Tracking how dependently-typed functions use their arguments

> Stephanie Weirich University of Pennsylvania Philadelphia, USA

Collaborators

Yiyun Liu Jonathan Chan Pritam Choudhury

Jessica Shi Richard Eisenberg Harley Eades III Antoine Voizard Pedro Henrique Avezedo de Amorim Anastasiya Kravchuk-Kirilyuk

Let's talk about constant functions

id : \forall (A : **Type**) \rightarrow A \rightarrow A id = λ A x. x

$$id = \lambda _ x. x$$

Erasure semantics for type polymorphism

Erasure semantics for type polymorphism

```
data List (A : Type) : Type where
Nil : List A
Cons : A → List A → List A
map : ∀ (A B : Type) → (A → B) → List A → List B
map = λ A B f xs.
case xs of
Nil ⇒ Nil
Cons y ys ⇒ Cons (f y) (map A B f ys)
```

Erasure semantics for type polymorphism

data Nil Cons

Erasure in **dependently-typed** languages

```
data Vec (n:Nat) (A:Type) : Type where
Nil : Vec Zero A
Cons : \Pi(m:Nat) \rightarrow A \rightarrow (Vec m A) \rightarrow Vec (Succ m) A
map : \forall(A B : Type) \rightarrow \Pi(n : Nat) \rightarrow (A \rightarrow B)
\rightarrow Vec n A \rightarrow Vec n B
map = \lambda A B n f v.
case v of
Nil \Rightarrow Nil
Cons m x xs \Rightarrow
Cons m (f x) (map A B m f xs)
```

Erasure in **dependently-typed** languages

```
data Vec (n:Nat) (A:Type) : Type where
Nil : Vec Zero A
Cons : \forall(m:Nat) \rightarrow A \rightarrow (Vec m A) \rightarrow Vec (Succ m) A
map : \forall(A B : Type) \rightarrow \forall(n : Nat) \rightarrow (A \rightarrow B)
\rightarrow Vec n A \rightarrow Vec n B
map = \lambda A B n f v.
case v of
Nil \Rightarrow Nil
Cons m x xs \Rightarrow
Cons m (f x) (map A B m f xs)
```

Erasure in **dependently-typed** languages

data Nil Cons

$$\begin{array}{l} \text{map} = \lambda _ n \text{ f v.} \\ \text{case v of} \\ \text{Nil} \Rightarrow \text{Nil} \\ \text{Cons} _ x \text{ xs} \Rightarrow \\ \text{Cons} _ (\text{f x}) (\text{map} _ _ \text{f xs}) \end{array}$$

Refinement/Subset types

```
type EvenNat = { n : Nat | isEven n } Erasable proof

plusIsEven : \Pi(m n : Nat) \rightarrow isEven m \rightarrow isEven n

\rightarrow isEven (m + n)

plusIsEven = \lambda m n p1 p2. ...

plus : EvenNat \rightarrow EvenNat \rightarrow EvenNat

plus = \lambda en em. case en, em of

(n, np), (m, mp) \Rightarrow (n + m, plusIsEven n m np mp)
```

Refinement/Subset types

plus =
$$\lambda$$
 en em. case en, em of
(n, _), (m, _) \Rightarrow (n + m, _)

Erasable code is irrelevant

- Not all terms are needed for computation: some function arguments and data structure components are there only for type checking
- Especially common in dependently-typed programming and proving
- Can call such code *irrelevant*

Why care about irrelevance?

- 1. The compiler can produce faster code
 - Erase arguments and their computation Run-time irrelevance
- 2. The type checker can run more quickly
 - Comparing types for equality requires reduction, which can be sped up by erasure
- 3. Verification is less work for programmers
 - Proving that terms are equal is easier when you can ignore the irrelevant parts
- 4. More programs type check
 - May not be able to prove the irrelevant parts equal

Compile-time irrelevance

Less work for verification: proof irrelevance

type EvenNat = { n : Nat | isEven n }

```
-- prove equality of two EvenNats

congEvenNat : (n m : Nat)

\rightarrow (np : isEven n)

\rightarrow (mp : isEven m)

\rightarrow (n = m)

-- no need for proof of np = mp

\rightarrow ((n, np) = (m, mp) : EvenNat)

congEvenNat = \lambda n m en em p. ...
```

More programs type check

...when more terms are equal, by definition

type tells us that f is a constant function

example = $\lambda \uparrow$. Refl

Proof of equality comes directly from type checker

Sound for the type checker to decide that these terms are equal

Type checkers for dependently-typed languages should identify irrelevant code

But how?

How should type checkers for dependently-typed languages identify and take advantage of irrelevant code?

- 1. Erasure
- 2. Modes
- 3. Dependency

Core dependent type system

$\Gamma \vdash a:A$		
$rac{\mathrm{Var}}{x:A\in\Gamma} rac{x:A\in\Gamma}{\Gammadash x:A}$	$egin{array}{c} { m PI} \ \Gamma dash A: \star \ rac{\Gamma, x: Adash B: \star}{\Gamma dash \Pi x: A.B: \star} \end{array}$	$\begin{array}{c} \text{Abs} \\ \Gamma, x : A \vdash b : B \\ \Gamma \vdash \Pi x : A.B : \star \\ \hline \Gamma \vdash \lambda x : A. b : \Pi x : A.B \end{array}$
$\begin{array}{c} \mathbf{A}_{\mathbf{P}} \\ \Gamma \\ \vdash \\ \hline \Gamma \\ \hline \end{array}$	$\stackrel{P}{\vdash b:\Pi x:A.B}{\Gamma \vdash a:A} = rac{b a:B[a/x]}{b a:B[a/x]}$	$\begin{array}{c} \text{Conv} \\ \Gamma \vdash a : A \\ \hline \Gamma \vdash B : \star \vdash A \equiv B \\ \hline \Gamma \vdash a : B \end{array}$

Erasure

You can't use something that is not there

Miquel, TLCA 01 Barras and Bernardo, FoSSaCS 2008 Zombie/Trellys [Kimmel et al. MSFP 2012] Dependent Haskell [Weirich et al. ICFP 2018]

ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions

$$\begin{array}{lll}
\text{E-ABS} \\
\Gamma, x : A \vdash b : B \\
\Gamma \vdash \forall x : A. B : \star \\
x \notin \mathsf{fv}|b| \\
\hline \Gamma \vdash \lambda x :^{\mathbf{I}} A. b : \forall x : A. B
\end{array} \xrightarrow{\text{E-APP}} \\
\Gamma \vdash b : \forall x : A. B \\
\Gamma \vdash b : \forall x : A. B \\
\hline \Gamma \vdash a : A \\
\hline \Gamma \vdash b a^{\mathbf{I}} : B[a/x]
\end{array}$$

ICC: Implicit Calculus of Constructions

- Extend core language with irrelevant (implicit) abstractions
- Annotations enable decidable type checking

ICC: Implicit Calculus of Constructions

- Extend core language with irrelevant (implicit) abstractions
- Annotations enable decidable type checking
- Irrelevant parameters must not appear *relevantly*
- Erasure operation |a| removes irrelevant terms

$$\begin{array}{lll}
\text{E-ABS} \\
\Gamma, x : A \vdash b : B \\
\Gamma \vdash \forall x : A. B : \star \\
\hline x \notin \mathsf{fv}|b| \\
\Gamma \vdash \lambda x :^{\mathbf{I}} A. b : \forall x : A. B \\
\end{array} \qquad \begin{array}{lll}
\text{E-APP} \\
\Gamma \vdash b : \forall x : A. B \\
\Gamma \vdash b : \forall x : A. B \\
\hline \Gamma \vdash a : A \\
\hline \Gamma \vdash b a^{\mathbf{I}} : B[a/x] \\
\end{array}$$

Erasure during conversion

- Conversion between *erased* types
- Compile-time irrelevance: erased parts ignored when comparing types for equality

$$\frac{\text{E-Conv-Ann}}{\Gamma \vdash a : A} \quad \begin{array}{c} \Gamma \vdash B : \star \\ \Gamma \vdash a : B \end{array} \mapsto \left| A \right| \equiv \left| B \right|$$

Erasure: Implicit Calculus of Constructions

- Benefits
 - Simple!
 - Directly connects to erasure in compilation
 - Orthogonal: features independent from the rest of the system
- Drawbacks
 - No irrelevant projections

Irrelevant projections

```
Length is not statically known
filter : \forall(A:Type) \rightarrow \forall(n:Nat)
                                               and irrelevant
          \rightarrow (A \rightarrow Bool) \rightarrow (Vec n A) \rightarrow \exists(m:Nat) \times (Vec m A)
filter = \lambda A n f v.
     case v of
                                                  UNSOUND addition to
                                                  compile-time erasure
        Nil ⇒
                                                   | Vec p.1 A | = ????
            (0, Nil)
        Cons m x xs ⇒
            let p = filter A m f xs in
            if f x
                then (Succ p.1, Cons p.1 x p.2)
                else p
```


Distinguish relevant and irrelevant abstractions through *modes*

Pfenning, LICS 01 **Mishra-Linger and Sheard, FoSSaCS 08** DDC, Choudhury and Weirich, ESOP 22 Abel and Scherer, LMCS 12 DE, Liu and Weirich, ICFP 23

Modal types and modes

- Modal type marks irrelevant code: $\Box A$
- Type system controlled by modes: $m:=\mathbf{R}\mid \mathbf{I}$
 - Variables have modes, must be ${\bf R}$ when used

 $\Gamma ::= \varepsilon \mid \Gamma, \ x :^{m}A$

- Resurrection (Γ^m): replaces all m tags with ${
 m R}$
- Mode-annotated quantification: $\Pi x: {}^{m}A.B$ unifies $\Pi x: A.B$ and $\forall x: A.B$

Modal types for irrelevance

Only relevant variables can be used

M-VAR $x:^{\mathbf{R}}A\in\Gamma$ $\Gamma \vdash x : A$

$\begin{array}{c} \text{M-Box} \\ \Gamma^{\mathbf{I}} \vdash a : A \end{array}$	$\begin{array}{l} \text{M-LetBox} \\ \Gamma \vdash a : \Box A \end{array}$	$\Gamma, x:^{\mathbf{I}}A \vdash b:B$	$\Gamma \vdash B: \star$		
$\overline{\Gamma \vdash \mathbf{box} \ a : \Box A}$	$\Gamma \vdash$	$\mathbf{unbox} \ x = a \mathbf{in} \ b:$	$\mathbf{px} x = a \mathbf{in} \ b : B$		
Modal types mark irrelevant subterms.		The contents of the accessible only in c	e box are other boxes.		

Resurrection means that any variable can be used inside a box.

Mode-annotated functions

Only relevant variables can be used	П-bound var relevant in t M-PI	iables alwa he type	ys M-Abs	Tyj wit cor	bes checked h "resurrected htext	"
M-VAR	$\Gamma \vdash A: \star$		Γ^{I}	$\vdash \prod x : r$	$^{n}A.B:\star$	
$x:^{\mathbf{R}}A\in\Gamma$	$\Gamma, x : {}^{\mathbf{R}} A \vdash B :$	*	Γ	$, x :^m A$	$\vdash b: B$	
$\Gamma \vdash x : A$	$\overline{\Gamma \vdash \Pi x} :^m A.B :$: *	$\overline{\Gamma \vdash \lambda}$	$x:^m A. a$	$:\Pi x:^m A.$	\overline{B}
M-App			Moo mo	de on П-ty de in the c	pe determines context	;
$\Gamma \vdash b : \Pi x :^m A.B$		M-Con	IV			
$\Gamma^m \vdash a : A$		$\Gamma \vdash a$: A	$\vdash A \equiv$	B	
$\overline{\Gamma \vdash b \; a^m}:$	$\overline{B[a/x]}$		$\Gamma \vdash a$: B		
Irrelevant arguments checked with resurrected context				irrele	vant argument	ts

Compile-time irrelevance

- Usual rules, plus
 - compare arguments marked R
 - ignore arguments marked I or inside a box

EQ-REL

$$\vdash b_1 \equiv b_2$$

$$\vdash a_1 \equiv a_2$$

$$\vdash b_1 a_1^{\mathbf{R}} \equiv b_2 a_2^{\mathbf{R}}$$

 $\begin{array}{l} \text{Eq-IRR} \\ \vdash b_1 \equiv b_2 \\ \hline \vdash b_1 a_1^{\mathbf{I}} \equiv b_2 a_2^{\mathbf{I}} \end{array}$

Modes for irrelevance

- Benefits
 - Modes identify patterns in the semantics: don't need two different function types
 - Easy implementation: mark variables when introduced in the context, mark the context for resurrection
- Drawbacks
 - Still no irrelevant projections
 - Formation rule for Π-types looks a bit strange
- Conjecture: equivalent to ICC*

Alternative rule for Π -types

- From [Pfenning 99] [Abel and Scherer 2012]
- But: irrelevant arguments must be irrelevant *everywhere*, including in types. No parametric polymorphism!

M-PI

$$\Gamma \vdash A : \star$$

 $\Gamma, x : {}^{\mathbf{R}}A \vdash B : \star$
 $\overline{\Gamma \vdash \Pi x : {}^{m}A.B : \star}$

M-PI-ALT

$$\Gamma \vdash A : \star$$

 $\Gamma, x :^{m} A \vdash B : \star$
 $\Gamma \vdash \Pi x :^{m} A . B : \star$

Dependency

Track when outputs depend on inputs

DCC, Abadi et al., POPL 99

DDC, Choudhury and Weirich, ESOP 22 DCOI, Liu, Chan, Shi, Weirich, POPL 24

Dependency tracking

 Typing judgment ensures that low-level outputs do not depend on high-level inputs

 $x :^{H} Bool \vdash a :^{L} Int$

Input level x can only be used when observer level is $\geq H$

Observer level a can only use variables whose levels are $\leq L$

- Type system parameterized by ordered set of levels
 - Relevance (R < I)
 - Other examples: Security levels (Low < Med < High)
 Staged computation (0 < 1 < 2...)

Typing rules with dependency levels $\Gamma \vdash a :^{\ell} A$

D-VAR	Variable usages restricted by observer level				
$x:^{m}A\in\Gamma$	$m \leq \ell$				
$\Gamma \vdash x :^{\ell} A$					

D-PI $\Gamma \vdash A :^{\ell} \star$ and types $\Gamma, x :^{m} A \vdash B :^{\ell} \star$ $\Gamma \vdash \Pi x :^{m} A . B :^{\ell} \star$

D-ABS $\Gamma, x : {}^{m}A \vdash b : {}^{\ell}B$ $\Gamma \vdash \Pi x : {}^{m}A.B : {}^{\ell_{1}} \star$ Terms do not observe types, so level unimportant

 $\begin{array}{c}
\text{D-APP} \\
\Gamma \vdash b :^{\ell} \Pi x :^{m} A.B \\
\Gamma \vdash a :^{m} A \\
\hline
\Gamma \vdash b a^{m} :^{\ell} B[a/x]
\end{array}$

Application requires compatible dependency levels

Π-types record the dependency levels of their arguments

 $\Gamma \vdash \lambda x :^{m} A. b :^{\ell} \Pi x :^{m} A.B$

DCOI: irrelevant projections

```
vfilter : (A:^{I} Type) \rightarrow (n:^{I} Nat)

\rightarrow (A \rightarrow Bool) \rightarrow (Vec n A) \rightarrow (m:^{I} Nat) \times (Vec m A)

vfilter = \lambda A n f v.

case v of Definition checks with R observer, but

Nil \Rightarrow (0^{I}, Nil) Contains I-marked subterms

Cons m<sup>I</sup> x xs \Rightarrow

let p = vfilter A<sup>I</sup> m<sup>I</sup> f xs in

if f x

then ((Succ p.1)<sup>I</sup>, Cons p.1<sup>I</sup> x p.2)

else p First projection allowed in

I-marked subterms only
```

Indistinguishability: indexed definitional equality

$$\vdash a \equiv^{\ell} b$$

Observer at level ℓ cannot distinguish between terms

If observer has a higher level than the argument, arguments must agree

If observer does not have a higher level, arguments are ignored

EQ-D-APP-DIST

$$\vdash b_0 \equiv^{\ell} b_1$$

$$\vdash a_0 \equiv^{\ell} a_1 \qquad \ell_0 \leq \ell$$

$$\vdash b_0 a_0^{\ell_0} \equiv^{\ell} b_1 a_1^{\ell_0}$$

Conversion can be used at **any** observer level

$$\frac{\Gamma \vdash a :^{\ell} A \qquad \Gamma \vdash B :^{\ell_0} \star \qquad \vdash A \equiv^{\ell_0} B}{\Gamma \vdash a :^{\ell} B}$$

Type system is **sound** because we **cannot** equate types with different head forms at *any* dependency level

DCOI: Dependent Calculus of Indistinguishability

- Yiu, Chan, Shi and Weirich. *Internalizing Indistinguishability with Dependent Types.* POPL 2024
 - Based on Pure Type System (PTS)
 - Key results: Syntactic type soundness, noninterference
- Yiu, Chan and Weirich. *Consistency of a Dependent Calculus of Indistinguishability.* POPL 2025
 - Predicative universe hierarchy
 - Observer-indexed propositional equality, J-eliminator
 - Key results: Consistency, normalization, and decidable (observer-indexed) equality
- All results mechanized using Rocq proof assistant

DCOI: Proof-specific features

False-elimination D-Absurd $\Gamma \vdash a :^{m} \perp$ $\Gamma \vdash A :^{\ell_{1}} \star$ Proof of false can be $\Gamma \vdash \mathbf{absurd} \ a :^{\ell} A$ eliminated at *any* observer level. Propositional indistinguishability Level of proof must be D-EQ less than current level D-J $\Gamma \vdash a :^{m} A \qquad \Gamma \vdash b :^{m} A \qquad m \leq \ell$ $\Gamma \vdash a : \ell_0 a_1 = a_2$ $\Gamma \vdash a =^{m} b :^{\ell} \star$ Equality must be $\Gamma, x :^m A, \frac{y :^{\ell_0}}{2} a_1 =^m x \vdash B :^m \star$ observable to the $\Gamma \vdash b :^{\ell} B[a_1/x][\mathbf{refl}/y] \qquad \ell_0 \le \ell$ type D-Refl $\Gamma \vdash \mathbf{J} \ a \ b :^{\ell} B[\frac{a_2}{x}][\frac{a}{y}]$ $\Gamma \vdash a :^m A$ $\overline{\Gamma \vdash \mathbf{refl}} :^{\ell} a =^{m} a$ Equality between terms at level mwitnessed via substitution at level mEquality between proofs at level ℓ_a Can create reflexivity witnessed via substitution at level ℓ_{a} proofs about any level

DCOI: Dependent Calculus of Indistinguishability

- Benefits
 - Irrelevant projection is sound!
 - Irrelevant absurdity is sound!
 - Can reason about *indistinguishability* as a proposition
- Future work
 - Compatibility with type-directed equality (relational model)
 - Language ergonomics
 - Dependency level inference?
 - Dependency level quantification?
 - Applications besides irrelevance?

Related work on Irrelevance

- Erasure-based
 - Miquel 2001, Barras & Bernardo 2008
- Mode-based
 - Pfenning 2001, Mishra-Linger & Sheard 2008, Abel & Scherer 2012
- Dependency tracking
 - Type theory in color: Bernardy & Moulin 2013
 - Two level type theories: Kovács 2022, Annenkov et al. 2023
- Proof irrelevance: Prop/sProp (Rcoq), Prop (Agda)
 - Hofmann& Streicher 1988, Gilbert et al. 2019
- Quantitative Type Theory (Run-time irrelevance / erasure)
 - McBride 2016, Atkey 2018, Abel & Bernardy 2020, Choudhury et al. 2021, Moon et al. 2021, Abel et al. 2023

Conclusions

- In dependent type systems, identifying irrelevant computations is important for *efficiency* and *expressivity*
- Type systems can track more than "types", they can also tell us what happens during computation
- Dependency analysis is a powerful hammer in type system design