CBPV + effects
CBPV + coeftfects

Stephanie Weirich

joint work with Cassia Torczon, Emmanuel Sudrez Acevedo, Shubh Agrawal and Joey Velez-Ginorio

March 25, 2024

Modal type
distinction
Tis a monad

Graded modality
¢ ¢ is amonad

Type-and-effect
system grades
"ambient”
computational
monad

pure code

effectful code

TA

o A

A

linear context nonlinear context

Modal type ° ' A
distinction - X o e
!is acomonad

A

Graded modal type
O, is acomonad

Type-and-coeffect
system grades "ambient"”
comonad

annotations in typing
context

N A

What is this talk about?

1. Extending CBPV's type system with effect tracking
2. Extending CBPV's type system with coeffect tracking
3. Extending CBPV's type system with effect and coeffect tracking (1 slide)

Why CBPV?

What is this talk about?

1. Extending CBPV's type system with effect tracking
2. Extending CBPV's type system with coeffect tracking
3. Extending CBPV's type system with effect and coeffect tracking (1 slide)

Why CBPV?

Effects and Coeffects can be tracked in types using graded monads and comonads.
But this requires us to isolate effects and coeffects in dedicated structures.

What is this talk about?

1. Extending CBPV's type system with effect tracking
2. Extending CBPV's type system with coeffect tracking
3. Extending CBPV's type system with effect and coeffect tracking (1 slide)

Why CBPV?

Effects and Coeffects can be tracked in types using graded monads and comonads.
But this requires us to isolate effects and coeffects in dedicated structures.

But, CBPV already makes the ambient monad and comonad explicit. We just need to
grade it!

What is this talk about?

1. Extending CBPV's type system with effect tracking
2. Extending CBPV's type system with coeffect tracking
3. Extending CBPV's type system with effect and coeffect tracking (1 slide)

Why CBPV?

Effects and Coeffects can be tracked in types using graded monads and comonads.
But this requires us to isolate effects and coeffects in dedicated structures.

But, CBPV already makes the ambient monad and comonad explicit. We just need to
grade it!

And, CBPV is a polarized type system: we can observe the duality between effects and
coeffects, and understand their interactions with evaluation order.

We can track effects with types

Ihepe:®r

An effect annotation ¢ tells us what happens when e is evaluated.

For example,

+ To track running time, ¢ is natural number that counts executions of an effectful
“tick” term.

We can track effects with types

Ihepe:®r

An effect annotation ¢ tells us what happens when e is evaluated.
For example,

+ To track running time, ¢ is natural number that counts executions of an effectful
“tick” term.

+ With algebraic effects, ¢ is the set of operations triggered during computation.

We can track effects with types

Ihepe:®r

An effect annotation ¢ tells us what happens when e is evaluated.

For example,

+ To track running time, ¢ is natural number that counts executions of an effectful
“tick” term.

+ With algebraic effects, ¢ is the set of operations triggered during computation.

+ To precisely trace logging or other outputs, ¢ is a list of strings.

We can track effects with types

Ihepe:®r
lam-eff-abs
lam-eff- ‘
lam-eff-unit a)rcn :eT vgr r I''x:n Feﬁc e’ 1,
I'Fefr () - unit Ieggx 7 e Axe " 1 A To
lam-eff-app & lam-eff-sub
[e eq hrn B, FFeﬁce:¢1 T ‘
r l_eﬂ e, P2 7_1 (/)1 §eﬁf ¢2 lam-eff-tick
[hopene %% g Dhege:® T [b tick - unit

To track effects throughout the computation, need a pre-ordered monoid.

[Lucassen and Gifford 1988, Katsumata 2014]

We can track effects with types

Ihepe:®r
lam-eff-abs
lam-eff- ;
lam-eff-unit a)rcn :eT vgr r I''x:n Feﬁc e’ 1,
I'Fefr () - unit Ieggx 7 e Axe " 1 A To
lam-eff-app & lam-eff-sub
[Fere P 3, erﬁce;‘?lq— ‘
r l_eﬂ e, P2 7_1 (/)1 §eﬁf ¢2 lam-eff-tick
[hopene %% g Dhege:® T [b tick - unit

To track effects throughout the computation, need a pre-ordered monoid.

These rules are specific to a call-by-value semantics.

[Lucassen and Gifford 1988, Katsumata 2014]

We can track effects with types

Ihepe:®r
lam-eff-abs
lam-eff- .
lam-eff-unit a)r(n :eT vgr r I''x:n Feﬁc e’ 1,
T For () = unit Thyx: T Tk ice:n 57
lam-eff-app & lam-eff-sub
[e eq hrn B, FFeﬁce:¢1 T ‘
T l_eﬂ e, P2 7_1 (/)1 §e_ﬁf Cbz lam-eff-tick
[hopene %% g Dhege:® T [b tick - unit

To track effects throughout the computation, need a pre-ordered monoid.
These rules are specific to a call-by-value semantics.

If we had a call-by-name semantics, we would need different rules. (And different
types!)
[Lucassen and Gifford 1988, Katsumata 2014]

CBPV

CBPV is designed to model effects and subsume both CBV and CBN evaluation.

I'FV:A| [TFM:B]

CBPV is polarized: separate positive and negative types.

(value type) A == unit|UB
(value) V = x|(0|{M}
(computationtype) B 1= A — B|FA
(computation) M = MM|MV|W

| returnV|x+ MinN

The type constructors U and F form an adjunction between values and computations.

« UFAisamonad
+ FUB s acomonad

CBPV + effect tracking

Let's extend the CBPV type system to track effects.

ThyV:A| |THyM % B

We'll record latent effects in the thunk type as U, B.

(value type) A == unit|U,B
(value) vV = x|{M}
(computationtype) B 1= A — B|FA
(computation) M = MM|MV|WV

| returnV|x+«+ MinN

CBPV + effect tracking

Let's extend the CBPV type system to track effects.

ThyV:A| |THyM % B

We'll record latent effects in the thunk type as U, B.

(value type) A == unit|UyB
(value) vV = x|{M}
(computationtype) B 1= A — B|FA
(computation) M = MM|MV|WV

| returnV|x <+« MinN|tick

and add example effect: tick.

eff-tick

I Fogtick " Funit

CBPV with effect tracking
(value effect typing)

eff-var eff-thunk

x:AecT T "eﬁ‘M ¢ B eff-unit
FFeﬁX:A FFeﬁv{M}:U@B I‘Feﬁc():unit
ey M % B (computation effect typing)
eff-app
eff-abs by M " A— B eff-force

I'.x:AblgM :* B Dy VA [ty V:Uy B
[her M A~ B [y MV :° B Thg VI B
eff-letin eff-sub “

eff-ret ey M h FA T For M :@:n B
Mbep VA I'x:AbFgeN :” B b1 Zeff P2

I'tgreturnV ° FA TIhgx« MinN 2% B ThpM > B

[Kammar and Plotkin 2012, Kammar, Lindley, Oury 2013]

Effect soundness

Key result of type system is effect soundness: the type system bounds effects that
could occur at runtime.

Big-step operational semantics: ‘ pltegM | T# ¢ |counts ticks while evaluating

computation M to terminal T.

Theorem
IfO oM :* FAand () b-o M || return W# ¢/ then ¢/ <, ¢.

Proof.
Uses logical relations.

What about coeffects?

Coeffects track how input values contribute to the output result.

+ Bounded linear types

+ Whether functions use their arguments

« Differential privacy (how sensitive are function outputs to their inputs)
* Whether functions are monotonic

+ Information-flow

(Technically, these are examples of structured coeffects.)

What about coeffects?

Coeffects track how input values contribute to the output result.

+ Bounded linear types

+ Whether functions use their arguments

« Differential privacy (how sensitive are function outputs to their inputs)
* Whether functions are monotonic

+ Information-flow

(Technically, these are examples of structured coeffects.)

We mark variables in the context with coeffects g (short for quantity).

Coeffect examples

+ For bounded linear types, we can use natural numbers.

x:tint,y?int,z:% int Fepx + (v +y) - int

Coeffect examples
+ For bounded linear types, we can use natural numbers.
x:tint,y?int,z:% int Fepx + (v +y) - int

+ For relevance analysis, 0 marks arguments that are not used and w marks
arguments that may be used.

x:¥int,y:“ int,z % int Feoefr X+ (v +y) - int

Coeffect examples

+ For bounded linear types, we can use natural numbers.
x:tint,y?int,z:% int Fepx + (v +y) - int

+ For relevance analysis, 0 marks arguments that are not used and w marks
arguments that may be used.

x:¥int,y:“ int,z % int Feoefr X+ (v +y) - int

+ For data flow caching, we want to provide access to prior values during streaming
computation.

x:'int,y 0 int b (prevx) +x+y: int

We can use natural numbers that track how many previous values are required.

We can track coeffects with types

Context comes with a list of coeffects for every variable.

vu=2|7,q
We use notation to extend both at once:

W'Fax:q T = (’Y,q)'(F,XIT)

VI Feoere s T

lam-coeff-abs
lam-coeff-var

v (x 1) Fegegr €2 T

0-Ty,x:' 7,015 Fepegrx: 7 YT Feoep AX.€ 07 — T2
lam-coeff-app lam-coeff-sub
71T Fcoe]j‘el DT = T 71T Fcoeﬁ‘e:T
Yol Feoef€2:T Y=71+G 72 Y2 <co V1
v-T l_coeﬁelez * T2 V2T Fcoeﬁ‘e:T

This is for a call-by-name language [Abel and Bernardy 2020, Choudhury et al. 2021].

We can track coeffects with types

Context comes with a list of coeffects for every variable.

vu=2|7,q
We use notation to extend both at once:

W'Fax:q T = (’Y,q)'(F,XIT)

VI Feoere s T

lam-coeff-abs
lam-coeff-var

v (x 1) Fegegr €2 T

0-Ty,x:' 7,015 Fepegrx: 7 YT Feoep AX.€ 07 — T2
lam-coeff-appv lam-coeff-sub
¥ I Fcoeﬁcel =T Y- I Fcoeﬁ‘ei T
Y2 T }_coeﬁ‘ez T Y=1+(@A1-72) Y2 <co M1
v-I l_coeﬁelez t T2 VoI l_coeﬁ‘e: T

Call-by-value language forces usage in application rule [Gavazzo 2018].

CBPV with coeffects

coeff-thunk
YT Feoo M : B

0T,,x:'A,0T, Feoeff X 1 A 0-T Fepefr () : unit YT Feoer {M} : UB

coeff-var coeff-unit

VT Feoer M : B (Computation typing)
coeff-app
Y11 Feoer M : AT — B
coeff-abs Y2 T Fcoeﬂ VA coeff-force
’V'F»X:qA}_coeﬁ‘M:B Y=71+(q72) VI Feoer V:UB
YT Feoer AXI.M : A” — B VI Feoer MV : B YT Feoer VI 2 B
coeff-letin-v
.- "cogﬂMi F, A
coeff-ret Yol x "% Aboer N : B
VT Feoer V: A T=(G-7)+72 ga=ga A1
q- 7T Feegreturn, V: F, A YT Feper X <" MinN : B

(+subrules)

Coeffect soundness

To show coeffect soundness, we define an environment-based operational semantics
that counts uses of variables.

‘ vP Fcoeﬂ Vi W‘ (Value rules)
eval-coeff-val-var eval-coeff-val-unit
01-p1, x ! W, 0z-ps Fcoeﬁ‘xll w 0-p FcoeﬁC 040

eval-coeff-val-vsub
V1P Fcoeﬁ‘Vl} w
Yo <co M1

Yp l_coeﬁ‘ {M} U CIO('Y'/)’ {M}) Y2 p Fcoeﬁ’ viw

eval-coeff-val-thunk

Lemma (Coeffect soundness)
1. YT oo Vi Athen y-p Feoer VI W.
2. Uf I Feger M = Bthen y-p Fepesr M L T.

A strange semantics?

Although sound, this semantics doesn’t model resource usage.

‘ YP Feoer M T‘ (Computation rules)

eval-coeff-comp-app-abs
V1P FcoeﬁchL 010(7/’P/7)‘Xq'M/)
Y2 p l_coeffvu w
vep', x = Wheoep M L T
Y=Y TG 72
¥+ P Feoeff Ax.M | clo(y-p, Ax*.M) VP Feogr MV T

eval-coeff-comp-abs

Application rule “invents” resources when q is zero!

A strange semantics?

Although sound, this semantics doesn’t model resource usage.

‘ YP Feoer M T‘ (Computation rules)

eval-coeff-comp-app-abs
V1P FcoeﬁchL 010(7/’P/7)‘Xq'M/)
Y2 p l_coeffvu w
vep', x = Wheoep M L T
Y=Y TG 72
¥+ P Feoeff Ax.M | clo(y-p, Ax*.M) VP Feogr MV T

eval-coeff-comp-abs

Application rule “invents” resources when q is zero!

We can type this judgement, which says that x does not contribute to the final result.

x " A Foperr (Y .return () x : Funit

Resource accounting semantics

Can discard unused values, without accounting for their resources

"7'p I_coeﬁfMU' T‘
eval-lin-comp-app-abs
v1-p Fiin M L elo(y'-p', Ax9.M")
Yo p Fiin VI W
(), (= W) by ML T
Y=71+G 72
g7 0
Ypin MV YT

eval-lin-comp-return
Vot VIW
y=q-9" q#0
7-p i return, V || return, W

(Computation rules)

eval-lin-comp-app-abs-zero
Yop i ML elo(v'-p', . M)
(), (x>0 §) b M LT
Y-pFin MV T

eval-lin-comp-ret-zero

0-p F4p returng V || returng 4

Cannot discard effectful computations

‘ TP Fcoeﬁ‘M I T‘ (Computation rules)

eval-lin-comp-letin-ret
Y1i:pP }_lin M ll returanW
Yorp X% Wy N4 T
VT=Go Mt e
Gy = g2 N1
vy primx+MinN| T

Combined effects and co-effects

Can discard computations that are pure.

Let's track effects and coeffects together.

‘ T g M :? B‘ (Typing rule)

full-letin-zero .
71'1_‘ l_full Ml - Flh A
Yo T, x:* Abpy M, :* B

Yo T b x <° My in M, :° B

YoM T#¢ (Evaluation rule)

eval-full-comp-letin-zero
yop, X ey NI T#¢
Ypbapx " MinN | T#¢

Summary

Augmented CBPV with effect and coeffect tracking.

Effects describe computations, so annotate thunk type U, B.
Coeffects describe values, so annotate returner type F, A

+ Uy FAis a graded monad in the value language.

F, UBis a graded comonad in the computation language.

+ Showed effect and coeffect soundness, even in the presence of a semantics that
tracks resource usage.

* Inthe paper: Standard CBV and CBN translations are type, effect, coeffect
preserving.

Explains restrictions found in some CBV coeffect type systems. (CBN translation
does not require the use of “letin”.)

+ Proofs mechanized in Coq.

CBYV Translation (Effects!)

We can translate type-and-effect CBV to effect-tracking CBPV. The standard
translation just works.

[[uni‘t]]v = unit
[57l =Us (Inl = Flrl)

[0 — return ()
[= returnx

[Mx.e], = return {\x.[e],}

[eies], =X+ [e] iny < [e,],inx!y
[tick], = tick

Theorem (Translation preserves types-and-effects)
IfT boge:? 7 then [I'], o [e]y :* F 7]\

CBN translation (Graded Monads!)

We can also use the CBN translation for a source language with graded monads.

However, while U F A is a monad in CBPV, it is awkward to access.

Theorem (Translation preserves types)
IfT Fmon € : T then [I'], Fegr [€]n = [7]n

CBN translation (Graded Monads!)

We can also use the CBN translation for a source language with graded monads.

However, while U F A is a monad in CBPV, it is awkward to access.

[Ty 7]n =FU, FU. [7],

Theorem (Translation preserves types)
IfT Fmon € : T then [I'], Fegr [€]n = [7]n

CBN translation (Graded Monads!)

We can also use the CBN translation for a source language with graded monads.

However, while U F A is a monad in CBPV, it is awkward to access.

[Ty 7]n =FU, FU. [7],

[returne], = return {return {[e].}}

Theorem (Translation preserves types)
IfT Fmon € : T then [I'], Fegr [€]n = [7]n

CBN translation (Graded Monads!)

We can also use the CBN translation for a source language with graded monads.

However, while U F A is a monad in CBPV, it is awkward to access.

[Ty 7]n =FU, FU. [7],
[returne], = return {return {[e].}}
[bindx = e,;ine,], =return{y « [e,],inx <« ylinz + [e,],inz!}

Theorem (Translation preserves types)
IfT Fmon € : T then [I'], Fegr [€]n = [7]n

CBN translation (Graded Monads!)

We can also use the CBN translation for a source language with graded monads.

However, while U F A is a monad in CBPV, it is awkward to access.

[Ty 7]n =FU, FU. [7],

[returne], = return {return {[e].}}

[bindx = e,;ine,], =return{y « [e,],inx <« ylinz + [e,],inz!}
[tick], = return {x + tickinreturn {returnx}}

Theorem (Translation preserves types)
IfT Fmon € : T then [I'], Fegr [€]n = [7]n

CBN translation (coeffects!)

Standard translation of CBN to CBPV just works.

[unit], = F; unit
[= mla = (U[n])? = [l

[T,x:7]n =[I]n,x:U[r],

[O]x = return; ()
[x]n =x!
[M\x.e], = \x.[e]n

le ex]n = [ed]n {[e2]n}

Theorem (Translation preserves types and coeffects)
Ify-T Feoepr e : 7 then v-[L]n Feoepr [€]n : [7]n

Interlude: Two kinds of products

CBPV has two forms of products: pairs of values and pairs of computations. The
former are eliminated with pattern matching and the latter by projection.

Linear logic has two forms of conjunction: additive & (aka with) and multiplicative
products ® (aka tensor).

The former shares resources during construction, the latter does not.

coeff-split
coeff-pair V1T Feoefr Vi Ay X Ay
V1T Feoefr Vi 1 Ay Yo', x1 (9 Ay, X 17 A Feper N : B
2T l_coeﬂvz (A Y= ((7"71)4'72

Y14+ Y2 T Feoefr (Vi, Vo) 1 Ay X A 7T Feoefr case, Vof (x,x.) — N:B

coeff-cpair
v-T '_coeﬁ M, : B, coeff-fst
VI Feoer Mo : Ba V1 Feoer M : By & B

v-T }_coeﬂ <M1>M2> : B; & B> v I_coeﬁf-lw-l : By

Interlude: Four kinds of products

But it doesn't have to be this way.
Can have “with” products in the value language, eliminated by projection.

coeff-vwith

7T }_coeﬁ Vi:A coeff-vfst

VI Feoefr Va 1 Aa VI Feoer Vi AL & Ao
v-T Fcoeﬂ" (V,Va) 1 A & A v-T l_coeff Vi1:A

Can have tensor products in the computation language, eliminated by pattern
matching.

coeff-csplit
coeff-ctensor Y1 Feoesr M : By X By
V1T Feoefr My = By Yo', x; " UBy ,x, ;7 UB, Feoeff N = B
72'F'_coejj‘MziBz Y=q-71+72

Y14+ Y2 T Fegep (M1, M) : By x By T Fepefr case, M of (x;,x.) — N:B

	Effects

