
Tracking how
dependently-typed
functions use their

arguments

Stephanie Weirich
University of Pennsylvania

Philadelphia, USA

Collaborators

Yiyun Liu
Jonathan Chan

Pritam Choudhury

Jessica Shi
Richard Eisenberg

Harley Eades III
Antoine Voizard

Pedro Henrique Avezedo
de Amorim

Anastasiya Kravchuk-Kirilyuk

Let's talk about constant functions

id : ∀ (A : Type) → A → A
id = λ A x. x

id = λ _ x. x

Erasure semantics for
type polymorphism

Erasure semantics for type polymorphism

data List (A : Type) : Type where
 Nil : List A
 Cons : A → List A → List A

map : ∀ (A B : Type) → (A → B) → List A → List B
map = λ A B f xs.
 case xs of
 Nil ⇒ Nil
 Cons y ys ⇒ Cons (f y) (map A B f ys)

Erasure semantics for type polymorphism

data
 Nil
 Cons

map = λ _ _ f xs.
 case xs of
 Nil ⇒ Nil
 Cons y ys ⇒ Cons (f y) (map _ _ f ys)

Erasure in dependently-typed languages

data Vec (n:Nat) (A:Type) : Type where
 Nil : Vec Zero A
 Cons : Π(m:Nat) → A → (Vec m A) → Vec (Succ m) A

map : ∀(A B : Type) → Π(n : Nat) → (A → B)
 → Vec n A → Vec n B
map = λ A B n f v.
 case v of
 Nil ⇒ Nil
 Cons m x xs ⇒
 Cons m (f x) (map A B m f xs)

Erasure in dependently-typed languages

data Vec (n:Nat) (A:Type) : Type where
 Nil : Vec Zero A
 Cons : ∀(m:Nat) → A → (Vec m A) → Vec (Succ m) A

map : ∀(A B : Type) → ∀(n : Nat) → (A → B)
 → Vec n A → Vec n B
map = λ A B n f v.
 case v of
 Nil ⇒ Nil
 Cons m x xs ⇒
 Cons m (f x) (map A B m f xs)

data
 Nil
 Cons

map = λ _ _ n f v.
 case v of
 Nil ⇒ Nil
 Cons _ x xs ⇒
 Cons _ (f x) (map _ _ _ f xs)

Erasure in dependently-typed languages

Refinement/Subset types

type EvenNat = { n : Nat | isEven n }

plusIsEven : Π(m n : Nat) → isEven m → isEven n
 → isEven (m + n)
plusIsEven = λ m n p1 p2. …

plus : EvenNat → EvenNat → EvenNat
plus = λ en em. case en, em of
 (n, np), (m, mp) ⇒ (n + m, plusIsEven n m np mp)

Erasable proof

Refinement/Subset types

plus = λ en em. case en, em of
 (n, _), (m, _) ⇒ (n + m, _)

Erasable code is irrelevant

• Not all terms are needed for computation: some
function arguments and data structure
components are there only for type checking

• Especially common in dependently-typed
programming and proving

• Can call such code irrelevant

Why care about irrelevance?

1. The compiler can produce faster code
– Erase arguments and their computation

2. The type checker can run more quickly
– Comparing types for equality requires reduction, which

can be sped up by erasure
3. Verification is less work for programmers

– Proving that terms are equal is easier when you can
ignore the irrelevant parts

4. More programs type check
– May not be able to prove the irrelevant parts equal

Compile-time irrelevance

Run-time irrelevance

Less work for verification: proof irrelevance

type EvenNat = { n : Nat | isEven n }

-- prove equality of two EvenNats
congEvenNat : (n m : Nat)
 → (np : isEven n)
 → (mp : isEven m)
 → (n = m)
 -- no need for proof of np = mp
 → ((n, np) = (m, mp) : EvenNat)
congEvenNat = λ n m en em p. …

More programs type check

Sound for the type checker to
decide that these terms are equal

Proof of equality comes
directly from type checker

type tells us that f is a
constant function

…when more terms are equal, by definition

example : ∀(f : ∀ (x : Bool) -> Bool)
 → (f True = f False)
example = λ f . Refl

Type checkers for dependently-typed
languages should identify irrelevant
code

But how?

How should type checkers for
dependently-typed languages identify
and take advantage of irrelevant code?

1. Erasure
2. Modes
3. Dependency

Core dependent type system

Erasure
You can't use something
that is not there

Miquel, TLCA 01
Barras and Bernardo, FoSSaCS 2008

Zombie/Trellys [Kimmel et al. MSFP 2012]
Dependent Haskell [Weirich et al. ICFP 2018]

ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions

ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions
• Annotations enable decidable type checking

ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions
• Annotations enable decidable type checking
• Irrelevant parameters must not appear relevantly
• Erasure operation |a| removes irrelevant terms

Erasure during conversion

• Conversion between erased types
• Compile-time irrelevance: erased parts ignored when

comparing types for equality

Erasure: Implicit Calculus of Constructions

• Benefits
– Simple!
– Directly connects to erasure in compilation
– Orthogonal: features independent from the rest of the

system

• Drawbacks
– No irrelevant projections

Irrelevant projections

filter : ∀(A:Type) → ∀(n:Nat)
 → (A → Bool) → (Vec n A) → ∃(m:Nat) ⨯ (Vec m A)
filter = λ A n f v.
 case v of
 Nil ⇒

 (0, Nil)
 Cons m x xs ⇒

 let p = filter A m f xs in
 if f x

 then (Succ p.1, Cons p.1 x p.2)
 else p

UNSOUND addition to
compile-time erasure
| Vec p.1 A | = ????

Length is not statically known
and irrelevant

Modes
Distinguish relevant and irrelevant
abstractions through modes

Pfenning, LICS 01
Mishra-Linger and Sheard, FoSSaCS 08
Abel and Scherer, LMCS 12

DDC, Choudhury and Weirich, ESOP 22
DE, Liu and Weirich, ICFP 23

Modal types and modes

• Modal type marks irrelevant code: ☐A
• Type system controlled by modes: m ::= R | I

– Variables have modes, must be R when used
 Γ ::= ɛ | Γ, x :mA
– Resurrection (Γm): replaces all m tags with R
– Mode-annotated quantification:
Πx:mA.B unifies Πx:A.B and ∀x:A.B

Modal types for irrelevance

Only relevant variables
can be used

Modal types mark irrelevant
subterms.
Resurrection means that any
variable can be used inside a box.

The contents of the box are
accessible only in other boxes.

Mode-annotated functions

Only relevant variables
can be used

Mode on Π-type determines
mode in the context

Types checked
with "resurrected"
context

Irrelevant arguments checked
with resurrected context

Π-bound variables always
relevant in the type

Conversion ignores
irrelevant arguments

Compile-time irrelevance

• Usual rules, plus
– compare arguments marked R
– ignore arguments marked I or inside a box

Modes for irrelevance

• Benefits
– Modes identify patterns in the semantics: don't need

two different function types
– Easy implementation: mark variables when introduced

in the context, mark the context for resurrection
• Drawbacks

– Still no irrelevant projections
– Formation rule for Π-types looks a bit strange

• Conjecture: equivalent to ICC*

• From [Pfenning 99] [Abel and Scherer 2012]
• But: irrelevant arguments must be irrelevant everywhere,

including in types. No parametric polymorphism!

Alternative rule for Π-types

Dependency

Track when outputs depend on inputs

DCC, Abadi et al., POPL 99
DDC, Choudhury and Weirich, ESOP 22
DCOI, Liu, Chan, Shi, Weirich, POPL 24

Dependency tracking

• Typing judgment ensures that low-level outputs do not
depend on high-level inputs

• Type system parameterized by ordered set of levels
– Relevance (R < I)
– Other examples: Security levels (Low < Med < High)

Staged computation (0 < 1 < 2…)

x :H Bool ⊢ a :L Int
Observer level
a can only use variables whose
levels are ≤ L

Input level
x can only be used when
observer level is ≥ H

Typing rules with dependency levels
Variable usage
restricted by
observer level

Π-types record the dependency
levels of their arguments

Application requires compatible
dependency levels

Vars have same
level in terms

and types

Terms do not
observe types,
so level
unimportant

DCOI: irrelevant projections

vfilter : (A:I Type) → (n:I Nat)
 → (A → Bool) → (Vec n A) → (m:I Nat) ⨯ (Vec m A)
vfilter = λ A n f v.
 case v of
 Nil ⇒ (0I, Nil)
 Cons mI x xs ⇒

 let p = vfilter AI mI f xs in
 if f x

 then ((Succ p.1)I, Cons p.1I x p.2)
 else p

Definition checks with R observer, but
contains I-marked subterms

First projection allowed in
I-marked subterms only

Type is checked with I-observer

Indistinguishability: indexed definitional equality

Observer at level ℓ cannot
distinguish between terms

If observer has a higher level
than the argument, arguments
must agree

If observer does not have a
higher level, arguments are
ignored

Conversion can be used at any observer level

Type system is sound because we cannot equate types with
different head forms at any dependency level

DCOI: Dependent Calculus of Indistinguishability

• Yiu, Chan, Shi and Weirich. Internalizing
Indistinguishability with Dependent Types. POPL 2024
– Based on Pure Type System (PTS)
– Key results: Syntactic type soundness, noninterference

• Yiu, Chan and Weirich. Consistency of a Dependent
Calculus of Indistinguishability. POPL 2025
– Predicative universe hierarchy
– Observer-indexed propositional equality, J-eliminator
– Key results: Consistency, normalization, and decidable

(observer-indexed) equality

• All results mechanized using Rocq proof assistant

DCOI: Proof-specific features

False-elimination

Propositional indistinguishability

Proof of false can be
eliminated at any observer
level.

Equality must be
observable to the
type

Can create reflexivity
proofs about any level

Equality between terms at level m
witnessed via substitution at level m
Equality between proofs at level ℓ0
witnessed via substitution at level ℓ0

Level of proof must be
less than current level

DCOI: Dependent Calculus of Indistinguishability

• Benefits
– Irrelevant projection is sound!
– Irrelevant absurdity is sound!
– Can reason about indistinguishability as a proposition

• Future work
– Compatibility with type-directed equality (relational model)
– Language ergonomics

• Dependency level inference?
• Dependency level quantification?

– Applications besides irrelevance?

Related work on Irrelevance

• Erasure-based
– Miquel 2001, Barras & Bernardo 2008

• Mode-based
– Pfenning 2001, Mishra-Linger & Sheard 2008, Abel & Scherer 2012

• Dependency tracking
– Type theory in color: Bernardy & Moulin 2013
– Two level type theories: Kovács 2022, Annenkov et al. 2023

• Proof irrelevance: Prop/sProp (Rcoq), Prop (Agda)
– Hofmann& Streicher 1988, Gilbert et al. 2019

• Quantitative Type Theory (Run-time irrelevance / erasure)
– McBride 2016, Atkey 2018, Abel & Bernardy 2020,

Choudhury et al. 2021, Moon et al. 2021, Abel et al. 2023

Conclusions

• In dependent type systems, identifying irrelevant
computations is important for efficiency and expressivity

• Type systems can track more than "types", they can also
tell us what happens during computation

• Dependency analysis is a powerful hammer in type system
design

