtime conditions.

In this chapter, I focus on the problem of execution engine support for adap-

tivity. This consists of two components: (1) adaptivity within the execution engine

itself, which may include rescheduling of work or reallocation of resources; and (2)

mechanisms for supporting adaptive query optimization, including infrastructure for

monitoring costs and statistical information, as well as mechanisms by which an op-

timizer can replace a running query plan. Specific features described in this chapter

and implemented in Tukwila include:

• Event handling: Many types of exceptions and other events (e.g., source failure,

memory overflow) may occur during query execution, and an event handler is a

means of responding to these events and adapting to them. Responses may in-

clude invoking the optimizer, altering memory allocations, enabling or disabling

query operators, or even modifying operator behavior.

• Interleaving planning and execution: Since the initial query plan may be

quickly discovered to be sub-optimal, a useful capability is execution engine sup-

port for beginning execution, monitoring performance, and incrementally re-optimizing

the plan as cost and statistical information is learned. In Chapter 6, I describe

techniques for re-optimizing queries in mid-pipeline. In this chapter, I describe

how the query execution engine is built to support such re-optimizations, as well

as re-optimization between pipeline stages.

85

• Cost and statistics monitoring: Tukwila query operators include instrumen-

tation that allows the optimizer to determine the cost of each operation and the

cardinalities of each operator’s inputs and outputs.

• Adaptive operators: Tukwila incorporates operators that are especially well

suited for adaptive execution and for minimizing the time required to obtain

the first answers to a query. Specifically, it employs an enhanced version of the

pipelined hash join [RS86, WA91] (a join implementation which executes in a

symmetric, data-driven manner, also called the pipelined hash join) and tech-

niques for adapting its execution when there is insufficient memory. In addition,

the Tukwila execution engine includes a collector operator whose task is to effi-

ciently union data from a large set of possibly overlapping or redundant sources.

Finally, Tukwila query execution plans can contain conditional nodes in the spirit

of choose nodes [CG94] in order to adapt to conditions that can be anticipated at

optimization time.

Adaptive behavior in Tukwila is coordinated in a uniform fashion by a set of event-

condition-action rules. An event may be raised by the execution of operators (e.g., out

of memory, data source not responding) or at materialization points in the plan. The

possible actions include modifying operator execution, reordering of operators, or re-

optimization. The system includes default rules for handling events, and the query

optimizer may also include custom rules.

Example

A simple example demonstrates the breadth of Tukwila’s adaptive behavior. Suppose

that the same query (Figure 5.1a) is issued to the system under three extreme con-

ditions: when the source tables are of unknown size, are small, or are large. Each

time, assume that the relative statistics are such that a traditional optimizer would

construct the join tree in Figure 5.1b. In a traditional query engine, the join imple-

mentations, memory allocations, and materialization points will be fixed at compile

time, and the tree will be executed in a predetermined order. Tukwila implements

mechanisms needed to behave more adaptively. Consider its response to the three

cases:

86

Select * from A,B,C,D,E
where A.ssn =B.ssn
and B.ssn=C.ssn
and C.ssn=D.ssn
and D.ssn=E.ssn

ABCDE

ABC DE

A

AB

B

C D E

(a) (b) (c)

ABCDE

CDE AB

D

DE

E

C A B

Figure 5.1: Sample query, initial join tree, and join tree produced by re-
optimization.

No size information: With no information there is no point in traditional optimiza-

tion. The optimizer picks a query plan randomly and begin executing it. As cost infor-

mation becomes available from execution, it may refine the plan in mid-pipeline.

Small tables: Tukwila chooses the pipelined hash join (double pipelined join) imple-

mentation for joins of small cardinality, and pipelines the entire query. When source

latencies are high, this type of join has a large advantage over traditional joins, but

it demands considerably more memory. To handle the “unlucky” case that memory is

exceeded, the join operator has an overflow resolution mechanism.

Large tables: Since early initial answers are often desirable, Tukwila’s optimizer

may build a single pipelined query plan, using pipelined hash joins. However, at some

point the plan may run out of memory. Now, Tukwila may either rely on the overflow

resolution mechanisms of the join operator, or it may adaptively change the query plan.

Two possible changes are to replace the pipelined hash joins with other join algorithms

or to break the plan into multiple separate pipelines. In either case, many answers will

already have been returned.

Alternatively, Tukwila’s optimizer may choose standard hash joins, and it may

break the pipeline, perhaps after join AB in Figure 5.1b. Now, depending on the rules

in force, one of two things may happen during execution:

• Rescheduling: If all sources respond, and table AB has a cardinality sufficiently

close to the optimizer’s estimate, execution continues normally. Should some

87

sources respond slowly, however, Tukwila can reschedule as with query scram-

bling [UFA98]. If the connection to data source A times out, join DE will be

executed preemptively. Should that time out as well, the optimizer is called with

that information to produce a plan reordered to use the non-blocked sources first.

• Re-optimization at materialization points: After the AB join completes and

materializes, Tukwila compares the actual cardinality with the optimizer’s es-

timate. As in [KD98], if this value significantly differs from the optimizer’s es-

timate, the optimizer is awakened to find a cheaper plan (perhaps the one in

Figure 5.1c) given more accurate information.

• Re-optimization in mid-pipeline: As the AB join begins executing, suppose

it becomes apparent that the actual selectivity of the operation is substantially

different from the optimizer’s estimate. The optimizer can suspend that plan

and replace it with the one in Figure 5.1c and begin executing that plan over the

portions of the data sources not processed by the initial plan. For mid-pipeline

changes, a further, cleanup plan must also be executed to provide complete an-

swers; details are discussed in Chapter 6.

This chapter is organized as follows. Section 5.1 presents our query execution ar-

chitecture and its mechanisms, as well as its interactions with the query optimizer.

Section 5.2 describes the new query operator algorithms used in Tukwila. Section 5.3

describes our experimental results. Section 5.4 concludes the chapter.

5.1 An Adaptive Execution Architecture

The goal of the Tukwila execution engine is to be adaptive and flexible without sig-

nificantly compromising performance. In this section, I describe major features of the

engine, focusing on the basic query execution model, event handling, and support for

inter-pipeline and intra-pipeline adaptivity.

5.1.1 Execution Model

The basic Tukwila execution model follows the standard iterator approach of [Gra93],

in which each query operator in the plan passes control to its children in a determin-

istic fashion, calling the next() function to read a tuple. The iterator-based execution

88

model is a low-overhead means of supporting pipelining and processing of data in many

situations.

For increased flexibility, however, Tukwila also includes support for multithreading

within a query plan. Operators such as the pipelined hash join (discussed in Sec-

tion 5.2) can make use of multiple threads to perform several tasks “in parallel” and to

mask I/O delays with alternate computation. Multithreaded operators are based on a

producer-consumer model: the child operator runs in a separate thread from its parent,

and the child writes into a queue from which the parent consumes data.

Wherever possible, Tukwila makes use of a “synchronized pipeline” model: we at-

tempt to re-use the same tuple memory space between operators where possible, sim-

ply passing the same data structure from one operator to the next. For instance, a

selection operator simply passes through tuples that satisfy its predicates — there is

no need to copy the data. Similarly, a projection operator reduces the number of at-

tributes in a tuple, but does not modify their values, so it can simply change the list of

available attributes, without modifying the tuple data.

Finally, another notable feature of the Tukwila execution system is that all query

operators monitor the cardinality of their output and the CPU time consumed by the

operator (obtained by consulting the clock before and after key operations are per-

formed). These monitoring operations allow the query optimizer to determine costs

and selectivities for query operators. For additional statistical information, histogram-

generating operators could be inserted into a query plan (although these would incur

additional memory and compute overhead).

5.1.2 Event Handling for Controlling Adaptivity

When a particular state transition is made or an exception occurs, an event notifi-

cation is generated by the Tukwila execution system. These events are fed into an

event queue, which imposes an ordering on the rule evaluation process. Events are

processed in FIFO order by either a default handler supplied by the system or by an

optimizer-specified event-condition-action rule. For each active rule, Tukwila evalu-

ates the conditions; if they are satisfied, all of the rule’s actions are executed before the

next event in the queue is processed. Actions supported by the rule system include:

• Re-optimization: Re-optimization can be triggered in the middle of query execu-

tion, e.g., if memory overflow occurs, or at the end of a pipeline, if the optimizer’s

89

cardinality estimate for the last stage is significantly different from the actual

size. (This second case is in the same spirit as [KD98]).

• Contingent planning: At the end of a pipeline stage, the execution engine can

check properties of the result in order to select the next execution step from

among several alternatives (thus implementing choose nodes [CG94]).

• Altering operator functionality: The policy for memory overflow resolution

in the double pipelined join (Section 5.2.2) is guided by a rule. Collectors (Sec-

tion 5.2.1) are also implemented using rules.

• Rescheduling: Rules are used for specifying when a plan should be rescheduled

if a source times out (as in query scrambling [UFA98]).

Tukwila rules have the form when event if condition then actions. For

example, the following rule calls the optimizer to replan the subsequent fragments if

the estimated cardinality is significantly different from the size of the result.

when closed(frag1)

if card(join1) > 2 * est card(join1) then replan

Formally, a rule in a Tukwila plan is a quintuple 〈event, condition, actions, owner, is active〉.

An event can trigger a rule. If the rule’s condition is true, it fires, executing the actions.

The owner is the query operator or plan fragment that the rule controls or monitors.

Only active rules with active owners may trigger. Firing a rule once deactivates it by

default.

The execution system generates events in response to important changes in the

execution state, such as:

Event Name Function

state becomes(open|closed|error) operator state changes
end of fragment fragment completes
wrapper timeout(n) data source has not responded in n msec.
out of memory join has insufficient memory
every n tuples(n) n tuples processed by operator
every n ms(n) n msec passed

90

Once an event has triggered a set of associated rules, each rule’s conditions are

evaluated in parallel to determine whether any actions should be taken. Conditions

are propositional formulas, with comparator terms as propositions. The quantities that

can be compared include integer and state constants, states, values precomputed by

the optimizer (e.g., estimated cardinality or memory allocated), and various dynamic

quantities in the system:

Function Name Returns

global memory() memory available
state(operator) operator’s current state
card(operator) number of tuples produced so far
estimated card(operator) optimizer’s cardinality estimate
memory allocated(operator) memory given to operator
memory used(operator) actual memory consumed by operator
time since last tuple(operator) time waiting since last tuple
timeout(operator) number of timeouts that have occurred
next child index(collector) index of next alternative source in collector

(see Section 5.2)
num open children(collector) count of open children in collector operator

After all rule conditions corresponding to a given event have been evaluated, actions

are executed for those rules whose conditions are met. Most actions change some

operator’s memory allocation, implementation, or state. Tukwila actions include:

• set the overflow method for a double pipelined join

• alter a memory allotment

• deactivate an operator or fragment, which stops its execution and deactivates its

associated rules

• reschedule the query operator tree

• re-optimize the plan

• return an error to the user

• activate or deactivate a data source in a collector

91

Naturally, the power of the rule language makes it possible to have conflicting or

non-terminating rules. It is ultimately the responsibility of the optimizer to avoid gen-

erating such rules. However, in order to avoid the most common errors we impose a

number of restrictions on rule semantics: (1) All of a rule’s actions must be executed

before another event is processed. (2) Rules with inactive owners are themselves inac-

tive. (3) No two rules may ever be active such that one rule negates the effect of the

other and both rules can be fired simultaneously. (This final aspect is a condition that

can be statically checked.)

Perhaps the most common uses of rules will be to trigger changes to the query plan

by re-invoking the optimizer (i.e., interleaving planning and execution). We describe

two possible forms of this in the next two sections.

5.1.3 Support for Inter-Pipeline Changes

The simplest form of interleaving planning and execution occurs during a materializa-

tion point between two query execution pipelines: the first pipeline is processed and its

results are materialized, and then the remaining pipeline is re-optimized, using the re-

sults from the first pipeline. This particular approach was first proposed by Kabra and

DeWitt in [KD98], and is especially useful for situations in which the query optimizer

has good statistics on the data sources, but optimizer error increases significantly as

more and more operations are performed. For that situation, the initial pipeline would

be close to optimal and would contain only a few operations. Once it completed, the

next stage could be re-optimized with the actual statistics from the data output by the

first stage.

Early versions of the Tukwila optimizer focused on the problem of breaking the

query into appropriate stages at optimization time, adding rules to tell the execution

system when it needed to re-optimize, and how to preserve and reuse optimizer state.

Details of this version of the optimizer are described in our SIGMOD 99 paper [IFF+99]

and in Marc Friedman’s dissertation [Fri99].

Key features in the execution engine to support this form of interleaved planning

and execution are as follows. First, the execution system needs support from the rule

system to determine when to re-invoke the optimizer. The rules must be able to ex-

amine the cardinality of a materialized result, as well as other optional statistics such

as selectivities, and must be able to re-invoke the optimizer as a result. The execution

92

system must maintain the materialized results while the optimizer is being re-invoked,

then it must use these results (plus any unprocessed sources) as the inputs to the new

query plan. Tukwila supports all of these features, and later in this chapter we see

experimental results showing that this form of interleaving planning and execution

can produce significant performance benefits.

However, inter-pipeline changes are limited in their applicability, because it is

highly inefficient to materialize frequently, and it is difficult to determine where to

place materialization points in a query plan. Thus our focus has shifted to supporting

intra-pipeline re-optimization.

5.1.4 Support for Intra-Pipeline Changes

The techniques used for mid-pipeline query re-optimization are discussed in Chapter 6,

but they require substantial support from the query execution engine. Key features

required of the execution system are a means of modifying or replacing the executing

current plan, capabilities for directly accessing the (hash or list) data structures that

hold tables within join and other operators, and the ability to trigger mid-pipeline re-

optimization (e.g., when the current plan runs out of memory).

When the query optimizer wishes to replace or modify the current query plan, it

sends a “suspend” message to the execution engine. This message causes the execution

engine to stop consuming input and compute the effects of the input read so far, emp-

tying all queues within the operators of the pipeline. In the Tukwila implementation,

a query plan can be replaced only at a “consistent” point during execution. Informally,

the plan is consistent if each pipeline has returned all the answers for the portion of

the data consumed by the plan — the “effects” of every input tuple are computed, and

no tuples are queued up within the pipeline. “Query plan consistency” can be more

formally defined as follows:

Definition 5.1.1 (Query Plan Consistency) Let Q(R1, ...Rn) represent a query plan

tree with input relations R1...Rn. Let Qi(Ri, ..., Rj), 1 ≤ i ≤ j, be a pipelined subtree

within Q(R1, ..., Rn), combining relations Ri, ..., Rj . Let Ri[yx
be the subset of Ri read

between start time x and end time y.

A plan is consistent between times t0 and t1 if every pipelined subtree Qi(Ri, ..., Rj)

executed between times t0 and t1 produces all answers in the expression Qi(Ri[t1
t0

, ..., Rj[t1
t0

).

2

93

An example of an inconsistent query plan is one with a sort-merge join that has

buffered tuples but not yet sorted them and produced output; it will become consistent

once it percolates the “suspend” message’s effects. In the eddy algorithm of [AH00],

there is a conceptually similar notion of moments of symmetry that restrict when the

eddy can adapt the query plan; however, they are considerably more restricted in when

they can make changes. A join in a standard eddy can only be interrupted and com-

muted when it has completed its innermost loop. The pipelined hash join has a moment

of symmetry every time it reads a tuple and finishes probing the opposite relation; but

the hybrid hash join has a moment of symmetry only after the build relation has been

consumed, and then one occurs at the point another probe tuple is about to be read.

Note that as a result, an eddy cannot change a hybrid hash join until it has consumed

the entire build relation — whereas Tukwila can send a suspend message at any point,

and it only needs to wait for the effects to be computed for the portion of the relation

that has been read.

As soon as the executing plan is consistent within Tukwila’s execution system, the

query optimizer can selectively replace operators in the query plan — it generally

never replaces the leaf-level x-scan operators (these are simply attached to the next

plan so input can resume where the last plan left off), nor the topmost aggregation

or XML structuring operators (these can continue reading results from the new query

plan).

Once the query plan has been replaced, an additional operation must be performed.

Since tuple memory is often shared between operators (as discussed before), but the

new query plan consists of some new and some old operators, a “re-bind” operation

must be performed to re-link the memory spaces along the pipeline. Now execution

may resume using the modified plan. Generally, the state from the old join operators is

maintained until full query execution has completed, because the joins data structures

may be needed in a “cleanup” plan (as discussed in Chapter 6). Their state is accessed

through a hash table keyed on the “signatures” (subexpressions) represented by each

join’s subtree.

The general case, described above, is that the query optimizer runs in the back-

ground and invokes a plan replacement operation when it finds a better query plan.

However, sometimes the converse can occur: re-optimization operation can be trig-

gered by the execution engine. Typically, this happens because an event is triggered

94

(e.g., a source fails or memory overflows).

The memory overflow problem actually requires special care. In particular, if a

query operator runs out of memory, this typically means that the query plan is not

stable: the effects of an input tuple have percolated up through the query plan, but

have not fully been processed by the time the system runs out of memory. Further-

more, there are insufficient resources to get into a stable state. Here, we adopt the

opposite approach: in order to reach a stable state, we unwind the effects of the last

tuple consumed, re-queueing it at the leaf node and removing all of its effects in the

intermediate-node query operators.

In order to achieve this, every query operator that maintains state has a commit

and an abort operation. An operator commits its state each time a new tuple is read

by a leaf-level operator (which is the most recent state we can guarantee the ability to

reach stability). An operator aborts by restoring its state to the last commit point. The

abort message is issued by the operator that runs out of resources to the child operator

that returned the most recent tuple, and this process is repeated down to the leaf of the

tree (the leaf will return the most recent tuple the next time it is consulted for data).

Once the stable state has been reached, the out-of-memory event is finally generated

and ultimately handled by the rule system.

Together, this combination of features allows both optimizer-initiated and execution

engine-initiated plan changes even in the midst of executing a query — the result is a

highly flexible architecture in which many forms of adaptivity can be explored.

Now that I have presented our basic Tukwila query execution architecture and the

infrastructure for supporting event-driven adaptivity, I now focus on adaptive features

within the query operator algorithms themselves.

5.2 Adaptive Query Operators

Tukwila plans include the standard relational query operators: join (including depen-

dent join), selection, projection, union and table scan. In this section, I highlight Tuk-

wila’s adaptive operators: the dynamic collector and the pipelined hash join or double

pipelined join operator.

95

when opened(coll1)
if true then activate(coll1,A); activate(coll1,B)

when threshold(A,10)
if true then deactivate(coll1,B)

when threshold(B,10)
if true then deactivate(coll1,A)

when timeout(A)
if true then activate(coll1,C); deactivate(coll1, B);
deactivate(coll1, A)

Figure 5.2: Rules specifying a collector policy: initially, sources A and B are active.
When the first of these operators returns 10 tuples, the other is switched off. If
source A times out, source B is disabled and source C is activated.

5.2.1 Dynamic collectors

A common task in data integration is to perform a union over a large number of over-

lapping sources [YPAGM98, FKL97]. Common examples of such sources include those

providing bibliographic references, movie reviews and product information. In some

cases different sites are deliberately created as mirrors.

For these reasons, we expect the Tukwila query reformulator to output queries

using disjunction at the leaves. We could potentially express these disjunctions as

unions over the data sources. However, a standard union operator simply attempts to

gather all information from all sources, which is not the best semantics if the important

data can be obtained using only a subset of the sources. The standard union also has

no mechanism for handling errors. In general, it simply does not provide the flexibility

needed in the data integration context. In Tukwila we treat this task as a primitive

operator into which we can program a policy to guide the access to the sources.

An optimizer that has estimates of the overlap relationships between sources can

provide guidance about the order in which data sources should be accessed, and po-

tential fallback sources to use when a particular source is unavailable or slow (as

in [FKL97]). This guidance is given in the form of a policy. The query execution engine

implements the policy by contacting data sources in parallel, monitoring the state of

each connection, and adding or dropping connections as required by error and latency

conditions. A key aspect distinguishing the collector operator from a standard union is

flexibility to contact only some of the sources.

96

Formally, a collector operator includes a set of children (wrapper calls or table scans

of cached or local data) and a policy for contacting them. A policy is a set of triples

〈i, ai, ti〉, associating with the ith child of the collector an activation condition ai and

a termination condition ti. The conditions are propositional boolean formulas con-

structed from true, false, and, or, and four kinds of predicates on children: closed(c),

error(c), timeout(c) and threshold(c). The policy is actually expressed in Tukwila as

a set of event-condition-action rules, which are implemented using the normal rule-

execution mechanisms.

In the example of Figure 5.2, we have a fairly complex policy. Initially we attempt

to contact sources A and B. Whichever source sends 10 tuples earliest “wins” and

“kills” the other source. (Note that we take advantage of the fact that a rule owned by

a deactivated node has no effect.) If Source A times out before Source B has sent 10

tuples, Source C is activated and the other sources are deactivated.

5.2.2 Pipelined Hash (Double Pipelined) Join

Conventional join algorithms have characteristics undesirable in a data integration

system. For example, sort-merge joins (except with pre-sorted data) and indexed joins

cannot be pipelined, since they require an initial sorting or indexing step in this con-

text. Even the pipelined join methods — nested loops join and hash join — have a flaw

in that they follow an asymmetric execution model: one of the two join relations is clas-

sified as the “inner” relation, and the other as the “outer” relation. For a nested loops

join, each tuple from the outer relation is probed against the entire inner relation; we

must wait for the entire inner table to be transmitted initially before pipelining begins.

Likewise, for the hash join, we must load the entire inner relation into a hash table

before we can pipeline.

We now contrast these models with the double pipelined join (also known as the

pipelined hash join), which was originally proposed in [WA91] for parallel database

systems.

Conventional Hash Join

As was previously mentioned, in a standard hash join, the database system creates a

hash table from the inner relation, keyed by the join attributes of the operation. Then

one tuple at a time is read from the outer relation and is used to probe the hash table;

97

all matching tuples will be joined with the current tuple and returned [Gra93]. If the

entire inner relation fits into memory, hash join requires only as many I/O operations

as are required to load both relations. If the inner relation is too large, however, the

data must be partitioned into smaller units that are small enough to fit into mem-

ory. Common strategies such as recursive hashing and hybrid hashing use overflow

resolution, waiting until memory runs out before breaking down the relations.

In recursive hashing, if the inner relation is too large, the relation is partitioned

along bucket boundaries that are written to separate files. The outer relation is then

read and partitioned along the same boundaries. Now the hash join procedure is re-

cursively performed on matching pairs of overflow files.

Hybrid hashing [Gra93] uses a similar mechanism, but takes a “lazy” approach to

creating overflow files: each time the operation runs out of memory, only a subset of

the hash buckets are written to disk. After the entire inner relation is scanned, some

buckets will probably remain in memory. Now, when the outer relation is read, tuples

in those buckets are immediately processed; the others are swapped out to be joined

with the overflow files. Naturally, hybrid hashing can be considerably more efficient

than recursive hashing.

A hash join has several important parameters that can be set by an optimizer based

on its knowledge of the source relations’ cardinalities. Most important is the decision

about which operand will be the inner relation: this should be the smaller of the two

relations, as it must be loaded into a memory. Other parameters include the number

of hash buckets to use, the number of buckets to write to disk at each overflow, and

the amount of memory to allocate to the operator. In a conventional database system,

where the optimizer has knowledge about cardinalities, and where the cost of a disk

I/O from any source is the same, the join parameters can be set effectively. However, a

data integration environment creates several challenges:

• The optimizer may not know the relative sizes of the two relations, and thus

might position the larger relation as the inner one.

• Since the time to first tuple is important in data integration, we may actually

want to use the larger data source as the inner relation if we discover that it

sends data faster.

98

• The time to first tuple is extended by the hash join’s non-pipelined behavior when

it is reading the inner relation.

Double Pipelined Hash Join

The double pipelined hash join is a symmetric and incremental join, which produces

tuples almost immediately and masks slow data source transmission rates. The trade-

off is that we must hold hash tables for both relations in memory.

As originally proposed, the double pipelined join is data-driven in behavior: each

of the join relations sends tuples through the join operator as quickly as possible. The

operator takes a tuple, uses it to probe the hash table for the opposite join relation,

and adds the tuple to the hash table for the current relation1. At any point in time, all

of the data encountered so far has been joined, and the resulting tuples have already

been output.

The double pipelined join addresses many of the aforementioned problems with a

conventional hash join in a data integration system:

• Tuples are output as quickly as data sources allow, so time to first output tuple

is minimized.

• The operator is symmetric, so the optimizer does not need to choose an “inner”

relation.

• Its data-driven operation compensates for a slow data source by processing the

other source more quickly. This also allows the query execution system to make

more efficient use of the CPU, as it may process data from one join relation while

waiting for the other.

On the other hand, the double pipelined join poses two problems as we attempt to

integrate it into Tukwila. The first is that the double pipelined join follows a data-

driven, bottom-up execution model. To integrate it with our top-down, iterator-based

system, we make use of multithreading: the join consists of separate threads for out-

put, left child, and right child. As each child reads tuples, it places them into a small

1Once the opposite relation has been read in its entirety, it is no longer necessary to add tuples to the
hash table unless the matching bucket has overflowed.

99

tuple transfer queue. The join output thread then takes a tuple from either child’s

queue, depending on where data is present, and processes that tuple. For greater effi-

ciency, we ensure that each thread blocks when it cannot do work (i.e., when transfer

queues are empty for the output thread, or full for the child threads).

The second problem with a double pipelined join is that it requires enough memory

to hold both join relations, rather than the smaller of two join relations. To a large

extent, we feel that this is less of a problem in a data integration environment than it is

in a standard database system: the sizes of most data integration queries are expected

to be only moderately large, and we may also be willing to trade off some total execution

time in order to get the initial results sooner. Additionally, we expect an optimizer to

use conventional joins when a relation is known to be especially large, or when one

input relation is substantially smaller than the other. Nevertheless, we have identified

several strategies for efficiently dealing with the problem of insufficient memory in

a double pipelined join, and report on experiments with each of these methods (see

Section 5.3).

Handling Memory Overflow

When a hash join overflows, the only feasible recovery strategy is to take some portion

of the hash table and swap it to disk. With the double pipelined hash join, there are

at least four possibilities. First, it is possible to use statically sized buckets which are

flushed and refilled every time they overflow, but this would not perform well if the

relation were slightly larger than memory. Another alternative would be a conversion

from double pipelined join to hybrid hash join, where we simply flush one hash table

to disk.

The two algorithms we implemented in Tukwila are considerably more sophisti-

cated and efficient. To give a feel for the algorithms’ relative performance, we include

an analysis here of a join between two unsorted relations A (left child) and B (right

child) of equal tuple size and data transfer rate, and of the same cardinality s. For

simplicity, we count tuples rather than blocks, and we further assume even distribu-

tion of tuples across hash buckets, and that memory holds m tuples. Note that our

emphasis is on the disk I/O costs, and that we do not include the unavoidable costs of

fetching input data across the network or writing the result.

100

Incremental Left Flush Upon overflow, switch to a strategy of reading only tuples

from the right-side relation; as necessary, flush a bucket from the left-side relation’s

hash table each time the system runs out of memory. Now resume reading and joining

from the left side. This approach allows the double pipelined join to gradually degrade

into hybrid hash, flushing buckets lazily. If memory is exhausted before the operation

completes, we proceed as follows. (1) Pause reading tuples from source A. (2) Flush

some buckets from A’s hash table to disk. (3) Continue reading tuples from source

B, entering them into B’s hash table, and using them to probe A’s (partial) table; if

a B-tuple belongs in a bucket whose corresponding A-bucket has been flushed, then

mark the tuple for later processing. (4) If source B’s hash table runs out of memory

after A’s table has been flushed completely, then write one or more of B’s buckets to

disk. (5) When all of B has been read, resume processing tuples from source A. If

these tuples belong in a bucket which has been flushed, then write the tuples to disk;

otherwise probe source B’s hash table. (6) Once both sources have been processed,

do a recursive hybrid hash to join the bucket overflow files. To avoid duplicates, the

unmarked tuples from A should only be joined with marked tuples from B, whereas

marked tuples should be joined with both unmarked and marked tuples. We calculate

total costs for this algorithm as follows:

• Suppose m

2
< s ≤ m, so B does not overflow. We flush s− m

2 tuples from A, giving

a cost of 2s − m.

• Suppose m < s ≤ 2m, so B is too large to fit in memory. In reading B, we overflow

(m
2) + (s−m) tuples. Reading the rest of A flushes s + m2

2s
− 3

2m more tuples. Our

total cost becomes 4s − 4m + m2

s
.

Incremental Symmetric Flush In this case, we pick a bucket to flush to disk, and

flush the bucket from both sources. Steps to resolve overflow are as follows: (1) Upon

memory exhaustion, choose a bucket and write that component of both A and B’s hash

tables to disk. (2) Continue reading tuples from both source relations. (3) If a newly

read tuple belongs to a flushed bucket, mark the tuple as new and flush it to disk;

otherwise, add the tuple to the appropriate hash table, and use it to probe the opposite

hash table. (4) Once both sources have been processed, do a recursive hybrid hash to

join the bucket overflow files. Note that the join must consider the tuple markings:

101

unmarked tuples should only be joined with marked tuples; marked tuples should be

joined with both unmarked and marked tuples. The disk I/O costs of this algorithm

can be derived as follows:

• Suppose s ≤ 2m. After reading the entire contents of both tables, we have over-

flowed 2s − m tuples. After reading them back, we get a total cost of 4s − 2m.

Our analysis suggests that incremental left-flush will perform fewer disk I/Os than

the symmetric strategy, but the latter may have reduced latency since both relations

continue to be processed in parallel. Section 5.3.3 evaluates this assessment empiri-

cally.

5.3 Experiments

We report the highlights of our experiments in four areas, showing that (1) the dou-

ble pipelined join outperforms hybrid hash, (2) the preferred output behavior dictates

optimal memory overflow strategy, (3) interleaved planning and execution produces

significant benefits, and (4) having the optimizer save state in order to speed subse-

quent re-optimizations yields substantial savings.

5.3.1 Implementation and Methodology

The experiments in this section were performed with an early version of the Tukwila

system, which was based not on XML, but on a socket-based, JDBC interface to a

standard relational database. (As seen in the last chapter, JDBC over a socket provides

roughly the same level of performance as x-scan over XML.)

A this point, the execution engine was approximately 25,000 lines of C++ code,

with a dedicated memory manager for hash joins (we have since extended the memory

management capabilities to be significantly more general). The initial optimizer and

wrappers were written in Java 1.1. A key feature of this optimizer was the ability to

save optimization state; this optimizer was used in our experiments involving inter-

leaving of planning and execution. For the other experiments, we used hand-coded

query plans for greater control.

Experiments were performed using scaled versions of the TPC-D data set, at 50MB

and 10MB, created with the dbgen 1.31 program. This data was stored in IBM DB2

Universal Database 5.20 on a dual-processor 450MHz Pentium II server with 512MB

102

RAM, running Windows NT Server. The wrappers used IBM’s DB2 JDBC driver, and

were run directly on the server with JIT v. 3.10.93. The execution engine was run on a

450MHz Pentium II machine under NT Workstation with 256MB RAM. Our machines

were connected via a standard 10Mbps Ethernet network.

For each of the experiments, we initially ran the query once to “prime” the database,

then repeated it 3 times under measurement conditions. We show the average running

times in our experimental results.

5.3.2 Performance of Double Pipelined Join

In order to compare the overall performance of the double pipelined join versus a stan-

dard join, we ran all possible joins of two and three relations in our 50MB TPC-based

data set.

The results are very much in favor of the double pipelined join. In each of the exper-

iments, we saw the same pattern: not only did the double pipelined join show a huge

improvement in time to first tuple, but it also had a slightly faster time-to-completion

than the hybrid hash join. This is explained by the double pipelined join’s use of mul-

tithreading, which allows it to perform useful work as it is waiting for data to arrive.

The exact performance gain of the double pipelined join varied depending on the sizes

of the tables (since a small inner relation allows the hybrid hash join to perform well),

but in all cases there was a measurable difference. Additional preliminary experiments

suggest that adding prefetching to the hybrid hash join can almost remove the gap in

total execution time between the two join methods, but that the double pipelined hash

join still has an advantage in time-to-first-tuple.

Figure 5.3.2a shows a typical plot of tuples vs. time for the 3-relation join lineitem ./ or-

der ./ supplier with different configurations of the join tree. lineitem is larger than

the combined order ./ supplier result, so clearly it should be joined last. However,

since the hybrid hash join is not symmetric, our assignment of inner and outer re-

lations at each join impacts the performance for this join. In contrast, the double

pipelined join performs equally well in all of these cases.

Next, we analyze the performance of the double pipelined join in a wide-area do-

main. In order to get realistic performance, we redirected wrapper data originating at

the University of Washington to a Java “echo server” located at INRIA in France, which

“bounced” the data back to the wrapper, which in turn forwarded the delayed data to

103

(a) Join Performance: Lineitem Supplier Order

0

200

400

600

800

1 51 101 151 201 251

Number of Tuples Output (1000's)

T
im

e
(s

ec
)

Double Pipelined
Hybrid - (Lineitem Supplier) Order
Hybrid - (Supplier Lineitem) Order

(b) Wide Area Performance: Partsupp Part

0

40

80

120

160

200

1 11 21 31

Number of Tuples Output (1000's)

T
im

e
(s

ec
)

Hybrid - Both Slow
Hybrid - Outer Slow
Hybrid - Inner Slow
Double Pipelined - Both Slow/Inner Slow
Double Pipelined - Outer Slow

Figure 5.3: Double pipelined join produces initial results more quickly, is less sen-
sitive to slow sources, and completes faster than the optimal hybrid hash join.

104

the execution engine. A measurement of link bandwidth with the ttcp network mea-

surement tool yielded an estimate of 82.1KB/sec, and ping returned a round-trip time

of approximately 145msec.

Figure 5.3.2b shows the performance of a sample join, partsupp ./ part, under

conditions where both connections are slow, the inner relation is slow, the outer rela-

tion is slow, and at full speed. As expected, we observe that the double pipelined join

begins producing tuples much earlier, and that it completes the query much faster as

well.

5.3.3 Memory Overflow Resolution

The first experiment assumed ample memory, but since double pipelined join is mem-

ory intensive, we now explore performance in a memory-limited environment. In order

to contrast our double pipelined overflow resolution strategies, we ran experiments to

measure the performance of these strategies under different memory conditions.

Figure 5.4 shows one such result. Here we are executing the join part ./ partsupp,

which requires approximately 48MB of memory in our system. The graph shows how

the number of tuples produced by a given time varies as we run the same join with full

memory, 32MB of memory, and 16MB of memory.

From the figure it is apparent that the Left Flush algorithm has a much more

abrupt tuple production pattern, as it runs smoothly only until the first overflow, after

which it must flush and read in the right child before resuming fully pipelined opera-

tion. Note that this is still superior to the hybrid hash join, because our algorithm may

still produce output as it reads the right child if there is data in the left child’s hash

table.

In contrast, the Symmetric Flush algorithm continues to pipeline as it overflows,

but the number of buckets in memory decreases. The result is a a somewhat smoother

curve which is dependent on the skew of the data.

Our experiments suggest that overall running time for the two strategies is rela-

tively close, and that the primary basis for choosing the overflow resolution strategy

should be the desired pattern of tuple production. Left Flush must operate for a pe-

riod in which few tuples are output, but after which it begins pipelining the left child

against most or all of the right child’s data. Symmetric Flush produces tuples more

steadily, but its performance slows as memory is exceeded, up until the point at which

105

0

30

60

90

120

150

180

210

1 11 21 31

Number of Tuples Produced (1000's)

T
im

e
(s

ec
)

Left Flush - 32MB
Left Flush - 16MB
Symmetric Flush - 32MB
Symmetric Flush - 16MB
Fits in Memory - 64MB

Figure 5.4: Symmetric Flush outputs tuples more steadily, but the rate tapers off
more than with Left Flush. Overall performance of both strategies is similar.

the sources have been read and the overflow files can be processed.

The results also suggest that, while there is a noticeable penalty for overflowing

memory with the double pipelined join, the operator’s ability to produce initial tuples

quickly may still make it preferable to the hybrid hash join in many situations.

5.3.4 Interleaved Planning and Execution

For complex queries over data sources with unknown selectivities and cardinalities,

an optimizer is likely to produce a suboptimal plan. In this experiment, we demon-

strate that Tukwila’s strategy of interleaving planning and execution can slash the

total time spent processing a query. We find that replanning can significantly reduce

query completion time versus completely pipelining the plan.

For the 10MB data set, we ran all seven of the four-table joins that did not in-

volve the lineitem table (which was extremely large). The optimizer was given correct

source cardinalities, but it had to base its intermediate result cardinalities on esti-

mates of join selectivities, since no histograms were available. We used the double

106

0

100

200

300

1 2 3 4 5 6 7

Query ID

T
im

e
(s

ec
)

Materialize
Materialize and replan
Pipeline

Figure 5.5: Even counting the cost of repeated materialization, interleaved plan-
ning and execution runs faster than a fully pipelined, static plan.

pipelined join implementation in all cases.

In Figure 5.5 we see the comparison of running times for three different strate-

gies using the same queries. The baseline strategy is simply to materialize after each

join and go on to the next fragment. The second strategy added a rule to the end of

each fragment, which replans whenever the cardinality of the result differs from the

estimate by at least a factor of two. The third strategy is to fully pipeline the query.

In every case, the materialize and replan strategy was fastest, with a total speedup

of 1.42 over pipeline and 1.69 over the naı̈ve strategy of materializing alone. This

is somewhat surprising, since the benefit of replanning based on corrected estimates

overwhelms the costs of both replanning and extra materializations in each case. The

most likely reason is that many of the join operations were given insufficient memory

because of poor selectivity estimates, and this caused them to overflow. In practice,

both cardinality and selectivity estimates of initial table sizes will be inaccurate, fa-

voring replanning even more.

107

5.3.5 Saving Optimizer State

As the results from the previous experiment illustrate, re-optimization can yield signif-

icant performance improvements. Hence, it is common for the Tukwila execution sys-

tem to re-invoke the optimizer after finishing a fragment. The optimizer then needs

to correct its size estimate for the fragment’s result, and update the cost estimate

to reflect the cost of reading the materialization. A dynamic-programming optimizer

can either replan from scratch each time, or save its state for reuse on the next re-

optimization.

For the case of replanning from scratch, the query gets smaller by one operation

after each join, thereby halving the size of the dynamic program. However, reuse has

the advantage that any new information about the completion of a fragment can only

impact half of the entries in the original table.

The advantage of saving state is that half of the useful entries in the rebuilt table

have already been computed. Our stored-state algorithm visits none of these nodes. To

facilitate this search strategy during re-optimization, we introduce usage pointers into

the dynamic program from each subquery to every larger subquery that can use it as a

left or right child. We also keep a usage pointer from every subquery to every subplan

that does use it as a left or right child. In our final experiment, we compare replanning

from scratch to re-optimization based on saved state as optimized with usage pointers.

Here we realize a speedup of up to 1.64 over replanning from scratch. In separate

experiments (not shown) we compare re-optimization using saved state without usage

pointers and the resulting performance is worse than replanning from scratch. See

Marc Friedman’s thesis [Fri99] for more details on the implementation.

5.4 Conclusions

This chapter presents the features necessary for building an adaptive query processing

system. There are two primary points of emphasis: (1) providing support mechanisms

for an optimizer to monitor and replace the currently executing query plan, and (2)

features by which the execution engine can itself adapt scheduling or behavior within

query execution. My contributions include identifying basic mechanisms for achiev-

ing adaptive behavior, incorporating them into a unified framework, and presenting

evidence of their utility. Specifically:

108

• I describe the architecture of the Tukwila query engine, which builds numerous

adaptive features directly into its core. The execution engine features provide

significant feedback to the query optimizer so it can create more effective query

plans. It also supports replacement or modification of a query plan at pipeline

boundaries or in mid-execution, and does this while maintaining good perfor-

mance (for instance, by sharing data between operators).

• I describe the design and implementation of query operators that are especially

suited for adaptive behavior — the double pipelined join and the dynamic collec-

tor. I also demonstrate two useful techniques Tukwila uses to adapt the execution

of a double pipelined join when there is insufficient memory for its execution.

• I use Tukwila to measure the impact of adaptive execution on data integration

performance. I show that the double pipelined join outperforms the hybrid hash

join when given sufficient memory, and I experimentally demonstrate the effi-

ciency gains of interleaving optimization and execution over the traditional ap-

proach of computing the entire plan before execution begins. I describe how we

efficiently resolve memory overflow for the double pipelined join.

The adaptive execution engine described in this chapter has a great deal of flex-

ibility, and can be used with many different optimizer policies and re-optimization

intervals. In the next chapter, I present a framework building query re-optimization in

mid-execution, and I present a specific query re-optimization policy that builds on ex-

isting database techniques to provide good performance in data integration scenarios.

109

Chapter 6

ADAPTIVE OPTIMIZATION OF QUERIES

Beginning with the first cost-based query optimizer in System-R [SAC+79], databases

have typically answered queries in a two-stage process. First, the query optimizer ex-

amines statistics on the data, incorporates knowledge of CPU and I/O speeds, and uses

a cost model to estimate which plan will complete with least cost. Then, the query exe-

cution system takes this query plan and executes it to completion, exactly as specified.

While this approach has been extremely successful in many applications, it has several

important limitations:

1. Because detailed data statistics are often sparse, it may not be possible to find

histograms to help estimate the size of a particular join. In some cases even cardi-

nality estimates may be unavailable — for instance, if data is remotely controlled

and frequently updated, or if it is provided by a system with an incompatible in-

ternal representation (e.g., a keyword search engine). In these cases, optimizers

typically make assumptions about the data distribution and use arbitrary heuris-

tics or “magic numbers.”

2. Since actual runtime conditions may vary (e.g., due to concurrent queries), the

optimizer may make inappropriate scheduling decisions and cost estimates.

3. It is essentially impossible to build a cost model that accurately models the cur-

rent environment and data. Even with good statistical information, the error in

optimizer estimates grows exponentially with the number of joins [IC91], and it is

even worse when selection and join predicates include conjunctions and disjunc-

tions [Ant93]. Furthermore, it is extremely difficult and expensive to precompute

enough statistical information to accurately represent correlations and selectivi-

ties between attributes in large query expressions (for instance, using probabilis-

tic relational models [GTK01] or multidimensional histograms [BCG01]).

All three of these problems are being encountered with increasing regularity in

database applications, especially in areas such as data integration, wide-area dis-

110

tributed databases, and even centralized databases in which statistics are limited and

queries are posed in ad hoc fashion. As a result, one of the fundamental problems

in query processing is techniques for providing efficient answers in limited-knowledge

situations.

Previous Adaptive Methods

Many researchers have developed adaptive techniques in response to the problems.

These have generally fallen into two categories, inter-query adaptivity and intra-query

adaptivity.

Inter-query adaptivity attempts to future queries by “learning” from past queries.

Obviously, there must be overlap between old and new queries for these techniques

to work. The techniques used here mostly consist of improving statistics on certain

regions of the queried data. One of the earliest such pieces of work was by Chen and

Roussoupoulos [CR94], and it attempted to improve estimates for selection predicates.

Recently, the commercial DB2 system added a “learning optimizer,” LEO [SLMK00],

which attempts to add adjustment factors for histograms that have been found to be

inaccurate. Finally, SQL Server’s AutoAdmin feature now includes a capability for

generating additional histograms on subplans within a query, for use in computing

future cost estimates [BC02].

Techniques for intra-query adaptivity interleave optimization and execution, and

generally must deal with a harder problem: they must compromise between time

spent trying to find a better plan and time spend executing. A simple approach to han-

dling unpredictable intermediate result sizes, given good initial statistics, is the choose

node [CG94], which allows the optimizer to precompute several alternative subplans

and have the execution system choose one based on initial runtime conditions — in

essence, this is eager generation of the most likely alternative plans. Kabra and De-

Witt [KD98] dealt with mis-estimated intermediate result sizes in a lazy-evaluation

way, by extending a traditional execution system so that it could re-invoke the opti-

mizer after completion of any pipelined segment of the initial plan. Their system in-

serts statistical monitors where they incur low overhead but provide information about

when re-optimization is useful. Query scrambling [UFA98] handles a different type of

unpredictability: when data from a source is delayed, they attempt to reschedule or

even re-optimize un-executed portions of the query plan. The XJoin [UF00] and double

111

pipelined join [IFF+99] handle unpredictable I/O rates in query execution, by allowing

the system to schedule work while other parts of a query plan are I/O-bound. Finally,

eddies [AH00] address the zero-knowledge problem in the case of SPJ queries by elim-

inating cost-model-based optimization altogether — instead using data flow rates and

operator selectivity values to route tuples through a dynamic query plan.

Unfortunately, while all of these adaptive approaches provide certain benefits, they

each address different subproblems, and it is not easy to combine them to create a

comprehensive solution. Furthermore, many of these techniques are restricted to the

domain of SPJ queries and cannot be easily generalized to more expressive query lan-

guages.

Convergent Query Processing

This chapter presents a logical query optimization framework and a set of adaptive

techniques, together called convergent query processing, which provides a more com-

prehensive solution to the three challenges cited above. At a high level, our approach

is similar to several previous methods: during execution, we continuously monitor the

costs of operations and size of intermediate results; if the plan is poor, we replace it

with one that is expected to perform better. Convergent query processing provides

two very important benefits: first, it allows standard query optimization techniques,

and even standard optimization infrastructure, to be used to re-optimize a query plan

in mid-pipeline, and second, our framework supports re-optimization at any level of

granularity, from heuristic-based per-tuple re-optimization to more sophisticated plan

rewriting. Convergent query processing is so flexible primarily because of the way it

partitions work.

Kabra and DeWitt’s mid-query re-optimization partitions the query plan: statis-

tics from early pipelined stages inform adaptation, which can only happen at pipeline

boundaries. A bad choice for the initial pipeline can lead the system down an arbitrar-

ily bad execution strategy.

Eddies effectively partition data, routing tuples through a dynamic plan. A tu-

ple router consults data-flow and selectivity statistics for each operator, and it alters

routes at moments of symmetry. Eddies use a greedy strategy based on recent opera-

tor selectivity values, and thus they cannot handle blocking operators or incorporate

pre-existing (partial) knowledge about costs.

112

Convergent query processing partitions either or both data and the query plan:

the statistics from processing initial data inform adaptation, which can happen at an

arbitrary point in time. Convergent query processing can incorporate pre-existing in-

formation about source cardinalities to make more globally optimal decisions. Our

method tends to quickly replace poor initial plans, limiting their adverse impact, and

to “converge” towards a more optimal plan. Furthermore, by restricting the points at

which re-optimization is considered or the types of plans considered, one can use our

convergent query processing framework to emulate most previous methods.

The specific contributions of this chapter include:

• A novel phased execution framework for adaptive query processing, which en-

ables more frequent re-optimization opportunities than previous approaches and

provides more flexibility in how work is partitioned.

• A set of algebraic transformations that can be used to rewrite a query into a

logically equivalent union of “phases” — distinct query plans, each with its own

data partition. A cleanup phase is added to ensure that the union of phase results

produces the complete answer set without introducing duplicates.

• An optimizer and execution architecture, implemented within the Tukwila, which

exploits these transforms to power convergent query processing in a data in-

tegration context. Our implementation leverages established techniques from

traditional optimization where appropriate, and demonstrates that a drastic re-

architecting is not necessary.

• A set of experiments demonstrating that Tukwila’s use of convergent query pro-

cessing improves performance versus traditional query processing techniques (for

several TPC-H and other queries); that convergent query processing performs ac-

ceptably in memory-constrained environments; that the overhead of monitoring

and re-optimization (as well as the addition of the cleanup phase) are typically

low and are easily regained through improved execution times; and that conver-

gent query processing tends to stabilize on a plan that performs well.

The remainder of this chapter is structured as follows. I begin with an overview of

the convergent query processing and present an example illustrating the basic princi-

113

ples. Section 6.2 describes how various query operators are supported in phased query

execution, which is the basis for convergent query processing. Section 6.3 describes the

key aspects of our implemented system, and Section 6.4 presents experimental results.

Section 6.5 concludes the chapter.

Note that this chapter describes query processing using relational concepts, but our

implementation maps XML data into a relational-style architecture and directly uses

the techniques presented here.

6.1 Convergent Query Processing

While the problem of limited statistics appears in many different contexts, it is par-

ticularly an issue in data integration, the focus of this dissertation, where the data

sources are likely to be autonomous and heterogeneous. We assume the following re-

quirements:

• A rich query language (a subset of either SQL or XQuery) with grouping, joins,

and aggregation.

• Interactive users, who want quick access to initial results as well as fast overall

processing time.

• Few statistics on data sources, as well as the possible presence of dynamic data

sources.

• Irregular data access characteristics due to remote system load and network la-

tency.

The need for fast initial answers requires us to start query execution with a sin-

gle pipeline, although this decision may need to be reconsidered after some number

of answers have been returned (for instance, because system resources may be too

constrained to execute the entire query in one pipeline). The response time require-

ment also precludes the system from spending much time sampling before execution

begins; however, we fully support the use of pre-existing knowledge from statistics or

prior executions, and our model supports monitoring of statistics during or alongside

query execution. We rely on flexibly scheduled operators such as the double pipelined

114

join [IFF+99, UF00] to handle scheduling operators within a pipeline and mask I/O

delays, so our instead focuses on reducing query execution cost (i.e., work done process-

ing intermediate results). The remainder of this section describes the main features of

CQP.

6.1.1 Phased Query Execution

In the convergent query processing model, every time the processor switches a plan,

execution enters a new phase. The process of executing a sequence of phases in time-

contiguous order is called phased query execution. At the beginning of each phase, the

query processor can use the knowledge gained in prior phases to choose a different

(hopefully better) evaluation plan (“phase plan”) for the query. Since this new phase

plan is applied to the data that is read from the inputs during the new phase, the

first n phases partition each input table into n non-overlapping sub-tables. Finally,

the n + 1st phase, called the cleanup phase, combines subresults from the previous

phases to produce all of the answers to the full query that have not been returned by

the previous phases. Intuitively, phased query execution is possible because we can

distribute unions over joins and other operators.

Convergent query processing’s phased execution model allows arbitrary changes to

the executing query plan in mid-stream. The hope is that each successive plan will

be closer to optimal than the previous phase’s1. Naturally, one would like to maintain

all previously computed results, including intermediate results, even if the query plan

changes between phases; this requires careful bookkeeping. Furthermore, since fre-

quent switches may be required to adapt to a dynamic environment or to increasing

knowledge, it is important that switching plans during phase transitions be extremely

fast.

The development of convergent query processing can be broken up into three inde-

pendent sets of issues, which we discuss below: (1) a set of policies and algorithms for

deciding when to switch phases, (2) a set of techniques for handling multiple phases

and combining data across phases, and (3) optimization algorithms for quickly deter-

mining what form the next phase should take.

1Note that if data characteristics are not uniform, the optimal execution of a query may not be a single

static query plan, but rather a sequence of query plans, each near-optimal for some portion of query
execution.

115

RcTc

R2

S2

T2

R2T2

R1

S1

T1

S0

R0 T0

Cleanup Phase

T

R2

S2

T2

Phase
Plan 2

R1

S1 T1

Phase
Plan 1

S0R0

T0

Phase
Plan 0

Exclude RxSxTx

Exclude R2T2R0

R1

R2

S0

S1

S2

T0

T1

T2

Data
Sources

SR S1T1 R2T2R0S0

U

Figure 6.1: An example query joining R, S, and T. Suppose that during the course of
execution, the query processor uses three different phases as it gains knowledge. Each
of these phases will process a subset of the original relations — we designate these Rx,
Sx, and T x for phase x. Each of the separate phase plans produces some output tuples
and some intermediate results. At the end, we must perform a final cleanup phase that
joins the data across phases; this phase reuses data from the previous phases, even
attempting to make use of intermediate results that have already been computed.

A Simple Example

The following simple example illustrates the main concepts of convergent query pro-

cessing. Suppose the data sources consist of three relations, R(x, y), S(x, z), and T (y, z),

and the user asks for the natural join of R, S, and T . In SQL, this would be:

SELECT *

FROM R, S, T

WHERE R.x = S.x AND R.y = T.y AND S.z = T.z

Initially, convergent query processing proceeds in the conventional fashion. The

query optimization module uses whatever cost and selectivity estimates are available

and produces an initial query plan; suppose this “phase 0” plan is the join tree (R 1

S) 1 T . In our discussion we denote by Rx the data of relation R that was processed in

phase x.

116

6.1.2 Execution Monitoring & Phase Transitions

As the query processor executes a phase plan, monitor running in the background peri-

odically updates its estimates of costs, cardinalities, and selectivities for the currently

executing plan and the query, as well as global costs such as CPU and disk I/O. If the

re-estimated cost of the query plan deviates significantly from the original estimates,

the query optimizer is re-invoked as a secondary thread with the updated selectivity

and cost information. From this, the optimizer generates a candidate phase plan, and

the query processor compares the candidate plan with the currently executing plan,

which continues to do work. If the estimated cost of the candidate is sufficiently better

than the current plan, the system performs a phase transition by pausing execution of

the old plan in a stable state and starting execution of the new plan over the portions

of the data sources that have not yet been consumed. The data structures of the old

plan are maintained for later use, and in fact the query operators may also be retained

for potential future re-activation.

Continuing our example (see Figure 6.1), suppose that during query execution, the

monitor detects that its estimates were poor and triggers a re-optimization. It may

then create a new phase in which S and T are joined first, and then the results are

joined with R. When the query processor switches to this plan, it starts applying it to

new data that it reads for the sources. Hence, we depict the plan by R1
1 (S1

1 T 1).

In a similar fashion, at a later stage, after seeing more data, the system may decide to

switch to a third phase executing (R2
1 T 2) 1 S2.

Note that a key benefit of convergent query processing is the ability to change join

implementations from phase to phase, but to keep the example simple, we do not illus-

trate that here.

6.1.3 The Cleanup Phase

When the last phase runs until all data sources are exhausted, the system will have

succeeded in joining the subsets of tables within each phase. Now the cleanup phase

must join all combinations of subsets across phases: R0
1 S1

1 T 0, R0
1 S0

1 T 2, etc.

A common concern stems from the fact that if there are k relations and n phases,

the cleanup plan must perform O(nk) joins between the different phase subtables. For-

tunately, however, the subtables are proportionately smaller and thus in the worst

case the work performed by the cleanup phase can never be greater than that for the

117

initial query as a whole. And if the processor successfully avoids computing redundant

intermediate results, the cleanup plan will involve substantially less work. Thus the

dominating factor becomes the quality of the plan being used. Fortunately, by the time

the query processor has reached the cleanup phase, it will likely have excellent esti-

mates for the costs and selectivities of the query plan; thus the cleanup plan should be

extremely efficient.

The central challenge for the cleanup plan is minimizing the redundant computa-

tion of intermediate results. The previous phase plans all buffered their partitions of

the original data sources, and these are combined (e.g., R0∪R1∪R2) to form the source

relations for the cleanup plan. However, since previous phase plans may already have

computed some intermediate results needed by the cleanup plan, these intermediate

results should be reused whenever possible.

Thus to ensure efficiency and provide correctness, joins in the cleanup plan are

given an associated exclusion list which describes source-tuple combinations that should

not be regenerated, because their results are available from previous phases. As tuples

flow through join operators they are annotated with information describing the phase

from which each of their source tuples originated, and these annotations are compared

against the exclusion lists in subsequent joins. Continuing our example, note that

exclusions in the cleanup plan of Figure 6.1 prevent regeneration of R2T 2 or RxSxT x

tuples for any phase x. As a result, the cleanup phase only generates results that have

not been previously produced, and since it has access to highly accurate statistics, it

uses a highly optimized plan.

Note that the phased execution process produces a highly beneficial workload for

query execution: early “normal” phases, during which the system is reading data and

acquiring knowledge, are less likely to be CPU-bound or to produce inefficient inter-

mediate results — since either of these conditions would probably cause a phase tran-

sition. Most of the computation that results in expensive CPU costs is postponed until

the system has stabilized on a good phase plan, i.e., to the cleanup phase, which will

have the best plan the optimizer can create.2

2Note that erroneous selectivity statistics have a much greater effect on techniques like mid-query re-
optimization [KD98] than on convergent query processing. A bad decision about the first join in a plan
can have arbitrarily bad consequences, and mid-query re-optimization must complete the pipeline. In
contrast, if the convergent query processor makes a bad decision, the execution monitor will quickly
discover the problem and initiate a new plan.

118

6.1.4 Optimization and Re-optimization

Convergent query processing selects plans in an iterative fashion: the optimizer chooses

a plan, the system begins executing it, the monitor updates the optimizer’s cost model,

and the optimizer re-optimizes the query. Since the optimizer is invoked repeatedly,

it makes sense to maintain certain data structures throughout phased execution. The

monitor may thus directly access the data structures of the execution system and the

optimizer.

The optimizer maintains a tree, in which each interior node represents a combi-

nation of select, project, join, and group operations; each optimizer node is annotated

with expected cost information as well as algorithm selection. The physical plan gen-

erator creates the set of physical operators described by each optimizer node and links

these to it.

When execution begins, the operators begin recording cost and cardinality informa-

tion. Periodically, the status monitor polls the executing plan; it updates the CPU cost

of each operator and the expected sizes of the source relations. For each node in the

optimizer tree, the monitor examines the output cardinality of the corresponding phys-

ical operator. From this, it computes subtree selectivity — the selectivity of applying all

operators in the current subplan to its data sources.3

If the monitor detects that costs are significantly different from the original op-

timizer estimates, background re-optimization is triggered. This optimization step

should yield better CPU cost and data size estimates. Furthermore, for certain join

combinations, it also has accurate selectivity values obtained from the current phase

plan execution. The use of subtree selectivity is critical here: if the plan (R 1 S) 1 T

is being executed, the system cannot accurately infer the selectivity of S 1 T , but it

knows the selectivity of R 1 (S 1 T). If the optimizer finds a plan which appears

superior, the current plan is suspended and replaced. Then execution and monitoring

resume and the process repeats. Ultimately, the system gains enough cost and selectiv-

ity information to avoid bad plans and hopefully to “converge” on a plan that produces

good performance. Note that our current strategy is “reactive” rather than “proactive”:

it will change plans if execution appears to be proceeding poorly, but it would continue

executing a plan that appears to be performing up to expectations, even if some better

plan exists. In Chapter 8 I discuss possible strategies for finding truly optimal plans.

3The monitor makes no changes to the estimates for subtrees that have not yet output any data.

119

6.1.5 Using Incomplete Plans

In our previous example (Figure 6.1), each phase produced tuples which satisfied the

user’s query, but this is neither necessary nor always the best strategy. One useful al-

ternative may be to start execution with an incomplete plan intended for “information

gathering” purposes (e.g., we may wish to execute R 1 T early, simply to get informa-

tion about its selectivity), rather than as the final executable plan. Such a plan might

gather selectivity information; once the plan fragment completes, the query processor

can create a subsequent plan that advances closer towards producing a final query re-

sult. If this strategy were used in the first phase of the previous example, then the

cleanup phase would need to generate R0S0T 0 tuples, and so the exclusion list would

not include this combination. Instead, R0T 0 would be excluded.

In summary, every phase contributes something towards processing the query: (1)

answers, i.e., output from the root plan, (2) intermediate results that will be used in

cleanup, and/or (3) knowledge, e.g., improved selectivity or cost information. The more

of these that a phase produces, the greater its utility.

6.2 Operators for Phased Execution

In this section, we describe the principles of phased execution. We consider some im-

portant algebraic and physical-level aspects of the traditional relational operators, and

see how they are adapted to the context of phased execution. Naturally, we start with

joins, since they set the stage for the rest.

6.2.1 Join

Consider an equijoin-only query plan J = R1 1 R2 1 . . . 1 Rm, over the relations

R1, . . . , Rm. Suppose there are n phases before the cleanup phase, and hence each

Rj, 1 ≤ j ≤ m, has been partitioned into n subsets, one per phase: Rj = R1
j ∪R2

j . . .∪Rn
j .

Using the distributive property of unions over joins, we can write the join as follows.

R1 1 . . . 1 Rn =
⋃

1≤c1≤n,...,1≤cm≤n

(Rc1
1 1 . . . 1 Rcm

m)

We can now rearrange the terms in the union into two sets. The first set is the

union of the results from the first n phases: ∪1≤i≤n(Ri
1 1 . . . 1 Ri

m), and the second set

defines what needs to be done in the cleanup phase:

120

{t|t ∈ (Rc1
1 1 . . . 1 Rcm

m), 1 ≤ ci ≤ n, ¬(c1 = . . . = cm)}

Since the cleanup plan must join the subtables in all possible cross-phase combina-

tions, one might conclude that the system needs to re-scan all source relations in order

to perform cleanup.

However, if we require that every join operation buffers each of its inputs to perform

the join, then the same effect can be obtained by taking the buffered inputs from each

of the leaf-level join operators, and joining across those. Note that in terms of query

operator algorithms, the pipelined hash family of joins [WA91] has precisely this prop-

erty — and also has the benefit that the “build” portion of the hash join operation is

already complete. For other join implementations, such as the nested loops join or the

hybrid hash join, the “inner” or “build” relation is typically stored in memory, and the

“outer” or “probe” relation is typically not. In this case, the external data source must

be re-scanned or buffered and reused.

As mentioned previously, additional query processing performance can be gained

by observing that certain subexpressions within the cleanup phase (e.g., joins between

pairs of tables from the same phase) may have already been executed in previous

phases. These intermediate join results can be reused within the cleanup process,

reducing the amount of work that must be performed. In our example, there is no need

to re-compute tuples of R2T 2. (Note, however, that if phase plans differ substantially

in order of execution, few intermediate results may be shared between the plans.)

6.2.2 Selection and Projection

Algebraically, the addition of selection and projection requires only a small modifica-

tion to the join-splitting strategy described in Section 6.2.1. Selection and projection

operators can initially be applied over the union of the different phases’ join trees. Us-

ing the distributive laws, they can be pushed over the unions and joins — typically in

query optimization, they will be pushed to the point of earliest evaluation.

At the physical level, however, predicate push-down requires some care in the

cleanup stage. The join process during cleanup may require some combination of hash,

nested loops, and double pipelined hash joins — as is required to join the data struc-

tures from prior phases. In some of these cases, the selection predicates may be evalu-

ated within the join itself; in others, a separate selection operation must take place on

121

the join results. Hence, some predicates that can be pushed into a join operator may

also be evaluated immediately afterwards in a separate selection operator.

Fortunately, projection generally causes fewer problems in terms of phased execu-

tion: conventional projection-push-down strategies ensure that identical subqueries

within different phases will have the same projected attributes, even if different sub-

plans are used. Thus no special precautions need to be taken to maintain homogeneity

of intermediate results for re-use in the cleanup stage.

6.2.3 Grouping and Aggregation

Algebraically, grouping and aggregation are slightly more complicated, because one

needs to be careful how to combine aggregate values from the different phases. In the

cases of MIN and MAX, one can combine the minimum or maximum values computed in

the different phases by simply another MIN/MAX operation. Likewise, for SUM one can

add the sums of the different phases to obtain the correct result. The COUNT operation

requires slightly different logic: the counts of each group from the individual phases

need to be summed to produce the desired result. Finally, in order to handle AVERAGE

one must compute for each phase both the sum and count of each group, and then

average the results of the different phases at the end. (These techniques are the same

as those suggested by [CS94].) A few additional adjustments are necessary in order

to combine results that have pushed-down grouping and those that are not grouped,

but we defer our discussion of these until Section 6.3, when we describe techniques for

optimizing GROUP BY operations.

6.2.4 Other Operators

The phased execution model can also be extended to support other operators, such as

union and outer join. Union, of course, distributes over join and other unions following

the standard rules of the relational algebra — hence disjunctive queries can be decom-

posed into phases. The nestChild operator of Tukwila, which is similar to a left outer

join operation, is commonly used in XQueries. It can be implemented in the follow-

ing way: for all phases other than the cleanup phase, the nestChild is replaced with a

standard join (which will not output any parents that do not have children, and which

may not maintain contiguous order between sibling child elements). All results are fed

into a grouping operator that clusters child elements in contiguous order under their

122

parents. Finally, during the cleanup phase, any parents that appear without children

are also output.

6.2.5 Ordered Results

Up to this point, I have presented the phased execution model without mentioning

ordered execution. In general, dependence on the preservation of “interesting orders”

throughout plan execution, as is typically done for sorted inputs in a relational system,

can be done within the phased execution model, but care must be taken to ensure that

phases are broken along “natural boundaries” across the data. Otherwise, there may

not be a total ordering on the data returned by the query. If the query needs to return

data following a particular order, it needs to sort the final output4.

6.3 Implementation within Tukwila

In previous chapters, I discussed the details of Tukwila’s query engine, how it maps

XML into a tuple-oriented, pipelined execution model, and its basic adaptive features.

Now I present some of the important optimizer-related features.

While convergent query processing can benefit from proactive techniques, such as

executing small subqueries alongside the main query for information gathering, our

implementation focuses on showing the benefits of the convergent query processing

approach in a context where all execution work is being done to return query answers,

and where the same query optimizer is being used to generate both initial and final

plans.

Tukwila consists of two modules. The core convergent query processor, which takes

a query parse tree as input and returns tuples as output, is written in C++. The graph-

ical user interface and query language parser are written in Java. Tukwila comprises

approximately 80,000 lines of code. Since convergent query processing relies on tight

interaction between query optimization, execution, and status monitoring, all of our

query processing components run in the same memory space and share data struc-

tures. The monitor and optimizer can suspend query execution to replace a subplan,

and the execution engine can trigger a re-optimization. In the next four subsections,

4If the first stage was over sorted relations and completely order-preserving, all of its tuples are guar-
anteed to precede those from subsequent phases, and thus they may “bypass” this final sort operation.

123

P0

P1

P0

P1

Status
Monitor

Physical
Phase
Plans

Cost-
annotated
Optimizer
Phase
Plans

Optimization Execution

Candidate
Optimizer Plans

Execution
Status

Cost
Estimates

Executing
Phase PlanGlobal Statistics

New Phase Plans

Re-optimization
Trigger

Figure 6.2: Tukwila query processor. The optimization component chooses a plan
and annotates it with expected costs; as the plan executes, a status monitor updates
cost-model estimates with real values. If costs diverge significantly, re-optimization
may be triggered.

we describe the execution engine, our query optimizer, efficiency considerations for the

cleanup phase, and Tukwila’s novel mechanism for handling memory overflow.

6.3.1 Review of Query Execution Features

In order to support convergent query processing, Tukwila’s query engine includes sev-

eral unconventional features. The Tukwila implementations of the operators (includ-

ing the standard array of joins, a double pipelined join, and a hash-based grouping op-

erator) all must support arbitrary interruption and replacement. Since Tukwila uses

an iterator-based execution model and attempts to share memory among operators to

reduce copying, this requires some non-trivial bookkeeping and coordination among

interlinked operators. Furthermore, every operator in the system records the cardi-

nality of its output, plus the amount of time it spends doing its own “work.” These

allow the query processor to update selectivity and CPU cost information. Another

key feature is that leaf-level “scan” operators read data from across the web using the

HTTP protocol, which typically includes a header specifying the total number of bytes

to be transferred. This information can be exploited to derive approximate values for

source cardinalities.

124

Finally, in order to support the cleanup phase, join operators are slightly modified.

The hybrid hash join and nested loops join operators typically only buffer their “build”

or “inner” relations — in our system, the “probe” or “outer” relations are also buffered

(this buffer may overflow to disk, as it is only needed by the cleanup phase). All of the

data structures of the join are made accessible for the cleanup phase, which we discuss

later in this section.

More details on the query execution engine are discussed in Chapter 5.

6.3.2 Phase Plan Selection

As explained in Section 6.1.4, plan selection is an iterative process: after the opti-

mizer chooses a plan, execution begins, the monitor updates the cost model, and the

optimizer re-optimizes the query. Initial query optimization occurs using conventional

techniques. The Tukwila optimizer is a System-R-style dynamic-programming opti-

mizer. The default selectivity heuristics of [SAC+79] are used whenever a predicate is

encountered, and selections and projections are evaluated at the earliest opportunity.

We slightly deviate from the traditional System-R design by supporting bushy tree

enumeration: Tukwila is designed for network-bound data, and bushy enumeration is

often beneficial in this context [HKWY97].

Recall that the optimization process creates a tree of optimizer nodes; each inte-

rior node represents a combination of logical operations, annotated with expected cost

information and algorithm selection. A key characteristic of our optimizer is that, for

any subset of tables within a query, it will always push the same set of predicates down

to any subplan — so any two subplans can be identified as logically equivalent if they

query over the same tables. This is important for the cleanup stage (discussed in the

next subsection), which attempts to find equivalent subexpressions.

Our optimizer supports push-down of pre-aggregation, as described in Section 6.2

and [CS94], but we wish to maintain identical schemas between plans with pre-aggregation

and those without. Thus we introduce a “pseudo-group” operator that computes ag-

gregate values for “groups” of one tuple, i.e., a pass-through operator that injects ag-

gregate values that can be directly combined with the output from a “true” grouping

operator. We insert a pseudo-group operator at any point where a grouping operator

could be pushed, but has not been. The logic for determining whether to insert pre-

aggregation is based on an aggressive strategy: early aggregation is generally inserted

125

initially, and then removed if groups are found to be small.

6.3.3 Cleanup Phase Creation

There are two important points about optimization for cleanup. The optimizer will

have the best possible statistics at this stage, and it can produce an optimal plan for

the query (whose data is now locally available). However, note also that the query plan

that would be optimal for executing the complete query over the original data sources

may not be the optimal plan for answering the query when re-usable intermediate

results are considered. Our optimizer considers the availability of intermediate results

as it selects the cleanup query plan.

Once all re-usable data structures have been attached to the appropriate cleanup

joins, they must all be converted to a form usable by the cleanup join (which works

similarly to a ripple join [HH99]). Hash tables from previous phase plans have tuples

that can be used directly by the cleanup join — but they may not have the appropriate

hash key. For example, suppose that the phase zero plan uses the join expression

A 1 (B 1 C), but the cleanup plan chooses (A 1 B) 1 C. The A hash table from phase

zero includes a useful subset of the A table — but it is keyed on the equijoin attributes

between B and C. Since the cleanup join is attempting to join with B attributes only,

it cannot probe the table. Our solution is to ensure that hash structures can also be

scanned sequentially, i.e., they can be treated as lists instead of hash tables, and that

they can be “re-keyed.” Furthermore, any data that was saved as a simple buffered

list (e.g., from a nested loops join) is converted to a hash table — this only incurs the

overhead of one list traversal, and significantly improves performance in practice.

There are times when it is advantageous to perform some of the cleanup work before

all other phases have completed. For example, suppose that the system is processing

a query over n relations, and just after the first phase exhausts the data in Rj , the

optimizer generates an improved plan for the next phase. Now, the next phase cannot

perform any significant work, since it has no data to join from relation Rj . To alleviate

this problem, we bring the data from a previous phase (e.g., R0
j) into the current phase.

A more comprehensive solution would be to allow the current phase to read data from

earlier phases whenever delays were encountered, similar to the XJoin [UF00] method

of processing overflow tuples during idle time. However, this would require consider-

ably more bookkeeping than XJoin’s timestamps strategy, and the overhead incurred

126

may be significant.

6.3.4 Handling Memory Overflow

Since it retains intermediate results and buffers all inputs, the convergent query

processing strategy sounds quite memory intensive. It may initially seem counter-

intuitive, then, that convergent query processing provides a natural partitioning on

the data that has desirable qualities for overflow handling.

With phased execution, no data needs to be shared across phase boundaries until

cleanup. This means that data from one phase can be flushed to disk to accommo-

date the next phase. Of course, during cleanup, many intermediate results may be

needed to complete the cross-phase computation. However, no more memory will be

required than in the equivalent plan under traditional query execution (ignoring the

minor overhead of having the data partitioned across multiple structures). Moreover,

during cleanup we should have good estimates of intermediate result sizes, and we can

partition cleanup phase execution into an efficient sequence of pipelines with interven-

ing materialization points, keeping only the immediately relevant data in memory.

In fact, there is a natural parallel between join overflow resolution and phase

boundaries, particularly with regard to the double pipelined join or XJoin [IFF+99,

UF00]. When such a join overflows, certain hash buckets (and future values that

would fall into these buckets) are swapped to disk, and their space is allocated to the

remaining buckets. Because of the double pipelined join’s characteristics, all tuples

prior to overflow have already been joined with all other data encountered before over-

flow. Subsequent tuples which get paged to disk must later be rejoined with (1) other

post-overflow tuples that are immediately paged to disk, and (2) all pre-overflow tuples

that were initially kept in memory but later paged to disk. This is very similar to a

two-phase execution sequence: all pre-overflow tuples are joined (analogous to Phase

0); then all post-overflow tuples must be combined (Phase 1); finally, all post-overflow

tuples must be combined with pre-overflow tuples (cleanup). This similarity suggested

an overflow handling strategy which is different from that used in conventional query

processing: upon encountering overflow, Tukwila initiates a new phase, swapping sub-

results from the current phase to disk. This gives Tukwila the opportunity to create a

better plan that produces smaller subresults, and it can take advantage of the cleanup

phase to produce the complete set of answers.

127

The overall Tukwila architecture performs quite well (as we shall see next in the

experimental section). In general, most query output production occurs in the last pre-

cleanup phase, and the optimizer seems to create a good cleanup phase plan to produce

the remaining tuples. The memory overflow mechanism is also quite efficient.

6.4 Experiments

Tukwila is primarily a data integration system for the local and wide area. However,

the principles of convergent query processing (CQP) are fully applicable to centrally

managed data as well — although more statistical data may be available about data

sources, it is well known that cost estimate errors can still be high for complex queries.

Hence, our experimental evaluation considers both the local and remote query process-

ing scenarios.

The experiments address five main questions: (1) how does CQP compare with the

traditional optimize-then-execute strategy when execution is CPU bound? (2) how do

the approaches compare when execution is largely I/O bound? (3) can CQP scale be-

yond memory? (4) how does CQP perform relative to Kabra and DeWitt’s mid-query

re-optimization approach [KD98]? and (5) how sensitive is CQP to parameter varia-

tions?

6.4.1 Experimental Setup

For data sources, we used the TPC-H benchmark, with tables generated at the 1%

scale factor. These were converted to XML and stored on a web server so they could be

fetched across the network by the query processor. We selected those queries that have

SPJ and/or group operators, multiple output attributes, and at least two tables. These

were queries 3, 5, and 10, which all offered opportunities for (re-)optimization of join

ordering (group optimizations were not interesting because the joins were on foreign

keys). Additionally, since our system supports dynamic push-down of aggregation oper-

ations, we wanted to see the performance impact on a query with a grouping operation

that could be pushed. For this, we created a table encoding a set of people and a table

encoding meetings and participants, and we posed a query that counts the number

of person-to-person interactions one particular person could have had in all meetings

(this results in a pair of joins and a grouping operation). Table 6.1 summarizes the

relevant source information.

128

Table 6.1: Data sources for experiments. The first 6 tables are from the TPC-H bench-
mark, at the 1% scale factor.

Source XML Size Tuples Queries

orders 53MB 150K Q3, 5, 10, A, B
lineitem 32MB 60K Q3, 5, 10, A, B
customer 5.2MB 15K Q3, 5, 10, A, B
supplier 29KB 100 Q5, B
nation 4.5KB 25 Q5, 10, A, B
region 787B 8 Q5, B

people 1.6KB 9 PeopleMet
meetings 1.4MB 8.1K PeopleMet

Our experimental setup included three machines: a 450MHz dual Pentium II data

source server. For the experiments on local data we used an 866MHz Pentium III ma-

chine with 1GB of Rambus RDRAM memory (but with the query processor’s memory

pool limited to only 64MB), connected to the source server via a 100Mbps Ethernet.

For the experiments on remote data we used a 1GHz Pentium III with 256MB of con-

ventional RAM, connected to the Internet via an AT&T Broadband cable modem, with

round-trip times of 30-60ms and bandwidth constrained to a maximum of 1Mbps. We

ran all experiments a minimum of 7 times to ensure consistency in the results; 95%

confidence bars are also provided.

When comparing CQP with traditional processing (one-pass optimization followed

by execution), both approaches used the same cost model and optimization algorithms.

This optimizer used bushy tree enumeration in all cases, since we found that left-linear

trees never gave performance benefits. In some cases we gave one or both methods

cardinality information; in the “unknown cardinality” case, the optimizer assumes a

default size of 4000 tuples (roughly the averaged table size for the data set) for ev-

ery relation. We set our convergent query processor to re-evaluate progress every 10

seconds, and to change plans only if an improvement of 50% is predicted. At each re-

evaluation point, full bushy-plan enumeration is performed (in a background thread).

Note that in the experiments presented below, an alternative optimizer might make

different decisions based on the input statistics provided, and thus it would have dif-

ferent performance results. The important consideration here is that we used the same

optimizer and cost modeling algorithms throughout both optimization and convergent

129

0

50

100

150

200

250

TPC-H Q3 (2 joins) TPC-H Q5 (5 joins) TPC-H Q10 (3
joins, queryable

sources)

Query: Count
People Met (group

& 2 joins)

C
o

m
p

le
ti

o
n

 t
im

e
(s

ec
)

Traditional - no statistics
CQP - no statistics
Traditional - cardinalities
CQP - cardinalities
Best plan - all CQP statistics

316

Figure 6.3: Query running times over 100Mb LAN for 10%-scale-factor TPC-H queries (with
data converted to XML), plus a query with potential for aggregate push-down. Convergent
query processing (CQP) adds little overhead in the worst case, and can produce substantial
benefits (even with no a priori statistics). CQP performance often approaches that of the best
single plan which can be generated given advance knowledge of the complete statistics recorded
by CQP execution.

query processing. Every optimizer will make poor decisions in certain cases, but con-

vergent query processing allows it to detect those mistakes and make corrections.

6.4.2 Fast-Network Performance

The first set of experiments focuses on an environment in which query costs are likely

to be dominated by CPU speed, and in which costs are highly stable and predictable.

Query processing performance should be dependent only on the optimizer’s choice of

join algorithms and the order in which it applies operations; hence, performance relies

almost exclusively on the optimizer’s cost model.

For each query, we compared performance of the two strategies with and without

cardinality information. The running times are shown in Figure 6.3. As a point of

comparison, we also show the performance of the best single execution plan which

could be generated using all the information which would have been gathered by a

complete execution of the convergent query processor, and we show the XML parse

130

times as a horizontal line across each set of bars. Currently, the XML parse time is

quite significant, but these times will shrink as XML parsing technology is refined —

hence, the focus of these experiments is on the running time above the parser line.

[[[Note to reader: I have already made substantial improvements in Tukwila’s<==

parsing and path expression evaluation modules, and plan to re-run these experiments

under these conditions.]]]

Queries Q3 and Q10, which have two and three joins, respectively, show that with

few joins, a query optimizer is likely to do well when given source cardinality informa-

tion (with few joins, its estimates of intermediate results should be reasonably accu-

rate), and likely to perform poorly otherwise. We can see that as we would hope, CQP

equals the optimizer’s best performance, even if it starts with no source knowledge.

Query Q5, which includes 5 joins, illustrates a case in which the query optimizer

introduces significant error when modeling complex queries. Here, since the stan-

dard optimizer relies on standard System-R heuristics and “magic numbers,” it mis-

estimates intermediate result sizes, and chooses a poor plan (whereas, coincidentally,

for this query the optimizer does much better when given no source cardinality infor-

mation). Fortunately, CQP provides good performance regardless of whether it starts

with cardinality information. These four queries, which all focus on join re-ordering,

demonstrate that although CQP always starts with the same plan as the traditional

strategy, it can quickly change its plan as it acquires information, resulting in little

performance penalty.

The “Count People Met” query illustrates the possible benefits of Tukwila’s support

for push-down of GROUP BY aggregation. (The previous TPC-H queries mostly in-

volved foreign-key joins, so GROUP BY optimization makes little difference.) The orig-

inal work on GROUP BY optimization by Chaudhuri and Shim [CS94] took a conserva-

tive approach to push-down, since overly-eager push-down could incur a cost without

producing any savings. Tukwila can be much more aggressive in performing early ag-

gregation, because it can monitor the performance and remove superfluous operators.

In this query, the “meetings” table had many repeat attendees on its join attributes,

so these could be clustered before the join was performed. In addition to the “Count

People Met” query, we also ran a several similar count-based queries over the TPC-H

data sets, where the joins were over non-key attributes. In these cases, only the CQP

algorithm was able to answer the queries in a reasonable amount of time (1.5 to 2

131

minutes); the other approaches failed to complete within our 10 minute time limit.

A key point about this experiment is that the grouping optimization is one of many

techniques that have previously been only applied heuristically, and only in a few

cases. On the other hand, the optimization has significant potential benefit. I am

currently investigating whether we can leverage other query optimization techniques

that are seldom applied; if these can be integrated into CQP, they might be used more

frequently, resulting in significant performance benefits.

In summary, CQP never added much overhead, and sometimes yielded significant

speedup, even with zero knowledge. We observe that in the network-based query con-

text, cardinalities are likely to be the highest level of statistics that could be made

available, since histograms are unlikely to be generated. Even in a local database con-

text, the query optimizer can typically only use histograms to estimate selectivities

for the initial join that is performed, and thereafter must rely on predicate indepen-

dence assumptions and heuristics [SLMK00]. Thus I believe that the results of this

experiment also show promise for local queries with full statistics.

6.4.3 Wide-Area Sources

When queries are posed over data sources across a wide-area network, execution tends

to become heavily I/O bound, except when intermediate result sizes are large. Wide-

area data sources are often bursty, with high latencies and low throughput rates. Un-

der this scenario, the query processor needs not only to produce a plan that minimizes

the amount of work needed to answer the query, but it also needs to produce a plan

that is “flexibly scheduled” (multithreaded) so the CPU can perform useful work, while

waiting for I/O. We make use of the double pipelined join algorithm [WA91, IFF+99] to

support flexible scheduling of SPJ queries in convergent query processing.

Even with flexible scheduling and a mostly-I/O-bound system, a good plan can make

a difference, since it produces fewer intermediate results and thus requires less CPU

overhead. Figure 6.4 shows the results of running our queries over a combination

of wide-area and local sources (the lineitem table was local, and all others were

accessed across a cable modem). While CQP has less effect on the smaller queries (Q3

and Q10), it still significantly speeds Q5 and the Count People Met query.5 For Query

5Note that the absolute numbers in this graph are not directly comparable to those of Figure 6.3,
because this experiment was run on a faster machine.

132

0

50

100

150

TPC-H Q3 TPC-H Q5 TPC-H Q10 Query: Count
People Met (group

& 2 joins)

C
o

m
p

le
ti

o
n

 t
im

e
(s

ec
)

Traditional - cardinalities

CQP - no statistics

CQP - cardinalities

315

Figure 6.4: Wide-area query running times over AT&T cable modem connection for the
queries of Figure 6.3 (with the lineitem data source local). In situations where intermediate
results are large, even double pipelined joins benefit from convergent query processing.

5, it is interesting to note that CQP performs appreciably better without statistics

than with them; in this case the system determines early that the no-statistics plan is

bad, but takes somewhat longer to switch away from the original plan generated using

statistics.6

6.4.4 Constrained Memory

One of the key concerns about convergent query processing is whether it can scale be-

yond memory; we ran several experiments that suggest that it does. In Figure 6.5,

we see a comparison between traditional and convergent query processing strategies

for overflow resolution. In both cases, we began with a single pipelined query and

attempted to execute it within a particular amount of buffer pool space. For the tra-

ditional system, we used the symmetric flush overflow resolution strategy of [IFF+99]

with 8KB buffer pages. Tukwila, on the other hand, handles overflow by (1) flushing

its data structures to disk, (2) re-optimizing, and (3) initiating a new phase. During

6Recall that the monitor was set only to switch phases if an improvement of 50% is predicted; hence a
better initial plan can hurt overall performance.

133

0:00
1:12
2:24
3:36
4:48
6:00
7:12
8:24
9:36

10:48
12:00

20
M

B

40
M

B

10
0M

B

25
0M

B

20
M

B

40
M

B

10
0M

B

25
0M

B

20
M

B

40
M

B

10
0M

B

25
0M

B

DBLP 39MB Synth 51MB Synth 103MB

XML file and size, and XML Tree Manager memory allotted

E
xe

cu
ti

o
n

 T
im

e
(m

in
:s

ec
)

8MB for Indices
90MB for Indices
250MB for Indices

Figure 6.5: Performance of two different queries run with limited memory under traditional
overflow resolution and convergent query processing.

cleanup, Tukwila partitioned the query plan into multiple pipelines when necessary to

fit any particular join’s data structures in memory.7

We present the results on two queries. Query A is a modified version of TPC-H

Q10, where we removed all selection predicates and returned a number of additional

attributes (preventing the system from projecting them away). Both traditional and

CQP approaches were provided with source statistics. We executed on a 1GHz ma-

chine. Here we find that CQP is slightly faster, but because most of the join work has

been completed prior to overflow, both overflow strategies work reasonably well.

Query B is a variation on TPC-H Q5 with several selection predicates removed. We

provided the traditional method with cardinalities, but CQP was given no statistics.

We ran on an 866MHz machine. In this case, we see that convergent query processing

does slightly better with 12MB of memory and slightly worse with 20MB. At 20MB, the

traditional incremental, lazy-flushing strategy works better than paging out all data

and starting a new phase, but note that CQP was handicapped with no cardinality

information.

7Note that our cleanup join implementation itself does not yet support partial paging of some of its
results to disk — we intend to add this extension in the future, since it would allow us to work in
extremely small memory spaces.

134

6.4.5 CQP vs. Mid-Query Re-Optimization

We also conducted a preliminary comparison between convergent query processing

and the expected performance from Kabra and DeWitt’s mid-query re-optimization ap-

proach [KD98], which breaks a plan into separate pipelines and re-optimizes at each

boundary. Using TPC-H Query 5, we simulated the effects of their approach by tak-

ing the output from our optimizer and inserting a materialization point after the first

three joins had completed. Note that this neglects mid-query re-optimization’s over-

head associated with statistics monitoring.

For this query, we found that convergent query processing completed the entire

query in the same amount of time, 62 seconds, that it took for that first pipeline to com-

plete — this is because the optimizer has a difficult time determining which sources

should be joined in the first pipeline. In contrast, CQP can recover from mistakes

without waiting for the pipeline to complete. An additional point worth noting is that

convergent query processing had produced a first answer in only 5 seconds, whereas

the Kabra and DeWitt approach will not return any answers until it reaches the final

pipeline.

6.4.6 Additional Experimental Conclusions

For the experimental results presented in this section, the settings of the convergent

query processor were kept fixed. However, for completeness we also tried to exam-

ine the performance effects of the various parameters. I briefly discuss some of our

conclusions here.

Originally, we had expected to implement a number of strategies to reduce opti-

mization and re-optimization times, under the assumption that full bushy re-optimization

would be too expensive. Somewhat surprisingly, the overhead of a full bushy re-

optimization, when run in a separate thread, was minuscule in these cases. For small

queries such as TPC-H Query 3, there was no measurable performance degradation

between running the re-optimizer alongside the query, and simply executing the query

alone. TPC-H Query 5 is somewhat more complex, with a 6-table join, but still took

only 1
2 second to optimize. Considering that re-optimization has the potential to pro-

duce significant savings, we believe that an overhead of a few percent is acceptable

in many cases. For queries with many relations, a transformational optimizer may be

more appropriate than a bottom-up one, as we discuss in the next section.

135

Two other parameters that affect performance were the re-optimization interval

and the threshold for switching plans. Here, we found that Tukwila and its cost model

were surprisingly robust to parameter variations. Individually changing the interval

to 2 seconds (from 10) or the threshold to 16% (from 50%) had no effect on the number

of phases for most of the experimental queries, and on some runs added an additional

phase to Query 3. Changing both in conjunction added at most one phase to Query 3

and two phases to Query 5 in a few runs; but typically, it again had minimal effect. In-

terestingly, at these levels, some of the running times were slightly better, presumably

because the system switched to a better plan at an earlier point.

Our general observation is that the Tukwila optimizer truly does converge on a

plan, perhaps after a few phase changes. This seems to be fairly stable even with

variations in the parameters, even with different sort orderings between tables, and

furthermore, the optimizer’s cost model does seem to correlate well with real-world

performance.

6.5 Conclusion

In this chapter, I have proposed, implemented, and experimentally validated a new

model for convergent query processing, based on a phased execution model that allows

for arbitrary transforms to be applied in mid-pipeline to a relatively broad class of

queries. Specifically, I have made the following contributions:

• A novel means of executing a query as a sequence of phases, where each phase

gets a different partition of the source data and a new phase may be initiated at

any point.

• A set of algebraic transformations for a wide variety of operators, which enable

these operators to be used in phased query execution, by guaranteeing that the

union of the phases’ results produces correct results.

• A complete system architecture for supporting convergent query processing, with

an implementation in the Tukwila data integration system.

• Experiments demonstrating that convergent query processing provides improved

performance in many cases, that it can scale to low-memory situations, that it is

low-overhead, and that it does tend to stabilize on a good query plan.

136

The implementation discussed in this chapter showed significant benefits for query-

ing across a network; however, there is no reason to believe that convergent query pro-

cessing’s benefits are limited to this context. In the near future, I hope to extend the

basic work in this chapter to the context of local databases. As in the data integration

context, the query optimizer may have inaccurate or insufficient statistics even in the

local case, and may choose a poor query plan as a result. A key difference between

this context and the data integration one is that query processing in a local database

has fewer “idle cycles” in which the CPU can be trying to find a better plan — hence,

it becomes increasingly important to have inexpensive re-optimization operations, and

to be very selective in performing re-optimizations. However, in this context, there

are also a richer set of resources from which the query processor can get statistical

information: for instance, histograms, indices, and random access to the data are all

available here.

The System-R paradigm of optimize-then-execute, based on statistical information,

has achieved great success in the database world. However, it has limitations, such as

reliance on potentially out-of-date statistics, exponential increase in error as queries

get more complex, and the expectation that costs remain fixed over time. I believe

that convergent query processing finally allows database systems to overcome these

limitations, and thus to broaden their applicability to new areas, without incurring

significant overhead.

137

Chapter 7

TUKWILA APPLICATIONS AND EXTENSIONS

One of the benefits of developing a working data integration system is that we have

been able to deploy it in real-world applications and to use it at the core of other re-

search projects. Most of the current applications are still at a fledgling state, so a

detailed case study is not possible at this time — however, in this chapter I briefly dis-

cuss some of the applications and how the Tukwila adaptive XML query processor is

being utilized. I begin with a discussion of data management for ubiquitous computing

and how the Tukwila engine was useful in this context. Section 7.2 describes peer data

management systems and the Piazza project, and how we are leveraging Tukwila’s ba-

sic engine in this system. Section 7.3 describes Tukwila’s use in a real-world, biomedi-

cal informatics application called GeneSeek, and I summarize the lessons learned from

these efforts in Section 7.4.

7.1 Data Management for Ubiquitous Computing

One of the major projects at the University of Washington has been an investigation

into ubiquitous computing, the Portolano [EHAB99] project. Ubiquitous computing

is based on the premise that an increasing number of devices are being controlled

by microprocessors, and that ultimately these devices will be able to communicate

via standardized wireless technologies (e.g., 802.11, Bluetooth) or even wired home

networks. Once this occurs, it will be possible for different devices to work together to

manage daily tasks, hopefully with little or no obtrusive interaction with the user.

Clearly, a major aspect of these interactions is a standardized way of classifying and

sharing data. To address this need, we proposed the Sagres1 data management system

for ubiquitous computing [ILM+00]. Sagres provides a virtual, graph-structured view

of all data within a ubiquitous computing environment, and allows devices to query

and update this data as a means of controlling behaviors. It is based on XML stan-

1Sagres was the home of the Portuguese school of navigation, and hence a likely repository of the
“portolano” charts used by navigators to explore the world.

138

dards (so while support has not yet been implemented, it could easily support UDDI2

and uPNP3). A predefined but extensible ontology is used to classify data within the

system, and devices associate their data with items in the ontology. Finally, an event-

condition-action rule-based system controls interactions between the devices.

Our initial Sagres demonstration showed an example ubiquitous computing envi-

ronment: we illustrated a scenario in which a business traveler could have a significant

part of her scheduling work performed invisibly. The actual system implementation

was fully operational except that we simulated the physical devices; our implemen-

tation added a simple graph-based storage subsystem and a rule engine to the basic

Tukwila query processing architecture. (A real implementation would have needed

device support for both queries and updates, but would have otherwise worked simi-

larly.) The primary contribution of Sagres was to show that a slight generalization of

data integration could be a very useful paradigm for controlling device interactions —

in particular, the uniform interface over all data makes it easy to extend the environ-

ment.

In building Sagres, we came to realize that most of the database-related research

challenges are not unique to the ubiquitous computing domain. Clearly, at the systems

level, there are some unique requirements (e.g., low-power protocols, the need to in-

teract with extremely primitive sensors and other devices), but at the data level, we

see three important issues: (1) different devices have different capabilities and perfor-

mance, (2) the different schemas and ontologies of the member devices must be mapped

into a common terminology, hopefully in an automated way, and (3) data caching and

replication are extremely important. The capability problem already exists in conven-

tional data integration — for instance, some web-based data sources have very limited

query capabilities. Similarly, problem (2) is shared with any data integration system,

as well as the emerging Semantic Web [BLHL01], which seeks to extend the web with

pages that are marked up with terms from various ontologies. The third problem, that

of caching and replication (or, more generally, of data placement and utilization) is

common to distributed databases and to peer-to-peer environments. As a result, we

changed our research focus from ubiquitous computing to a more general peer-to-peer

data management environment, leading to the Piazza peer data management system,

2See www.uddi.org

3See www.upnp.org

139

which I discuss next.

7.2 Peer Data Management

One of the major new points of focus in the UW Database Group is the area of “peer

data management” [GHI+01]. We have proposed the peer data management system

(PDMS) as an attempt to provide data integration services in a more decentralized and

ad hoc fashion. The current data integration model requires a single mediated schema,

which must be defined by the system administrator. As new data sources are added or

users need access to new concepts, the schema must evolve — this evolution is much

simpler than that for a data warehouse, but it still requires considerable input from a

centralized system administrator.

Our view is that this central point of control is not likely to be able to support a

series of different schemas that are customized for different applications; that schema

modification in a data integration system is too “heavyweight” for simple, ad-hoc col-

laborations. Hence, we have defined a peer data management system as a query an-

swering and semantic integration system where there is no central schema — instead,

each peer in the system can define its own virtual schema as well as provide its own

data sources, and it can provide semantic relationships between its concepts and/or

those of other peers across the network. A user can select any peer’s schema as his

or her point of reference and pose a query over this schema; the system will provide

all available answers by using the transitive closure of the semantic relationships and

their underlying data sources. An example of this is shown in Figure 7.1, where vari-

ous emergency services integrate their systems, and upon an earthquake a new set of

schemas and data sources can instantly join the system and share data.

The PDMS concept is a generalization of data integration that removes the cen-

tral schema; hence, we build on the basic data integration formalisms for express-

ing semantic relationships between schemas. Our formal language for semantics sub-

sumes both the local-as-view [DL97, DG97, LRO96, PL00] and global-as-view [Hal01,

ASD+91] formalisms of data integration: in essence, it allows us to define the rela-

tionship between two schemas by equating a pair of queries, one over each source (or

by asserting that a query over one schema is contained within a query over a second

schema). Not surprisingly, this formalism as described is too expressive to be decid-

able: we must restrict our language in a number of ways, such as removing cycles

140

Ambulance(VID, GPS, dest)
Staff(SID, firstn, lastn, start, end)
EMT(SID, VID)
Doctor(SID, loc)
Bed(bed, room, class)
Patient(PID, bed, status)

911 Dispatch
Center (9DC)

Hospitals
(H)

Fire
Services (FS)

Portland
Fire District (PFD)

Vancouver Fire
District (VFD)

Medical
Aid (MA)

Earthquake
Command

Center (ECC)

Search &
Rescue (SR)

Emergency
Workers (EW)

Station 12

Washington
State

Station 19

National
Guard

Station 3 Station 32

Worker(SID, first, last)
Ambulance(VID, hosp, GPS, dest)
EMT(SID, hosp, VID, start, end)
Doctor(SID, hosp, loc, start, end)
EmergBed(bed, hosp, room)
CritBed(bed, hosp, room)
GenBed(bed, hosp, room)
Patient(PID, bed, status)

Ambulance(VID, GPS, dest)
InAmbulance(SID, VID)
Staff(SID, firstn, lastn, class)
Schedule(SID, start, end)
EmergBed(bed, room, PID, status)
CritBed(bed, room, PID, status)
GenBed(bed, room, PID, status)

SkilledPerson(PID, skill)
Located(PID, where)
Hours(PID, start, stop)
TreatedVictim(PID, BID, state)
UntreatedVictim(loc, state)
Vehicle(VID, type, capac,
 GPS, dest)
Bed(BID, loc, class)
Site(GPS, status)

 Engine(VID, cap, status, station, loc, dest)
 FirstResponse(VID, station, loc, dest)
 Skills(SID, skill)
 Firefighter(SID, station, first, last)
 Schedule(SID, VID, start, stop)

...

ad hoc addition to system

First
Hospital (FH)

Lakeview
Hospital (LH)

Set of
Stored Relations

Peer

Legend

Figure 7.1: Example of schema mediation in a PDMS for coordinating emergency
response in the Portland and Vancouver areas. Arrows is the figure indicate that
there is (at least a partial) mapping between the relations of the peers. Stored
relations are located at various fire stations and hospitals. The hospitals and fire
districts run peers within the PDMS, publishing the stored relations for system
use. Next, the Hospitals and Fire Services peers mediate between the incompatible
schemas at the layer below. Finally, a 911 Dispatch Center provides a global view of
all emergency services. In the event of an earthquake, a new Command Center and
new relief workers can be added on an ad hoc basis, and they will be immediately
integrated with existing services.

141

BW (2 <-> E)

B

A
C

D E
Sphere of

Cooperation 1

Sphere of
Cooperation

{1,2}

Data origin 1

Data origin 2

Sphere of
Cooperation 2

G H
advertise-

ments

query
request

data

query results

* Disk resources
* CPU resources

* Materialized views
* Query workload

{F

(a) System Diagram (b) Detailed View

Figure 7.2: Piazza system architecture. Data origins serve original content; peer
nodes (A-E) cooperate to store materialized views and answer queries, but have
limited disk and CPU resources. Nodes are connected by bandwidth-constrained
links, and advertise their materialized views. Nodes belong to spheres of cooperation

with which they share resources; these spheres may be nested within successively
larger spheres.

within mapping definitions. For more details and an experimental evaluation of an

algorithm for query reformulation in a PDMS, see [HIST02].

In terms of integration, peer data management poses a number of challenges that

exceed those of standard data integration. First, decentralization and scalability are

important considerations in a true peer-to-peer environment. Decentralization is im-

portant because it removes the possibility of a single point of failure, and also a single

machine can no longer be a scalability bottleneck on the entire system. However, it

has been shown that decentralization often results in a less scalable system than cen-

tralization: some decentralized systems, such as Gnutella, are severely limited in their

scale because they require too many “ping” and query messages for coordination and

operation [SGG02, DSS00].

Current research in the Piazza PDMS project (see Figure 7.2) attempts to define

a scalable, decentralized set of protocols and algorithms for coordinating between and

optimizing across peers. The current architecture assumes a simplified model in which

most decisions are made at the scope of a single peer or cluster of peers (“sphere of co-

operation”) — avoiding the need for complex distributed query optimization and wide-

142

area distributed decision making — but we initially assume the presence of global

knowledge about peer resources and network connectivity. Our next step will be to

migrate to an architecture that assumes only partial knowledge of global state.

Our current focus is on defining a mapping language for XML-based peers (extend-

ing the work of [HIST02] from the relational context), query rewriting and reformu-

lation algorithms for this language, and the data placement and query optimization

techniques that will allow our Piazza PDMS to replicate data throughout the system

and use it efficiently. The core query processor in Piazza is the Tukwila XML process-

ing engine, and the new query optimizer will leverage the techniques presented in this

thesis.

Anther PDMS topic of immediate interest is understanding the relationship be-

tween a P2P query answering system and the description-logics-based “semantic web”

proposed by Berners-Lee and others [BLHL01]. Our formalism, which is based on

the datalog language, has a different means of expressing concepts from description

logics (e.g., containment in datalog corresponds to subsumption in description logics).

It is generally more tractable to answer queries in a datalog context, and we believe

that database-style operations are likely to be the highest level of functionality that is

important in many applications.

7.3 Integration for Medicine: GeneSeek

The GeneSeek project [MHTH01] is a data integration system designed to integrate

biomedical databases (in this case, databases related to genetics). GeneSeek queries

phenotype, gene, locus, and protein information from numerous public web sources

such as OMIM4 and LocusLink5. The basic approach of GeneSeek is to provide a

global, graph-structured mediated schema incorporating all of these data sources, and

to accept queries in a high-level declarative language called PQL [MSHTH02].

GeneSeek models individual entities (e.g., genes or proteins) as nodes and relation-

ships as edges. In contrast to conventional tree-structured XML, the GeneSeek model

is truly a graph, and edges express a type (e.g., consists-of or codes-for) as well as a re-

lationship. Since these logical concepts can be physically encoded as XML (e.g., edges

can be modeled as XLinks or IDREFs), the authors do make use of XML as the physical

4http://www.ncbi.nlm.nih.gov/

5http://healthlinks.washington.edu/basic sciences/molbio/

143

data representation, but the user perceives the higher-level logical encoding.

All queries over the graph model are expressed in PQL, a semistructured query lan-

guage with many similarities to StruQL [FFK+98]. A key difference between PQL and

StruQL is that GeneSeek supports additional metadata about particular sources and

relationships (e.g., its level of curation), and PQL queries can be restricted based on

this metadata. At times, this capability greatly improves the relevance of the answers.

A PQL query over the mediated schema is converted into an XQuery over the data

sources (or, more precisely, over the XML from their wrappers). This query is fed into

the Tukwila query processor, which fetches data from the wrappers and combines it to

produce the answers.

Since the GeneSeek data sources are extremely large and the wrappers do not ware-

house the XML contents of the sources, GeneSeek relies heavily on pushing selection

predicates into the wrappers and on Tukwila’s web-join operator — which allows the

system to fetch a data item from one source and use it to build a query over a different

source. Without the web-join, the amount of data being transferred across the network

would be prohibitively large, but with it, wrappers typically only return the ten or so

answers that are relevant to the query.

While GeneSeek has not yet been heavily deployed in practice, it has shown itself

to be useful in the biomedical domain, and it demonstrates the utility of the Tukwila

system. Furthermore, it illustrates the need for an operator like the web-join, which

can compose dynamic queries based on the contents of a particular data source.

7.4 Summary

As this chapter demonstrates, the Tukwila query processor has evolved from simply

a research platform for investigating adaptive query processing to a component of a

number of applications and new research systems. Many data management tools and

applications need a query answering engine, and our core not only provides good per-

formance for network-bound data, but it is highly flexible, modular, and extensible,

and hence an ideal tool for distributed data management.

Several aspects of the Tukwila architecture served us well in our applications.

First, the core engine was designed in an extensible way, which made it easy to add

features such as active rules. Second, the core modules provided standards-based in-

terfaces for easy coupling with other components — the execution engine has a SOAP-

144

based API for accepting query plans from an external optimizer, or it can do its own

optimization of abstract syntax trees created from XQueries. Data sources can be files

or HTTP servers. Any XML-like query language and reformulation algorithm can be

layered over the query optimizer, so long as it can be translated into XQueries over

XML sources. Third, the level of performance provided by the Tukwila infrastructure

was sufficient to solve the needs of applications in these domains.

Ultimately, I believe that a natural progression would lead to an even more flexible

version of Tukwila. Tukwila is an adaptive query processing engine for network-bound

data — it has no storage subsystem, nor support for indices. I believe that it would be

very useful to take this core engine and re-factor it in a way that will allow it to be

combined with storage systems (e.g., Shore [CDF+94]) to build a full adaptive data

management system — I believe that the adaptive features of Tukwila can be of use in

the local context, and extended to concepts such as physical storage and data layout,

and that many interesting applications can be built from this.

145

Chapter 8

RELATED WORK

I have discussed a number of related works earlier in this dissertation, but in this

chapter I present a more global view of the topics covered by my thesis and the related

work in each area. I begin in the first section with a discussion of data integration,

then move on to discuss XML query processing in Section 8.2, and I conclude with a

discussion and comparison of adaptive query processing techniques in Section 8.3.

8.1 Data Integration (Chapter 2)

Data integration has been a topic of study that actually dates back to the MULTI-

BASE system [SBD+81] of the early 1980s. Autonomy and schema heterogeneity are

often characteristics associated with federated databases, as well (e.g., the wide-area

Mariposa system [SAL+96], or the federated capabilities now built into Microsoft SQL

Server). However, key differentiating characteristics of data integration systems in-

clude the ability to work with non-database data sources (e.g., web sources) as well as

data sources not built to work together: data integration is typically retrofitted over

existing sources that were never designed to interchange data with other sources in

different schemas.

The advent of the World Wide Web and the Internet were responsible for popular-

izing the data integration concept during the mid-1990s. In fact, data integration was

a point of interest not only to database researchers, but also the AI community: it was

a logical progression of the “softbot” information-gathering agent efforts pioneered by

Etzioni and Weld at the University of Washington [EW94], as well as a subject of in-

terest to many other groups. Thus, projects such as Occam [KW96], Razor [FW97],

SIMS [AK93], and Ariadne [AAB+98] all arose from the AI community. These efforts

generally focused on the planning aspects of data integration, i.e., on finding legal

query plans (given restrictions on the input required by data sources), and on optimiz-

ing these plans. SIMS and Ariadne mapped sources to a description logics terminology

for schema mediation, and they used inference and planning techniques to do query

146

translation.

Another topic of focus, particularly in the AI community, was the development of

wrappers, which convert data and queries between the formats of the data sources and

data integration system. Techniques have been developed for automated learning of

wrappers [KDW97, AK97, BFG01] from user-provided examples, and various toolkits

have been proposed to speed up developer programming of wrappers [SA99]. Note,

however, that the need for wrappers today has diminished because of XML’s advent —

wrappers are now primarily needed only for legacy applications.

The database community had been working on efforts to distribute and federate

databases for many years even before the Web phenomenon. Early efforts included

distributed databases such as System-R* [ML86] and Distributed INGRES [ESW78],

which extended the basic techniques of System-R and INGRES for databases dis-

tributed across LANs1. Mariposa was a descendent of INGRES that attempted to truly

distribute to the wide-area, and it made use of an economic model of bidding for ser-

vices as its basic infrastructure; unfortunately, the model was not tremendously suc-

cessful, and this was one of the few Stonebraker projects whose technology was never

adopted in industry. Instead, the database industry developed simpler distributed ver-

sions of Oracle, DB2, and Informix more like the System-R* model. Additionally, stan-

dards such as ODBC [ODB97] and OLE-DB [Bla96] were proposed for allowing for

limited interoperability between databases and certain types of data exchange with

applications.

A few early data integration systems, such as Pegasus [ASD+91], appeared in the

very early 90s, but as with the AI community, it was the advent of the Web that trig-

gered significant interest in integrating data. Significant projects included the Stan-

ford TSIMMIS [GMPQ+97] project, which was one of the first systems to propose a

semistructured data model as a means of schema mediation; Hermes [ACPS96], IRO-

DB [GST96], and Disco [TRV98], which generally focused on learning expected per-

formance levels from sources and on handling source failures; and Carnot and Infos-

leuth [WBJ+95], which were data integration systems for deductive databases. All

of these efforts used the global-as-view approach to schema mediation: the mediated

schema is defined as a view over the data sources. This has the benefit of allowing sim-

1Note that a distributed database is neither heterogeneous nor autonomous: the database administra-
tor partitions data across a set of servers that all run the same database software and contain portions
of the same database.

147

ple “unfolding” of the views (view definitions can be macro-expanded into the query),

but it has a trade-off that the mediated schema may have to be revised anytime a new

source is added, and it also has difficulty representing incomplete data sources.

The Information Manifold [LRO96] was significant because it popularized the local-

as-view formalism, which gave significantly greater flexibility (addition of data sources

generally does not require revisions to the mediated schema, and incomplete data

sources are easy to model) at the cost of a new query reformulation step. The au-

thors of the system proposed the bucket algorithm as a way of reformulating mediated

queries to refer to the underlying sources. (Note that Razor, which appeared slightly

later, was the corresponding system from the AI community that made use of local-

as-view. It used the inverse rules algorithm of [DL97] to reformulate queries.) The

Tukwila system uses the same basic approach as these systems, but focuses on the

problem of providing their capabilities at high performance and at scale.

In the commercial world, integration of web sources has been successful in a few iso-

lated cases (e.g., comparison shopping services, such as those provided by shopper.com

and formerly provided by companies such as Jango and Junglee) — but most of these

systems relied on hand-coding rather than true data integration systems (other than

Jango, which did make use of a global-as-view integration system). Full data inte-

gration systems have been much more successful in the enterprise, in e-commerce

infrastructure, and in efforts to manage life-science data: for instance, IBM Almaden’s

Garlic data integration technology [HKWY97] has been incorporated into DataJoiner

and later DB2; companies such as Nimble Technology and Enosys Markets are at-

tempting to market their data integration tools to large organizations. Most CTOs of

large firms seem to agree that there is a need for a data integration infrastructure, but

to this point few have committed the financial resources to it. This movement seems

inevitable, however.

Continuous Queries and Information Dissemination

Concepts that are vaguely related to data integration, but which typically have no

concept of schema mediation, include continuous queries [LPBZ95, CDTW00, Aea01,

MSHR02] and information dissemination systems [FZ96, AF00, GMOS02].

A continuous or continual query is a view defined over an external data source.

Whenever the external data source changes, the results should propagate to any user

148

who subscribes to that view. This concept was first proposed by Liu and Pu in [LPBZ95],

and has been adopted by the NiagaraCQ [CDTW00], Xyleme [Aea01, MAM01], and

Telegraph [MSHR02] projects. Challenges include handling large numbers of continu-

ous queries simultaneously (since many users may be posing very similar continuous

queries) and performing the minimum amount of result computation necessary (per-

haps using differential evaluation instead of complete query re-evaluation, or employ-

ing adaptive techniques like eddies).

Information dissemination systems are similar in concept but are not restricted to

a single data source. Here, users register profiles with a central server — a profile

generally contains one or more queries expressing data of interest to the user. The in-

formation dissemination system is constantly receiving new data and documents. Each

new document gets matched against the profiles of every user, and the document gets

disseminated to those users to whom it may be of interest. As with continuous queries,

the challenges mostly lie in executing huge numbers of queries in parallel and in rout-

ing the data to the appropriate users. However, information dissemination systems

typically do matching and routing rather than full query processing — hence, queries

in this environment consist of selection-like operations and little query computation is

required.

8.2 XML Processing (Chapter 4)

Although XML query processing is currently a hot topic in both research and the com-

mercial world, it is a young field and no one really knows how pervasive XML will

ultimately be — nor how it will be primarily used. XML is both a document represen-

tation format and a data representation format. It now has a data model, so it can

be the default representation of data; but perhaps it will simply be a “wire format”

for data sharing. If it is a wire format, what will the producers and consumers be —

databases, web browsers, web servers, etc.?

At one point, XML was envisioned as the successor to HTML: all web sites would

serve semantically richer content, and all web browsers would combine XML with

XSLT [XSL99] to render the content appropriately. Due to a combination of factors,

this transition appears to have lost momentum. First, until very recently, the Netscape

family of browsers did not support XML processing — so a significant part of the web

client population could not render XML. Second, there is a large legacy document base

149

in HTML, and in fact documents are much easier to create in HTML (one need only

consider presentation, rather than semantics, in building a document). Third, many

commercial web sites have a proprietary interest in their data, and would prefer to

hide rather than reveal its semantics.

Anecdotally, XML seems to be achieving significant success in two general areas:

as a replacement for SGML in document databases and as a data interchange “wire

format”. However, development efforts seem to be occurring in all aspects of XML

usage, and it still remains to be determined which of these will have the most impact.

The document or text database community has generally fallen outside the main-

stream SIGMOD audience, largely because they have a different set of requirements

than typical relational-model databases. Rather than joining tables, most document

database queries perform approximate keyword matches within a particular context,

or other similar operations. Products such as Documentum2 and the DOCS family of

products3 are examples of document databases that are generally used by libraries,

organizations with large numbers of reports (e.g., law firms), and news agencies. Web

search engines such as Google4 have many similarities to document databases (es-

pecially since they often cache and retrieve documents). Several commercial and re-

search projects focus on the problem of querying across large numbers of text-oriented

XML documents (either stored in a local repository or distributed across the web but

indexed locally), including Xyleme [MAM01] and its storage system, Natix [KM00],

Niagara [NDM+00], and eXcelon [XLN]. Interestingly, while many of these systems

attempt to offer text document query capabilities, these are minor extensions to XPath

or XQuery (perhaps with exact-match keyword search): there is no provision for the

approximate-match querying supplied by document databases. In many ways, they are

not full document databases, and they are better suited to querying more traditional

semi-structured data.

The problem of querying across large numbers of XML data fragments, typically

using XQuery, has been a popular one. Examples of these systems includePoet soft-

ware’s XML repository5, as well as Niagara, eXcelon, and Xyleme (which also query

2http://www.documentum.com

3http://www.hummingbird.com

4http://www.google.com

5http://www.poet.com

http://www.documentum.com
http://www.hummingbird.com
http://www.google.com
http://www.poet.com

150

documents, as described above). Their emphasis is on scalability to many small XML

fragments, rather than large data volumes. Queries can generally be posed across nu-

merous documents, and indexes are used to find the relevant documents. Niagara and

Xyleme allow triggers to be set over external documents, so actions can be initiated if

those documents are changed (forming continuous queries).

Moving up to larger volumes of XML, there are a number of efforts to construct

scalable XML databases, including Timber [AKJK+02], Toxin [BBM+01], later ver-

sions of Lore [GMW99], and numerous efforts to automatically store and retrieve XML

data with relational systems [CFI+00, SGT+99, FK99a, DFS99]. Also, several projects

that focus on small XML documents, such as Xyleme, also scale to large data volumes.

Most of these systems are adaptations of object-oriented or semi-structured storage

systems, and make use of path-oriented indices such as join indices [Val87], access

support relations [KM90], DataGuides [GW97], and t-indices [MS99].

Interestingly, the problem of querying XML data as it is streaming “over the wire”

has been a relatively neglected problem. Some limited query capabilities have been

provided by XSLT processors such as James Clark’s XT6, Microsoft’s MSXML7, and

the Apache Xalan system8: these systems can manipulate in-memory representations

of a single document. Several data integration systems also address unique problems

in this domain. Niagara can compute partial answer sets for a given query, which

may be desirable for interactive query scenarios when a user is not interested in the

full answer set. MIX [BGL+99] supports demand-driven evaluation of XML content

— only requesting the data from a wrapper if it is to appear in the query. The Agora

system [MFK+00] can convert from XML structure directly into “edge relations” to per-

form query processing, but then it must re-construct the XML at the output. Tukwila

supports incremental, pipelined evaluation of queries and dynamic requests for con-

tent using its x-scan and web-join operators, and it does not spend time de-constructing

and re-constructing XML hierarchy.

Finally, there is considerable interest in converting data from traditional systems

into exportable XML views, since the majority of queryable data lies in relational

databases: SilkRoute [FTS99] and XPERANTO [CFI+00] support creation of XML

6http://www.blnz.com/xt/

7http://www.microsoft.com/xml

8http://xml.apache.org/xalan-c

http://www.blnz.com/xt/
http://www.microsoft.com/xml
http://xml.apache.org/xalan-c

151

queries and views over relational systems, and IBM [Tre99], Oracle [BKKM00], and

Microsoft [Rys01] all support some XML query and export features in their products.

These systems are very useful for exporting data into XML to facilitate data inte-

gration; they assume all data starts off in relations, and users construct (and then

query over) progressively more hierarchical XML views of that data. At some point, all

relational database systems are expected to directly support an XQuery interface in

parallel with the existing SQL interface, and both front-ends will feed directly into the

same query optimizer and execution engine. For now, the research and development

efforts revolve around supporting XQuery through middleware: a translation layer fo-

cuses on efficiently rewriting XQueries posed over XQuery view definitions into SQL

statements over relational tables.

I personally believe that the last two problems — that of querying XML “over the

wire” and of exporting data into XML form — are likely to be the ones with the most

impact, at least in the short term. These are the solutions that will enable B2B e-

commerce, collaborations between groups, and so forth. However, for such data in-

terchange to really succeed, we will need significant standardization of schemas (as

organizations such as OASIS are trying to promote) or, even better, development of

sophisticated semi-automated schema mapping and management tools (e.g., [DDH01,

BHP00]).

Work Related to X-scan

The use of finite-state machines in matching regular-expression-like patterns is not

unique to x-scan. For instance, the Knuth-Morris-Pratt substring-matching algorithm

uses finite state machines to perform matches. Likewise, the XFilter operator [AF00],

developed in parallel with our algorithm, also uses a similar technique for filtering

XML documents according to an XPath expression, returning a boolean value rather

than a tuple stream, and providing the basis for an efficient document dissemination

system. Later work has been done by Suciu et al. on extending the basic ideas of XFil-

ter with “lazy” conversion of nondeterministic automata to deterministic ones [GMOS02].

The novelty of x-scan lies in two features. First, so far as we are aware, our algo-

rithm is the first to use state machines as the basis for incrementally extracting data

for pipelining complex queries — x-scan returns a tuple stream, not a true/false flag.

This makes a tremendous difference in enabling incremental query processing, and it

152

also introduces a number of challenges. In particular, our algorithm must support hier-

archies of bindings and path expressions, and in graph-structured mode, it must also

traverse references and avoid cycles. Furthermore, the use of inlining and sargable

predicates can make a significant difference in overall performance.

It is worth noting that an unpublished work by Cluet and Moerkotte from several

years ago proposed a logical scan operator, which had similar characteristics to x-scan,

as the basis for tree-structured querying. We can now complement that work with a

specific algorithm, support for graph-structured data, and an experimental evaluation.

Infinite Streams

A topic of recent popular interest is that of “data streams” [BW01, DGGR02b, MSHR02,

GGR02, SV02]: usually, a data stream is expected to be a data set that is infinitely

large (e.g., data from sensors), and the query processor is expected to have fixed stor-

age. Some recent work at the University of California-San Diego [SV02] has been

investigating the use of x-scan like finite automata for processing streams; in particu-

lar, they hope to specify the maximum level of expressiveness that can be implemented

in an automaton-based query algorithm that has fixed state.

8.3 Adaptive Query Processing (Chapters 5, 6)

The use of adaptive capabilities in query processing actually dates back to the original

relational systems (and predates the use of cost-based query optimization). The IN-

GRES query processing algorithm originally interleaved steps of constructing a query

execution plan and executing it [SWKH76]. Its approach was to decompose a query

into a subquery with a single variable, and then execute this portion; later portions

of the query can be executed using substitution of results from the first step, and so

on. This approach was quickly eclipsed by the less flexible but more elegant, cost-

based System-R style optimizers. System-R introduced the concepts of precomputing

statistics offline and using dynamic programming and cardinality estimation to find a

promising query plan. It also introduced commonly used heuristics such as supporting

only left-linear trees to reduce the search space and postponing cross-products to the

end of execution9.

9Note that neither of these heuristics is something that should be used in all common query processing
scenarios. Research in [HKWY97, FLMS99] has shown that exhaustive enumeration of plans may be

153

Unfortunately, it has been shown that the static optimization approach has a num-

ber of weaknesses, mostly due to insufficient statistics about the underlying data. For

instance, histograms on tables are typically one-dimensional only, which misses cor-

relations between attributes — hence, the optimizer must make an independence as-

sumption when joining tables. A number of works have shown that the error in an

optimizer’s cardinality estimates grows exponentially with the number of joins [IC91],

and that predicates with conjunctive or disjunctive expressions also introduce further

error [AZ96]. In response to these problems, a number of solutions have been proposed.

The first of these is to adapt and refine statistics based on the results of past queries:

this approach is adopted by work by Chen and Roussopoulos [CR94], who focus on im-

proving selectivity estimates; IBM’s DB2 LEO [SLMK00], which infers “adjustment

factors” for joins to estimate the correlation between predicates; and Microsoft’s SQL

Server AutoAdmin [BC02], which uses statistics on subquery expressions to better

model larger queries’ costs.

Another approach is to interleave query plan selection and execution: this approach

was first implemented by Graefe and Ward [GW89, CG94] with choose nodes, where

a query optimizer could create several “contingent plans” and the execution engine

could select one at runtime, based on pre-execution conditions. A “lazy evaluation”

version of this is the dynamic re-optimization technique of [KD98], which instruments

a query plan with statistics collectors and, if the optimizer estimates are sufficiently

bad, triggers a plan re-optimization at materialization points during execution. Kabra

and DeWitt retrofitted this interleaving capability into the existing Paradise system,

so they added a separate component between the optimizer and execution system to

determine what adaptive features should be added to the plan. Our initial implemen-

tation of the Tukwila system [IFF+99] also supported a similar capability, but we built

the adaptivity logic into the query optimizer because the optimizer had more informa-

tion that it could use to reason about good re-optimization points. However, we found

that this approach posed a significant challenge: it was necessary to add a material-

ization point so a re-optimization could be initiated if necessary, but this could detract

from performance if the query plan did not actually need to be re-optimized at run-

time. Furthermore, this sort of plan partitioning requires good knowledge about the

required in data integration, and star-schema decision-support queries are often more efficient if the
cross-products are executed first.

154

underlying data sources so the initial stage of execution can be well-chosen, and our

optimizer did not always have such knowledge.

A third approach to “dynamic optimization” was described by Antoshenkov [AZ96]

and implemented in DEC (later Oracle) Rdb: running several alternative query plan

subtrees in parallel competition. The system would keep the plan that appeared to

be progressing the fastest, and would terminate the others. This approach works well

if the system can determine what the “best few” plans are, but it assumes consistent

performance throughout execution and cannot adapt to mid-execution changes.

The techniques cited above mostly concentrate on improving query optimization

for local data. Another focus has been on processing remote data: early works such

as System-R* assumed local-area networks and consistent performance, but many of

today’s query processing projects focus on querying across the wide area, which intro-

duces new problems such as variable transfer rates, intermittent connectivity, and lack

of data source statistics due to autonomy.

Works such as [GST96, ACPS96, ZRZB01, BRZZ99] attempt to learn performance

patterns for different data sources; they make the assumption that performance is

regular, at least for a given time of day or day of the week, and they attempt to model

these patterns. Several pieces of work have also focused on the problem of handling

source failures, e.g., [TRV98, BT98], and in general the approach is to present partial

answers if necessary. Many data integration systems encounter similar problems with

source availability, but simply switch to alternate web sources as necessary. This is

one of the functions of Tukwila’s collector operator.

Less severe than source failure, but still likely to impact query performance, are

source delays and source burstiness. Here, we would like to schedule any other avail-

able work while waiting for a data source. One solution to this problem is query scram-

bling [UFA98], which attempts to execute alternate portions of the query plan upon an

initial source delay. A second approach is the adaptive scheduling technique proposed

by Bouganim et al. [BKV98], which schedules the work of a separate query process

during a source delay — if a large number of concurrent queries is being executed,

this improves overall throughput, although it does not improve the response time for

the delayed query10. The third approach is to use a variant of the pipelined hash

10We observe that this has parallels in the computer architecture community: most of the adaptive
scheduling techniques discussed in this paragraph are analogous to out-of-order execution, but the
Bouganim approach is similar to simultaneous multithreading, which executes a context switch on a

155

join [RS86, WA91, HS93], which allows both of its child subtrees to execute indepen-

dently (and thus in parallel, so one subtree’s execution thread can be doing work as the

other is delayed). Numerous extensions and adaptations to this algorithm have been

proposed [UF00, HH99, IFF+99], mostly focusing on prioritizing the number of CPU

cycles given to each thread or providing support for dynamic destaging of results to

disk on a memory overflow. Our implementation of the double pipelined join was one

of these extensions.

The ripple join of [HH99] looks at prioritizing reads from one portion of a query

plan versus another to improve estimates for aggregate values. Along a similar vein,

Urhan and Franklin propose dynamic pipeline scheduling in [UF01] for prioritizing

answers in query processing. Both of these works are useful when CPU resources are

sufficiently constrained that not all data can be processed at the rate it comes in (and

this is typically the case except for simple queries with slow data sources).

A third class of adaptive approaches allows for dynamic re-optimization of queries

in mid-execution (rather than at pipeline boundaries). The first such implementation

is the eddy [AH00]. Eddies are a novel technique based on flow of tuples through

operators, rather than on more traditional query optimization cost metrics. An eddy

consists of a number of select and join operators; each tuple is routed through all of

the operators in a sequence governed by the flow rates through the operators. In ef-

fect, the eddy sends each tuple through a different query plan formed by commuting

its constituent operators. The eddy approach has recently been further extended with

STeMs [RH01], which expose the individual data structures of individual operators

within the eddy. With STeMs, each join operator within the eddy is effectively “split”

into two mostly-independent data structures (one for each input source). Each of these

data structures has a single input and a single output, and the eddy’s dataflow logic

can make more appropriate decisions than it could with the binary join operator. Fur-

thermore, multiple alternative STeMs, each implemented with a different algorithm,

can be executed in parallel on a single join operator — the eddy has a choice of which

STeM to use, which is equivalent to choosing between different join algorithms.

Unfortunately, even with STeMs, eddies appear to be limited in several key ways.

First, all decision-making within eddies are done based on flow, which is highly local

in its scope and limited in its ability to deal with delays. Currently, decision-making

delay.

156

must be done in a per-tuple basis, although the Berkeley database group is changing

to a more “block-oriented” approach. Second, the current state-of-the-art eddy imple-

mentations are far less efficient than standard query execution trees — so if the eddy’s

adaptivity is not needed, it will be adding significant overhead. Third, eddies are cur-

rently only able to deal with select-project-join queries.

My interest has been in providing a solution that, like eddies, can adapt a plan in

mid-execution — but that can make decisions at any level of granularity (from per-

tuple up to per-pipeline or even per-query); that can be expanded to include more so-

phisticated transformations, such as push-down of grouping operations; that can make

use of any existing knowledge in choosing its initial plan; and that can rival the per-

formance of standard query processing when adaptivity is not needed. I believe the

convergent query processing framework gives us this flexibility, and that my initial ex-

periments have demonstrated that the basic techniques work well even with standard

System-R-like query optimization and standard iterator-driven query execution.

Categorizing Adaptive Techniques

To summarize the various adaptive query processing techniques at a higher level, we

can examine them along a number of dimensions:

• Frequency of adaptivity: how frequently does the technique modify query ex-

ecution?

• Power of adaptivity: does the technique support only a change in schedul-

ing (i.e., suspension of one part of the query plan so another part can be run),

commutativity of operators in the query plan, or complete plan transformations

(including operators, implementations, and scheduling)?

• Scope of decision-making: is the decision made only on an intra-operator ba-

sis, a subplan basis, or along the whole query?

• Overhead of adaptivity: how expensive is it to adapt execution?

• Cost of decision-making: how expensive is it to determine when to adapt?

157

Table 8.1: A comparison of the common adaptive query processing techniques.
“Adapt statistics” includes the statistics-adapting techniques of Chen and Rous-
sopoulos, DB2, and SQL Server. Costs listed are general qualitative assessments
and difficult to measure quantitatively.

Power of Scope of Overhead Cost of

Technique Freq. Adaptivity Decisions of Change Deciding

Commute
INGRES Operator some ops Subtree Medium Medium
Adapt Revise Query
statistics Query cost model plan Low Low
Choose Choose Optimizer-
nodes Query subplan limited Low Minimal
Rdb Dynamic
Optimization Query Choose Query High Low
(Antoshenkov) plan plan
Dynamic
re-optimization Pipeline Re-optimize Unexecuted High High
(Kabra/DeWitt) unexecuted pipelines
Query Reschedule/ Pipeline
scrambling Delay add join schedule Medium Low
Pipelined Schedule Input.
hash join Tuple child schedule Minimal Minimal
Dynamic Pipeline
rescheduling Tuple Prioritize schedule Minimal Minimal
Ripple Pipeline
join Tuple Prioritize schedule Minimal Minimal
Eddies Change Internal
+ STeMs Tuple SPJ plan schedule Low Low
Convergent Change
query proc. Varies SPJGU plan Varies Medium Varies

Table 8.1 compares a number of adaptive query processing techniques along these

dimensions. I believe that convergent query processing subsumes aspects of many of

the previous techniques: the implementation and experimental evaluation of Chap-

ter 6 only used specifiable time intervals and global re-optimization in its decision-

making, but the basic framework is easily scalable to more frequent re-optimizations,

as well as more local transformations and more global optimizations. I believe there

is enormous potential for using adaptive re-optimization on queries, and I am already

in the process of evaluating some of these points in the spectrum of adaptive query

processing, as I discuss in the next chapter.

158

Chapter 9

CONCLUSIONS AND FUTURE DIRECTIONS

Over the past twenty years, the database community has largely relied on the same

architecture for query processing: offline statistics gathering, static query optimization

based on these statistics, and execution of the query plan using deterministic, iterator-

based algorithms. This architecture has been quite successful in many situations, and

the result has been a very large commercial market for database systems.

However, today many query processing experts (e.g., [Win02]) agree that standard

query optimization has reached its limits and needs to be re-thought: many sophis-

ticated query optimization techniques must be enabled or disabled by hand, because

standard query optimizers do not have sufficient statistics to determine whether to use

them; and in general, query optimizer cost models are extremely inaccurate for com-

plex queries [IC91, AZ96, CR94, SLMK00, BC02, KD98, AH00]. Furthermore, deter-

ministic, iterator-based scheduling of query operators is also too inflexible for network-

based data, as demonstrated by [UFA98, UF00, UF01, AH00]. Finally, more adaptive

scheduling possibilities and better interactive response are enabled by pipelined query

execution. Thus, in this dissertation, I have proposed a set of adaptive techniques for

query processing: adaptive re-optimization using convergent query processing, adap-

tive scheduling using the double pipelined join and collector, and pipelined execution

for XML using the x-scan-based Tukwila execution architecture. As a part of my thesis

work, I have implemented these techniques in the Tukwila data integration system.

From this, we have learned a number of lessons.

Pipelined processing of streaming data is beneficial for performance and flex-

ibility. In developing the x-scan algorithm and our pipelined XML query processing

architecture, we expected better time to first answers, due to the approach’s incremen-

tal nature. However, we found that our algorithm was sufficiently efficient to give

better complete answers as well. Furthermore, pipelined execution allows for more

flexible scheduling in query processing.

159

Adaptive scheduling and overlapping I/O with computation are necessary for

wide-area data. Algorithms such as the double pipelined join produce better perfor-

mance because they can use I/O delays to perform computation in other parts of the

query plan. Furthermore, the double pipelined join outputs tuples much earlier, which

means more data can be fully processed early in query plan execution.

Adaptive re-optimization can be done frequently without wasting significant

work. Our convergent query processing formalism exploits the distributivity of the

union operator to split query execution into phases at virtually any point. By reusing

intermediate results, in most cases we can avoid wasting work.

An architecture that supports re-optimization can be efficient. In contrast to

an approach like the eddy, which makes heavy use of multiple threads and queues to

support re-optimization, our approach preserves the efficient aspects of iterator-based

query execution: re-use of memory space between operators, support for deterministic

or non-deterministic scheduling of operators, and pipelining.

Adaptive features provide performance benefits. We have experimentally demon-

strated that the adaptive features of Tukwila provide superior performance to similar

non-adaptive implementations, especially for the data integration context.

Tukwila is a flexible and useful software artifact. Tukwila has proven to be ro-

bust and flexible enough to be used in numerous applications: it has also been deployed

in the GeneSeek project, a real-world medical informatics application, and it has been

used as a core component in the Sagres data management system for ubiquitous com-

puting and the Piazza peer data management system.

9.1 Future Work in Adaptive Query Processing

I believe that my work has made significant advances towards solving the problem

of processing queries in zero-knowledge or little-knowledge environments. However,

there are two very important directions in which the convergent query processing tech-

niques should be further extended.

160

9.1.1 More Sophisticated Transformations

A number of complex transformations have been defined for query optimization, in-

cluding query decorrelation [SPL96] via magic sets, pushdown of grouping operations,

partitioning of data sets into different regions for parallel execution on different nodes,

and merging of common subexpressions across queries (i.e., multi-query optimization).

Many of these operations are triggered simply by heuristics, and as a result they are

often under-employed or not properly calibrated. I have already demonstrated how

convergent query processing can adaptively push grouping operations to good effect —

I hope to extend the basic model to incorporate more complex rewrites as well.

The ability to have multiple query plans in simultaneous execution, and to route

data to them according to any policy, also presents a number of interesting new possible

execution techniques. Not only can we adaptively route data to different parallel nodes

with identical query plans, but we can route certain data items to one plan and other

data items to a different plan — depending, for instance, on their value or on system

load. We can also employ speculative optimizations: for instance, if we observe that

a given table seems to be sorted or mostly sorted, we can exploit the order in a query

plan; data that comes “out of order” can be routed to a different, parallel plan. We can

prioritize certain tuples based on time or data value and route them to one plan, and

send the remaining tuples to an alternate plan or even temporarily to disk.

9.1.2 Dynamic Alterations to Queries

Ultimately, there are even possibilities for allowing the user to dynamically alter the

executing query on-the-fly, as proposed in [RH02]. As a query changes, intermediate

results from the previous query can be re-used in the new one.

Moreover, it should be possible to provide a query environment in which certain

query subexpressions may have predefined, simpler-to-compute “preview” expressions:

if the system needs to meet certain quality-of-service or performance constraints, it can

dynamically switch from a query expression to its preview to maintain the required

performance level. In the end, the actual query expression will be computed and the

preview answers will be replaced.

161

9.1.3 Combining with Data Placement and Query Reformulation

In a large-scale distributed environment with many data sources (particularly a peer-

to-peer environment such as a peer data management system), caching and replication

of data (materialization of views) becomes increasingly useful: many in the client pop-

ulation may be asking similar queries, and thus caching certain results in optimal

places (data placement) becomes important. Once a large number of views is avail-

able, query reformulation can produce huge numbers of possible rewritings, because

it can use not only underlying data sources, but also cached views. Now an important

challenge is how to prioritize the rewritings such that the user gets numerous good

answers in little time. This topic is the focus of current research with one of my thesis

advisors and several colleagues.

9.1.4 Understanding Optimality in a Dynamic Environment

Another topic of immense interest is that of developing an analytical model of adaptive

query processing, so we can truly understand what policy is optimal in an environment

where data distributions and arrival rates may be dynamic. There are many issues

here — two of the most important how often to adjust a query plan (given that a plan

that is optimal for a local region may not be optimal for global execution) and how to

balance between “exploring” alternate query plans and “exploiting” the current plan to

produce more answers. It is worth noting that that one may need to know on the order

of n2 selectivities in trying to determine an optimal plan, but these selectivities may

change frequently and dynamically, and plan performance is more greatly impacted

by some selectivities than others. This is another topic of current research with my

advisors.

9.2 Envisioning a Universal Data Management Interface

The data integration field is an important one, but ultimately I believe that the long-

term challenges lie in expanding the scope and breadth of managing heterogeneous

data: the vast majority of the world’s data is stored not using data management tools,

but in flat files, spreadsheets, documents, and custom file formats. Sometimes this is

because the particular application that created the data has particular performance

needs, data needs to be easily shared (e.g., on the web), or database techniques were

simply too “heavyweight” to be used.

162

Interestingly, a recent trend among most applications is standardization on XML-

based data formats. Not only do all of the major database systems support XML import

and export of their data, but web services are using XML as the format for their RPC

protocol, major business applications such as Microsoft Office and StarOffice are using

XML as a storage format for all documents, and many SGML documents are being con-

verted to XML. This presents many opportunities for data integration – but I believe

that it also presents a unique opportunity to build a unified, distributed storage and

retrieval system for all applications. Such a system would be a repository for struc-

tured documents (expressed in XML) as well as binary-formatted objects, and would

subsume the filesystem and databases for storage and the Web for data distribution.

The benefit would be a uniform, application-neutral interface to all accessible data,

which maintained the schema and semantics. Such a system would have many more

opportunities to tune itself than a standard filesystem (e.g., it could change the inter-

nal storage representation of an XML document, migrate data to archival storage, or

replicate the data as needed).

Development of such a system poses many new challenges, and I highlight a few

below.

Range of quality-of-service needs. One significant obstacle in building a “univer-

sal” data management tool is that different applications have dramatically different

performance needs and goals. Some applications may need transactional semantics or

concurrency control, but may have simple query needs (e.g., an e-mail system); others

may support complex queries but may have no need for concurrency; still others may

simply need to swap data to disk temporarily, with no need for concurrency or query-

ing. Furthermore, some applications need to be optimized for overall throughput, and

others need to return only a few answers very quickly. An important topic of study here

is how to build modular architectures that support different quality-of-service needs,

how applications should specify those needs, and how a query processor can optimize

its output under different performance constraints. We recently proposed a concept

called a “query preview” that allows a user to express easier-to-compute approxima-

tions to certain query expressions: the query processor can use the preview expression

instead of the query to produce approximate answers more quickly, and it can later

refine these answers with the real data. I believe that preview queries are a promising

first step towards being able to provide quality-of-service guarantees about sustained

163

performance.

Data sharing with rich semantics. We have recently begun studying the problem

of sharing semantically rich data in a decentralized fashion in the Piazza project [GHI+01],

a peer data management system. In contrast to data integration, peer data manage-

ment systems (PDMSes) have no central mediated schema and no central schema ad-

ministrator. Instead, every participant in the system can define his or her own schema

as a new frame of reference; each participant can add mappings to describe relation-

ships between any existing schemas; each participant can add new data sources and

map them into existing schemas. The peer data management system allows a user to

pose a query from the perspective of any peer’s schema, and it will exploit all relevant

data in answering the query. Other issues under study in the Piazza project include

data placement (replicating the answers to certain queries at the most appropriate

location so they can be used to answer future queries), propagation of updates to the

cached or replicated data, and appropriate indexing of content to make sure only the

relevant peers are involved in answering queries.

The ability to update data. Updates should be possible to express both from an

application and from outside the application. In both cases, not only the original data,

but also all replicas, must be updated. I recently co-authored a paper on expressing

updates over XML data [TIHW01], and others in the Piazza research group have de-

scribed how source updates can be propagated to replicas [MGH02].

Annotations and curated views. In an environment that supports many users and

applications, a feature that will undoubtedly be of great importance is the ability to

publish annotated and curated views of source data. Rather than directly manipulat-

ing the source data, a data curator may define a view that inserts, deletes, or changes

the underlying source data in key ways, and which may also add annotations to this

data. This is different from recent work by Buneman et al. [BKT02], which studies

the problem of pushing annotations from mediated views directly down to the underly-

ing data sources and to other mediated views — I believe that we need to encapsulate

the annotations and modifications within the view, so they are maintained even when

the data source changes. Furthermore, I believe that the annotations may overlay

schema information as well as make modifications to the data — for instance, a string

164

that contains address information might be annotated so each item in the address gets

separately tagged.

Text querying. Querying of document data, which often consists of large paragraphs

of free-form text, will be important. This capability should be defined in a way that

allows a user to annotate freeform text with additional semantic tags (as described

above). To support these types of operations, a data management system must sup-

port rich, information retrieval-style queries with approximate matching of keywords.

Currently, XQuery has very limited support for such concepts, and this will need to be

addressed. There may also be need for new index types that support querying of both

text and structure.

Identifying matching concepts and entities. Clearly, as more data is shared, it

becomes increasingly important to be able to map from one schema to another, but

also to map from one data instance to another. The schema matching problem has

been the focus of much work at the University of Washington [DDH01, MBR01] and

Microsoft Research [BHP00], and identity matching has been investigated in works

such as [Coh98, PR01]. I am hopeful that these techniques will continue to develop

and that they can be used in a universal data management system.

Self-tuning storage. Clearly, for any data management tool to be pervasive, it can-

not require expert administration. Instead, it must be self-tuning, in terms of its query

processing, its data layout, and its data placement. I have worked in the areas of adap-

tive query processing and in data placement, and hope to investigate data layout next.

I believe that techniques like convergent query processing, which allow query execu-

tion to be partitioned into separate phases, may provide a low-overhead way of execut-

ing queries (and comparing performance) over many different data layout strategies

in parallel. Self-tuning has recently become the focus of significant industry efforts at

IBM and Microsoft, but I believe there are many opportunities for academic research

in the area as well.

Support for arbitrary code. Finally, since data of all types will need to be man-

aged, it seems likely that a universal data management system will need to provide

165

support for arbitrary user defined code. User-defined functions have always been diffi-

cult to support in object-oriented and object-relational systems, primarily because their

costs were unpredictable. I am hopeful that adaptive query processing can address

some of these problems by monitoring the costs of each function call and re-optimizing

as necessary.

While the vision of a universal data management interface is quite ambitious and

requires significant research efforts in many areas, I believe that over time it will be

realized. I am hopeful that many of the lessons I have learned from adaptive query pro-

cessing will translate to this new realm, and that much of the work of others will also

be useful. It would be a significant achievement if the data management community

really could manage most of the world’s data, and if users and application program-

mers could store and query their data in a transparent, intuitive way that preserves

semantics.

166

BIBLIOGRAPHY

[AAB+98] José Luis Ambite, Naveen Ashish, Greg Barish, Craig A. Knoblock,

Steven Minton, Pragnesh J. Modi, Ion Muslea, Andrew Philpot, and

Sheila Tejada. Ariadne: A system for constructing mediators for inter-

net sources. In SIGMOD 1998, Proceedings ACM SIGMOD International

Conference on Management of Data, June 2-4, 1998, Seattle, Washington,

USA, pages 561–563, 1998.

[ACPS96] Siobel Adali, K. Selcuk Candan, Yannis Papakonstantinou, and V.S. Sub-

rahmanian. Query caching and optimization in distributed mediator sys-

tems. In Proceedings of the 1996 ACM SIGMOD International Confer-

ence on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996,

1996.

[Aea01] Serge Abiteboul and et al. A dynamic warehouse for XML data of the

web. IEEE Data Engineering Bulletin, June 2001.

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML docu-

ments for selective dissemination of information. In VLDB 2000, Proceed-

ings of 26th International Conference on Very Large Data Bases, Septem-

ber 10-14, 2000, Cairo, Egypt, 2000.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive

query processing. In SIGMOD 2000, Proceedings ACM SIGMOD Inter-

national Conference on Management of Data, May 16-18, 2000, Dallas,

Texas, USA, 2000.

[AK93] Yigal Arens and Craig A. Knoblock. SIMS: Retrieving and integrating

information from multiple sources. In Proceedings of the 1993 ACM

SIGMOD International Conference on Management of Data, Washington,

D.C., May 26-28, 1993, pages 562–563, 1993.

167

[AK97] Naveen Ashish and Craig A. Knoblock. Semi-automatic wrapper genera-

tion for internet information sources. In Proceedings of the Second IFCIS

International Conference on Cooperative Information Systems, Kiawah Is-

land, South Carolina, USA, June 24-27, 1997, Sponsored by IFCIS, The

Intn’l Foundation on Cooperative Information Systems, pages 160–169,

1997.

[AKJK+02] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and

Yuqing Wu. Structural joins: A primitive for efficient XML query pattern

matching. In Proceedings of the 18th International Conference on Data

Engineering, San Jose, CA USA, 2002.

[Ant93] Gennady Antoshenkov. Dynamic query optimization in Rdb/VMS. In

Proceedings of the Ninth International Conference on Data Engineering,

April 19-23, 1993, Vienna, Austria, pages 538–547, 1993.

[ASD+91] Fafi Ahmed, Philippe De Smedt, Weimin Du, William Kent, Moham-

mad A. Ketabchi, Witold Litwin, Abbas Rafii, and Ming-Chien Shan. The

Pegasus heterogeneous multidatabase system. IEEE Computer, 24(12),

1991.

[AZ96] Gennady Antoshenkov and Mohamed Ziauddin. Query processing and

optmization in Oracle Rdb. VLDB Journal, 5(4):229–237, 1996.

[BBM+01] Denilson Barbosa, Attila Barta, Alberto Mendelzon, George Mihaila,

Flavio Rizzolo, and P. Rodriguez-Gianolli. ToX – the Toronto XML en-

gine. In International Workshop on Information Integration on the Web,

Rio de Janeiro, 2001.

[BC02] Nicolas Bruno and Surajit Chaudhuri. Exploiting statistics on query ex-

pressions for optimization. In SIGMOD 2002, Proceedings ACM SIGMOD

International Conference on Management of Data, June 3-6, 2002, Madi-

son, Wisconsin, USA, 2002.

[BCF+02] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu,

Jonathan Robie, Jerome Simeon, and Mugur Stefanescu. XQuery 1.0:

168

An XML query language. http://www.w3.org/TR/xquery/, 30 April 2002.

W3C working draft.

[BCG01] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. STHoles: A multi-

dimensional workload-aware histogram. In SIGMOD 2001, Proceedings

ACM SIGMOD International Conference on Management of Data, May

21-24, 2001, Santa Barbara, California, USA, 2001.

[BFG01] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web in-

formation extraction with (lixto). In VLDB 2001, Proceedings of 27th In-

ternational Conference on Very Large Data Bases, September 11-14, 2001,

Roma, Italy, 2001.

[BFRW01] Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler. MSL

— a model for W3C XML schema. In Proceedings of the Tenth Interna-

tional World Wide Web Conference, Hong Kong, China, May 1-5, 2001,

volume 10, 2001.

[BGL+99] Chaitanya K. Baru, Amarnath Gupta, Bertram Ludäscher, Richard Mar-

ciano, Yannis Papakonstantinou, Pavel Velikhov, and Vincent Chu. XML-

based information mediation with MIX. In SIGMOD 1999, Proceedings

ACM SIGMOD International Conference on Management of Data, June

1-3, 1999, Philadelphia, Pennsylvania, USA, pages 597–599, 1999.

[BHP00] Philip A. Bernstein, Alon Y. Halevy, and Rachel Pottinger. A vision of

management of complex models. SIGMOD Record, 29(4):55–63, Decem-

ber 2000.

[BKKM00] Sandeepan Banerjee, Vishu Krishnamurthy, Muralidhar Krishnaprasad,

and Ravi Murthy. Oracle8i - the XML enabled data management system.

In Proceedings of the 16th International Conference on Data Engineering,

San Diego, CA USA, pages 561–568, 2000.

[BKT02] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On propaga-

tion of deletions and annotations through views. In Proceedings of the

169

Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, June 3-5, 2002, Madison, Wisconsin USA, pages

150–158, 2002.

[BKV98] Luc Bouganim, Olga Kapitskaia, and Patrick Valduriez. Memory-

adaptive scheduling for large query execution. In CIKM ’98, Proceed-

ings of the Seventh International Conference on Information and Knowl-

edge Management, November 1998, Bethesda, Maryland, USA, November

1998.

[Bla96] José A. Blakeley. Data access for the masses through OLE DB. In Pro-

ceedings of the 1996 ACM SIGMOD International Conference on Manage-

ment of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages 161–172,

1996.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.

Scientific American, May 2001.

[BRZZ99] Laura Bright, Louiqa Raschid, Vladimir Zadorozhny, and Tao Zhan.

Learning response times for websources: A comparison of a web predic-

tion tool (WebPT) and a neural network. In CoopIS 1999, 1999.

[BT98] Phillipe Bonnet and Anthony Tomasic. Partial answers from unavailable

sources. In Proceedings of the International Conferece on Flexible Query

Answering Systems, pages 43–54, May 1998.

[BW01] Shivnath Babu and Jennifer Widom. Continuous queries over data

streams. SIGMOD Record, 303(3):109–120, September 2001.

[CDF+94] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall,

Mark L. McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H.

Solomon, C. K. Tan, Odysseas G. Tsatalos, Seth J. White, and Michael J.

Zwilling. Shoring up persistent applications. In Richard T. Snodgrass and

Marianne Winslett, editors, Proceedings of the 1994 ACM SIGMOD In-

ternational Conference on Management of Data, Minneapolis, Minnesota,

May 24-27, 1994, 1994.

170

[CDTW00] Jianjun Chen, David DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ:

A scalable continuous query system for internet databases. In SIGMOD

2000, Proceedings ACM SIGMOD International Conference on Manage-

ment of Data, May 16-18, 2000, Dallas, Texas, USA, 2000.

[CFI+00] Michael J. Carey, Daniela Florescu, Zachary G. Ives, Ying Lu,

Jayavel Shanmugasundaram, Eugene Shekita, and Subbu Subramanian.

XPERANTO: Publishing object-relational data as XML. In ACM SIG-

MOD Workshop on the Web (WebDB), Dallas, TX, 2000.

[CG94] Richard L. Cole and Goetz Graefe. Optimization of dynamic query eval-

uation plans. In Proceedings of the 1994 ACM SIGMOD International

Conference on Management of Data, Minneapolis, Minnesota, May 24-27,

1994, pages 150–160, 1994.

[CGM99] Chen-Chuan K. Chang and Hector Garcia-Molina. Mind your vocabulary:

Query mapping across heterogeneous information sources. In SIGMOD

1999, Proceedings ACM SIGMOD International Conference on Manage-

ment of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages

335–346, 1999.

[Coh98] William W. Cohen. Integration of heterogeneous databases without com-

mon domains using queries based on textual similarity. In SIGMOD

1998, Proceedings ACM SIGMOD International Conference on Manage-

ment of Data, June 2-4, 1998, Seattle, Washington, USA, pages 201–212,

1998.

[Col89] Latha S. Colby. A recursive algebra and query optimization for nested

relations. In Proceedings of the 1989 ACM SIGMOD International Con-

ference on Management of Data, Portland, Oregon, May 31 - June 2, 1989,

pages 273–283, 1989.

[CR94] Chung-Min Chen and Nick Roussopoulos. Adaptive selectivity estimation

using query feedback. In Proceedings of the 1994 ACM SIGMOD Interna-

171

tional Conference on Management of Data, Minneapolis, Minnesota, May

24-27, 1994, pages 161–172, 1994.

[CS94] Surajit Chaudhuri and Kyuseok Shim. Including group-by in query op-

timization. In VLDB’94, Proceedings of 20th International Conference on

Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile,

pages 354–366, 1994.

[DDH01] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas

of disparate data sources: A machine-learning approach. In SIGMOD

2001, Proceedings ACM SIGMOD International Conference on Manage-

ment of Data, May 21-24, 2001, Santa Barbara, California, USA, 2001.

[DFF+99] Alin Deutsch, Mary F. Fernandez, Daniela Florescu, Alon Levy, and Dan

Suciu. A query language for XML. In Proceedings of the Eighth Interna-

tional Word Wide Web Conference, Toronto, CA, 1999, 1999.

[DFS99] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing semistructured

data with STORED. In SIGMOD 1999, Proceedings ACM SIGMOD In-

ternational Conference on Management of Data, June 1-3, 1999, Philadel-

phia, Pennsylvania, USA, pages 431–442, 1999.

[DG97] Oliver M. Duschka and Michael R. Genesereth. Answering recursive

queries using views. In Proceedings of the Sixteenth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, May

12-14, 1997, Tucson, Arizona, USA, pages 109–116, 1997.

[DGGR02a] Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi.

Processing complex aggregate queries over data streams. In SIGMOD

2002, Proceedings ACM SIGMOD International Conference on Manage-

ment of Data, June 3-6, 2002, Madison, Wisconsin, USA, 2002.

[DGGR02b] Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi.

Processing complex aggregate queries over data streams. In SIGMOD

2002, Proceedings ACM SIGMOD International Conference on Manage-

ment of Data, June 3-6, 2002, Madison, Wisconsin, USA, 2002.

172

[DL97] Oliver Duschka and Alon Levy. Recursive plans for information gather-

ing. In ICJCAI ’97, 1997.

[DSS00] Clip2 DSS. Gnutella: To the bandwidth barrier and beyond. World Wide

Web: www.clip2.com/gnutella.html, November 2000.

[EHAB99] Mike Esler, Jeffrey Hightower, Tom Anderson, and Gaetano Borriello.

Next century challenges: Data-centric networking for invisible comput-

ing: The Portolano project at the University of Washington. In Proceed-

ings of MOBICOM-99, Seattle, WA, August 1999.

[ESW78] Robert S. Epstein, Michael Stonebraker, and Eugene Wong. Distributed

query processing in a relational data base system. In Proceedings of the

1978 ACM SIGMOD International Conference on Management of Data,

Austin, Texas, May 31 - June 2, 1978, pages 169–180, 1978.

[EW94] Oren Etzioni and Daniel Weld. A softbot-based interface to the Internet.

Communications of the ACM, pages 72–76, July 1994.

[FFK+98] Mary F. Fernandez, Daniela Florescu, Jaewoo Kang, Alon Y. Levy, and

Dan Suciu. Catching the boat with strudel: Experiences with a web-

site management system. In SIGMOD 1998, Proceedings ACM SIGMOD

International Conference on Management of Data, June 2-4, 1998, Seattle,

Washington, USA, pages 414–425, 1998.

[FK99a] Daniela Florescu and Donald Kossmann. A performance evaluation

of alternative mapping schemes for storing XML data in a relational

database. Technical Report 3684, INRIA, March 1999.

[FK99b] Daniela Florescu and Donald Kossmann. Storing and querying XML data

using an RDBMS. IEEE Data Engineering Bulletin, 22(3):27–34, Septem-

ber 1999.

[FKL97] Daniela Florescu, Daphne Koller, and Alon Levy. Using probabilistic in-

formation in data integration. In VLDB’97, Proceedings of 23rd Interna-

173

tional Conference on Very Large Data Bases, August 25-29, 1997, Athens,

Greece, pages 216–225, 1997.

[FLM99] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational plans

for data integration. In Proceedings of the AAAI Sixteenth National Con-

ference on Artificial Intelligence, pages 67–73, 1999.

[FLMS99] Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query

optimization in the presence of limited access patterns. In SIGMOD 1999,

Proceedings ACM SIGMOD International Conference on Management of

Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages 311–322,

1999.

[FMK00] Daniela Florescu, Ioana Manolescu, and Donald Kossman. Integrating

keyword search into XML query processing. In Proceedings of the Ninth

International World Wide Web Conference, Amsterdam, NL, 2000, May

2000.

[FMN02a] Mary Fernandez, Jonathan Marsh, and Marton Nagy. XQuery 1.0 and

XPath 2.0 data model. http://www.w3.org/TR/query-datamodel/, 30 April

2002. W3C working draft.

[FMN02b] Mary Fernandez, Jonathan Marsh, and Marton Nagy. XQuery 1.0 and

XPath 2.0 data model. http://www.w3.org/TR/query-datamodel/, 30 April

2002. W3C working draft.

[FMS01a] Mary F. Fernandez, Atsuyuki Morishima, and Dan Suciu. Efficient eval-

uation of XML middle-ware queries. In SIGMOD 2001, Proceedings ACM

SIGMOD International Conference on Management of Data, May 21-24,

2001, Santa Barbara, California, USA, May 2001.

[FMS01b] Mary F. Fernandez, Atsuyuki Morishima, and Dan Suciu. Efficient eval-

uation of XML middle-ware queries. In SIGMOD 2001, Proceedings ACM

SIGMOD International Conference on Management of Data, May 21-24,

2001, Santa Barbara, California, USA, 2001.

174

[Fri99] Marc T. Friedman. Representation and Optimization for Data Integration.

PhD thesis, University of Washington, 1999.

[FTS99] Mary Fernandez, Weng-Chiew Tan, and Dan Suciu. SilkRoute: Trading

between relations and XML. In Proceedings of the Ninth International

World Wide Web Conference, Amsterdam, NL, 2000, November 1999.

[FW97] Marc Friedman and Daniel S. Weld. Efficiently executing information-

gathering plans. In ICJCAI ’97, pages 785–791, 1997.

[FZ96] Michael J. Franklin and Stanley B. Zdonik. Dissemination-based infor-

mation systems. Data Engineering Bulletin, 19(3):20–30, 1996.

[GGR02] Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Querying

and mining data streams: You only get one look. In SIGMOD 2002,

Proceedings ACM SIGMOD International Conference on Management of

Data, June 3-6, 2002, Madison, Wisconsin, USA, 2002. Invited tutorial.

[GHI+01] Steven Gribble, Alon Halevy, Zachary Ives, Maya Rodrig, and Dan Su-

ciu. What can databases do for peer-to-peer? In WebDB Workshop on

Databases and the Web, June 2001.

[GMOS02] Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu.

Processing XML streams with deterministic automata and stream in-

dexes. Available from www.cs.washington.edu/homes/suciu/files/paper.ps,

February 2002.

[GMPQ+97] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand

Rajaraman, Yehoshua Sagiv, Jeffrey Ullman, and Jennifer Widom. The

TSIMMIS project: Integration of heterogeneous information sources.

Journal of Intelligent Information Systems, 8(2):117–132, March 1997.

[GMW99] Roy Goldman, Jason McHugh, and Jennifer Widom. From semistruc-

tured data to XML: Migrating the Lore data model and query language.

In ACM SIGMOD Workshop on the Web (WebDB), Philadelphia, PA, pages

25–30, 1999.

175

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. ACM

Computing Surveys, 25(2):73–170, June 1993.

[Gro01] The Meta Group. www.metagroup.com, 2001.

[GST96] Georges Gardarin, Fei Sha, and Zhao-Hui Tang. Calibrating the query

optimizer cost model of iro-db, an object-oriented federated database sys-

tem. In VLDB’96, Proceedings of 22th International Conference on Very

Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages

378–389, 1996.

[GTK01] Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation

using probabilistic models. In SIGMOD 2001, Proceedings ACM SIG-

MOD International Conference on Management of Data, May 21-24, 2001,

Santa Barbara, California, USA, 2001.

[GW89] Goetz Graefe and Karen Ward. Dynamic query evaluation plans. In Pro-

ceedings of the 1989 ACM SIGMOD International Conference on Manage-

ment of Data, Portland, Oregon, May 31 - June 2, 1989, pages 358–366,

1989.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formula-

tion and optimization in semistructured databases. In VLDB’97, Proceed-

ings of 23rd International Conference on Very Large Data Bases, August

25-29, 1997, Athens, Greece, pages 436–445, 1997.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. VLDB Journal,

10(4):270–294, 2001.

[HH99] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggrega-

tion. In SIGMOD 1999, Proceedings ACM SIGMOD International Con-

ference on Management of Data, June 1-3, 1999, Philadelphia, Pennsyl-

vania, USA, pages 287–298, 1999.

176

[HIST02] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema

mediation in peer data management systems. Submitted for publication,

2002.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang.

Optimizing queries across diverse data sources. In VLDB’97, Proceedings

of 23rd International Conference on Very Large Data Bases, August 25-29,

1997, Athens, Greece, pages 276–285, 1997.

[HMH01] Mauricio A. Hernandez, Renee J. Miller, and Laura M. Haas. Clio: A

semi-automatic tool for schema mapping. In SIGMOD 2001, Proceedings

ACM SIGMOD International Conference on Management of Data, May

21-24, 2001, Santa Barbara, California, USA, 2001.

[HS93] W. Hong and M. Stonebraker. Optimization of parallel query execution

plans in XPRS. Distributed and Parallel Databases, 1(1):9–32, 1993.

[HSR91] Tina M. Harvey, Craig W. Schnepf, and Mark A. Roth. The design of the

Triton nested relational database system. SIGMOD Record, 20(3):62–72,

1991.

[IC91] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation of

errors in the size of join results. In Proceedings of the 1991 ACM SIGMOD

International Conference on Management of Data, Denver, Colorado, May

29-31, 1991, pages 268–277, 1991.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc T. Friedman, Alon Y. Levy, and

Daniel S. Weld. An adaptive query execution system for data integra-

tion. In SIGMOD 1999, Proceedings ACM SIGMOD International Con-

ference on Management of Data, June 1-3, 1999, Philadelphia, Pennsyl-

vania, USA, pages 299–310, 1999.

[IHW] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Convergent query

processing. Submitted for publication.

177

[IHW01] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Integrating network-

bound XML data. IEEE Data Engineering Bulletin Special Issue on XML,

24(2), June 2001.

[ILM+00] Zachary G. Ives, Alon Y. Levy, Jayant Madhavan, Rachel Pottinger, Ste-

fan Saroiu, Igor Tatarinov, Shiori Betzler, Qiong Chen, Ewa Jaslikowska,

Jing Su, and Wai Tak Theodora Yeung. Self-organizing data sharing com-

munities with SAGRES. In SIGMOD 2000, Proceedings ACM SIGMOD

International Conference on Management of Data, May 16-18, 2000, Dal-

las, Texas, USA, page 582, 2000.

[ILW+00] Zachary G. Ives, Alon Y. Levy, Daniel S. Weld, Daniela Florescu, and Marc

Friedman. Adaptive query processing for internet applications. IEEE

Data Engineering Bulletin Special Issue on Adaptive Query Processing,

23(2), June 2000.

[JXT01] Project JXTA: Protocol specification revision 1.1.1. plat-

form.jxta.org/spec/v1.0/JXTAProtocols.pdf, 12 June 2001.

[KD98] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization

of sub-optimal query execution plans. In SIGMOD 1998, Proceedings

ACM SIGMOD International Conference on Management of Data, June

2-4, 1998, Seattle, Washington, USA, pages 106–117, 1998.

[KDW97] N. Kushmerick, R. Doorenbos, and D. Weld. Wrapper induction for infor-

mation extraction. In ICJCAI ’97, 1997.

[KM90] Alfons Kemper and Guido Moerkotte. Access support in object bases.

In SIGMOD 1990, Proceedings of the 1990 ACM SIGMOD International

Conference on Management of Data, Atlantic City, NJ, May 23-25, 1990,

pages 364–374, 1990.

[KM00] Carl-Christian Kanne and Guido Moerkotte. Efficient storage of XML

data. In Proceedings of the 16th International Conference on Data Engi-

neering, San Diego, CA USA, page 198, 2000.

178

[KW96] Chung T. Kwok and Daniel S. Weld. Planning to gather information. In

AAAI ’96, pages 32–39, August 1996.

[LPBZ95] Ling Liu, Calton Pu, Roger Barga, and Tong Zhou. Differential evaluation

of continual queries. Technical Report TR95-17, University of Alberta,

June 1995.

[LPH00] Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled wrapper

construction system for web information sources. In Proceedings of the

16th International Conference on Data Engineering, San Diego, CA USA,

pages 611–621, 2000.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying het-

erogeneous information sources using source descriptions. In VLDB’96,

Proceedings of 22th International Conference on Very Large Data Bases,

September 3-6, 1996, Mumbai (Bombay), India, pages 251–262, 1996.

[LYV+98] Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yan-

nis Papakonstantinou, Jeffrey D. Ullman, and Murty Valiveti. Capability

based mediation in tsimmis. In SIGMOD 1998, Proceedings ACM SIG-

MOD International Conference on Management of Data, June 2-4, 1998,

Seattle, Washington, USA, pages 564–566, 1998.

[MAM01] Amelie Marian, Serge Abiteboul, and Laurent Mignent. Change-centric

management of versions. In VLDB 2001, Proceedings of 27th Inter-

national Conference on Very Large Data Bases, September 11-14, 2001,

Roma, Italy, 2001.

[MBR01] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic

schema matching with Cupid. In VLDB 2001, Proceedings of 27th In-

ternational Conference on Very Large Data Bases, September 11-14, 2001,

Roma, Italy, 2001.

[MFK+00] Ioana Manolescu, Daniela Florescu, Donald Kossman, Florian Xhumari,

and Don Olteanu. XML and relational: How to live with both. In VLDB

179

2000, Proceedings of 26th International Conference on Very Large Data

Bases, September 10-14, 2000, Cairo, Egypt, September 2000.

[MGH02] Peter Mork, Steve Gribble, and Alon Halevy. Propagating updates in a

peer data management system. Unpublished, February 2002.

[MHTH01] Peter Mork, Alon Halevy, and Pter Tarczy-Hornoch. A model for data in-

tegration systems of biomedical data applied to online genetic databases.

In Proceedings of the American Medical Informatics Association (AMIA)

Annual Symposium, American Medical Informatics Association, Wash-

ington DC, November 2001, 2001.

[ML86] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and

performance evaluation for distributed queries. In VLDB’86, Proceedings

of 12th International Conference on Very Large Data Bases, August 25-28,

1986, Kyoto, Japan, pages 149–159, 1986.

[MP94] Inderpal Singh Mumick and Hamid Pirahesh. Implementation of magic-

sets in a relational database system. In Proceedings of the 1994 ACM

SIGMOD International Conference on Management of Data, Minneapolis,

Minnesota, May 24-27, 1994, pages 103–114. ACM Press, 1994.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In

Database Theory — ICDT ’99, 7th International Conference, Jerusalem,

Israel, January 10-12, 1999, Proceedings, pages 277–295, 1999.

[MSHR02] Sam Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar

Raman. Continuously adaptive continuous queries over streams. In

SIGMOD 2002, Proceedings ACM SIGMOD International Conference on

Management of Data, June 3-6, 2002, Madison, Wisconsin, USA, 2002.

[MSHTH02] Peter Mork, Ron Shaker, Alon Halevy, and Peter Tarczy-Hornoch. PQL:

A declarative query language over dynamic biological schemata. In Pro-

ceedings of the American Medical Informatics Association (AMIA) Annual

Symposium, San Antonio, TX. American Medical Informatics Associa-

tion, November 2002.

180

[NDM+00] Jeffrey Naughton, David DeWitt, David Maier, Jianjun Chen, Leonidas

Galanis, Kristin Tufte, Jaewoo Kang, Qiong Luo, Naveen Prakash,

Feng Tian, Jayavel Shanmugasundaram, Chun Zhang, Ravishankar Ra-

mamurthy, Bruce Jackson, Yuan Wang, Anurag Gupta, and Rushan

Chen. The Niagara internet query system. Available from

www.cs.wisc.edu/niagara/papers/NIAGRAVLDB00.v4.pdf, 2000.

[NDM+01] Jeffrey Naughton, David DeWitt, David Maier, Ashraf Aboulnaga, Jian-

jun Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy,

Qiong Luo, Naveen Prakash, Ravishankar Ramamurthy, Jayvel Shanmu-

gasundaram, Feng Tian, Kristin Tufte, Stratis Viglas, Yuan Wang, Chun

Zhang, Bruce Jackson, Anurag Gupta, and Rushan Chen. The Niagara

Internet query system. IEEE Data Engineering Bulletin, June 2001.

[NET01] What are XML web services? www.microsoft.com/net/xmlservices.asp,

May 2001.

[ODB97] Open database connectivity documentation.

www.microsoft.com/data/odbc/default.htm, 1997.

[PL00] Rachel Pottinger and Alon Levy. A scalable algorithm for answering

queries using views. In VLDB 2000, Proceedings of 26th International

Conference on Very Large Data Bases, September 10-14, 2000, Cairo,

Egypt, 2000.

[PR01] Hanna Pasula and Stuart J. Russell. Approximate inference for first-

order probabilistic languages. In ICJCAI ’01, pages 741–748, 2001.

[Qia96] Xiaolei Qian. Query folding. In Proceedings of the Twelfth International

Conference on Data Engineering, February 26 - March 1, 1996, New Or-

leans, Louisiana, pages 48–55, 1996.

[RH01] Vijayshankar Raman and Joseph M. Hellerstein. Using

state modules for adaptive query processing. Available from

www.cs.berkeley.edu/∼rshankar/nsqp3.pdf, 2001.

181

[RH02] Vijayshankar Raman and Joseph M. Hellerstein. Partial results for on-

line query processing. In SIGMOD 2002, Proceedings ACM SIGMOD In-

ternational Conference on Management of Data, June 3-6, 2002, Madison,

Wisconsin, USA, 2002.

[ROH99] Mary Tork Roth, Fatma Ozcan, and Laura M. Haas. Cost models do mat-

ter: Providing cost information for diverse data sources in a federated

system. In VLDB’99, Proceedings of 25th International Conference on

Very Large Data Bases, Edinburgh, Scotland, pages 599–610, 1999.

[RS86] Louiqa Raschid and Stanley Y. W. Su. A parallel processing strategy for

evaluating recursive queries. In VLDB’86, Proceedings of 12th Interna-

tional Conference on Very Large Data Bases, August 25-28, 1986, Kyoto,

Japan, pages 412–419, 1986.

[RSU95] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering

queries using templates with binding patterns. In Proceedings of the

Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, May 22-25, 1995, San Jose, California, pages 105–112,

1995.

[Rys01] Michael Rys. Bringing the internet to your database: Using SQLServer

2000 and XML to build loosely-coupled systems. In Proceedings of the

17th International Conference on Data Engineering, April 2-6, 2001, Hei-

delberg, Germany, pages 465–472, 2001.

[SA99] Arnaud Sahuguet and Fabien Azavant. Building light-weight wrappers

for legacy web data-sources using W4F. In VLDB’99, Proceedings of 25th

International Conference on Very Large Data Bases, Edinburgh, Scotland,

pages 738–741, 1999.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-

mond A. Lorie, and Thomas G. Price. Access path selection in a relational

database management system. In Proceedings of the 1979 ACM SIGMOD

182

International Conference on Management of Data, Boston, Massachusetts,

May 30 - June 1, pages 23–34, 1979.

[SAL+96] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam

Sah, Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: A wide-area

distributed database system. VLDB Journal, 5(1):48–63, 1996.

[SBD+81] John Miles Smith, Philip A. Bernstein, Umeshwar Dayal, Nathan Good-

man, Terry Landers, Ken W.T. Lin, and Eugene Wong. MULTIBASE – in-

tegrating heterogeneous distributed database systems. In Proceedings of

1981 National Computer Conference, pages 487–499. AFIPS Press, 1981.

[SGG02] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measure-

ment study of peer-to-peer file sharing systems. In Proceedings of Multi-

media Computing and Networking (MMCN) 2002, San Jose, CA, January

2002.

[SGT+99] Jayavel Shanmugasundaram, H. Gang, Kristin Tufte, Chun Zhang,

David J. DeWitt, and Jeffrey F. Naughton. Relational databases for

querying XML documents: Limitations and opportunities. In VLDB’99,

Proceedings of 25th International Conference on Very Large Data Bases,

Edinburgh, Scotland, pages 302–304, 1999.

[SKS+01] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita,

Catalina Fan, and John Funderburk. Querying XML views of relational

data. In VLDB 2001, Proceedings of 27th International Conference on

Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 261–

270, 2001.

[SLMK00] Michael Stillger, Guy Lohman, Volker Markl, and Mokhtar Kandil. LEO

— DB2’s LEearning Optimizer. In VLDB 2001, Proceedings of 27th In-

ternational Conference on Very Large Data Bases, September 11-14, 2001,

Roma, Italy, pages 19–28, 2000.

[SPL96] Praveen Seshadri, Hamid Pirahesh, and T. Y. Cliff Leung. Complex query

decorrelation. In Proceedings of the Twelfth International Conference on

183

Data Engineering, February 26 - March 1, 1996, New Orleans, Louisiana,

pages 450–458, 1996.

[SSB+00] Jayavel Shanmugasundaram, Eugene Shekita, Rimon Barr, Michael

Carey, Berthold Reinwald, Bruce Lindsay, and Hamid Pirahesh. Effi-

ciently publishing relational data as XML documents. In VLDB 2000,

Proceedings of 26th International Conference on Very Large Data Bases,

September 10-14, 2000, Cairo, Egypt, 2000.

[SV02] Luc Segoufin and Victor Vianu. Validating streaming xml documents. In

Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems, June 3-5, 2002, Madison, Wis-

consin USA, pages 53–64, 2002.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey,

Ioana Manolescu, and Ralph Busse. Xmark: A benchmark for xml data

management. In VLDB 2002, Proceedings of 28th International Confer-

ence on Very Large Data Bases, Hong Kong, China, 2002.

[SWKH76] Michael Stonebraker, Eugene Wong, Peter Kreps, and Gerald Held. The

design and implementation of INGRES. TODS, 1(3):189–222, 1976.

[Tam] Tamino: Technical description. www.softwareag.com/tamino/details.htm.

[TIHW01] Igor Tatarinov, Zachary Ives, Alon Halevy, and Daniel Weld. Updating

XML. In SIGMOD 2001, Proceedings ACM SIGMOD International Con-

ference on Management of Data, May 21-24, 2001, Santa Barbara, Cali-

fornia, USA, June 2001.

[Tre99] Harold Treat. Plugging in to XML. DB2 Magazine, Winter 1999. Also

available at http://www.db2mag.com/winter99/treat.shtml.

[TRV98] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. Scaling access

to distributed heterogeneous data sources with DISCO. IEEE Transac-

tions On Knowledge and Data Engineering, 1998.

184

[TVB+02] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasun-

daram, Eugene J. Shekita, and Chun Zhang. Storing and querying

ordered XML using a relational database system. In SIGMOD 2002,

Proceedings ACM SIGMOD International Conference on Management of

Data, June 3-6, 2002, Madison, Wisconsin, USA, 2002.

[UF99] Tolga Urhan and Michael J. Franklin. XJoin: Getting fast answers from

slow and bursty networks. Technical Report CS-TR-3994, University of

Maryland, College Park, February 1999.

[UF00] Tolga Urhan and Michael J. Franklin. XJoin: A reactively-scheduled

pipelined join operator. IEEE Data Engineering Bulletin, 23(2), June

2000.

[UF01] Tolga Urhan and Michael J. Franklin. Dynamic pipeline scheduling for

improving interactive performance of online queries. In VLDB 2001,

Proceedings of 27th International Conference on Very Large Data Bases,

September 11-14, 2001, Roma, Italy, September 2001.

[UFA98] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost based

query scrambling for initial delays. In SIGMOD 1998, Proceedings ACM

SIGMOD International Conference on Management of Data, June 2-4,

1998, Seattle, Washington, USA, pages 130–141, 1998.

[Val87] Patrick Valduriez. Join indices. TODS, 12(2):218–246, 1987.

[WA91] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in

a parallel main-memory environment. In Proc. First International Con-

ference on Parallel and Distributed Information Systems (PDIS), pages

68–77, December 1991.

[WBJ+95] Darrell Woelk, Bill Bohrer, Nigel Jacobs, K. Ong, Christine Tomlinson,

and C. Unnikrishnan. Carnot and InfoSleuth: Database technology and

the world wide web. In Proceedings of the ACM SIGMOD Conference on

Management of Data, pages 443–444, San Jose, CA, 1995.

185

[Win02] Marianne Winslett. Distinguished database profiles: David DeWitt

speaks out. SIGMOD Record, 31(2):50–62, June 2002.

[XLN] eXcelon Corporation: Platform. www.exceloncorp.com/platform/index.shtml.

[XSc99] XML Schema part 1: Structures. www.w3.org/TR/1999/WD-xmlschema-

1-19991217/, 17 December 1999. W3C Working Draft.

[XSL99] XSL Transformations (XSLT), version 1.0. www.w3.org/TR/xslt, 16

November 1999. W3C recommendation.

[YPAGM98] Ramana Yerneni, Yannis Papakonstantinou, Serge Abiteboul, and Hector

Garcia-Molina. Fusion queries over internet databases. In Advances in

Database Technology - EDBT 1998, 5th International Conference on Ex-

tending Database Technology, Valencia, Spain, March 23-27, 1998, Pro-

ceedings, pages 57–71, Valencia, Spain, 1998.

[ZND+01] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and

Guy M. Lohman. On supporting containment queries in relational

database management systems. In SIGMOD 2001, Proceedings ACM

SIGMOD International Conference on Management of Data, May 21-24,

2001, Santa Barbara, California, USA, 2001.

[ZRZB01] Vladimir Zadorozhny, Louiqa Raschid, Tao Zhan, and Laura Bright. Val-

idating an access cost model for wide area applications. In CoopIS 2001,

2001.

186

VITA

Zachary Ives will be joining the Computer and Information Sciences Department

at the University of Pennsylvania as an Assistant Professor in January 2003. His

research interests include query processing for distributed and heterogeneous data,

peer-to-peer and distributed systems, XML and semistructured data, and distributed

data management.

He will be graduating in July 2002 with a Ph.D. in Computer Science from the

University of Washington. He received his Master of Science degree in Computer Sci-

ence from the University of Washington in 1999, his Bachelor of Science from Sonoma

State University in 1997, and Associate of Sciences degrees in Computer and Informa-

tion Sciences and Electrical and Electronic Technology from Mendocino Community

College in 1995.

	List of Figures
	List of Tables
	Introduction
	The Motivations for Data Integration
	Query Processing for Data Integration
	Outline of Dissertation

	Background: Data Integration and XML
	Data Integration System Architecture
	The XML Format and Data Model
	Querying XML Data

	Query Processing for Data Integration
	Position in the Space of Adaptive Query Processing
	Adaptive Query Processing for Data Integration
	The Tukwila Data Integration System: An Adaptive Query Processor

	An Architecture for Pipelining XML Streams
	Previous Approaches to XML Processing
	The Tukwila XML Architecture
	Streaming XML Input Operators
	Tukwila XML Query Operators
	Supporting Graph-Structured Data in Tukwila
	Experimental Results
	Conclusions

	Execution Support for Adaptivity
	An Adaptive Execution Architecture
	Adaptive Query Operators
	Experiments
	Conclusions

	Adaptive Optimization of Queries
	Convergent Query Processing
	Operators for Phased Execution
	Implementation within Tukwila
	Experiments
	Conclusion

	Tukwila Applications and Extensions
	Data Management for Ubiquitous Computing
	Peer Data Management
	Integration for Medicine: GeneSeek
	Summary

	Related Work
	Data Integration (Chapter 2)
	XML Processing (Chapter 4)
	Adaptive Query Processing (Chapters 5, 6)

	Conclusions and Future Directions
	Future Work in Adaptive Query Processing
	Envisioning a Universal Data Management Interface

	Bibliography

