

Single-Server Private Information Retrieval in the Shuffle Model

Yuval Ishai Mahimna Kelkar Daniel Lee Yiping Ma

1

Private Information Retrieval (PIR) [CGKS95, KO97]

Private Information Retrieval (PIR) [CGKS95, KO97]

Information-theoretic

Information-theoretic

• Secure against unbounded adversaries

Computational

• Secure against polynomial-time adversaries

Information-theoretic

• Secure against unbounded adversaries

Computational

• Secure against polynomial-time adversaries

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices

Managing multiple storage spots has high cost when databases are large

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices

Managing multiple storage spots has high cost when databases are large

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Expensive server cost because of cryptogaphic operations

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Expensive server cost because of cryptogaphic operations

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)
- Schemes with short query size enable efficient preprocessing => sublinear server computation

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Expensive server cost because of cryptogaphic operations
- Query size depends on the computational security parameter
 - No "trivial" solution for efficient preprocessing
 - Exists efficient preprocessing in non-trivial ways

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)
- Schemes with short query siz efficient preprocessing => su server computation

Computational

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Fynensive server cost hecause of

Existing single-server solutions with sublinear computation: Either require per-client preprocessing [CHK22]; or utilize strong assumptions + VBB obfuscations [BIPW17, CHR17]

• Exists efficient preprocessing in non-trivial ways

essing

Best of both worlds?

Information-theoretic

- Secure against unbounded adversaries
- Require database replication across multiple servers
- Enforce non-collusion amongst the database servers
- Efficient in practice (no cryptographic operations)
- Schemes with short query size enable efficient preprocessing => sublinear server computation

- Secure against polynomial-time adversaries
- No database replication, a single server suffices
- No need for non-colluding assumption on the database server
- Expensive server cost because of cryptogaphic operations
- Query size depends on the computational security parameter
 - No "trivial" solution for efficient preprocessing
 - Exists efficient preprocessing in non-trivial ways

Best of both worlds?

- Security must hold for even a single client
 "The standard model"
 The only way out—requires n bits communication
- New hope: relaxation by considering multiple clients

The shuffle model [IKOS06]

Component 1: Many clients make queries simultaneously Component 2: The queries are shuffled before reaching the server

- Security must hold for even a single client
 "The standard model"
 The only way out—requires n bits communication
- New hope: relaxation by considering multiple clients

- Security must hold for even a single client
 "The standard model"
 The only way out—requires n bits communication
- New hope: relaxation by considering multiple clients

This work: general constructions for single-server PIR in the shuffle model that has information-theoretic security and sublinear communication

- Security must hold for even a single client
 "The standard model"
 The only way out—requires n bits communication
- New hope: relaxation by considering multiple clients

Theorem (Informal).

For every $\gamma > 0$, there is a single-server PIR in the shuffle model such that, on database size n, has $O(n^{\gamma})$ per-query communication and 1/poly(n) statistical security, assuming poly(n) clients simultaneously accessing the database. If further assuming one-time preprocessing, per-query computation is also $O(n^{\gamma})$.

Throughout this talk, we omit polylog *n* factors.

- Security must hold for even a single client
 "The standard model"
 The only way out—requires n bits communication
- New hope: relaxation by considering multiple clients

Theorem (Informal).

For every $\gamma > 0$, there is a single-server PIR in the shuffle model such that, on database size n, has $O(n^{\gamma})$ per-query communication and 1/poly(n) statistical security, assuming poly(n) clients simultaneously accessing the database. If further assuming one-time preprocessing, per-query computation is also $O(n^{\gamma})$.

Throughout this talk, we omit polylog *n* factors.

Rest of this talk

Background

- The shuffle model
- "Split and mix"

• Our results

- General constructions
- Lower bound: the security we get in the general constructions is "tight"
- An interesting orthogonal problem: hiding record size without padding
- Discussion and open questions

- Purpose: anonymization
- An existing notion in many literatures
 - Anonymous communication, e.g., [HLZZ15]
 - Differential privacy, e.g., [BBGN20]
 - Secure aggregation, e.g., [IKOS06]
- In our setting:

• Purpose: anonymization

- An existing notion in many literatures
 - Anonymous communication, e.g., [HLZZ15]
 - Differential privacy, e.g., [BBGN20]
 - Secure aggregation, e.g., [IKOS06]
- In our setting:

- Purpose: anonymization
- An existing notion in many literatures
 - Anonymous communication, e.g., [HLZZ15]
 - Differential privacy, e.g., [BBGN20]
 - Secure aggregation, e.g., [IKOS06]
- In our setting:

- Purpose: anonymization
- An existing notion in many literatures
 - Anonymous communication, e.g., [HLZZ15]
 - Differential privacy, e.g., [BBGN20]
 - Secure aggregation, e.g., [IKOS06]
- In our setting:

- Purpose: anonymization
- An existing notion in many literatures
 - Anonymous communication, e.g., [HLZZ15]
 - Differential privacy, e.g., [BBGN20]
 - Secure aggregation, e.g., [IKOS06]

• In our setting:

- Purpose: anonymization
- An existing notion in many literatures
 - Anonymous communication, e.g., [HLZZ15]
 - Differential privacy, e.g., [BBGN20]
 - Secure aggregation, e.g., [IKOS06]
- In our setting:

assume a two-way anonymous channel

Strong assumption?

- Purpose: anonymization
- An existing notion in many literatures
 - Anonymous communication, e.g., [HLZZ15]
 - Differential privacy, e.g., [BBGN20]
 - Secure aggregation, e.g., [IKOS06]
- In our setting: assume a <u>two-way</u> anonymous channel
- Instantiation: stay tuned for discussion!

• Anonymization does not trivialize the PIR problem!

• Anonymization does not trivialize the PIR problem!

Privacy from anonymity [IKOS06]: Secure sum from "<u>split</u> and mix"

• Privacy from anonymity [IKOS06]: Secure sum from "split and mix"

• Privacy from anonymity [IKOS06]: Secure sum from "split and mix"

Privacy from anonymity [IKOS06]: Secure sum from "split and mix"

Split and mix in PIR

Privacy from anonymity [IKOS06]: "split and mix"

A two-server "additive PIR" [BIK04]

• A construction from the two-server "additive PIR"

Only learns the sum of all sub-queries but nothing else

Similar attack also generalizes to \mathbb{Z}_p

• 2-share is not enough to provide privacy: a simple example in \mathbb{Z}_2

• Can we do more share? Yes, but worse efficiency:

The k-server "additive PIR" gives communication $O(n^{\frac{k-1}{k}})$

Our technique:

Randomize the query index for the "additive PIR" using an outer layer of PIR

Recall the problem

When $i_1, i_2, ..., i_c$ and $i'_1, i'_2, ..., i'_c$ are far apart, e.g., 1 1 1 1 1 1 1 v.s. 2 2 2 2 2 2

 $View(i_1, i_2, ..., i_C)$ and $View(i'_1, i'_2, ..., i'_C)$ are also far apart

General constructions: an "inner-outer" paradigm i₃ i_1 i_2 $\in [n]$ Given any set of query indices (⋧ Learns nothing (except the sum) Our construction technique A step forward If we can make $i_1, i_2, ..., i_c$ and $i'_1, i'_2, ..., i'_c$ closer, e.g., **12344** v.s. **12345** Would $View(i_1, i_2, \dots, i_C)$ and $View(i'_1, i'_2, \dots, i'_C)$ be close? Our proof technique

General constructions: an "inner-outer" paradigmHow to randomize the indices? i_1 i_2 i_3 $\in [n]$

An important observation

"Outer PIR"

Consider PIR query algorithm: $(q_1, q_2, q_3) \leftarrow Query(i; r)$

Let Q be the space that consists of all possible sub-queries

For any given $i \in [n]$, each sub-query q is uniformly random over Q

Theorem (Informal).

On any database size n, the "inner-outer" construction with any outer PIR and the two-server additive inner PIR, gives a single-server PIR in the shuffle model that has 1/poly(n) statistical security and $O(\sqrt{n})$ per-query communication, assuming poly(n) clients simultaneously accessing the database.

Corollary (Informal).

Using fancier inner PIR ("CNF PIR"), on any database size n, for every constant γ ,

there is a PIR construction that has

- Per-query communication and computation $O(n^{\gamma})$,
- Server storage $O(n^{1+\gamma})$,

assuming one-time preprocessing.

Rest of this talk

- Background
 - The shuffle model
 - "Split and mix"
- Our results
 - General constructions
 - Lower bound: the security we get in the general constructions is "tight"
 - An interesting orthogonal problem: hiding record size without padding
- Discussion and open questions

• To deploy PIR in real-world applications...

• To deploy PIR in real-world applications...

Database entries of PIR in theory

Database records in practice

To retrieve privately, it is necessary to hide record size

• Padding solves the problem: how about efficiency?

- In the "standard" model, there is no way out
- In the shuffle model: yes, we can
 - No server storage overhead
 - Client communication proportional to the length of the retrieved record
 - Leak only the total size of all queried records

• A toy protocol

• A toy protocol

A toy protocol

• Splitting records to the powers of two

The *n*-bits concatenated database

Secure or not?

Deterministic splitting is not secure (unless split down to 1)

Server (logically) preprare $\log n$ databases: the *j*-th database is partitioned to 2^j bits per entry

• Splitting records to the powers of two

• A complication of recursive splitting: fully split the highest log C levels

• A complication of recursive splitting: fully split the highest log C levels

• A complication of recursive splitting: fully split the highest log C levels

• Splitting records to the power of two

The largest block \geq maximum record size/2

The multi-set of record lengths from all clients will not leak any individual queried length

Rest of this talk

- Background
 - The shuffle model
 - "Split and mix"
- Our results
 - General constructions
 - Lower bound: the security we get in the general constructions is "tight"
 - An interesting orthogonal problem: hiding record size without padding
- Discussion and open questions

Discussion

- Two-way anonymous channel
 - A way given in DP literature: two or more non-colluding (network) servers holds a permutation

 A I. Easier to enforce 2. No storage overhead

Discussion

- We want minimum assumptions
- Yet, in order to gain something (e.g., efficiency), you have to make assumptions, e.g.,
 - Hardness assumptions
 - Non-colluding assumptions
- Meanwhile, guaranteeing different assumptions does not require the same amount of effort: system efforts, law efforts, etc.
- The likelihood of assumptions being compromised in real-world scenarios may vary

Open questions

• PIR in the shuffle model: where do we stand

Open questions

• PIR in the shuffle model: where do we stand

Backup slides

Place the original length at the corresponding bin

• Randomized splitting: a recursive approach

Place the original length at the corresponding bin For each level: For each ball: Toss a coin and decide whether to split

• Randomized splitting: a recursive approach

Place the original length at the corresponding bin For each level: For each ball: Toss a coin and decide whether to split

Send PIR queries for each of these balls

Are we done?

• Tweaks to the recursive approach

• Tweaks to the recursive approach

M/5

...

M/8

•••

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: outer PIR sub-queries, inner PIR sub-queries, and the relation between them
- Step 3. "Toy in sand" problem: hiding the shape of the toy

• Step 0. Understand shuffling: balls-and-bins formulation

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: outer PIR sub-queries, inner PIR sub-queries, and the relation between them
- Step 3. "Toy in sand" problem: hiding the shape of the toy

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: outer PIR sub-queries, inner PIR sub-queries, and the relation between them
- Step 3. "Toy in sand" problem: hiding the shape of the toy

• Step 2. Understand the histogram of outer PIR sub-queries

• Step 2. inner PIR sub-queries resultant from outer PIR sub-queries

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: the relation between outer PIR sub-queries and inner PIR sub-queries
- Step 3. "Toy in sand" problem: hiding the shape of the toy

- Step 0. Understand shuffling: balls-and-bins formulation
- Step 1. A hammer for analysis: edit distance
- Step 2. Understand the histogram: the relation between outer PIR sub-queries and inner PIR sub-queries

94