Single-Server Private Information Retrieval in the Shuffle Model

Yuval Ishai Mahimna Kelkar Daniel Lee Yiping Ma

Technion
Israel Institute of Technology

Private Information Retrieval (PIR) [CGKS95, K097]

Private Information Retrieval (PIR) [CGKS95, K097]

Database server has $x=\{0,1\}^{n}$

Client wants to get the entry x_{i} without revealing the index i

PIR in two flavors

Information-theoretic
Computational

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries

Computational

- Secure against polynomial-time adversaries

A weaker security notion

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries

Computational

- Secure against polynomial-time adversaries

A weaker security notion

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices

Managing multiple storage
spots has high cost when
databases are large

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices

Managing multiple storage
spots has high cost when
databases are large

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Expensive server cost because of cryptogaphic operations

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Expensive server cost because of cryptogaphic operations

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptogranhir operations)
- Schemes with short query siz efficient preprocessing => su server computation

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server

Existing single-server solutions with sublinear computation: Either require per-client preprocessing [CHK22]; or utilize strong assumptions + VBB obfuscations [BIPW17, CHR17]

- Exists efficient preprocessing in non-trivial ways

PIR in two flavors

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)
- Schemes with short query size enable efficient preprocessing => sublinear server computation

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Expensive server cost because of cryptogaphic operations
- Query size depends on the computational security parameter
- No "trivial" solution for efficient preprocessing
- Exists efficient preprocessing in non-trivial ways

Best of both worlds?

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)
- Schemes with short query size enable efficient preprocessing => sublinear server computation

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Expensive server cost because of cryptogaphic operations
- Query size depends on the computational security parameter
- No "trivial" solution for efficient preprocessing
- Exists efficient preprocessing in non-trivial ways

Best of both worlds?

- Security must hold for even a single client
"The standard model" The only way out-requires n bits communication
- New hope: relaxation by considering multiple clients

The shuffle model [IKOSO6]

Component 1: Many clients make queries simultaneously
Component 2: The queries are shuffled before reaching the server

Best of both worlds? Yes, in the shuffle model

- Security must hold for even a single client
"The standard model" The only way out-requires n bits communication
- New hope: relaxation by considering multiple clients

The shuffle model [IKOSO6, BEMM +17 , BBGN20, ...]

- Construction based on a specific PIR protocol
efore reaching the server
- Nonstandard computational assumption

Best of both worlds? Yes, in the shuffle model

- Security must hold for even a single client
"The standard model" The only way out-requires n bits communication
- New hope: relaxation by considering multiple clients

This work: general constructions for single-server PIR in the shuffle model that has information-theoretic security and sublinear communication

Best of both worlds? Yes, in the shuffle model

- Security must hold for even a single client
"The standard model" The only way out-requires n bits communication
- New hope: relaxation by considering multiple clients

Theorem (Informal).
For every $\gamma>0$, there is a single-server PIR in the shuffle model such that, on database size n, has $O\left(n^{\gamma}\right)$ per-query communication and $1 / \operatorname{poly}(n)$ statistical security, assuming poly (n) clients simultaneously accessing the database. If further assuming one-time preprocessing, per-query computation is also $O\left(n^{\gamma}\right)$.

Best of both worlds? Yes, in the shuffle model

- Security must hold for even a single client
"The standard model" The only way out-requires n bits communication
- New hope: relaxation by considering multiple clients

Theorem (Informal).
For every $\gamma>0$, there is a single-server PIR in the shuffle model such that, on database size n, has $O\left(n^{\gamma}\right)$ per-query communication and $1 / \operatorname{poly}(n)$ statistical security, assuming poly (n) clients simultaneously accessing the database. If further assuming one-time preprocessing, per-query computation is also $O\left(n^{\gamma}\right)$.

Rest of this talk

- Background
- The shuffle model
- "Split and mix"
- Our results
- General constructions
- Lower bound: the security we get in the general constructions is "tight"
- An interesting orthogonal problem: hiding record size without padding
- Discussion and open questions

The shuffle model

- Purpose: anonymization

- An existing notion in many literatures
- Anonymous communication, e.g., [HLZZ15]
- Differential nrivacy e g. [RRGN201
- Secure aggregation, e.g., [IKOSO6]
- In our setting:
assume a two-way anonymous channel

The shuffle model

- Purpose: anonymization
- An existing notion in many literatures
- Anonymous communication, e.g., [HLZZ15]
- Differential nrivacy, e g. [RRGN201
- Secure aggregation, e.g., [IKOSO6]
- In our setting
assume a two-way anonymous channel

The shuffle model

- Purpose: anonymization

The shuffle model

- Purpose: anonymization

The shuffle model

- Purpose: anonymization
- An existing notion in many literatures
- Anonymous communication, e.g., [HLZZ15]
- Differential privacy, e.g., [BBGN20]
- Secure aggregation, e.g., [IKOSO6]

The shuffle model

- Purpose: anonymization
- An existing notion in many literatures
- Anonymous communication, e.g., [HLZZ15]
- Differential privacy, e.g., [BBGN20]
- Secure aggregation, e.g., [IKOSO6]
- In our setting: assume a two-way anonymous channel

```
Strong assumption?
```


The shuffle model

－Purpose：anonymization
－An existing notion in many literatures
－Anonymous communication，e．g．，［HLZZ15］
－Differential privacy，e．g．，［BBGN20］
－Secure aggregation，e．g．，［IKOSO6］
－In our setting： assume a two－way anonymous channel
－Instantiation： stay tuned for discussion！

A shuffler

PIR in the shuffle model

PIR in the shuffle model

- Anonymization does not trivialize the PIR problem!

PIR in the shuffle model

- Anonymization does not trivialize the PIR problem!

PIR in the shuffle model

- Privacy from anonymity [IKOSO6]: Secure sum from "split and mix"

Take a large enough p, each client splits its inputs into k shares in \mathbb{Z}_{p}

PIR in the shuffle model

- Privacy from anonymity [IKOS06]: Secure sum from "split and mix"

Shuffle the shares

Get the sum without learning any individual's input

PIR in the shuffle model

- Privacy from anonymity [IKOSO6]: Secure sum from "split and mix"

Each input is split to k shares

Split and mix can provide statistical security against the observer

$$
\operatorname{View}(10,2,2,1,1) \quad \operatorname{View}(4,4,4,4,0)
$$

PIR in the shuffle model

- Privacy from anonymity [IKOS06]: Secure sum from "split and mix"

Split and mix in PIR

- Privacy from anonymity [IKOSO6]: "split and mix"

Split each index into additive shares?

Answer to each share

Split and mix in PIR

- A two-server "additive PIR" [BIK04]

Split and mix in PIR

- A construction from the two-server "additive PIR"

Split and mix in PIR

Similar attack also generalizes to \mathbb{Z}_{p}

- 2-share is not enough to provide privacy: a simple example in \mathbb{Z}_{2}

All clients with input 0 v.s. All clients with input 1

Split and mix in PIR

- Can we do more share? Yes, but worse efficiency:

The k-server "additive PIR" gives communication $O\left(n^{\frac{k-1}{k}}\right)$

Our technique:

Randomize the query index for the "additive PIR" using an outer layer of PIR

Communication $O\left(n^{\frac{1}{2}} \operatorname{polylog}(n)\right)$

General constructions: an "inner-outer" paradigm

Recall the problem

When $i_{1}, i_{2}, \ldots, i_{C}$ and $i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{C}^{\prime}$ are far apart, e.g., 11111 v.s. 22222
$\operatorname{View}\left(i_{1}, i_{2}, \ldots, i_{C}\right)$ and $\operatorname{View}\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{C}^{\prime}\right)$ are also far apart

General constructions: an "inner-outer" paradigm

> Learns nothing (except the sum)

Our construction technique

If we can make $i_{1}, i_{2}, \ldots, i_{C}$ and $i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{C}^{\prime}$ closer, e.g., 12344 v.s. 12345
Would $\operatorname{View}\left(i_{1}, i_{2}, \ldots, i_{C}\right)$ and $\operatorname{View}\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{C}^{\prime}\right)$ be close?

General constructions: an "inner-outer" paradigm

How to randomize the indices?

An important observation

i_{1}

$\in[n]$

Consider PIR query algorithm:

$$
\left(q_{1}, q_{2}, q_{3}\right) \leftarrow \operatorname{Query}(i ; r)
$$

Let Q be the space that consists of all possible sub-queries

For any given $i \in[n]$, each sub-query q is uniformly random over Q

General constructions: an "inner-outer" paradigm

General constructions: an "inner-outer" paradigm

Theorem (Informal).
On any database size n, the "inner-outer" construction with any outer PIR and the two-server additive inner PIR, gives a single-server PIR in the shuffle model that has $1 / \operatorname{poly}(n)$ statistical security and $O(\sqrt{n})$ per-query communication, assuming poly (n) clients simultaneously accessing the database.

Corollary (Informal).
Using fancier inner PIR ("CNF PIR"), on any database size n, for every constant γ, there is a PIR construction that has

- Per-query communication and computation $O\left(n^{\gamma}\right)$,
- Server storage $O\left(n^{1+\gamma}\right)$,
assuming one-time preprocessing.

Rest of this talk

- Background
- The shuffle model
- "Split and mix"
- Our results
- General constructions
- Lower bound: the security we get in the general constructions is "tight"
- An interesting orthogonal problem: hiding record size without padding
- Discussion and open questions

PIR with variable-sized records

- To deploy PIR in real-world applications...

Often assume the same size, mostly $\{0,1\}^{n}$

Database entries of PIR in theory

Database records in practice

PIR with variable-sized records

- Padding solves the problem: how about ϵ

Waste of server storage (though can virtually store)

YouTube

Features Client who retrieves the small record has to The discrep pay the cost of retrieving the largest record an be huge Majority of tme recorus are small Most users access the small records much more often than the large records

PIR with variable-sized records

- In the "standard" model, there is no way out
- In the shuffle model: yes, we can
- No server storage overhead
- Client communication proportional to the length of the retrieved record
- Leak only the total size of all queried records

PIR with variable-sized records

- A toy protocol
T database records

Concatenate

An n-bit database

PIR with variable-sized records

- A toy protocol
T database records

PIR with variable-sized records

- A toy protocol
T database records

Communication is proportional to the queried length instead of the maximum length

Concatenate

PIR with variable-sized records

- A toy protocol

Yes, from ℓ PIR queries to polylog ℓ PIR queries

Communication is proportional to the queried length instead of the

Make ℓ PIR queries, each for one bit

PIR with variable-sized records

- Revisit the toy protocol

PIR with variable-sized records

- Splitting records to the powers of two

Secure or not?

Deterministic splitting is not secure (unless split down to 1)

Server (logically) preprare $\log n$ databases: the j-th database is partitioned to 2^{j} bits per entry

PIR with variable-sized records

- Splitting records to the powers of two

2222

PIR with variable-sized records

- Our approach: recursive splitting

PIR with variable-sized records

- Our approach: recursive splitting

PIR with variable-sized records

- Our approach: recursive splitting

PIR with variable-sized records

- Our approach: recursive splitting

PIR with variable-sized records

- Our approach: recursive splitting

> The final blocks that the client will retrieve (using PIR)

PIR with variable-sized records

- A complication of recursive splitting

Consider 51111
v.s.

2222
With $1 / 2$ probability, there will be a block

PIR with variable-sized records

- A complication of recursive splitting
fully split the highest $\log C$ levels
$\begin{array}{lllllllll}\text { Consider } M-3 & 1 & 1 & 1 & \text { v.s. } & M / 4 & M / 4 & M / 4 & M / 4\end{array}$
With $1 / 2$ probability, there will be a block

PIR with variable-sized records

- A complication of recursive splitting: fully split the highest $\log C$ levels

$$
\begin{array}{lllllllll}
\text { Consider M-3 } & 1 & 1 & 1 & \text { v.s. } & M / 4 & M / 4 & M / 4 & M / 4
\end{array}
$$

PIR with variable-sized records

- Splitting records to the power of two

The multi-set of record lengths
from all clients will not leak any individual queried length

Rest of this talk

- Background
- The shuffle model
- "Split and mix"
- Our results
- General constructions
- Lower bound: the security we get in the general constructions is "tight"
- An interesting orthogonal problem: hiding record size without padding
- Discussion and open questions

Discussion

- Two-way anonymous channel
- A way given in DP literature: two or more non-colluding (network) servers holds a permutation

Reflection on assumptions

- We want the minimum assumptions
- Yet, in order to gain something (e.g., efficiency), you have to make assumptions
- Hardness assumptions
- Non-colluding assumptions
- Meanwhile, guaranteeing different assumptions does not requrie the same amount of effort: system efforts, law efforts, etc.
- The likelihood of assumptions being compromised in real-world scenarios may vary

Open questions

- PIR in the shuffle model: where do we stand

Computational setting, standard assumption?

Better parameters Negligible security $O\left(1 / n^{\log n}\right)$ with slightly sublinear communication $O\left(\frac{n}{\log n}\right)$ (e.g., less \#clients)

Backup slides

Proof idea for recursive splitting

Place the original length at the corresponding bin

Proof idea for recursive splitting

- Randomized splitting: a recursive approach

Place the original length at the corresponding bin

For each level:
For each ball:
Toss a coin and decide whether to split

Proof idea for recursive splitting

- Randomized splitting: a recursive approach

Place the original length at the corresponding bin

For each level:
For each ball:
Toss a coin and decide whether to split

Send PIR queries for each of these balls

Are we done?

Proof idea for recursive splitting

- Tweaks to the recursive approach

Proof idea for recursive splitting

- Tweaks to the recursive approach

Proof idea for recursive splitting

- Analysis: "Toy in the sand"

The resulting multi-set

Configurations at the lower levels

As long as there are many balls at the "highest" level, then after the recursive splitting, any configuration at the lower levels will be smoothed out

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: outer PIR sub-queries, inner PIR sub-queries, and the relation between them
- Step 3. "Toy in sand" problem: hiding the shape of the toy

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: outer PIR sub-queries, inner PIR sub-queries, and the relation between them
- Step 3. "Toy in sand" problem: hiding the shape of the toy

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: outer PIR sub-queries, inner PIR sub-queries, and the relation between them
- Step 3. "Toy in sand" problem: hiding the shape of the toy

Proof idea for the inner-outer construction

- Step 2. Understand the histogram of outer PIR sub-queries

Edit distance bounded by \sqrt{C}

$\left|Q_{\text {OPIR }}\right|$ bins
Edit distance at most $C \quad i_{1} \quad i_{2} \quad \ldots \quad i_{C}$

$i_{1}^{\prime} \quad i_{2}^{\prime} \quad \ldots \quad i_{C}^{\prime}$

Proof idea for the inner-outer construction

- Step 2. inner PIR sub-queries resultant from outer PIR sub-queries

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: the relation between outer PIR sub-queries and inner PIR sub-queries
- Step 3. "Toy in sand" problem: hiding the shape of the toy

$$
\operatorname{SD}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \leq \sqrt{\frac{\# \text { bins }}{\# \text { balls }}}
$$

Proof idea for the inner-outer construction

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: the relation between outer PIR sub-queries and inner PIR sub-queries
- Step 3. "Toy in sar Let inner PIR sub-query shape of the toy space be Q

$$
\mathrm{SD}\left(\mathcal{D}_{i}, \mathcal{D}_{j}\right) \leq \sqrt{\frac{\# \text { bins }}{\# \text { balls }}}=\sqrt{\frac{Q}{C} \Rightarrow \mathrm{SD}\left(\mathcal{D}, \mathcal{D}^{\prime}\right) \leq C^{\frac{1}{4}} \cdot \sqrt{\frac{Q}{C}}=\frac{Q^{\frac{1}{2}}}{C^{\frac{1}{4}}} \text {. }}
$$

