
Single-Server Private Information Retrieval
in the Shuffle Model

Yuval Ishai Mahimna Kelkar Daniel Lee Yiping Ma

1

Private Information Retrieval (PIR) [CGKS95, KO97]

Database server has 𝑥 = 0, 1 !

Client wants to get the entry 𝑥"
without revealing the index 𝑖

Query Answer A trivial solution:
download all entries

2

Database server has 𝑥 = 0, 1 !

Client wants to get the entry 𝑥"
without revealing the index 𝑖

Query Answer
Solutions that we are interested in:

communication sublinear in 𝑛

Private Information Retrieval (PIR) [CGKS95, KO97]

3

PIR in two flavors

Information-theoretic Computational

4

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries

Computational

• Secure against polynomial-time adversaries

A weaker security notion

5

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries

Computational

• Secure against polynomial-time adversaries

A weaker security notion

6

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices

Managing multiple storage
spots has high cost when

databases are large

7

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices

Managing multiple storage
spots has high cost when

databases are large

8

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers
• Enforce non-collusion amongst the

database servers

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices
• No need for non-colluding assumption on

the database server

Hard to ensure
when data is held by

a single entity

9

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers
• Enforce non-collusion amongst the

database servers

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices
• No need for non-colluding assumption on

the database server

Hard to ensure
when data is held by

a single entity

10

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers
• Enforce non-collusion amongst the

database servers
• Efficient in practice (no cryptographic

operations)

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices
• No need for non-colluding assumption on

the database server
• Expensive server cost because of

cryptogaphic operations

Hard to scale to
many clients

11

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers
• Enforce non-collusion amongst the

database servers
• Efficient in practice (no cryptographic

operations)

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices
• No need for non-colluding assumption on

the database server
• Expensive server cost because of

cryptogaphic operations

Hard to scale to
many clients

12

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers
• Enforce non-collusion amongst the

database servers
• Efficient in practice (no cryptographic

operations)
• Schemes with short query size enable

efficient preprocessing => sublinear
server computation

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices
• No need for non-colluding assumption on

the database server
• Expensive server cost because of

cryptogaphic operations
• Query size depends on the computational

security parameter
• No “trivial” solution for efficient preprocessing
• Exists efficient preprocessing in non-trivial ways

Existing single-server solutions with sublinear computation:
Either require per-client preprocessing [CHK22]; or utilize
strong assumptions + VBB obfuscations [BIPW17, CHR17]

13

PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers
• Enforce non-collusion amongst the

database servers
• Efficient in practice (no cryptographic

operations)
• Schemes with short query size enable

efficient preprocessing => sublinear
server computation

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices
• No need for non-colluding assumption on

the database server
• Expensive server cost because of

cryptogaphic operations
• Query size depends on the computational

security parameter
• No “trivial” solution for efficient preprocessing
• Exists efficient preprocessing in non-trivial ways

14

Best of both worlds?

Information-theoretic

• Secure against unbounded adversaries
• Require database replication across

multiple servers
• Enforce non-collusion amongst the

database servers
• Efficient in practice (no cryptographic

operations)
• Schemes with short query size enable

efficient preprocessing => sublinear
server computation

Computational

• Secure against polynomial-time adversaries
• No database replication, a single server

suffices
• No need for non-colluding assumption on

the database server
• Expensive server cost because of

cryptogaphic operations
• Query size depends on the computational

security parameter
• No “trivial” solution for efficient preprocessing
• Exists efficient preprocessing in non-trivial ways

15

• Security must hold for even a single client
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds?

The shuffle model [IKOS06]
Component 1: Many clients make queries simultaneously
Component 2: The queries are shuffled before reaching the server

“The standard model”

16

• Security must hold for even a single client
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds? Yes, in the shuffle model

The shuffle model [IKOS06, BEMM+17, BBGN20, …]
Component 1: Many clients make queries simultaneously
Component 2: The queries are shuffled before reaching the server

“The standard model”

- Construction based on a specific PIR protocol
 - Nonstandard computational assumption

17

• Security must hold for even a single client
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds? Yes, in the shuffle model

“The standard model”

This work: general constructions for single-server PIR in the shuffle model
that has information-theoretic security and sublinear communication

18

• Security must hold for even a single client
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds? Yes, in the shuffle model

“The standard model”

Theorem (Informal).
For every 𝛾 > 0, there is a single-server PIR in the shuffle model such that, on
database size 𝑛, has 𝑂(𝑛!) per-query communication and 1/poly(𝑛) statistical
security, assuming poly(𝑛) clients simultaneously accessing the database.
If further assuming one-time preprocessing, per-query computation is also 𝑂(𝑛!).

Throughout this talk, we omit polylog	𝑛 factors.
19

• Security must hold for even a single client
The only way out—requires 𝑛 bits communication

• New hope: relaxation by considering multiple clients

Best of both worlds? Yes, in the shuffle model

“The standard model”

Theorem (Informal).
For every 𝛾 > 0, there is a single-server PIR in the shuffle model such that, on
database size 𝑛, has 𝑂(𝑛!) per-query communication and 1/poly(𝑛) statistical
security, assuming poly(𝑛) clients simultaneously accessing the database.
If further assuming one-time preprocessing, per-query computation is also 𝑂(𝑛!).

Throughout this talk, we omit polylog	𝑛 factors.
20

• Background
• The shuffle model
• “Split and mix”

• Our results
• General constructions
• Lower bound: the security we get in the general constructions is “tight”
• An interesting orthogonal problem: hiding record size without padding

• Discussion and open questions

Rest of this talk

21

• Purpose: anonymization
• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]
• Differential privacy, e.g., [BBGN20]
• Secure aggregation, e.g., [IKOS06]

• In our setting:
assume a two-way anonymous channel

The shuffle model

A shuffler

22

• Purpose: anonymization
• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]
• Differential privacy, e.g., [BBGN20]
• Secure aggregation, e.g., [IKOS06]

• In our setting:
assume a two-way anonymous channel

The shuffle model

A shuffler

23

• Purpose: anonymization
• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]
• Differential privacy, e.g., [BBGN20]
• Secure aggregation, e.g., [IKOS06]

• In our setting:
assume a two-way anonymous channel

The shuffle model

An observer
24

• Purpose: anonymization
• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]
• Differential privacy, e.g., [BBGN20]
• Secure aggregation, e.g., [IKOS06]

• In our setting:
assume a two-way anonymous channel

The shuffle model

An observer

A shuffler

25

• Purpose: anonymization
• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]
• Differential privacy, e.g., [BBGN20]
• Secure aggregation, e.g., [IKOS06]

• In our setting:
assume a two-way anonymous channel

The shuffle model

An observer

A shuffler

26

• Purpose: anonymization
• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]
• Differential privacy, e.g., [BBGN20]
• Secure aggregation, e.g., [IKOS06]

• In our setting:
assume a two-way anonymous channel

The shuffle model

An observer

A shufflerStrong assumption?

27

• Purpose: anonymization
• An existing notion in many literatures
• Anonymous communication, e.g., [HLZZ15]
• Differential privacy, e.g., [BBGN20]
• Secure aggregation, e.g., [IKOS06]

• In our setting:
assume a two-way anonymous channel
• Instantiation:

stay tuned for discussion!

The shuffle model

An observer

A shuffler

28

PIR in the shuffle model

29

• Anonymization does not trivialize the PIR problem!

PIR in the shuffle model

30

• Anonymization does not trivialize the PIR problem!

PIR in the shuffle model

𝑉𝑖𝑒𝑤 𝑖!, 𝑖", … , 𝑖# 𝑉𝑖𝑒𝑤 𝑖!$, 𝑖"$, … , 𝑖#$

𝑖#$ 𝑖%$ 	 … 𝑖&$𝑖#	 𝑖% 	 … 𝑖&Anonymity does not imply message privacy:
It hides who sends what,

but does not hide which action is performed

31

• Privacy from anonymity [IKOS06]: Secure sum from “split and mix”

PIR in the shuffle model

Take a large enough 𝑝, each client splits its inputs into 𝑘 shares in ℤ"
5 1 0 3 8

32

• Privacy from anonymity [IKOS06]: Secure sum from “split and mix”

PIR in the shuffle model

𝑝 = 20, 𝑘 = 35 1 0 3 8
4+10+11 6+14+1 16+2+2 14+2+7 17+2+9

Shuffle the shares

Get the sum without learning any individual’s input
33

• Privacy from anonymity [IKOS06]: Secure sum from “split and mix”

PIR in the shuffle model

10 2 2 1 1 4 4 4 4 0

Any two different
configurations with

equal sum
Each input is split to 𝑘 shares

𝑉𝑖𝑒𝑤 10, 2, 2, 1, 1 𝑉𝑖𝑒𝑤 4, 4, 4, 4, 0

Split and mix can provide statistical security against the observer

34

• Privacy from anonymity [IKOS06]: Secure sum from “split and mix”

PIR in the shuffle model

10 2 2 1 1 4 4 4 4 0

Any two different
configurations with

equal sum
Each input is split to 𝑘 shares

𝑉𝑖𝑒𝑤 10, 2, 2, 1, 1 𝑉𝑖𝑒𝑤 4, 4, 4, 4, 0
Can “split and mix” help in the PIR problem?

35

• Privacy from anonymity [IKOS06]: “split and mix”

𝑖! 𝑖" 𝑖# 𝑖$ 𝑖%
4+10+11 6+14+1 16+2+2 14+2+7 17+2+9

Split each index into
additive shares?

Answer to each share

Split and mix in PIR

36

• A two-server “additive PIR” [BIK04]

Split and mix in PIR

The sub-queries 𝑞!, 𝑞" are
additive shares of (the encoding of) index 𝑖

𝑎#𝑎$

𝑎$ ← 𝑃%(𝑞$) 𝑎# ← 𝑃%(𝑞#)

𝑥 = 0, 1 & 𝑥 = 0, 1 &

𝑞#𝑞$

𝑖 ∈ [𝑛]

Takeways: 1. Sub-queries are additive shares
 2. Answer algorithm is simply 𝑃%(share)

𝑂(log	𝑛) query size

37

𝑂(𝑛) answer size

• A construction from the two-server “additive PIR”

Split and mix in PIR

𝑖!	 𝑖"	 𝑖#	 𝑖$	 𝑖%

Query using the two-server
“additive PIR” protocol

An instance of 2-share split and mix!

Are we done?

𝑞$	 𝑞#𝑞$	 𝑞# 𝑞$	 𝑞# 𝑞$	 𝑞# 𝑞$	 𝑞#

Only learns the sum of all sub-queries but nothing else
38

• 2-share is not enough to provide privacy: a simple example in ℤ(

All clients with input 0 v.s. All clients with input 1

 0 can be split to 0+0 or 1+1 1 can only be split to 0+1

Split and mix in PIR

Exactly equal #0s and #1s
in the shares!

#0s and #1s may not be
exactly equal

Similar attack also
generalizes to ℤ"

39

• Can we do more share? Yes, but worse efficiency:

The 𝑘-server “additive PIR” gives communication 𝑂(𝑛
!"#
!)

Split and mix in PIR

Our technique:
Randomize the query index for the “additive PIR”

using an outer layer of PIR

Communication 𝑂(𝑛
!
"	polylog(𝑛))

40

General constructions: an “inner-outer” paradigm

𝑖! 𝑖" 𝑖#

Recall the problem

∈ [𝑛]

When 𝑖!, 𝑖", … , 𝑖& and 𝑖!' , 𝑖"' , … , 𝑖&' are far apart, e.g., 1 1 1 1 1 v.s. 2 2 2 2 2

𝑉𝑖𝑒𝑤 𝑖!, 𝑖", … , 𝑖& and 𝑉𝑖𝑒𝑤 𝑖!' , 𝑖"' , … , 𝑖&' are also far apart

Given any set of query indices

Learns nothing
(except the sum)

41

General constructions: an “inner-outer” paradigm

𝑖! 𝑖" 𝑖#

A step forward

∈ [𝑛]

If we can make 𝑖!, 𝑖", … , 𝑖& and 𝑖!' , 𝑖"' , … , 𝑖&' closer, e.g., 1 2 3 4 4 v.s. 1 2 3 4 5

Would 𝑉𝑖𝑒𝑤 𝑖!, 𝑖", … , 𝑖& and 𝑉𝑖𝑒𝑤 𝑖!' , 𝑖"' , … , 𝑖&' be close?

Given any set of query indices

Learns nothing
(except the sum)

Our proof technique

1 1 1 1 1 v.s. 2 2 2 2 2
$

Our construction technique

42

General constructions: an “inner-outer” paradigm

𝑖! 𝑖" 𝑖#How to randomize the indices?

𝑞$
𝑞# 𝑞'

Let 𝒬 be the space that consists of all
possible sub-queries

An important observation

Consider PIR query algorithm:
	(𝑞$, 𝑞#, 𝑞') ← 𝑄𝑢𝑒𝑟𝑦(𝑖; 𝑟)

For any given 𝑖 ∈ [𝑛], each sub-query 𝑞 is
uniformly random over 𝒬

∈ [𝑛]

“Outer PIR”
43

General constructions: an “inner-outer” paradigm

𝑖! 𝑖" 𝑖#

𝑖!∗ 𝑖"∗ 𝑖#∗ 𝑖!∗ 𝑖"∗ 𝑖#∗ 𝑖!∗ 𝑖"∗ 𝑖#∗

∈ [𝑛]

Run outer PIR query algorithm

What we get from outer PIR

𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞# ∈ 𝒬

How to randomize the indices?

Sort all sub-queries in 𝒬
A list with size 𝑛∗ = |𝒬|

Interpret as indices

0000 0001 0010 0011 … 1111

0001

2

1 2 3 4 … 𝑛∗

IT-PIR with O(log	𝑛) query size

Each random in 𝒬

Each random in [𝑛∗] ∈ [𝑛∗]

44

General constructions: an “inner-outer” paradigm

𝑖! 𝑖" 𝑖#

𝑖!∗ 𝑖"∗ 𝑖#∗ 𝑖!∗ 𝑖"∗ 𝑖#∗ 𝑖!∗ 𝑖"∗ 𝑖#∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞# ∈ 𝒬

How to randomize the indices?

𝑃!(0000)

Inner PIR with random query indices

Inner PIR database size 𝑛∗ = |𝒬|

∈ [𝑛∗]

𝑃!(1111)𝑃!(0001) …	

Use the two-server “additive” PIR

Recall: not secure if doing
”additive PIR” directly here

Answers in outer PIR

45

General constructions: an “inner-outer” paradigm

𝑖! 𝑖" 𝑖#

𝑖!∗ 𝑖"∗ 𝑖#∗ 𝑖!∗ 𝑖"∗ 𝑖#∗ 𝑖!∗ 𝑖"∗ 𝑖#∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞# ∈ 𝒬

How to randomize the indices?

Inner PIR with random query indices ∈ [𝑛∗]

The distributions of the shuffled additive shares
from any index configurations are close

(with some tweaks)

46

General constructions: an “inner-outer” paradigm

𝑖! 𝑖" 𝑖#

𝑖!∗ 𝑖"∗ 𝑖#∗ 𝑖!∗ 𝑖"∗ 𝑖#∗ 𝑖!∗ 𝑖"∗ 𝑖#∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞# 𝑞! 𝑞" 𝑞# ∈ 𝒬

On any query indices

∈ [𝑛∗]

Use inner PIR for retrieve answers;
Inner PIR sub-queries are shuffled

A brief summary

Interpret as indices for inner PIR

𝑃!(0000) 𝑃!(1111)𝑃!(0001) …	 Size 𝑛∗ The server prepares this in advance

Outer PIR: Any 𝑘-server protocol (𝑘>2)

Inner PIR: The two-server
“additive PIR”

A single server!
47

General constructions: an “inner-outer” paradigm

Theorem (Informal).
On any database size 𝑛, the “inner-outer” construction with any outer PIR and the
two-server additive inner PIR, gives a single-server PIR in the shuffle model that
has 1/poly(𝑛) statistical security and 𝑂(𝑛) per-query communication, assuming
poly(𝑛) clients simultaneously accessing the database.

Corollary (Informal).
Using fancier inner PIR (“CNF PIR”), on any database size 𝑛, for every constant 𝛾,
there is a PIR construction that has
• Per-query communication and computation 𝑂 𝑛! ,
• Server storage 𝑂 𝑛$*! ,
assuming one-time preprocessing.

48

• Background
• The shuffle model
• “Split and mix”

• Our results
• General constructions
• Lower bound: the security we get in the general constructions is “tight”
• An interesting orthogonal problem: hiding record size without padding

• Discussion and open questions

Rest of this talk

49

• To deploy PIR in real-world applications…

PIR with variable-sized records

Database records in practiceDatabase entries of PIR in theory

Often assume the same
size, mostly 0, 1 &

They have
different lengths

To retrieve privately, it is necessary to hide record size

50

• Padding solves the problem: how about efficiency?

PIR with variable-sized records

Database records in practice

The discrepancy between the smallest and the largest record can be huge
Majority of the records are small
Most users access the small records much more often than the large records

Waste of server storage
(though can virtually store)

Features Client who retrieves the small record has to
pay the cost of retrieving the largest record

51

• In the “standard” model, there is no way out
• In the shuffle model: yes, we can
• No server storage overhead
• Client communication proportional to the length of the retrieved record
• Leak only the total size of all queried records

PIR with variable-sized records

52

• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database

𝑇 database records

53

• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record:
Make ℓ PIR queries,

each for one bit

𝑇 database records

54

• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record:
Make ℓ PIR queries,

each for one bit

𝑇 database records No server storage overhead

Communication is proportional to
the queried length instead of the

maximum length
55

• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record:
Make ℓ PIR queries,

each for one bit

𝑇 database records No server storage overhead

Communication is proportional to
the queried length instead of the

maximum length

Can we do better?
Yes, from ℓ PIR queries to polylogℓ	PIR queries

56

• Revisit the toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record:
Make ℓ PIR queries,

each for one bit

𝑇 database records Why not retrieve more bits
in each PIR query?

57

• Splitting records to the powers of two

PIR with variable-sized records

The 𝑛-bits concatenated database

Secure or not?
Deterministic splitting is not secure
(unless split down to 1)

58

Server (logically) preprare log 𝑛 databases:
the 𝑗-th database is partitioned to 2) 	bits per entry

• Splitting records to the powers of two

PIR with variable-sized records

Consider 5 1 1 1 v.s. 2 2 2 2

59

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

60

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

61

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

62

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

63

• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

The final blocks that the client will retrieve (using PIR)

64

• A complication of recursive splitting: fully split the highest log	𝐶 levels

PIR with variable-sized records

Consider 5 1 1 1 v.s. 2 2 2 2

With 1/2 probability, there will be a block

65

• A complication of recursive splitting: fully split the highest log	𝐶 levels

PIR with variable-sized records

Consider M-3 1 1 1 v.s. M/4 M/4 M/4 M/4

With 1/2 probability, there will be a block

66

• A complication of recursive splitting: fully split the highest log	𝐶 levels

PIR with variable-sized records

Consider M-3 1 1 1 v.s. M/4 M/4 M/4 M/4

67

As long as there are sufficient number
of blocks at this level

• Splitting records to the power of two

PIR with variable-sized records

= + +

The multi-set of record lengths
from all clients will not leak any

individual queried length

= +

The largest block ≥ maximum record size/2

68

• Background
• The shuffle model
• “Split and mix”

• Our results
• General constructions
• Lower bound: the security we get in the general constructions is “tight”
• An interesting orthogonal problem: hiding record size without padding

• Discussion and open questions

Rest of this talk

69

• Two-way anonymous channel
• A way given in DP literature: two or more non-colluding (network) servers

holds a permutation

Discussion

1. Easier to enforce
2. No storage overhead

70

Reflection on assumptions

• We want the minimum assumptions
• Yet, in order to gain something (e.g., efficiency), you have to make

assumptions
• Hardness assumptions
• Non-colluding assumptions

• Meanwhile, guaranteeing different assumptions does not requrie the
same amount of effort: system efforts, law efforts, etc.
• The likelihood of assumptions being compromised in real-world

scenarios may vary

71

• PIR in the shuffle model: where do we stand

Open questions

IKOS06

Based on a nonstandard
computational assumption

(for shuffling)

Target on differential
privacy (weaker notion)

RGI16, DRMK22 Our work

Statistical security,
but 1/poly(n)

Statistical security,
negligible?

Computational setting,
standard assumption?

Better parameters
(e.g., less #clients)

72

Negligible security 𝑂(1/𝑛"#$ %) with
slightly sublinear communication 𝑂(%

"#$ %
)

73

Backup slides

74

Proof idea for recursive splitting

16 8 4 2 1
Place the original length at the corresponding bin

75

• Randomized splitting: a recursive approach

Proof idea for recursive splitting

Place the original length at the corresponding bin

For each level:
 For each ball:
 Toss a coin and decide whether to split

16 8 4 2 1

16 8 4 2 1

76

• Randomized splitting: a recursive approach

Proof idea for recursive splitting

Place the original length at the corresponding bin

For each level:
 For each ball:
 Toss a coin and decide whether to split

16 8 4 2 1

16 8 4 2 1

Send PIR queries for each of these balls

77

• Tweaks to the recursive approach

Proof idea for recursive splitting

16 1 1 1 1 8 8 2 1 1

16 8 4 2 1 16 8 4 2 1

The resulting multi-set

Queried lengths

78

• Tweaks to the recursive approach

Proof idea for recursive splitting

M-4 1 1 1 1 M/5 M/5 ... M/5

M/2 M/4 M/8 …

The resulting multi-set

Queried lengths

Fully split for at least log 𝐶 levels

M/2 M/4 M/8 …

79

• Analysis: “Toy in the sand”

Proof idea for recursive splitting

M/2 M/4 M/8 …

The resulting multi-set

Fully split for at least log 𝐶 levels

…

As long as there are many balls at the “highest” level, then after the recursive
splitting, any configuration at the lower levels will be smoothed out

Configurations at the
lower levels

80

81

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation
• Step 1. A hammer for analysis: edit distance
• Step 2. Understand the histogram: outer PIR sub-queries, inner PIR

sub-queries, and the relation between them
• Step 3. “Toy in sand” problem: hiding the shape of the toy

82

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation

𝒬+,-. bins 𝒬-,-. bins

𝒬&'(): sub-query space of outer PIR 𝒬('(): sub-query space of inner PIR

83

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation
• Step 1. A hammer for analysis: edit distance
• Step 2. Understand the histogram: outer PIR sub-queries, inner PIR

sub-queries, and the relation between them
• Step 3. “Toy in sand” problem: hiding the shape of the toy

84

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation
• Step 1. A hammer for analysis: edit distance

85

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation
• Step 1. A hammer for analysis: edit distance

86

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation
• Step 1. A hammer for analysis: edit distance

87

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation
• Step 1. A hammer for analysis: edit distance
• Step 2. Understand the histogram: outer PIR sub-queries, inner PIR

sub-queries, and the relation between them
• Step 3. “Toy in sand” problem: hiding the shape of the toy

88

Proof idea for the inner-outer construction

• Step 2. Understand the histogram of outer PIR sub-queries

𝑖#$ 𝑖%$ 	 … 𝑖&$𝑖#	 𝑖% 	 … 𝑖&

𝒬+,-. bins 𝒬+,-. bins

Edit distance at most 𝐶

Edit distance
bounded by 𝐶

89

Proof idea for the inner-outer construction

• Step 2. inner PIR sub-queries resultant from outer PIR sub-queries

Resultant histograms after the 2-share

𝒬-,-. bins 𝒬-,-. bins

If edit distance is 𝛿

The 2-share histograms:
edit distance 𝛿

Plug in the previous result:

edit distance bounded by 𝐶
"
#

90

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation
• Step 1. A hammer for analysis: edit distance
• Step 2. Understand the histogram: the relation between outer PIR

sub-queries and inner PIR sub-queries
• Step 3. “Toy in sand” problem: hiding the shape of the toy

𝒟" 𝒟'

SD 𝒟" , 𝒟' ≤
#𝑏𝑖𝑛𝑠
#𝑏𝑎𝑙𝑙𝑠

91

Proof idea for the inner-outer construction

• Step 0. Understand shuffling: balls-and-bins formulation
• Step 1. A hammer for analysis: edit distance
• Step 2. Understand the histogram: the relation between outer PIR

sub-queries and inner PIR sub-queries
• Step 3. “Toy in sand” problem: hiding the shape of the toy

SD 𝒟" , 𝒟' ≤
#𝑏𝑖𝑛𝑠
#𝑏𝑎𝑙𝑙𝑠

=
𝑄
𝐶
	 ⇒ 	SD 𝒟,𝒟$ ≤ 𝐶

#
(⋅

𝑄
𝐶
=
𝑄
#
%

𝐶
#
(

Edit distance 𝐶
!

Let inner PIR sub-query
space be 𝑄

92

