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Let's talk about constant functions



id : ∀ (A : Type) → A → A
id = λ A x. x
       



id = λ _ x. x
       

Erasure semantics for 
type polymorphism



Erasure semantics for type polymorphism

data List (A : Type) : Type where
 Nil  : List A
 Cons : A → List A → List A

map : ∀ (A B : Type) → (A → B) → List A → List B
map = λ A B f xs. 
        case xs of
    Nil ⇒ Nil
    Cons y ys ⇒ Cons (f y) (map A B f ys)



Erasure semantics for type polymorphism

data 
 Nil   
 Cons  

 
map = λ _ _ f xs. 
        case xs of
    Nil ⇒ Nil
    Cons y ys ⇒ Cons (f y) (map _ _ f ys)



Erasure in dependently-typed languages

data Vec (n:Nat) (A:Type) : Type where
 Nil  : Vec Zero A
  Cons : Π(m:Nat) → A → (Vec m A) → Vec (Succ m) A

map : ∀(A B : Type) → Π(n : Nat) → (A → B) 
    → Vec n A → Vec n B
map = λ A B n f v. 
        case v of
     Nil ⇒ Nil
     Cons m x xs ⇒ 
              Cons m (f x) (map A B m f xs)



Erasure in dependently-typed languages

data Vec (n:Nat) (A:Type) : Type where
 Nil  : Vec Zero A
  Cons : ∀(m:Nat) → A → (Vec m A) → Vec (Succ m) A

map : ∀(A B : Type) → ∀(n : Nat) → (A → B) 
    → Vec n A → Vec n B
map = λ A B n f v. 
        case v of
     Nil ⇒ Nil
     Cons m x xs ⇒ 
              Cons m (f x) (map A B m f xs)



data 
 Nil  
  Cons 

map = λ _ _ n f v. 
        case v of
     Nil ⇒ Nil
     Cons _ x xs ⇒ 
              Cons _ (f x) (map _ _ _ f xs)

Erasure in dependently-typed languages



Refinement/Subset types

type EvenNat = { n : Nat | isEven n }

plusIsEven : Π(m n : Nat) → isEven m → isEven n
           → isEven (m + n)
plusIsEven = λ m n p1 p2. …

plus : EvenNat → EvenNat → EvenNat
plus = λ en em. case en, em of
     (n, np), (m, mp) ⇒ (n + m, plusIsEven n m np mp)

Erasable proof 



Refinement/Subset types

plus = λ en em. case en, em of
     (n, _ ), (m, _ ) ⇒ (n + m, _)



Erasable code is irrelevant

• Not all terms are needed for computation: some 
function arguments and data structure 
components are there only for type checking 

• Especially common in dependently-typed 
programming and proving 

• Can call such code irrelevant



Why care about irrelevance?

1. The compiler can produce faster code 
– Erase arguments and their computation

2. The type checker can run more quickly
– Comparing types for equality requires reduction, which 

can be sped up by erasure 
3. Verification is less work for programmers

– Proving that terms are equal is easier when you can 
ignore the irrelevant parts

4. More programs type check
– May not be able to prove the irrelevant parts equal

Compile-time irrelevance  

Run-time irrelevance  



Less work for verification: proof irrelevance

type EvenNat = { n : Nat | isEven n }

-- prove equality of two EvenNats
congEvenNat : (n m : Nat) 
            → (np : isEven n) 
            → (mp : isEven m) 
            → (n = m)
            -- no need for proof of np = mp
            → ((n, np) = (m, mp) : EvenNat)
congEvenNat = λ n m en em p. …



More programs type check

Sound for the type checker to 
decide that these terms are equal

Proof of equality comes
directly from type checker

type tells us that f is a 
constant function

…when more terms are equal, by definition

example : ∀(f : ∀ (x : Bool) -> Bool) 
       → (f True = f False)
example = λ f . Refl



Type checkers for dependently-typed 
languages should identify irrelevant 
code

But how?



How should type checkers for 
dependently-typed languages identify 
and take advantage of irrelevant code?

1. Erasure
2. Modes
3. Dependency



Core dependent type system



Erasure
You can't use something 
that is not there

Miquel, TLCA 01
Barras and Bernardo, FoSSaCS 2008

Zombie/Trellys [Kimmel et al. MSFP 2012]
Dependent Haskell [Weirich et al. ICFP 2018]



ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions



ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions
• Annotations enable decidable type checking



ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions
• Annotations enable decidable type checking
• Irrelevant parameters must not appear relevantly 
• Erasure operation |a| removes irrelevant terms



Erasure during conversion 

• Conversion between erased types 
• Compile-time irrelevance: erased parts ignored when 

comparing types for equality  



Erasure: Implicit Calculus of Constructions

• Benefits
– Simple!
– Directly connects to erasure in compilation
– Orthogonal: features independent from the rest of the 

system

• Drawbacks
– No irrelevant projections



Irrelevant projections 

filter : ∀(A:Type) → ∀(n:Nat) 
        → (A → Bool) → (Vec n A) → ∃(m:Nat) ⨯ (Vec m A)
filter = λ A n f v. 
    case v of
    Nil ⇒ 

 (0, Nil)
   Cons m x xs ⇒ 

         let p = filter A m f xs in
    if f x 

            then (Succ p.1, Cons p.1 x p.2) 
            else p

UNSOUND addition to 
compile-time erasure
| Vec p.1 A | = ????

Length is not statically known 
and irrelevant



Modes
Distinguish relevant and irrelevant 
abstractions through modes

Pfenning, LICS 01
Mishra-Linger and Sheard, FoSSaCS 08
Abel and Scherer, LMCS 12

DDC, Choudhury and Weirich, ESOP 22
DE, Liu and Weirich, ICFP 23



Modal types and modes

• Modal type marks irrelevant code: ☐A 
• Type system controlled by modes: m ::= R | I

– Variables have modes, must be R when used 
     Γ ::= ɛ | Γ, x :mA
– Resurrection (Γm): replaces all m tags with R
– Mode-annotated quantification: 
Πx:mA.B unifies  Πx:A.B  and  ∀x:A.B 



Modal types for irrelevance

Only relevant variables
can be used

Modal types mark irrelevant 
subterms. 
Resurrection means that any 
variable can be used inside a box.

The contents of the box are 
accessible only in other boxes. 



Mode-annotated functions

Only relevant variables
can be used

Mode on Π-type determines 
mode in the context 

Types checked 
with "resurrected" 
context

Irrelevant arguments checked 
with resurrected context

Π-bound variables always 
relevant in the type

Conversion ignores
irrelevant arguments



Compile-time irrelevance

• Usual rules, plus
– compare arguments marked R
– ignore arguments marked I or inside a box



Modes for irrelevance

• Benefits
– Modes identify patterns in the semantics: don't need 

two different function types
– Easy implementation: mark variables when introduced 

in the context, mark the context for resurrection
• Drawbacks

– Still no irrelevant projections
– Formation rule for Π-types looks a bit strange

• Conjecture: equivalent to ICC*



• From [Pfenning 99] [Abel and Scherer 2012] 
• But: irrelevant arguments must be irrelevant everywhere, 

including in types. No parametric polymorphism!

Alternative rule for Π-types



Dependency

Track when outputs depend on inputs

DCC, Abadi et al., POPL 99
DDC, Choudhury and Weirich, ESOP 22
DCOI, Liu, Chan, Shi, Weirich, POPL 24



Dependency tracking

• Typing judgment ensures that low-level outputs do not 
depend on high-level inputs 

• Type system parameterized by ordered set of levels
– Relevance (R < I) 
– Other examples: Security levels (Low < Med < High)

Staged computation (0 < 1 < 2…) 

x :H Bool ⊢ a :L Int
Observer level
a can only use variables whose 
levels are ≤ L

Input level
x can only be used when 
observer level is ≥ H



Typing rules with dependency levels
Variable usage
restricted by 
observer level 

Π-types record the dependency 
levels of their arguments 

Application requires compatible
dependency levels

Vars have same 
level in terms 

and types

Terms do not 
observe types, 
so level 
unimportant



DCOI: irrelevant projections

vfilter : (A:I Type) → (n:I Nat) 
        → (A → Bool) → (Vec n A) → (m:I Nat) ⨯ (Vec m A)
vfilter = λ A n f v. 
    case v of
    Nil ⇒ (0I, Nil)
   Cons mI x xs ⇒ 

         let p = vfilter AI mI f xs in
    if f x 

            then ((Succ p.1)I, Cons p.1I x p.2) 
            else p

Definition checks with R observer, but
contains I-marked subterms

First projection allowed in 
I-marked subterms only

Type is checked with I-observer



Indistinguishability: indexed definitional equality

Observer at level ℓ cannot 
distinguish between terms

If observer has a higher level 
than the argument, arguments 
must agree

If observer does not have a 
higher level, arguments are
ignored



Conversion can be used at any observer level

Type system is sound because we cannot equate types with 
different head forms at any dependency level 



DCOI: Dependent Calculus of Indistinguishability 

• Yiu, Chan, Shi and Weirich. Internalizing 
Indistinguishability with Dependent Types. POPL 2024 
– Based on Pure Type System (PTS)
– Key results: Syntactic type soundness, noninterference

• Yiu, Chan and Weirich. Consistency of a Dependent 
Calculus of Indistinguishability. POPL 2025
– Predicative universe hierarchy 
– Observer-indexed propositional equality, J-eliminator
– Key results: Consistency, normalization, and decidable 

(observer-indexed) equality

• All results mechanized using Rocq proof assistant



DCOI: Proof-specific features

False-elimination

Propositional indistinguishability

Proof of false can be 
eliminated at any observer 
level. 

Equality must be 
observable to the 
type

Can create reflexivity 
proofs about any level

Equality between terms at level m
witnessed via substitution at level m
Equality between proofs at level ℓ0
witnessed via substitution at level ℓ0

Level of proof must be 
less than current level



DCOI: Dependent Calculus of Indistinguishability

• Benefits
– Irrelevant projection is sound!
– Irrelevant absurdity is sound!
– Can reason about indistinguishability as a proposition

• Future work 
– Compatibility with type-directed equality (relational model)
– Language ergonomics

• Dependency level inference?
• Dependency level quantification? 

– Applications besides irrelevance?
    



Related work on Irrelevance

• Erasure-based
– Miquel 2001,  Barras & Bernardo 2008

• Mode-based
– Pfenning 2001, Mishra-Linger & Sheard 2008, Abel & Scherer 2012

• Dependency tracking
– Type theory in color: Bernardy & Moulin 2013
– Two level type theories: Kovács 2022, Annenkov et al. 2023

• Proof irrelevance: Prop/sProp (Rcoq), Prop (Agda) 
– Hofmann& Streicher 1988, Gilbert et al. 2019 

• Quantitative Type Theory (Run-time irrelevance / erasure)
– McBride 2016, Atkey 2018, Abel & Bernardy 2020, 

Choudhury et al. 2021, Moon et al. 2021, Abel et al. 2023 



Conclusions

• In dependent type systems, identifying irrelevant 
computations is important for efficiency and expressivity

• Type systems can track more than "types", they can also 
tell us what happens during computation

• Dependency analysis is a powerful hammer in type system 
design


