SPRINT: High-Throughput Robust Distributed Schnorr Signatures

Fabrice Benhamouda* Shai Halevi* Hugo Krawczyk* Yiping Ma Tal Rabin*

*Work done partially while at the Algorand Foundation.

Threshold signature [Des88, DF90, Ped91]

4

Threshold signature: applications

• Prior works are efficient in the setting of a small set of parties [KG20, CKM21, AB21, NRS21, BCK⁺22, TZ23, CKM23, ...]

Threshold signature: applications

- This work deals with a large set of parties
- E.g., blockchain where #parties is in the hundreds

• Challenge: signing by a large set of parties

- Challenge: signing by a large set of parties
- Insight 1: Alleviate the cost by signing many messages at once

- Challenge: signing by a large set of parties
- Insight 1: Alleviate the cost by signing many messages at once

9

- Challenge: signing by a large set of parties
- Insight 1: Alleviate the cost by signing many messages at once
- Insight 2: Eliminate the effects caused by malicious parties

• SPRINT has security and robustness

Critical when the set of parties is large

- Two-round message-independent preprocessing
- One round non-interactive signing: many messages at once

• SPRINT has security and robustness

Critical when the set of parties is large

- Two-round message-independent preprocessing
- One round non-interactive signing: many messages at once

- SPRINT has security and robustness
- Two-round message-independent preprocessing
- One round non-interactive signing: many messages at once

Quadratic number of signatures			er Constant amortized cost
t	а	#signatures	bcast scalars/group elements per signature
n/4	n/8	$n^{2}/16$	~34
<i>n</i> /5	n/5	$3n^{2}/25$	~18

Feasible even when n = 1000

- SPRINT has security and robustness
- Two-round message-independent preprocessing
- One round non-interactive signing: many messages at once

Outline

- Preliminaries
- SPRINT techniques
 - Extreme packing and SIMD
 - Early-termination agreement
- Details and discussion

Schnorr signature

- Notation: Throughout this talk, we use additive notation for groups
 - A group G of order p in which DL is hard, generator G
 - Hash function $\mathcal{H}: \{0, 1\}^* \to \mathbb{Z}_p$

Signing (secret) key Verification (public) key $S \coloneqq s \cdot G$

$$s \stackrel{\$}{\leftarrow} \mathbb{Z}_p$$

Schnorr signature

- Notation:
 - A group \mathbb{G} of order p in which DL is hard, generator G
 - Hash function $\mathcal{H}: \{0, 1\}^* \to \mathbb{Z}_p$

$$\boldsymbol{\phi} \cdot \boldsymbol{G} = (\boldsymbol{r} + \boldsymbol{es}) \cdot \boldsymbol{G} = \boldsymbol{R} + \boldsymbol{e} \cdot \boldsymbol{S}$$

Threshold Schnorr

• Assuming:

(Degree-*t*) sharing of *s*

- Signing key s is Shamir-shared to $[s] = (s_1, ..., s_n)$ with threshold t
- Verification key S is known to all

SPRINT: main techniques

"Insight 1: Alleviate the cost by signing many messages at once"

• "An early-termination agreement" (this work assumes async. setting)

Ensure good $[r] \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and hence good $R = r \cdot G$

Not exactly a DL-DKG, but sufficiently good for signature purpose

"Insight 2: Eliminate the effects caused by malicious parties"

Outline

• Preliminaries

Brief

- SPRINT techniques
- Detailed Extreme packing and SIMD
 - Early-termination agreement
 - Details and discussion

Orthogonal to security/robustness

$$[r] \stackrel{\$}{\leftarrow} \mathbb{Z}_p, \ R = r \cdot G \qquad [GJKR07]$$

- Parameters: *n* parties with *t* collusion
- Sketch (strawman presignature generation): one round, each party contributes a random polynomial

$$[r] \stackrel{\$}{\leftarrow} \mathbb{Z}_p, \ R = r \cdot G$$
 [GJKR07]

• Round 1. Each P_i (dealer) sends to each P_j (shareholder) a share $H_i(j)$

$$P_1$$
 P_2 P_3 ... P_n P_1 $H_1(1)$ $H_1(2)$ $H_1(3)$... $H_1(n)$ Polynomial H_1 of degree t P_2 $H_2(1)$ $H_2(2)$ $H_2(3)$... $H_2(n)$ P_3 $H_3(1)$ $H_3(2)$ $H_3(3)$... $H_3(n)$...

$$P_n \qquad H_n(1) \ H_n(2) \ H_n(3) \ \dots \ H_n(n)$$

$$[r] \stackrel{\$}{\leftarrow} \mathbb{Z}_p, \ R = r \cdot G$$
 [GJKR07]

• Round 1. Each P_j locally adds the shares: let $H = \sum_{i=1}^n H_i$, and $r_j := H(j)$

$$[r] \stackrel{\$}{\leftarrow} \mathbb{Z}_p, \ R = r \cdot G$$
 [GJKR07]

• Round 1. P_i broadcast $R_i \coloneqq H_i(0) \cdot G$, then $R = \sum_{i=1}^n R_i$

Compute sharing of
$$(\phi^{(k)} \coloneqq r^{(k)} + e^{(k)}s)_{k=1,\dots,a}$$

- What we have:
 - Sharing of a random values: $(r^{(1)}, ..., r^{(a)})$
 - Presignatures $(R^{(1)}, ..., R^{(a)})$
 - Messages $(M^{(1)}, ..., M^{(a)})$
 - Public values $(e^{(1)}, \dots, e^{(a)})$

Compute sharing of
$$(r^{(k)} + e^{(k)}s)_{k=1,...,a}$$

• Simpler: compute sharing of $(r^{(k)} + s)_{k=1,...,a}$
Degree- $(t + a - 1)$
sharing of $(r^{(1)},...,r^{(a)})$
Degree-t sharing of s

Compute sharing of
$$(r^{(k)} + e^{(k)}s)_{k=1,...,a}$$

• Compute sharing of $(r^{(k)} + s)_{k=1,...,a}$ How to deal with $e^{(k)}$ in packed sharing?
Degree- $(t + a - 1)$
sharing of $(r^{(1)}, ..., r^{(a)})$
 $e^{(1)s} e^{(1)s} e^{(1)s}$
 $e^{(1)s} e^{(1)s} e^{(1)s}$
 $e^{(1)s} s e^{(1)s} e^{(1)s}$
 $e^{(1)s} s e^{(1)s} s e^{(1)s}$
 $e^{(1)s} s e^{(1)s} s e^{(1)s}$

SPRINT: SIMD technique

- Packed sharing of $(r^{(1)}, ..., r^{(a)})$
- Packed sharing of (*s*, *s*, ..., *s*)
- Public values $(e^{(1)}, \dots, e^{(a)})$

Polynomial *H* of degree t + 2a - 2Polynomial *F* of degree t + a - 1Polynomial *E* of degree a - 1

• The packed sharing of $(r^{(1)}, ..., r^{(a)}) + (e^{(1)}, ..., e^{(a)}) \cdot s$ can be computed as

 $H + E \cdot F$

- Each party P_j locally computes $H(j) + E(j) \cdot F(j)$
- A little loss in resilience: $n \ge t + 2a 1$ instead of $n \ge t + 1$

Extreme packing using super-invertible matrices

- We defined $H = \sum_{i=1}^{n} H_i$ for signing randomness
- Each H_i itself can be used as signing randomness \Rightarrow boost by a factor of n?
- #random polynomials = #honest dealers = b

But we don't know which!

Result in b sharing of length-a randomness

Outline

• Preliminaries

Brief

- SPRINT techniques
- Detailed Extreme packing and SIMD
 - Early-termination agreement
 - Details and discussion

Ensure good sharing of $(r^{(1)}, ..., r^{(a)})$

- Parameters: *n* parties with *t* collusion
- A bad party: contribute a polynomial such that reconstruction fails!
- Sketch (robust presignature generation):
 - Round 1. Each party contributes a polynomial (supposed to be the right degree)
- New Round 2. Agree on a set of good polynomials ("good" = has the right degree)
 - Result: agree on at least $n t \mod polynomials$ (in the async. setting)
 - So we have $b \ge n 2t \mod random$ polynomials
 - In total a(n-2t) sigantures

Outline

- Preliminaries
- SPRINT techniques
 - Extreme packing and SIMD
 - Early-termination agreement
- Details and discussion

Details

- Hashing and re-randomization [GS22]
 - $\delta = \mathcal{H}(S, \text{QUAL}, \{R^{(i)}, M^{(i)}\}_{i \in \{1, ..., ab\}})$
 - $\Delta = \delta \cdot G$
 - Use $R + \Delta$ to replace the previous R
- The use of Feldman commitments to polynomials
 - Not a secure DKG: slightly biased key when adversary is rushing [GJKR07]
 - We proved that for signature purpose it is fine
- Dynamic committees and how to sub-sample them

Summary

SPRINT

- $\Omega(n^2)$ signatures per run assuming $\Omega(n)$ corruption
- Two-round presignature generation + one round non-interactive signing

Concurrent security:

[Shoup23] makes SPRINT concurrently secure in a black-box way

Can we achieve better tradeoff between resilience and efficiency?

Backup slides

Robust presignature generation

Parameters: *n* parties with *t* corrupted

• Round 1. Each party P_i chooses a random degree-t polynomial H_i , broadcasts Feldman commitments to H_i

$$P_1$$
 $H_1(0) \cdot G$ $H_1(1) \cdot G$ $H_1(2) \cdot G$ $H_1(3) \cdot G$... $H_1(t) \cdot G$

Feldman commitment to H_1

Feldman commitment

Everyone can verify a given r_{1j} claimed to be $H_1(j)$ is indeed correct:

- For j = 0, ..., t it is easy to check: compare $r_{1j} \cdot G$ with the commitment
- For j = t + 1, ..., n, we can use "interpolation on the exponent":

Compare $r_{1j} \cdot G$ with $H_1(j) \cdot G = \lambda_0 (H_1(0) \cdot G) + \lambda_1 (H_1(1) \cdot G) + \dots + \lambda_t (H_1(t) \cdot G)$ Can compute this!

Robust presignature generation

• Round 1. Party *i* broadcasts $Enc(PK_j, r_{ij})$ where $r_{ij} = H_i(j)$

Robust presignature generation

• Round 2. Parties agree on a set QUAL that contains dealers who send valid shares (that lie on a polynomial of degree-t)

The simple agreement protocol

- Observation 1: publicly verifiable complaint enabled by PKE of shares
- If P_i failed the verification against P_1 's share, create a verifiable complaint:
 - r_{1i}
 - ZKP of decrypting the ciphertext $Enc(PK_i, r_{1i})$
- Each shareholder: exclude dealers who were complained about

ElGamal encryption

Proof of DL

The simple agreement protocol

- Observation 2: no need for "completeness"
- Completeness [Groth-Shoup23]: all honest parties eventually have valid shares ⇒ possible to forgo polynomial commitments and rely on error correction
- We use verifiable complaints to disqualify bad dealers; we do not to help the complaining shareholders to get any more shares

Robust presignature generation: recap

• Round 1: Each party contributes a polynomial H_i

(broadcast PKE of shares of H_i and Feldman commitment to H_i)

• Round 2: Each party broadcasts verifiable complaint if it has any

How many signatures we get?

- Agree on a set QUAL of "correct" polynomials H_i 's (in the async. setting): $|QUAL| + |OC| \ge n - t$
- Exclude those H_i 's that are correct but not random $b = |QUAL| - (t - |QUAL|) \ge n - 2t$
- Each polynomial packs *a* secrets
- We get a(n-2t) random values for signing