
CBPV + effects
CBPV + coeffects
Stephanie Weirich

joint work with Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal and Joey Velez-Ginorio

March 25, 2024

What is this talk about?
1. Extending CBPV’s type system with effect tracking

2. Extending CBPV’s type system with coeffect tracking

3. Extending CBPV’s type system with effect and coeffect tracking (1 slide)

Why CBPV?

Effects and Coeffects can be tracked in types using graded monads and comonads.
But this requires us to isolate effects and coeffects in dedicated structures.

But, CBPV already makes the ambient monad and comonad explicit. We just need to
grade it!

And, CBPV is a polarized type system: we can observe the duality between effects and
coeffects, and understand their interactions with evaluation order.

What is this talk about?
1. Extending CBPV’s type system with effect tracking

2. Extending CBPV’s type system with coeffect tracking

3. Extending CBPV’s type system with effect and coeffect tracking (1 slide)

Why CBPV?

Effects and Coeffects can be tracked in types using graded monads and comonads.
But this requires us to isolate effects and coeffects in dedicated structures.

But, CBPV already makes the ambient monad and comonad explicit. We just need to
grade it!

And, CBPV is a polarized type system: we can observe the duality between effects and
coeffects, and understand their interactions with evaluation order.

What is this talk about?
1. Extending CBPV’s type system with effect tracking

2. Extending CBPV’s type system with coeffect tracking

3. Extending CBPV’s type system with effect and coeffect tracking (1 slide)

Why CBPV?

Effects and Coeffects can be tracked in types using graded monads and comonads.
But this requires us to isolate effects and coeffects in dedicated structures.

But, CBPV already makes the ambient monad and comonad explicit. We just need to
grade it!

And, CBPV is a polarized type system: we can observe the duality between effects and
coeffects, and understand their interactions with evaluation order.

What is this talk about?
1. Extending CBPV’s type system with effect tracking

2. Extending CBPV’s type system with coeffect tracking

3. Extending CBPV’s type system with effect and coeffect tracking (1 slide)

Why CBPV?

Effects and Coeffects can be tracked in types using graded monads and comonads.
But this requires us to isolate effects and coeffects in dedicated structures.

But, CBPV already makes the ambient monad and comonad explicit. We just need to
grade it!

And, CBPV is a polarized type system: we can observe the duality between effects and
coeffects, and understand their interactions with evaluation order.

We can track effects with types
Γ `eff e :ϕ τ

An effect annotation ϕ tells us what happens when e is evaluated.

For example,

• To track running time, ϕ is natural number that counts executions of an effectful
“tick” term.

• With algebraic effects, ϕ is the set of operations triggered during computation.

• To precisely trace logging or other outputs, ϕ is a list of strings.

We can track effects with types
Γ `eff e :ϕ τ

An effect annotation ϕ tells us what happens when e is evaluated.

For example,

• To track running time, ϕ is natural number that counts executions of an effectful
“tick” term.

• With algebraic effects, ϕ is the set of operations triggered during computation.

• To precisely trace logging or other outputs, ϕ is a list of strings.

We can track effects with types
Γ `eff e :ϕ τ

An effect annotation ϕ tells us what happens when e is evaluated.

For example,

• To track running time, ϕ is natural number that counts executions of an effectful
“tick” term.

• With algebraic effects, ϕ is the set of operations triggered during computation.

• To precisely trace logging or other outputs, ϕ is a list of strings.

We can track effects with types
Γ `eff e :ϕ τ

lam-eff-unit

Γ `eff () :ε unit

lam-eff-var
x : τ ∈ Γ

Γ `eff x :ε τ

lam-eff-abs
Γ , x : τ1 `eff e :ϕ τ2

Γ `eff λx.e :ε τ1
ϕ→ τ2

lam-eff-app

Γ `eff e1 :ϕ1 τ1
ϕ3→ τ2

Γ `eff e2 :ϕ2 τ1

Γ `eff e1 e2 :ϕ1·ϕ2·ϕ3 τ2

lam-eff-sub
Γ `eff e :ϕ1 τ
ϕ1 ≤eff ϕ2

Γ `eff e :ϕ2 τ

lam-eff-tick

Γ `eff tick :Tick unit
To track effects throughout the computation, need a pre-ordered monoid.

These rules are specific to a call-by-value semantics.

If we had a call-by-name semantics, we would need different rules. (And different
types!)

[Lucassen and Gifford 1988, Katsumata 2014]

We can track effects with types
Γ `eff e :ϕ τ

lam-eff-unit

Γ `eff () :ε unit

lam-eff-var
x : τ ∈ Γ

Γ `eff x :ε τ

lam-eff-abs
Γ , x : τ1 `eff e :ϕ τ2

Γ `eff λx.e :ε τ1
ϕ→ τ2

lam-eff-app

Γ `eff e1 :ϕ1 τ1
ϕ3→ τ2

Γ `eff e2 :ϕ2 τ1

Γ `eff e1 e2 :ϕ1·ϕ2·ϕ3 τ2

lam-eff-sub
Γ `eff e :ϕ1 τ
ϕ1 ≤eff ϕ2

Γ `eff e :ϕ2 τ

lam-eff-tick

Γ `eff tick :Tick unit
To track effects throughout the computation, need a pre-ordered monoid.

These rules are specific to a call-by-value semantics.

If we had a call-by-name semantics, we would need different rules. (And different
types!)

[Lucassen and Gifford 1988, Katsumata 2014]

We can track effects with types
Γ `eff e :ϕ τ

lam-eff-unit

Γ `eff () :ε unit

lam-eff-var
x : τ ∈ Γ

Γ `eff x :ε τ

lam-eff-abs
Γ , x : τ1 `eff e :ϕ τ2

Γ `eff λx.e :ε τ1
ϕ→ τ2

lam-eff-app

Γ `eff e1 :ϕ1 τ1
ϕ3→ τ2

Γ `eff e2 :ϕ2 τ1

Γ `eff e1 e2 :ϕ1·ϕ2·ϕ3 τ2

lam-eff-sub
Γ `eff e :ϕ1 τ
ϕ1 ≤eff ϕ2

Γ `eff e :ϕ2 τ

lam-eff-tick

Γ `eff tick :Tick unit
To track effects throughout the computation, need a pre-ordered monoid.

These rules are specific to a call-by-value semantics.

If we had a call-by-name semantics, we would need different rules. (And different
types!)
[Lucassen and Gifford 1988, Katsumata 2014]

CBPV
CBPV is designed to model effects and subsume both CBV and CBN evaluation.

Γ ` V : A Γ `M : B
CBPV is polarized: separate positive and negative types.

(value type) A ::= unit |UB
(value) V ::= x | () | {M}

(computation type) B ::= A→ B | FA
(computation) M ::= λx.M |MV | V!

| returnV | x←M inN

The type constructorsU and F form an adjunction between values and computations.

• UFA is a monad
• FUB is a comonad

CBPV + effect tracking
Let’s extend the CBPV type system to track effects.

Γ `eff V : A Γ `eff M :ϕ B

We’ll record latent effects in the thunk type asUϕ B.

(value type) A ::= unit |Uϕ B
(value) V ::= x | {M}

(computation type) B ::= A→ B | FA
(computation) M ::= λx.M |MV | V!

| returnV | x←M inN

| tick
and add example effect: tick.

eff-tick

Γ `eff tick :Tick Funit

CBPV + effect tracking
Let’s extend the CBPV type system to track effects.

Γ `eff V : A Γ `eff M :ϕ B

We’ll record latent effects in the thunk type asUϕ B.

(value type) A ::= unit |Uϕ B
(value) V ::= x | {M}

(computation type) B ::= A→ B | FA
(computation) M ::= λx.M |MV | V!

| returnV | x←M inN | tick
and add example effect: tick.

eff-tick

Γ `eff tick :Tick Funit

CBPV with effect tracking
Γ `eff V : A (value effect typing)

eff-var
x : A ∈ Γ

Γ `eff x : A

eff-thunk
Γ `eff M :ϕ B

Γ `eff {M} : Uϕ B

eff-unit

Γ `eff () : unit

Γ `eff M :ϕ B (computation effect typing)

eff-abs
Γ , x : A `eff M :ϕ B
Γ `eff λx.M :ϕ A→ B

eff-app

Γ `eff M :ϕ A→ B
Γ `eff V : A

Γ `eff MV :ϕ B

eff-force
Γ `eff V : Uϕ B
Γ `eff V! :ϕ B

eff-ret
Γ `eff V : A

Γ `eff returnV :ε FA

eff-letin
Γ `eff M :ϕ1 FA

Γ , x : A `eff N :ϕ2 B
Γ `eff x←M inN :ϕ1·ϕ2 B

eff-sub
Γ `eff M :ϕ1 B

ϕ1 ≤eff ϕ2
Γ `eff M :ϕ2 B

[Kammar and Plotkin 2012, Kammar, Lindley, Oury 2013]

Effect soundness
Key result of type system is effect soundness: the type system bounds effects that
could occur at runtime.

Big-step operational semantics: ρ `eff M ⇓ T#ϕ counts ticks while evaluating

computationM to terminal T.

Theorem
If∅ `eff M :ϕ FA and ∅ `eff M ⇓ returnW#ϕ′ then ϕ′ ≤eff ϕ.

Proof.
Uses logical relations.

What about coeffects?
Coeffects track how input values contribute to the output result.

• Bounded linear types

• Whether functions use their arguments

• Differential privacy (how sensitive are function outputs to their inputs)

• Whether functions are monotonic

• Information-flow

• …

(Technically, these are examples of structured coeffects.)

We mark variables in the context with coeffects q (short for quantity).

What about coeffects?
Coeffects track how input values contribute to the output result.

• Bounded linear types

• Whether functions use their arguments

• Differential privacy (how sensitive are function outputs to their inputs)

• Whether functions are monotonic

• Information-flow

• …

(Technically, these are examples of structured coeffects.)

We mark variables in the context with coeffects q (short for quantity).

Coeffect examples
• For bounded linear types, we can use natural numbers.

x :1 int , y :3 int , z :0 int `coeff x+ (y + y) : int

• For relevance analysis, 0 marks arguments that are not used and ω marks
arguments that may be used.

x :ω int , y :ω int , z :0 int `coeff x+ (y + y) : int

• For data flow caching, we want to provide access to prior values during streaming
computation.

x :1 int , y :0 int `coeff (prev x) + x+ y : int

We can use natural numbers that track how many previous values are required.

Coeffect examples
• For bounded linear types, we can use natural numbers.

x :1 int , y :3 int , z :0 int `coeff x+ (y + y) : int

• For relevance analysis, 0 marks arguments that are not used and ω marks
arguments that may be used.

x :ω int , y :ω int , z :0 int `coeff x+ (y + y) : int

• For data flow caching, we want to provide access to prior values during streaming
computation.

x :1 int , y :0 int `coeff (prev x) + x+ y : int

We can use natural numbers that track how many previous values are required.

Coeffect examples
• For bounded linear types, we can use natural numbers.

x :1 int , y :3 int , z :0 int `coeff x+ (y + y) : int

• For relevance analysis, 0 marks arguments that are not used and ω marks
arguments that may be used.

x :ω int , y :ω int , z :0 int `coeff x+ (y + y) : int

• For data flow caching, we want to provide access to prior values during streaming
computation.

x :1 int , y :0 int `coeff (prev x) + x+ y : int

We can use natural numbers that track how many previous values are required.

We can track coeffects with types
Context comes with a list of coeffects for every variable.

γ ::= ∅ | γ , q
We use notation to extend both at once:

γ ·Γ , x :q τ = (γ , q)·(Γ , x : τ)
γ ·Γ `coeff e : τ

lam-coeff-var

0·Γ1 , x :1 τ , 0·Γ2 `coeff x : τ

lam-coeff-abs
γ ·Γ ,(x :q τ1) `coeff e : τ2
γ ·Γ `coeff λqx.e : τ q

1 → τ2

lam-coeff-app
γ1 ·Γ `coeff e1 : τ q

1 → τ2
γ2 ·Γ `coeff e2 : τ1 γ ≡ γ1 + q · γ2

γ ·Γ `coeff e1 e2 : τ2

lam-coeff-sub
γ1 ·Γ `coeff e : τ

γ2 ≤co γ1
γ2 ·Γ `coeff e : τ

This is for a call-by-name language [Abel and Bernardy 2020, Choudhury et al. 2021].

We can track coeffects with types
Context comes with a list of coeffects for every variable.

γ ::= ∅ | γ , q
We use notation to extend both at once:

γ ·Γ , x :q τ = (γ , q)·(Γ , x : τ)
γ ·Γ `coeff e : τ

lam-coeff-var

0·Γ1 , x :1 τ , 0·Γ2 `coeff x : τ

lam-coeff-abs
γ ·Γ ,(x :q τ1) `coeff e : τ2
γ ·Γ `coeff λqx.e : τ q

1 → τ2

lam-coeff-appv
γ1 ·Γ `coeff e1 : τ q

1 → τ2
γ2 ·Γ `coeff e2 : τ1 γ ≡ γ1 + (q ∧ 1 · γ2)

γ ·Γ `coeff e1 e2 : τ2

lam-coeff-sub
γ1 ·Γ `coeff e : τ

γ2 ≤co γ1
γ2 ·Γ `coeff e : τ

Call-by-value language forces usage in application rule [Gavazzo 2018].

CBPV with coeffects
γ ·Γ `coeff V : A (Value typing)

coeff-var

0·Γ1 , x :1 A , 0·Γ2 `coeff x : A

coeff-unit

0·Γ `coeff () : unit

coeff-thunk
γ ·Γ `coeff M : B

γ ·Γ `coeff {M} : UB

γ ·Γ `coeff M : B (Computation typing)

coeff-abs
γ ·Γ , x :q A `coeff M : B

γ ·Γ `coeff λxq.M : Aq → B

coeff-app
γ1 ·Γ `coeff M : Aq → B

γ2 ·Γ `coeff V : A
γ ≡ γ1 + (q · γ2)
γ ·Γ `coeff MV : B

coeff-force
γ ·Γ `coeff V : UB
γ ·Γ `coeff V! : B

coeff-ret
γ ·Γ `coeff V : A

q · γ ·Γ `coeff returnq V : Fq A

coeff-letin-v
γ1 ·Γ `coeff M : Fq1 A

γ2 ·Γ , x :q1·q
′
2 A `coeff N : B

γ ≡ (q′2 · γ1) + γ2 q′2 = q2 ∧ 1

γ ·Γ `coeff x←q2 M inN : B
(+subrules)

Coeffect soundness
To show coeffect soundness, we define an environment-based operational semantics
that counts uses of variables.

γ ·ρ `coeff V ⇓W (Value rules)

eval-coeff-val-var

01 ·ρ1 , x 7→1 W , 02 ·ρ2 `coeff x ⇓W

eval-coeff-val-unit

0·ρ `coeff () ⇓ ()

eval-coeff-val-thunk

γ ·ρ `coeff {M} ⇓ clo(γ ·ρ, {M})

eval-coeff-val-vsub
γ1 ·ρ `coeff V ⇓W

γ2 ≤co γ1
γ2 ·ρ `coeff V ⇓W

Lemma (Coeffect soundness)
1. If γ ·Γ `coeff V : A then γ ·ρ `coeff V ⇓W.

2. If γ ·Γ `coeff M : B then γ ·ρ `coeff M ⇓ T.

A strange semantics?
Although sound, this semantics doesn’t model resource usage.

γ ·ρ `coeff M ⇓ T (Computation rules)

eval-coeff-comp-abs

γ ·ρ `coeff λxq.M ⇓ clo(γ ·ρ, λxq.M)

eval-coeff-comp-app-abs
γ1 ·ρ `coeff M ⇓ clo(γ′ ·ρ′, λxq.M′)

γ2 ·ρ `coeff V ⇓W
γ′ ·ρ′ , x 7→q W `coeff M′ ⇓ T

γ ≡ γ1 + q · γ2
γ ·ρ `coeff MV ⇓ T

Application rule “invents” resources when q is zero!

We can type this judgement, which says that x does not contribute to the final result.

x :0 A `coeff (λy0.return ()) x : Funit

A strange semantics?
Although sound, this semantics doesn’t model resource usage.

γ ·ρ `coeff M ⇓ T (Computation rules)

eval-coeff-comp-abs

γ ·ρ `coeff λxq.M ⇓ clo(γ ·ρ, λxq.M)

eval-coeff-comp-app-abs
γ1 ·ρ `coeff M ⇓ clo(γ′ ·ρ′, λxq.M′)

γ2 ·ρ `coeff V ⇓W
γ′ ·ρ′ , x 7→q W `coeff M′ ⇓ T

γ ≡ γ1 + q · γ2
γ ·ρ `coeff MV ⇓ T

Application rule “invents” resources when q is zero!

We can type this judgement, which says that x does not contribute to the final result.

x :0 A `coeff (λy0.return ()) x : Funit

Resource accounting semantics
Can discard unused values, without accounting for their resources

γ ·ρ `coeff M ⇓ T (Computation rules)

eval-lin-comp-app-abs
γ1 ·ρ `lin M ⇓ clo(γ′ ·ρ′, λxq.M′)

γ2 ·ρ `lin V ⇓W
(γ′ ·ρ′) , (x 7→q W) `lin M′ ⇓ T

γ ≡ γ1 + q · γ2
q 6= 0

γ ·ρ `lin MV ⇓ T

eval-lin-comp-app-abs-zero
γ ·ρ `lin M ⇓ clo(γ′ ·ρ′, λx0.M′)
(γ′ ·ρ′) , (x 7→0) `lin M′ ⇓ T

γ ·ρ `lin MV ⇓ T

eval-lin-comp-return
γ′ ·ρ `lin V ⇓W

γ ≡ q · γ′ q 6= 0

γ ·ρ `lin returnq V ⇓ returnqW

eval-lin-comp-ret-zero

0·ρ `lin return0 V ⇓ return0

Cannot discard effectful computations

γ ·ρ `coeff M ⇓ T (Computation rules)

eval-lin-comp-letin-ret
γ1 ·ρ `lin M ⇓ returnq1W

γ2 ·ρ , x 7→q1·q′2 W `lin N ⇓ T
γ ≡ q′2 · γ1 + γ2

q′2 = q2 ∧ 1

γ ·ρ `lin x←q2 M inN ⇓ T

Combined effects and co-effects
Can discard computations that are pure.

Let’s track effects and coeffects together.

γ ·Γ `full M :ϕ B (Typing rule)

full-letin-zero
γ1 ·Γ `full M1 :

ε Fq1 A
γ2 ·Γ , x :0 A `full M2 :

ϕ B
γ2 ·Γ `full x←0 M1 inM2 :

ϕ B

γ ·ρ `full M ⇓ T#ϕ (Evaluation rule)

eval-full-comp-letin-zero

γ ·ρ , x 7→q1·q′2 `full N ⇓ T#ϕ

γ ·ρ `full x←0 M inN ⇓ T#ϕ

Summary
• Augmented CBPV with effect and coeffect tracking.

• Effects describe computations, so annotate thunk typeUϕ B.
Coeffects describe values, so annotate returner type Fq A

• Uϕ FA is a graded monad in the value language.
Fq UB is a graded comonad in the computation language.

• Showed effect and coeffect soundness, even in the presence of a semantics that
tracks resource usage.

• In the paper: Standard CBV and CBN translations are type, effect, coeffect
preserving.
Explains restrictions found in some CBV coeffect type systems. (CBN translation
does not require the use of “letin”.)

• Proofs mechanized in Coq.

CBV Translation (Effects!)
We can translate type-and-effect CBV to effect-tracking CBPV. The standard
translation just works.

JunitKv = unitJτ1 ϕ→ τ2Kv = Uϕ (Jτ1Kv → F Jτ2Kv)
J()Kv = return ()JxKv = return xJλx.eKv = return {λx.JeKv}Je1 e2Kv = x← Je1Kv in y← Je2Kv in x! yJtickKv = tick

Theorem (Translation preserves types-and-effects)
If Γ `eff e :ϕ τ then JΓKv `eff JeKv :ϕ F JτKv.

CBN translation (Graded Monads!)
We can also use the CBN translation for a source language with graded monads.

However, whileUFA is a monad in CBPV, it is awkward to access.

JTϕ τKn = FUϕ FUε JτKn
Jreturn eKn = return {return {JeKn}}Jbind x = e1 in e2Kn = return {y← Je1Kn in x← y! in z← Je2Kn in z!}JtickKn = return {x← tick in return {return x}}

Theorem (Translation preserves types)
If Γ `mon e : τ then JΓKn `eff JeKn :ε JτKn.

CBN translation (Graded Monads!)
We can also use the CBN translation for a source language with graded monads.

However, whileUFA is a monad in CBPV, it is awkward to access.

JTϕ τKn = FUϕ FUε JτKn

Jreturn eKn = return {return {JeKn}}Jbind x = e1 in e2Kn = return {y← Je1Kn in x← y! in z← Je2Kn in z!}JtickKn = return {x← tick in return {return x}}

Theorem (Translation preserves types)
If Γ `mon e : τ then JΓKn `eff JeKn :ε JτKn.

CBN translation (Graded Monads!)
We can also use the CBN translation for a source language with graded monads.

However, whileUFA is a monad in CBPV, it is awkward to access.

JTϕ τKn = FUϕ FUε JτKn
Jreturn eKn = return {return {JeKn}}

Jbind x = e1 in e2Kn = return {y← Je1Kn in x← y! in z← Je2Kn in z!}JtickKn = return {x← tick in return {return x}}

Theorem (Translation preserves types)
If Γ `mon e : τ then JΓKn `eff JeKn :ε JτKn.

CBN translation (Graded Monads!)
We can also use the CBN translation for a source language with graded monads.

However, whileUFA is a monad in CBPV, it is awkward to access.

JTϕ τKn = FUϕ FUε JτKn
Jreturn eKn = return {return {JeKn}}Jbind x = e1 in e2Kn = return {y← Je1Kn in x← y! in z← Je2Kn in z!}

JtickKn = return {x← tick in return {return x}}

Theorem (Translation preserves types)
If Γ `mon e : τ then JΓKn `eff JeKn :ε JτKn.

CBN translation (Graded Monads!)
We can also use the CBN translation for a source language with graded monads.

However, whileUFA is a monad in CBPV, it is awkward to access.

JTϕ τKn = FUϕ FUε JτKn
Jreturn eKn = return {return {JeKn}}Jbind x = e1 in e2Kn = return {y← Je1Kn in x← y! in z← Je2Kn in z!}JtickKn = return {x← tick in return {return x}}

Theorem (Translation preserves types)
If Γ `mon e : τ then JΓKn `eff JeKn :ε JτKn.

CBN translation (coeffects!)
Standard translation of CBN to CBPV just works.

JunitKn = F1 unitJτ q
1 → τ2Kn = (U Jτ1Kn)q → Jτ2Kn

JΓ , x : τKn = JΓKn , x : U JτKn
J()Kn = return1()JxKn = x!Jλx.eKn = λx.JeKnJe1 e2Kn = Je1Kn {Je2Kn}

Theorem (Translation preserves types and coeffects)
If γ ·Γ `coeff e : τ then γ ·JΓKn `coeff JeKn : JτKn.

Interlude: Two kinds of products
CBPV has two forms of products: pairs of values and pairs of computations. The
former are eliminated with pattern matching and the latter by projection.
Linear logic has two forms of conjunction: additive & (aka with) and multiplicative
products⊗ (aka tensor).
The former shares resources during construction, the latter does not.

coeff-pair
γ1 ·Γ `coeff V1 : A1
γ2 ·Γ `coeff V2 : A2

γ1 + γ2 ·Γ `coeff (V1,V2) : A1 × A2

coeff-split
γ1 ·Γ `coeff V : A1 × A2

γ2 ·Γ , x1 :q A1 , x2 :q A2 `coeff N : B
γ ≡ (q · γ1) + γ2

γ ·Γ `coeff caseq V of (x1, x2) → N : B

coeff-cpair
γ ·Γ `coeff M1 : B1
γ ·Γ `coeff M2 : B2

γ ·Γ `coeff 〈M1,M2〉 : B1 &B2

coeff-fst
γ ·Γ `coeff M : B1 &B2

γ ·Γ `coeff M.1 : B1

Interlude: Four kinds of products
But it doesn’t have to be this way.
Can have “with” products in the value language, eliminated by projection.

coeff-vwith
γ ·Γ `coeff V1 : A1
γ ·Γ `coeff V2 : A2

γ ·Γ `coeff 〈V1,V2〉 : A1 &A2

coeff-vfst
γ ·Γ `coeff V : A1 &A2

γ ·Γ `coeff V.1 : A1

Can have tensor products in the computation language, eliminated by pattern
matching.

coeff-ctensor
γ1 ·Γ `coeff M1 : B1
γ2 ·Γ `coeff M2 : B2

γ1 + γ2 ·Γ `coeff (M1,M2) : B1 × B2

coeff-csplit
γ1 ·Γ `coeff M : B1 × B2

γ2 ·Γ , x1 :q UB1 , x2 :q UB2 `coeff N : B
γ ≡ q · γ1 + γ2

γ ·Γ `coeff caseq M of (x1, x2) → N : B

	Effects

