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Lazy evaluation is a powerful tool for functional programmers. It enables the concise expression of on-demand
computation and a form of compositionality not available under other evaluation strategies. However, the
stateful nature of lazy evaluation makes it hard to analyze a program’s computational cost, either informally or
formally. In this work, we present a novel and simple framework for formally reasoning about lazy computation
costs based on a recent model of lazy evaluation: clairvoyant call-by-value. The key feature of our framework
is its simplicity, as expressed by our definition of the clairvoyance monad. This monad is both simple to
define (around 20 lines of Coq) and simple to reason about. We show that this monad can be effectively used
to mechanically reason about the computational cost of lazy functional programs written in Coq.
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1 INTRODUCTION

Lazy evaluation [Henderson and Morris 1976], or the call-by-need calling convention, is a dis-
tinguishing feature in some functional programming languagesÐHaskell being the most notable
example. Rather than evaluating eagerly, a lazy evaluator stores computations in a thunk and
only evaluates the thunk when the data is needed. This feature avoids unneeded computation and
enables better modularity in functional programming [Hughes 1989]. However, with convenience
in expressiveness comes challenge in reasoningÐespecially so for cost analysisÐbecause it’s far
less obvious if, when, and how much a computation is evaluated. We believe proof assistants can
help to reason formally about semantics so intricate and subtle.
However, modeling laziness formally is difficult. The semantics for call-by-need evaluation is

more complex than that of call-by-name or call-by-value, which can be described merely through
substitution. Traditional presentations [Josephs 1989; Launchbury 1993] of call-by-need semantics
are fundamentally stateful, based on heaps that contain thunks which must be updated during
evaluation.

Rather than directly dealing with such complexity, we take advantage of a new way of modeling
call-by-need: clairvoyant call-by-value [Hackett and Hutton 2019]. The key observation of this
new model is that although whether a term gets evaluated matters, it doesn’t matter when in
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run-time cost analysis. Therefore, instead of storing the computations in a thunk, the clairvoyant
call-by-value model makes use of nondeterminism to evaluate the data in one branch and skip
evaluation in another. Eventually, one successful branch of evaluation will faithfully model the
result and cost of the call-by-need evaluation.

Based on clairvoyant evaluation, we propose a novel framework for reasoning about laziness using
the Coq proof assistant, a dependently-typed interactive theorem prover [Coq development team
2021]. Our framework is based on an annotated model similar to that of Danielsson [2008] and of
Handley et al. [2020], but our work does not require an explicit notion of laziness to reason about
computation costs under lazy evaluation.
We make the following contributions:

• We present the clairvoyance monad, a model of laziness that can be shallowly embedded
in Coq by distilling two core features of clairvoyant evaluation: nondeterminism and cost
accumulation. One key feature of the clairvoyance monad is its simplicity: it consists of
only a handful of basic combinators and can be defined with around 20 lines of code in
Coq (Section 3).

• We develop a translation from a lazy calculus to programs in this monad that captures the
semantics of clairvoyant call-by-value evaluation. Compared with the denotational semantics
of Hackett and Hutton [2019], our translation deals with typed programs, does not rely on
domain theory, and accounts for the cost of every nondeterministic execution (Section 4).

• One challenge arising from clairvoyant evaluation is to reason about nondeterminism. We
develop dual logics of over- and under-approximations similar to those of de Vries and Koutavas
[2011]; Hoare [1969]; O’Hearn [2020] to reason about lazy programs. We show that formal
reasoning of computation cost based on these logics can be done in a local and modular
way (Section 5).

• We demonstrate the usefulness of our technique via case studies of tail recursion that capture
the unique characteristics of lazy evaluation (Section 6).

Our paper ends with a comparison of related research in Section 8 and a discussion of future
work in Section 9. In the next section, below, we introduce our approach at a high level and present
our running example.

2 MOTIVATING EXAMPLE

We start by providing an informal overview of our approach on a small example that exhibits
laziness. Consider the following program, written in Gallina, the functional programming language
of the Coq proof assistant [Coq development team 2021]:

Definition p {a} (n : nat) (xs ys : list a) : list a :=

let zs := append xs ys in

take n zs.

Gallina can be compiled to use lazy evaluation via extraction to Haskell. The functions append

and take in this example are equivalent to their Haskell counterparts, and their definitions are
shown in Fig. 1. 1 These examples use Gallina’s inductively defined lists, which are a subset of
Haskell’s list type. Although working with infinite data types is another useful application of lazy
evaluation, many algorithms manipulate only finite data structures [Okasaki 1999]. Hence, we
believe inductive lists are representative of how lists are used in practice even in Haskell.

1For reasons that we will explain in Section 4, these functions are written in A-Normal Form [Sabry and Felleisen 1992], but
that doesn’t matter so much here.
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Fixpoint append {a} (xs ys : list a) : list a :=

match xs with

| nil => ys

| cons x xs1 => let zs := append xs1 ys in x :: zs

end.

(* returns the prefix of xs of length n or xs when n > length xs. *)

Fixpoint take {a} (n : nat) (xs : list a) : list a :=

match n, xs with

| O, _ => nil

| S _, nil => nil

| S n1, x :: xs1 => let zs := take n1 xs1 in x :: zs

end.

Fig. 1. The pure functional definitions of append and take.

To estimate the time it takes to evaluate a program, its cost, we can start by counting the number
of steps in some operational semantics, or some proportional quantity. Let us count function calls
informally.
Lazy evaluation leads us immediately to an impasse, because it is not even clear what it means

to łrunž a lazy program. Lazy programs are demand-driven, so we have to specify some model of
łdemandž. A common working model is that lazy programs will be forced during the evaluation of
a whole program, but it is not so practical to reason about the behaviors of arbitrary programs. A
more useful approach is to start from a more familiar place: call-by-value. Indeed, programs under
the call-by-value evaluation strategy have a relatively straightforward cost model. Laziness adds
a twist to it: we might not need all of the result, in which case we allow ourselves to skip some
computations.

With that new ability, we face the problem of deciding which computations to skip. This decision
inherently depends on howmuch of the overall result will be needed. For concreteness, let us require
all of our example list take n (append xs ys) to be evaluated. We start by evaluating append xs ys,
unfolding the program in call-by-value. There are two cases to consider: the length of xs may be
less than n, in which case we will fully evaluate append xs ys in length xs + 1 callsÐwhere the
final nil takes one call. Or length xs may be greater than or equal to n, then we can stop after n
calls, leaving the result of the next call łundefinedž. Either way, we will produce some partially
defined list zs after at most n calls. We then let take n zs run to the end in at most n + 1 calls,
thus producing all elements of take n (append xs ys), as we demanded initially. In total, that
took at most 2 * n + 1 calls. In particular, that cost is independent of the length of xs or ys. That
exemplifies one of the core motivations of laziness: you only pay for what you need.
That idea of łcall-by-value with a twistž is made formal by the concept of clairvoyant evalua-

tion [Hackett and Hutton 2019].

2.1 Clairvoyant Evaluation

The key to formalize the reasoning above is to view lazy programs as nondeterministic programs.
Clairvoyant evaluation works in a way similar to nondeterministic automata, which choose one of
multiple successor states by łguessingž the path to success. In our earlier reasoning, we evaluated
append xs ys in call-by-value until we decided to stop at a point. When to stop was not decided by
the state of the program, but by a łguessž based on the clairvoyant knowledge that we would only
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append [1,2,3] [4]

1 :: append [2,3] [4]

1 :: Undefined

1 :: 2 :: append [3] [4]

1 :: 2 :: Undefined

Cost = 1 Cost = 2

Fig. 2. Parts of the nondeterministic clairvoyant call-by-value evaluation of the append function applied to

two lists [1, 2, 3] and [4].

need n elements in the end. This intuition allows us to define a general semantics that the meaning
of a lazy program comprises all of its nondeterministic evaluations and the meaning can be refined
later in light of new external information.

The equivalence of clairvoyant evaluation to the natural heap-based definition of laziness [Launch-
bury 1993] was proved by Hackett and Hutton [2019]: the cost of any execution in clairvoyant
call-by-value is an upper bound of the cost in call-by-need, and there is some clairvoyant execution
whose cost is actually the same as in call-by-need. In this paper, we carry on with the clairvoyant
interpretation.

Taking the append function as an example (recall its definition in Fig. 1), when it makes a recursive
call, we fork the evaluation into two branches: in branch (1), we perform the recursive call; and in
branch (2), we skip that call. A skipped call yields a placeholder value as a result, which we call ⊥
or Undefined.

Suppose that all future demands only require the first element of the result list, then branch (2)
would suffice for offering that result. However, if a future demand requests more than that, branch (2)
would fail to proceed because the requested data is Undefined. Therefore, branch (2) would get
stuck and not yield any result at all. Fortunately, there would still be branch (1) to return the result.
Furthermore, in branch (1), the append function may make another recursive call to itself, as long
as the first argument list is not nil. In that case, this branch would be once again forked into two
branches. This is illustrated by Fig. 2.

Although lazy programs are now interpreted nondeterministically, nondeterminism is used in a
very controlled manner. The only choices we make are whether to perform a computation or to
skip it. This means that the value of a program, if it exists, is still unique in some sense: the only
possible changes are that parts of the value are replaced with Undefined.
If we know which branch leads to a successful evaluation for the append function, we can just

look at that branch and add its cost to obtain the total cost of the program, which gives us a local
reasoning methodology. Of course we cannot know this in advance, but there are some reasoning
principles that can help.
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Clairvoyant call-by-value 

nondeterminism tree

Pessimistic specification

Optimistic specification

Fig. 3. The relations among a clairvoyant evaluation, a pessimistic specification, and an optimistic specification.

The tree in the middle of the figure represents the nondeterminism tree of clairvoyant evaluation. The gray

nodes represent the end results of their branches. A pessimistic specification specifies the nodes in the red

circle. And an optimistic specification specifies the node in the blue circle.

2.2 A Dual Reasoning Principle

We would like to have a reasoning methodology that is both local and modular, just like what
we would expect from functional programming. This means that we should be able to use some
relations to specify the behaviors of each individual function. And when we want to reason about
a program, we can just do that by composing the relations of its functions.

We use a dual reasoning principle to achieve the locality and modularity for clairvoyant call-by-
value evaluation. First, we have a pessimistic specification that describes the behaviors of all of
the function’s nondeterministic branches. The pessimistic specification can offer us an accurate
description of functional correctness under call-by-need evaluation. However, the specification is
pessimistic because it does not rule out the branches that contain redundant steps and would not
appear in an actual call-by-need evaluation.
To be more selective in those branches, we use an optimistic specification that describes the

behaviors on a specific branch. The specification is optimistic because it can be used to specify a
more accurate bound for the cost under call-by-need evaluation.

Figure 3 shows the relations among a clairvoyant evaluation, a pessimistic specification, and an
optimistic specification.
Getting back to append, its pessimistic specification states:

For all the nondeterministic branches of the append function, if the branch evaluates
successfully, it will return a cost 𝑐 ∈ [1, length 𝑥𝑠 + 1].

For simplicity, we omit the functional correctness part of the specification here. The pessimistic
specification only specifies a coarse range for append’s costs. If we want to reason about our earlier
example p, we could not deduce that its cost would never go over n by reasoning about append and
take abstractly using their specifications. Instead, we can only deduce that the upper bound of the
cost is the length of xs, which may be much larger than n.
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For this sort of analysis, we need the optimistic specification of append:

For any number 𝑛 ∈ [1, length 𝑥𝑠] (or 𝑛 ∈ [1, length 𝑥𝑠 + 1] if 𝑥𝑠 does not contain any
undefined part), 2 there exists a nondeterministic branch of the append function that
evaluates successfully and returns a cost 𝑐 = 𝑛.

A major difference between the pessimistic and the optimistic specifications is that the latter does
not only show a range of costs; it shows what exactly are the possible costs within this range. With
the help of this specification, we can łpickž one branch where the possible cost, which might be
much smaller than the length of 𝑥𝑠 , barely suffices for producing a list that take needs.
Both the pessimistic and optimistic specifications can be proved on the append function. And

when reasoning about a larger program like p, all we need is to compose the specifications of append
with the specifications of other functions like take.

2.3 The Missing Pieces

So far, we have informally discussed our methodology. The main missing piece to develop in the
rest of the paper is to implement this methodology in the formal environment of the Coq proof
assistant.

The first step is to associate the pure functional programs with versions that track execution costs
and allow nondeterminism. It turns out that we can do that with monads [Moggi 1991; Wadler 1992].
In the next section, we define the clairvoyance monad, which distills the main features of clairvoyant
evaluation. One attraction of the clairvoyance monad is its simplicity: its core definitions consist of
merely 21 nonblank, noncomment lines of code in Coq. Then, we translate pure functions into the
clairvoyance monad in Section 4. The final step, in Section 5, is to build a program logic for the
clairvoyance monad that enables local and modular formal cost analysis in the style of optimistic
and pessimistic specifications.

3 THE CLAIRVOYANCE MONAD

The clairvoyance monad (Fig. 4) is a lightweight abstraction that can express the semantics of
instrumented lazy evaluation, suitable for cost analysis. Based on the ideas of clairvoyant evalua-
tion [Hackett and Hutton 2019], its simplicity is largely due to the absence of higher-order state
commonly associated with laziness.
To model clairvoyant evaluation, we need a monad that can encode all the following three

ingredients: (1) costs, (2) nondeterminism, and (3) failures on some nondeterministic branches. The
clairvoyance monad is the simplest monad that meets the criterion.

A computation in the clairvoyance monad, of type M a, nondeterministically yields a value v : a

after some time n. A computation is defined as a set of such pairs (v, n), encoded in Coq as a
predicate a -> nat -> Prop. The return of the monad yields the given value v with cost 0; it is a set
containing only (v, 0). The bind of the monad sequences computation by getting a result (x, nx)

from the first operand u, and then feeding the value x to the continuation k, which then yields
another result (y, ny). The overall result is that latter value paired with the total cost (y, nx + ny).

To track time, tick [Moran and Sands 1999] is a computation with unit cost. This design follows
the same rationale as Danielsson [2008]: explicit ticks make the library lightweight and flexible to
experiment with different cost models. For a given cost model, one can ensure that ticks are added
consistently by an automatic translation. We present such a translation in Section 4.

2When 𝑥𝑠 does not contain any undefined part, appendmight go over the entire list and take one extra cost pattern matching
on nil. This is the only case the cost of append will be bigger than the length of 𝑥𝑠 .
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(* A computation that produces a value of type "a" after some number of ticks. *)

Definition M (a : Type) : Type := a -> nat -> Prop.

(* A computation that takes no time and yields a single value. *)

Definition ret {a} (v : a) : M a :=

fun y n => (y, n) = (v, 0).

(* Sequence two computations and add their time. *)

Definition bind {a b} (u : M a) (k : a -> M b) : M b :=

fun y n => exists x nx ny, u x nx /\ k x y ny /\ n = nx + ny.

(* A computation with unit cost. *)

Definition tick : M unit :=

fun _ n => n = 1.

(* A thunk: either a known value or unused. *)

Inductive T (a : Type) : Type :=

| Thunk (x : a)

| Undefined.

(* Store a computation without evaluating it (zero cost). *)

Definition thunk {a} (u : M a) : M (T a) :=

fun t n => match t with

| Thunk v => u v n

| Undefined => n = 0

end.

(* Either continue computation with the value of a thunk or fail. *)

Definition forcing {a b} (t : T a) (f : a -> M b) : M b :=

match t with

| Thunk v => f v

| Undefined => fun _ _ => False

end.

(* Force a thunk. *)

Definition force {a} (t : T a) : M a := forcing t ret.

Fig. 4. Core definitions of the clairvoyance monad M.

The type of thunks T is structurally an option type. A thunk is either a known value, under
the Thunk constructor, or it is Undefined. Undefined thunks are placeholders introduced when a
computation is łskipped,ž because its result won’t be needed.

For łlaziness,ž we add two operations to create and force thunks. Intuitively, the thunk function
stores a computation of type M a without evaluating it, and yields a thunk: a reference to that
stored computation, of type T a. The forcing function looks up that reference to evaluate the
corresponding computation and passes it to the continuation. This result is also stored in place of
the computation, so that subsequent uses of force will not recompute the result.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 80. Publication date: August 2021.



80:8 Yao Li, Li-yao Xia, and Stephanie Weirich

Γ ⊢ t : M a Γ,(x : a) ⊢ s : M b

Γ ⊢ let! x := t in s : M b
let!

Γ ⊢ t : M a Γ,(xA : T a) ⊢ s : M b

Γ ⊢ let~ xA := t in s : M b
let~

Γ ⊢ f : a -> M b Γ ⊢ xA : T a

Γ ⊢ f $! xA : M b
($!)

Fig. 5. Typing rules for let!, let~, and $!

In the clairvoyance model, thunk’s implementation nondeterministically chooses between (1)
running the computation, yielding any one of its results in a Thunk, and (2) skipping it, yielding
an Undefined result at no cost. The set of possible outcomes is implemented as a predicate: it
accepts any pair (Thunk v, n) such that (v, n) is accepted by the given computation u and the
pair (Undefined, 0).
The forcing operation accesses the result stored in a thunk and passes it to a continuation. If

there is indeed a value Thunk v, then v is the result, and we just pass it to the continuation k. We
do not need to add any costs in this step: we already paid the cost of computing v on the thunk’s
creation. If the thunk is Undefined, then the computation fails: it has no result, as denoted by the
empty set. Note that the only way to fail among the above five combinators is to use forcing

and that thunk is the only way to produce thunks to apply forcing to. In spite of this underlying
potential for failure, computations definable with these combinators always have at least one
successful execution by never skipping a thunk. In that sense, our combinators adequately model a
total language.

The empty computation fun _ _ => False : M a could also be added to the core definitions. In
this paper, we will stick to total functional programming [Turner 2004].
When programming, we also rely on Coq notations for a few well-known monadic operations

in addition to these core definitions. The infix notation ł>>ž abbreviates bind with a constant
continuation:

Notation "t >> s" := (bind t (fun _ => s)).

In the clairvoyance monad, a common idiom is tick >> t to increase the cost of t by one.
Functions whose arguments are thunks are called lazy, in the sense that their arguments may

not always be defined. Otherwise they are eager. Let us define the following notations, wrapping
the monadic bind in more familiar syntax, akin to do-notation in Haskell and overloaded let in
OCaml. The infix $! is named after a standard Haskell operator which makes a function strict. For
reference, typing rules for these constructs are given in Fig. 5.

Notation "let! x := t in s" := (bind t (fun x => s)).

Notation "let~ xA := t in s" := (bind (thunk t) (fun xA => s)).

Notation "f $! xA" := (forcing xA f).

We thus view the combinator bind as an łeagerž let! construct, where the bound variable x is the
result of the computation t. In contrast, a composition of bind and thunk provides a łlazyž let~,
where xA is a thunk for the łdelayedž computation t. In this paper, variables of łliftedž types T a

will be marked with a suffix -A, to constrast with variables of łunliftedž types a.
The definition of T has two important features. First, a thunk is merely a value, not an indirect

location in a łheapž as it would be in natural semantics [Launchbury 1993]; this is key to the sim-
plicity of our definitions. Second, the type constructor T can be used in inductive type declarations
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and plays well with the strict positivity condition imposed on them. 3 This will be essential in the
translation of recursive types in Section 4.
In the clairvoyance model, it is useful to think of thunks as a way to construct approxima-

tions [Scott 1976]. The type T a łliftsž a type a with an Undefined value which approximates all
values of type a. Recursive types may contain nested thunks, thus defining rich domains of approxi-
mations. In the monad M, we view a lazy computation as producing an approximation of some pure,
complete result; more precise approximations are more costly to compute. That structure will be
made explicit in Section 5.

Remark. The monad M coincides with the writer monad transformer [Liang et al. 1995] applied
to the powerset monad _ -> Prop. This observation crisply summarizes the orthogonal roles of
nondeterminism and accounting for time in the clairvoyance monad.

4 TRANSLATION

The clairvoyance monad provides us with an explicit model of laziness. To reason about the cost
of programs in a lazy languageÐwhere laziness is implicitÐwe make computations explicit by
translating them into monadic programs. We present such a translation in this section. We will
then introduce a framework for reasoning about computations in the clairvoyance monad in the
next section.

Our source language is a total lazy calculus with folds, enabling structural recursion. In practice,
our programs are embedded in Gallina, a pure and total language which does not prescribe an
evaluation strategyÐmultiple evaluation strategies are actually available. Hence, Gallina terms have
no inherent notion of cost. Our monadic translation defines a second embedding that determines a
lazy evaluation strategy, allowing us to reason about the cost of lazy functional programs.

Totality is arguably not a strong limitation for implementing many algorithms: in the context of
complexity analysis, termination is a necessary condition for defining the cost of an algorithm.
In this section, we formalize the source language and its translation to Gallina. Our examples

of source programs are embedded in Gallina, and we currently translate them by hand. This
formalization will serve as the basis for a future implementation of a translation from Haskell.

4.1 Formal Monadic Translation

We define a translation from a simply typed lambda calculus to Gallina using the monad M and the
definitions in Fig. 4. The syntax of the source calculus is summarized in Fig. 6. A primitive type of
lists serves to illustrate how to translate algebraic data types, with structural recursion modeled by
a foldr operator. This calculus is in A-normal form [Sabry and Felleisen 1992] to streamline the
monadic translation by confining the bookkeeping of thunks to let and foldr.

In the translation of types (Fig. 7), source function types 𝜏1 → 𝜏2 are translated to target function
types T J𝜏1K → M J𝜏2K. The argument is wrapped in a thunk, so functions may be defined on
undefined inputs. And the result is, of course, a computation. The type of lists is translated to an
inductive type where fields are wrapped in a thunk T. This type thus represents partially defined
lists, which can be seen as approximations of actual lists.
In the translation of terms (Fig. 8), a well-typed term 𝑡 : 𝜏 is translated to a Gallina term

J𝑡K : M J𝜏K. We pun source variables 𝑥 : 𝑎 as target variables 𝑥 : T J𝑎K. A tick is added uniformly
in the interpretation of every non-value constructÐthis follows Hackett and Hutton [2019]: it is
assumed that those constructs will be implemented in constant time. In our examples, we will
simplify ticks further, as discussed in Section 4.4.

3https://coq.inria.fr/refman/language/core/inductive.html#strict-positivity

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 80. Publication date: August 2021.

https://coq.inria.fr/refman/language/core/inductive.html#strict-positivity


80:10 Yao Li, Li-yao Xia, and Stephanie Weirich

types 𝜏 ::= 𝜏 → 𝜏 | list 𝜏 | unit

𝑥,𝑦, 𝑧 ∈ variables

terms 𝑡,𝑢 ::= 𝑥 | 𝜆𝑥. 𝑡 | 𝑡 𝑥 | let 𝑥 = 𝑡 in 𝑢

| Nil | Cons 𝑥 𝑦 | foldr 𝑡 (𝜆𝑥 𝑦.𝑡) 𝑧

Γ ⊢ 𝑥 : list 𝜏1 Γ ⊢ 𝑡𝑙 : 𝜏2 Γ, 𝑦1 : 𝜏1, 𝑦2 : 𝜏2 ⊢ 𝑡𝑛 : 𝜏2

Γ ⊢ foldr 𝑡𝑙 (𝜆𝑦1𝑦2.𝑡𝑛) 𝑥 : 𝜏2
foldr

Fig. 6. Syntax and typing rules for foldr

J𝜏1 → 𝜏2K = T J𝜏1K → M J𝜏2K

Jlist 𝜏K = listA J𝜏K

Inductive listA (a : Type) : Type :=

NilA | ConsA (x1 : T a) (x2 : T (listA a)).

Fig. 7. Monadic type translation on the left; definition of listA on the right

Jlet 𝑥 = 𝑡 in 𝑢K = tick >> let~ 𝑥 := J𝑡K in J𝑢K

J𝑥K = tick >> force 𝑥

J𝜆𝑥.𝑡K = ret (fun 𝑥 => J𝑡K)

J𝑡 𝑥K = tick >> let! f := J𝑡K in f 𝑥

JNilK = ret NilA

JCons 𝑥 𝑦K = ret (ConsA 𝑥 𝑦)

Jfoldr 𝑡𝑙 (𝜆𝑦1𝑦2.𝑡𝑛) 𝑥K = foldrA J𝑡𝑙K (fun 𝑦1 𝑦2 => J𝑡𝑛K) 𝑥

Fig. 8. Monadic term translation

Types guide the design of the term translation. The source Let corresponds to our lazy let~,
creating thunks, while variable expressions J𝑥K : M J𝜏K force the thunk denoted by the variable
𝑥 : T J𝜏K.

The translation of foldr is defined in Fig. 9. A tick happens at every recursive call. And recursive
calls are thunked using the let~ construct, so that theymay remain unevaluated if the c computation
doesn’t need them.

Recursion introduces a wrinkle in our translation. Generally, function arguments 𝑥 : 𝑎 are lifted
to 𝑥 : T J𝑎K. However, recursive definitions in Coq must take an argument whose outer type
constructor is defined using recursion, listA a, unlike the type of thunks T (listA a). Thus the
translated foldrA is merely a wrapper around the recursive function foldrA' where most of the
work happens. Moreover, in foldrA', the subterm x2 is forced in continuation-passing style, using
forcing (under the notation $!), in order to ensure that the recursive call to foldrA' is syntactically
applied to a subterm of the initial list x'.
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Fixpoint foldrA' {a b} (n : M b) (c : T a -> T b -> M b) (x' : listA a) : M b :=

tick >>

match x' with

| NilA => n

| ConsA x1 x2 =>

let~ y2 := foldrA' n c $! x2 in

c x1 y2

end.

Definition foldrA {a b} (n : M b) (c : T a -> T b -> M b) (x : T (listA a)) : M b :=

foldrA' n c $! x.

Fig. 9. Definition of the foldrA function used in the translation of foldr

4.2 Equivalence with Clairvoyant Call-By-Value

Our translation J·K is a cost-aware denotational semantics for the simply-typed lambda calculus.
Formally, this semantics J𝑡K is parameterized by an environment 𝜌 that maps the free variables of 𝑡
to semantic values. The denotation J𝑡K(𝜌) : M J𝜏K is thus a set of cost-value pairs (𝑛, 𝑣), with 𝑛 : N
and 𝑣 : J𝜏K.
We have proved the equivalence between our denotational semantics and clairvoyant call-by-

value evaluation, the operational semantics of laziness introduced by Hackett and Hutton, which
itself was proved equivalent to the natural semantics of Launchbury [1993]. Clairvoyant call-by-
value evaluation is defined as an inductive relation 𝑡, ℎ ⇓CV𝑛 𝑢,ℎ′ expressing that the term 𝑡 with an
initial heap ℎ evaluates, with cost 𝑛, to a value term 𝑢 and a final heap ℎ′. To state this equivalence,
we extend our denotation function J·K to these auxiliary syntactic constructs: a heap ℎ, which
maps variables to terms, denotes an environment JℎK, and a (syntactic) value term 𝑢 : 𝜏 , in an
environment 𝜌 , denotes a (semantic) value J𝑢K(𝜌) : J𝜏K.
We can now state an equivalence between our denotational semantics J·K and the operational

semantics ⇓CV:

Theorem 4.1. For any well-typed term 𝑡 and heap ℎ, and for any value-cost pair (𝑣, 𝑛), the following
propositions are equivalent.

(1) (𝑣, 𝑛) ∈ J𝑡K(JℎK).
(2) There exists 𝑢 and ℎ′ such that 𝑡, ℎ ⇓CV𝑛 𝑢,ℎ′ and 𝑣 = J𝑢K(Jℎ′K).

The forward direction, (1) implies (2), states the adequacy theorem: the denotational semantics
J·K is a subset of the operational semantics ⇓CV. Conversely, the backward direction, (2) implies (1),
states our soundness theorem: all evaluations by the operational semantics produce denoted cost-
values. Together, these results prove that our semantics is equivalent to the operational semantics
of Hackett and Hutton.

We have formalized both the denotational semantics J·K and the operational semantics ⇓CV and
proved the equivalence theorem in Coq [Li et al. 2021]. The proof, which proceeds by induction on 𝑛
for adequacy and on derivations of ⇓CV for soundness, is straightforward thanks to the simplicity of
the language, notably excluding general recursion. Most of the work is devoted to relating mutable
heaps ℎ in the operational semantics ⇓CV to environments 𝜌 in our denotational semantics J·K.
In addition to an operational semantics ⇓CV, Hackett and Hutton [2019] also presented a de-

notational cost semantics, which we can compare to ours. First, the cost semantics of Hackett
and Hutton is defined for an untyped recursive calculus and our translation is defined for a typed
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Definition impl3 {a b c} (P P' : a -> b -> c -> Prop) : Prop :=

forall x y z, P x y z -> P' x y z.

Inductive Fix {a b} (gf : (a -> M b) -> (a -> M b)) x y n : Prop :=

| MkFix (self : a -> M b) : impl3 self (Fix gf) -> gf self x y n -> Fix gf x y n.

Fig. 10. Possible fixpoint combinator in the monad M

calculus with foldsÐguaranteeing termination. However, since the clairvoyance monad is based on
the powerset monad _ -> Prop, we can also define a fixpoint operator (an example is Fig. 10):

Fix : ((a -> M b) -> (a -> M b)) -> (a -> M b)

Such an operator could be used for the denotational semantics of a general recursive lazy language,
but at the cost of a more complex equivalence theorem. The issue is that the unfolding lemma
Fix F <-> F (Fix F) assumes the monotonicity of F, adding a significant burden to using that
operator. Without using Fix, we have only modelled a total language, as the source language
we considered above is intended to be a subset of Gallina. Many algorithms, in the functional
programming literature especially, are defined using various forms of structural recursion, so they
can be embedded in our framework.

Second, the denotations of Hackett and Hutton are cost-value pairs that inhabit a lattice to handle
general recursion; they handle nondeterminism by joining all executions together. However, in the
denotation of Let, the cost of evaluating the binding is discarded if the body of the Let does not
depend strictly on the binding. In comparison, our semantics models computation using sets of
pairs, so the cost of every nondeterministic path is preserved.

Key to the simplicity of our approach, the core operations of our clairvoyance monad (Section 3)
are operations on sets; these operations do not rely on an abstract lattice structure for values. In
exchange, our semantics is less well-behaved: let~ expressions with unused thunks generate spuri-
ous approximations. We present a dual logic that disregards such uninformative approximations in
Section 5.

4.3 An Example

We show our translation in action on the example of append and take, illustrating a few pragmatic
tweaks to our formalization above. The source program with pure functions in Fig. 1 is translated
into the monadic program in Fig. 11. For simplicity, we retain the use of fixpoints instead of
representing all recursion with foldrA.
These definitions use the listA type from Fig. 7. This type is the corresponding approximation

type for Gallina’s native list, and wraps every field in the thunk type constructor T.
The translation of recursive functions follows a similar structure to the definition of foldrA in the

previous section, since append and take are in fact specialized list folds (foldr): their translations are
wrappers for the recursive append_ and take_ where pattern-matching happens, and the recursive
calls are guarded by thunks.
We keep the primitive representation of certain types, such as nat in the definition of take,

instead of using its Peano representation. The main reason to do so is that it makes the resulting
program simpler by denoting łprimitivež operations more directly. Although this is generally
unsound for a language with pervasive laziness, this issue could be palliated by using a strictness
analysis to ensure that variables of that type are never instantiated with ⊥. Alternatively, we could
consider a source language where both lifted and unlifted types coexistÐHaskell is actually such
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Fixpoint append_ {a : Type} (xs' : listA a) (ys : T (listA a)) : M (listA a) :=

tick >>

match xs' with

| NilA => force ys

| ConsA x xs1 =>

let~ t := (fun xs1' => append_ xs1' ys) $! xs1 in

ret (ConsA x t)

end.

Definition appendA {a : Type} (xs ys : T (listA a)) : M (listA a) :=

(fun xs' => append_ xs' ys) $! xs.

Fixpoint take_ {a : Type} (n : nat) (xs' : listA a) : M (listA a) :=

tick >>

match n, xs' with

| O, _ => ret NilA

| S _, NilA => ret NilA

| S n1, ConsA x xs1 =>

let~ t := take_ n1 $! xs1 in

ret (ConsA x t)

end.

Definition takeA {a : Type} (n : nat) (xs : T (listA a)) : M (listA a) :=

take_ n $! xs.

Definition pA {a} (n : nat) (xs ys : T (listA a)) : M (listA a) :=

tick >>

let~ t := appendA xs ys in

takeA n t.

Fig. 11. The translated code of append and take from the pure version of Fig. 1.

a language, although unlifted types are not commonly used because GHC’s strictness analysis is
often good enough to enable optimizations.

The append function, of type list a -> list a -> list a, is translated to its approximate version
appendA, of type T (listA a) -> T (listA a) -> M (listA b). In other words, the arguments are
put under thunks T, and the result is produced by an explicit computation M. This differs slightly
with our formal translation where we simply translated a term 𝑡 : 𝜏 to J𝑡K : M J𝜏K. We can do away
with that outer M because, typically, top-level functions are values.

Finally, we translate the bodies of the functions. To match the syntax of Fig. 6, we sequentialize
expressions to ANF [Sabry and Felleisen 1992] (if they are not already in this form), so that every
computation happens at a Let binding. We then translate the ANF program to a monadic program,
following Fig. 8.

With the translated code, we can now formally analyze its cost. We will show how we specify its
cost and how we reason about that in Section 5.
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4.4 Simplifying Ticks

In our examples, we have simplified the translated code further to only keep a single tick at the
head of source function bodies. This incurs a change to the cost of computations bounded by
a multiplicative constant of the original cost. Considering that those costs are purely abstract
quantities to begin with, this seems an acceptable trade-off to make the translated code more
readable.

This simplification can be broken down in two steps. First, apply the following rewrite rules to
łfloat upž every tick in every subexpression:

bind t (fun x => tick >> k x) = (tick >> bind t k)

thunk (tick >> u) <= (tick >> thunk u)

where the inequality <= means in this context that every execution (x, nR) on the right-hand side
corresponds to an execution (x, nL) on the left-hand side with the same result but a lower or
equal cost nL <= nR. 4 That rewriting may increase the cost of programs, which is fine since we are
eventually most interested in finding upper bounds on that cost. Second, once all ticks are as high
in the program as they can be, we replace all consecutive ticks with a single one. The resulting
łspeed-upž of the computations is bounded by a constant multiplicative factor equal to the longest
chain of ticks substituted that way.

5 FORMAL REASONING

A guiding principle in designing our methodology is to have reasoning rules that are both local
and modular. By local, we mean that we can reason about each function independently; and by
modular, we mean we can reason about the whole program by composing the results of reasoning
about its parts.
However, in doing so we face a challenge: clairvoyant call-by-value evaluation is an over-

approximation of call-by-need evaluation: it contains nondeterministic branches that would not
appear in an actual call-by-need evaluation. Therefore, to reason precisely about call-by-need
execution, we need reasoning rules that are general enough to contain many nondeterministic
results, but also selective enough to prune nondeterministic branches that contain redundant steps.
We address this challenge with a dual specification methodology. For generality, a pessimistic

specification talks about the behaviors on all nondeterministic branches. For selectiveness, an
optimistic specification describes the behavior of specific branches. 5

5.1 The Optimistic and Pessimistic Specifications

The definitions of the pessimistic specification and the optimistic specification are shown in Fig. 12.
Both are parameterized by a specification relation r : a -> nat -> Prop which specifies a set of
desired values and costs. A pessimistic specification states that all nondeterministic branches of
the program u satisfy the relation r. On the other hand, the optimistic specification requires the
existence of at least one nondeterministic branch satisfying the relation r.

We use the following notations to denote these two kinds of specifications: 6

Notation " u {{ r }} " := (pessimistic u r).

Notation " u [[ r ]] " := (optimistic u r).

4The equality should be interpreted as extensional equality. We have formally proved these rewrite rules in Coq [Li et al.
2021].
5All the theorems discussed in this section have been formally proved in Coq and they are available in our artifact [Li et al.
2021].
6We omit the Coq notation levels in the code.
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Definition pessimistic {a} (u : M a) (r : a -> nat -> Prop) : Prop :=

forall x n, u x n -> r x n.

Definition optimistic {a} (u : M a) (r : a -> nat -> Prop) : Prop :=

exists x n, u x n /\ r x n.

Fig. 12. The definitions of the pessimistic and optimistic specifications.

𝑟 𝑥 0

(ret 𝑥) {{ 𝑟 }}
ret

𝑢 {{ 𝜆𝑥 𝑛.(𝑘 𝑥) {{ 𝜆𝑦 𝑚.𝑟 𝑦 (𝑛 +𝑚) }} }}

(bind 𝑢 𝑘) {{ 𝑟 }}
bind

𝑟 tt 1

tick {{ 𝑟 }}
tick

𝑢 {{ 𝑟 }} ∀𝑥 𝑛, 𝑟 𝑥 𝑛 → 𝑟 ′ 𝑥 𝑛

𝑢 {{ 𝑟 ′ }}
monotonicity

𝑟 Undefined 0 𝑢 {{ 𝜆𝑥 .𝑟 (Thunk 𝑥) }}

(thunk 𝑢) {{ 𝑟 }}
thunk

∀𝑥, 𝑡 = Thunk 𝑥 → (𝑘 𝑥) {{ 𝑟 }}

(𝑘 $! 𝑡) {{ 𝑟 }}
forcing

𝑢 {{ 𝑟 }} 𝑢 {{ 𝑟 ′ }}

𝑢 {{ 𝜆𝑥 𝑛.𝑟 𝑥 𝑛 ∧ 𝑟 ′ 𝑥 𝑛 }}
conjunction

Fig. 13. Reasoning rules for pessimistic specifications.

𝑟 Undefined 0 ∨ 𝑢 [[ 𝜆𝑥.𝑟 (Thunk x) ]]

(thunk 𝑢) [[ 𝑟 ]]
thunk

𝑡 = Thunk 𝑥 (𝑘 𝑥) [[ 𝑟 ]]

(𝑘 $! 𝑡) [[ 𝑟 ]]
forcing

𝑢 {{ 𝑟 }} 𝑢 [[ 𝑟 ′ ]]

𝑢 [[ 𝜆𝑥 𝑛.𝑟 𝑥 𝑛 ∧ 𝑟 ′ 𝑥 𝑛 ]]
conjunction

Fig. 14. Reasoning rules for optimistic specifications. We omit the rules for ret, bind, and tick as well as

the monotonicity rule because these rules have the same forms as those of the pessimistic specifications.

5.2 Reasoning Rules

We can define a set of reasoning rules for the pessimistic specification and the optimistic speci-
fication, respectively. For each kind of specification, we build some reasoning rules for the five
basic monadic combinators (ret, bind, tick, thunk, and forcing) described in Section 3. We can
then reason about our programs purely based on these reasoning rules plus a monotonicity rule.

Figure 13 shows the reasoning rules for pessimistic specifications. ret x satisfies the pessimistic
specification r if the result x and the cost 0 are in the set of r. bind u k satisfies the pessimistic
specification r if all the results of u can be composed with the continuation k such that all the final
results are in the set of r. A tick satisfies the pessimistic specification r if tt (the only value of
the unit data type in Coq) and 1 are in the set of r. We also need a monotonicity rule to relax the
pessimistic specification relation and a conjunction rule to combine pessimistic specifications.
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The term thunk u satisfies the pessimistic specification r if both nondeterministic branches
forked off from it satisfy the relation r. The forcing rule requires that its continuation k satisfies the
relation r when applied to the value contained in a Thunk; in the case that there is no defined value
within the thunk (i.e., forcing an Undefined), the pessimistic specification is vacuously satisfied
because the computation branch fails.
Figure 14 shows the reasoning rules for optimistic specifications. We omit the rules for the

ret, bind, and tick operators and the monotonicity rule here because they have the same form as
those of the pessimistic specification. There are two ways to give an optimistic specification for
thunk terms, corresponding to selecting one of the two different nondeterministic branches that
forked off from the thunk. In the branch where the computation is skipped, we only need to show
that Undefined and 0 are in the relation r. In the branch where the computation is evaluated, we
show that there exists a result in the computation u such that wrapping it in a Thunk constructor
satisfies the relation r. The forcing rule requires its argument to be a defined value because forcing
an Undefined results in failure. When reasoning about a program, we need to select the proper
optimistic rule at thunks so that forcing an Undefined value never happens.

The conjunction rule for the optimistic specification is also slightly different because its premises
require both a pessimistic specification and an optimistic specification.

5.3 Approximations

Before showing how we use both the pessimistic and the optimistic specifications for reasoning
about lazy programs, we need to answer this question: in what sense does an approximation
function implement a pure function?
Recall the approximation types and pure types discussed in Section 4.3. We would like to base

our specification on pure types, as this is what we normally write as functional programs. On the
other hand, our implementation in the clairvoyance monad uses approximation types.
We can connect these approximation and pure types together. First observe that we can inject

pure types into partial types by thunking each subterm. We call the result an exact approximation
because it constructs an approximation which represents exactly the original list.

Definition exact : list a -> listA a.

We cannot go the opposite way with a function, since approximations generally contain less
information than a full list. Instead, we generalize exact as a relation is_approx xsA xs between a
pure list xs on the right and any of its approximations on the left. A notation turns it into an infix
operator with syntax inspired by Haskell.

Definition is_approx : listA a -> list a -> Prop.

Infix "`is_approx`" := is_approx.

Approximations themselves are partially ordered, when the second is at least as defined as the
first. We also use infix notation for this relation.

Definition less_defined : listA a -> listA a -> Prop.

Infix "`less_defined`" := less_defined.

In our running example using lists, we also simplify things by using the same type a as the type
of elements for pure lists list a and list approximations listA a.

More generally, wewant to overload the function exact and relations is_approx and less_defined,
so that (1) their names can be reused for user-defined data types, (2) they are automatically lifted
through the thunk type constructor T.
Some properties describe and relate these three relations formally. These relations must be

defined and their properties must be proved for every user-defined approximation type; those
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Theorem appendA_correct_partial {a} :

forall (xs ys : list a) (xsA ysA : T (listA a)),

xsA `is_approx` xs -> ysA `is_approx` ys ->

(appendA xsA ysA) {{ fun zsA _ => zsA `is_approx` append xs ys }}.

Theorem appendA_correct_pure {a} :

forall (xs ys : list a) (xsA ysA : T (listA a)),

xsA = exact xs -> ysA = exact ys ->

(appendA xsA ysA) [[ fun zsA _ => zsA = exact (append xs ys) ]].

Fig. 15. Definitions of partial functional correctness and pure functional correctness.

propositions and their proofs (which we omit) follow a common structure, so we conjecture that
they can be automated.
The less_defined relation is an order relation.

Proposition less_defined_order : Order less_defined.

The set of approximations for a pure value is downward closed.

Proposition approx_down :

xsA `less_defined` ysA -> ysA `is_approx` xs -> xsA `is_approx` xs.

The list xsA is an approximation of xs if and only if xsA is less defined than the exact approximation
of xs.

Proposition approx_exact : xsA `is_approx` xs <-> xsA `less_defined` (exact xs).

Exact approximations are maximal elements for the less_defined order.

Proposition exact_max : exact xs `less_defined` xsA -> exact xs = xsA.

A reference implementation of all the definitions shown in this section as well as proofs for the
above propositions on thunks and lists can be found in our public artifact [Li et al. 2021].

5.4 Functional Correctness

To say that our approximation function implements the pure specification, we would like two
notions of correctness: (1) a partial correctness notion that requires all the nondeterministic results
of the approximation function to be approximations of the result of the pure function; and (2) a
pure correctness notion that states the existence of a maximal approximation result that is exactly
the pure function’s result.

We define the partial correctness of a function using the pessimistic specification, and the pure
correctness of a function using the optimistic specification. For example, the partial and pure
specifications of appendA (Section 4.3) are shown in Fig. 15. Given approximations of two input lists
xs and ys, appendA always, i.e., pessimistically, yields an approximation of append xs ys. On the
other hand, appendA optimistically yields exactly the list append xs ys when applied to the exact
approximations of xs and ys. Both theorems can be proved by an induction over xs.

5.5 Cost Specifications

In this section, we show how we use both the pessimistic and the optimistic specifications for
reasoning about computation costs.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 80. Publication date: August 2021.



80:18 Yao Li, Li-yao Xia, and Stephanie Weirich

Fixpoint sizeX {a} (n0 : nat) (xs : T (listA a)) : nat :=

match xs with

| Thunk NilA => n0

| Thunk (ConsA _ xs1) => S (sizeX n0 xs1)

| Undefined => 0

end.

Definition is_defined {a} (t : T a) : Prop :=

match t with

| Thunk _ => True

| Undefined => False

end.

Fig. 16. Definition of sizeX7 and is_defined.

Using appendA as our running example, we first start with a pessimistic specification. Since a
pessimistic specification describes all the nondeterministic branches of a clairvoyant call-by-value
evaluation, it might contain spurious branches which overapproximate call-by-need evaluation
too much. Thus, it can only offer a loose upper bound for the computation cost. Nevertheless, it is
useful in specifying the lower bound, while we can rely on an optimistic specification to tighten
the bounds.

Taking the appendA function (Fig. 11) again as our example, we can give it a pessimistic specifica-
tion as follow:

Theorem appendA_cost_interval {a} : forall (xsA ysA : T (listA a)),

(appendA xsA ysA)

{{ fun zsA cost => 1 <= cost <= sizeX 1 xsA }}.

The xsA and ysA passed to the appendA function are approximations of the pure values xs and ys.
The size of approximation lists, defined in Fig. 16, is a function intended purely for reasoning,

hence we name it sizeX, with a different suffix from implementations such as appendA. It is also
parameterized by the łsizež of NilA, which is 0 or 1 depending on whether its presence matters
for a given specification. Here, the extra unit of time accounts for the final call to appendA which
matches on NilA.

A problem with this specification is that it only gives a range of the computation costs. During
the actual evaluation of the function p, the takeA function would never require more than the first
n elements of appendA’s resulting list, but this specification of appendA fails to reflect that. We will
only be able to compute that the combined cost has a lower bound of 3 and an upper bound of
(sizeX 1 xsA) + n + 1, while in an actual call-by-need evaluation, the cost would never exceed
2n + 1. 8

To address this problem, we give an optimistic specification to append. A first version states that
appendA reaches the lower bound of the interval in at least one execution.

Theorem appendA_whnf_cost {a} : forall (xsA ysA : T (listA a)),

(appendA xsA ysA)

[[ fun zsA cost => cost <= 1 ]].

7Simplified for clarity. This is actually ill-formed because the type T (listA A) is not a recursive type (cf. Section 4.1).
8Note that the size of xsA can be bigger than n if it is required with a higher demand elsewhere.
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The execution of appendA which satisfies that specification immediately discards the computation
in the let~, producing only a result in WHNF.
That specification could be strengthened to an equality cost = 1. However, it is important to

remember that results (zsA, cost) of a clairvoyant computation are formal approximations of
the behavior of a lazy program. zsA is an approximation of the function’s result, and cost is an
upper bound on its actual cost. Hence, only upper bounds on cost are meaningful in optimistic
specifications, while pessimistic specifications can assert both lower and upper bounds. For that
reason, we leave specifications of cost as inequalities even though the simple specifications in
this section are technically valid with equalities. Note also that pessimistic upper bounds are quite
fragile; they can be broken simply by adding spurious thunks in a program.

Optimistic specifications about a single result such as appendA_whnf_cost are unhelpful in most
proofs, of course. A more expressive way to phrase optimistic specifications is to set an arbitrary
demand, raising the cost accordingly.
Examining executions of appendA more closely, we can distinguish two phases, with separate

specifications. Before reaching the end of the first list xsA, appendA computes an approximation of
length n in time n, for any n smaller than the size of xsA.

Theorem appendA_prefix_cost {a} : forall n (xsA ysA : T (listA a)),

1 <= n <= sizeX 0 xsA ->

(appendA xsA ysA) [[ fun zsA cost => n = sizeX 0 (Thunk zsA) /\ cost <= n ]].

The natural number n represents an explicit demand on the output of appendA xsA ysA: we
demand an approximation with n constructors ConsA, costing at most n units of time.
Another specification describes the execution of appendA that reaches the end of the first list,

yielding the most defined resultÐlimited only by the possible partiality of ysA. As a necessary
condition, xsA must be an exact approximationÐmodulo the definedness of its elements. Once we
reach the end of the list xsA, the thunk ysA will be forced, so we require it to be defined, using the
is_defined predicate in Fig. 16. This guarantees that zsA will be defined past the end of xsA, as
specified by assigning a nonzero size to NilA in applications of sizeX.9

Theorem appendA_full_cost {a} : forall (xs : list a) (xsA := exact xs) ysA,

is_defined ysA ->

(appendA xsA ysA) [[ fun zsA cost =>

length xs + sizeX 1 ysA = sizeX 1 (Thunk zsA) /\ cost <= length xs + 1 ]].

Natural numbers are not the most precise model of demand on lists: one may also specify whether
and to what extent the elements of the list in the first field of ConsA constructors should be evaluated.
In fact, approximation types such as listA are the most general way to model demand. However,
when list elements are not explicitly used, a natural number is enough to formalize the main aspects
of complexity analysis for list operations.

6 CASE STUDY: TAIL RECURSION

We have already demonstrated our methodology on the program described in Section 2. Here,
we show how to apply this approach in another context: reasoning about functions written with
tail recursion. 10 Tail recursion is a common optimization technique in the context of an eager
semantics. However, it can be a cause of performance degradation if not used properly under lazy
evaluation.

9The (xsA := exact xs) binding in the following snippet is desugared into a local definition using let.
10All the theorems discussed in this section have been formally proved in Coq and the proofs are available in our artifact [Li
et al. 2021].
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Tail Recursive take. Consider a tail recursive version of the take function from Section 2, called
take'. The key difference is the addition of an accumulator to its parameters:

Fixpoint take'_ {a} (n : nat) (xs : list a) (acc : list a) : list a :=

match n with

| O => rev acc

| S n' => match xs with

| nil => rev acc

| cons x xs' => take'_ n' xs' (x :: acc)

end

end.

Definition take' {a} (n : nat) (xs : list a) : list a := take'_ n xs nil.

Even though the list must be reversed in the base case, take' is better in an eager programming
language because the compiler can eliminate stack allocation [Friedman and Wise 1974].
However, the original version is better for lazy evaluation, even if we ignore the cost of rev.

To get an intuition of why, consider the case where we only demand the WHNF of the resulting
list. This variant take' must go over 𝑛 elements of the list before it returns the accumulator. In
comparison, the original take can immediately reveal the first element of the resulting list in any
of its pattern matching branches.

A Formal Analysis. With the help of formal reasoning, we can better understand these functions’
difference from their specifications. In the specifications below, we axiomatize the cost of rev used
in take'_ to have a cost of 0 11. We introduce this axiom so we can compare only the costs incurred
by the recursive calls on take'_ and take. With this set up, let’s look at the pessimistic specification
of take'A_, the version of take'_ written in the clairvoyance monad: 12

forall (n : nat) (xs : list a) (xsA : listA a) (acc : list a) (accA : T (listA a)),

xsA `is_approx` xs -> accA `is_approx` acc ->

(take'A_ n xsA accA) {{ fun zsA cost => cost = min n (length xs) + 1 }}.

The pessimistic specification describes a rather precise cost on all the nondeterministic branches of
take'A_. Furthermore, the cost is purely decided by the pure values n and xsÐthe fact that the cost
does not depend on the actual approximations zsA output by take'A_ is a sign that the function
may not be making effective use of laziness.
However, to show that take is better than take', we need to show that take can cost less than

take'. What specification should we use to show that? One possibility is the pessimistic specification.
If we take this approach, we can show that the cost of takeA (take in the clairvoyance monad) is
upper bounded by n and the size of the approximation xsA:

forall (n : nat) (xs : list a) (xsA : T (listA a)),

xsA `is_approx` xs ->

(takeA n xsA) {{ fun zsA cost => cost <= min n (sizeX 0 xsA) + 1 }}.

Since approximations are always smaller than their pure values, the cost shown here is smaller than
that of take'A_Ðif such costs indeed exists. Unfortunately, the pessimistic specification, which
quantifies universally over all executions, does not guarantee the existence of an execution. In fact,

11The axiom would not make Coq’s logic unsound because we can define such a function in the clairvoyance monad by not
inserting ticks.
12For simplicity, we omit the functional correctness parts of the specifications in this section.
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take'A admits no execution at all if its arguments are not sufficiently defined, so it satisfies the
above specification vacuously.
To show the existence of certain costs, we need an optimistic specification:

forall (n m : nat) (xs : list a) (xsA : T (listA a)),

1 <= m -> m <= min (n + 1) (sizeX 1 xsA) ->

xsA `is_approx` xs ->

(takeA n xsA) [[ fun zsA cost => cost = m ]].

The pessimistic specification of take'A_ and the optimistic specification of takeA help unveil the
key difference between these two: take'A_ does not make effective use of laziness, while the cost
of takeA scales with its demand.

List Reversal. On the other hand, there are functions like rev that do benefit from tail recursion.
Consider a naive version without tail recursion:

Definition rev' {a} (xs : list a) : list a :=

match xs with

| nil => nil

| x :: xs' => append (rev' xs') (cons x nil)

end.

And the version with tail recursion:

Fixpoint rev_ {a} (ys : list a) (xs : list a) : list a :=

match xs with

| nil => ys

| x :: xs => rev_ (x :: ys) xs

end.

Definition rev {a} (xs : list a) : list a := rev_ nil xs.

One reason that the non-tail-recursive version is worse is that append has a non-constant cost,
which leads rev to have a cost which grows quadratically in the length of the input list. However,
even if we imagine a constant time version of append (e.g., difference lists [Hughes 1986], catenable
lists [Okasaki 1999]), this version would not be better than the tail-recursive one. 13 Intuitively,
this is because both versions need to traverse the entire list xs to return the first element of the
resulting list, which is the last element of the input list.
Again we can inspect these two versions of rev formally to better understand their difference.

Like above, we axiomatize append to have a cost of 0 so that our analysis only considers the cost
incurred by the recursive calls of rev_ and rev'. This simplification makes rev' cost less but will
only strengthen our claim that rev' would not beat rev.
First, we can show a rather specific cost with the pessimistic specification of revA:

forall (xs : list a) (xsA : T (listA a)),

xsA `is_approx` xs ->

(revA xsA) {{ fun zsA cost => cost = length xs + 1 }}.

In that specification, the cost is associated with the pure input value, and is independent of the
output value, which suggests that revA does not make use of laziness. Indeed, this is true: we must
iterate over the entire list xs to get the first element of the resulting list.

13If we consider the stack usage and compiler optimizations, the tail-recursive version would be generally more efficient
and does not risk causing stack overflow.
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We can also prove that rev'A satisfies the following pessimistic specification:

forall (xs : list a) (xsA : T (listA a)),

xsA `is_approx` xs ->

(rev'A xsA) {{ fun zsA cost => cost = length xs + 1 }}.

This specification shows that the cost of rev'A also does not depend the approximations of xs,
confirming our intuition that rev'A must also iterate over the entire list.

Left and Right Folds. One famous example concerning laziness is the difference between foldl and
foldr. While it seems that the major difference is just their directions of folding, they actually have
rather different costs. For simplicity, let’s only consider these operations on lists. The definitions
of foldl and foldr are shown below:

Fixpoint foldl {a b} (f : b -> a -> b) (v : b) (xs : list a) : b :=

match xs with

| nil => v

| cons x xs => foldl f (f v x) xs

end.

Fixpoint foldr {a b} (v : b) (f : a -> b -> b) (xs : list a) : b :=

match xs with

| nil => v

| cons x xs => f x (foldr v f xs)

end.

A formal analysis of these functions must also consider the cost of the function f passed into
them. For simplicity, let’s assume that f has a cost of only 1. We can then prove that the translated
versions of the above two functions satisfy the following pessimistic specification:

(** The pessimistic specification of [foldlA]. *)

forall f (xs : list a) (xsA : T (listA a)) (v : b) (vA : T bA),

(forall x y, (f x y) {{ fun bA cost => exists b, bA `is_approx` b /\ cost = 1 }}) ->

xsA `is_approx` xs -> vA `is_approx` v ->

(foldlA f vA xsA)

{{ fun zsA cost => cost >= length xs + 1 /\ cost <= 2 * length xs + 1 }}.

(** The pessimistic specification of [foldrA]. *)

forall f (xs : list a) (xsA : T (listA a)) (v : b) (vA : T bA),

(forall x y, (f x y) {{ fun bA cost => cost = 1 }}) ->

xsA `is_approx` xs -> vA `is_approx` v ->

(foldrA f vA xsA)

{{ fun zsA cost => cost >= 1 /\ cost <= 2 * sizeX 0 xsA + 1 }}.

The pessimistic specifications suggest that foldrA makes better use of laziness because its
cost is bounded by the length of approximation xsA. However, as we have discussed earlier, we
need to show that there are indeed costs lower than the lower bound of foldlA that exists in
some nondeterministic branches of foldrA. For that, we once again need to show the optimistic
specification of foldrA:

forall f (xs : list a) (xsA : T (listA a)) (v : b) (vA : T bA) n,

1 <= n -> n < sizeX 0 xsA ->

xsA `is_approx` xs -> vA `is_approx` v ->
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(forall x y, (f x y) [[ fun bA cost => cost = 1 ]]) ->

(foldrA f vA xsA) [[ fun zsA cost => cost = 2 * n ]].

(** And a special cost exists when [xs] is fully evaluated. *)

forall f (xs : list a) (xsA : T (listA a)) (v : b) (vA : T bA),

xsA = exact xs -> vA `is_approx` v -> is_defined vA ->

(forall x y, (f x y) [[ fun bA cost => cost = 1 ]]) ->

(foldrA f vA xsA) [[ fun zsA cost => cost = 2 * length xs + 1 ]].

This concludes that, under lazy evaluation, foldl and foldr have the same worst-case cost, but
foldr has a lower cost if the demand is lower.

7 DISCUSSION

Nondeterminism Monads. The clairvoyance monad is not the only way to model nondeterminism;
the list monad is another possibility which allows some of these ideas to be implemented without
dependent typesÐnecessary for exists and eq. Furthermore, the list monad makes clairvoyant com-
putations actually executable. We only require a notion of choice and emptiness for programming;
for reasoning, we need some theory of membership member : M a -> a -> Prop, which defines a
monad morphism into the powerset monad. This suggests that choosing the powerset monad as
we do here yields the simplest definitions.

Recursive Let. A recursive Let for data types is yet another challenge. It allows the construction
of certain infinite structures by łtying the knotž, such as:

ones = 1 :: ones and fib = 0 :: 1 :: zip_with plus fib (tail fib)

However, these represent only a small fraction of programs manipulating infinite structures, and
there are many others, which do not rely on recursive Let, that our reasoning framework can
already handle. For instance, the coinductive versions of append and take are also actually modeled
by our functions translated from the inductive versions (Fig. 11), by viewing our inductive listA

also as an approximation type for infinite lists.
In Haskell, Let is always recursive, but it is so rarely useful for constructing data (as opposed to

functions) that the shadowing it introduces is often considered undesirable, and there is at least
one proposal to disable it. 14

8 RELATED WORK

Clairvoyant Evaluation. Clairvoyant evaluation was first characterized by Hackett and Hutton
[2019]. The main inspiration for our paper, this work presented an operational semantics for laziness
as an alternative to the natural semantics of Launchbury [1993], as well as a denotational cost
semantics, following precursory ideas by Maraist et al. [1995]. We have compared our translation
with the semantics of Hackett and Hutton as well as established an equivalence relation between
them in Section 4.2.

Monadic Translation. Moggi [1991] uses monads to describe computational effects and defines
various translations corresponding to different calling conventions. Wadler [1992] follows and
describes the translations for the call-by-value and call-by-name semantics, but leaves the translation
for call-by-need as an open problem. Uustalu [2002] further adds positive inductive and coinductive
types to these translations.

14https://github.com/ghc-proposals/ghc-proposals/blob/68164fb2d5a71b62223a8287c0c0390147c0dc2f/proposals/0000-
letrec.md
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Petricek [2012] proposes a monadic translation that can be used under all three different calling
conventions, generalizing Wadler [1992], by defining a function called maliaswhich would be given
different meanings under different semantics. In particular, malias : M a -> M (M a) is closely
related to our function thunk : M a -> M (T a): it occupies the same position in the translation of
let. The main difference is that, whereas malias wraps thunks in computations; we expose thunks
T as a separate type. In fact, we could define malias t = bind (thunk t) force to hide thunks as
well. However, exposing T is crucial for use in nested recursive type declarations; using M instead
would violate Coq’s strict positivity condition. Furthermore, in Petricek [2012], M is defined using
Haskell’s STmonad, relying on a polymorphic interface of mutable references to represent the heap.
We believe that it would be challenging to emulate such an interface in Coq.

Computation Cost and Laziness. There is much work on reasoning formally about computation
costs. For example, Crary and Weirich [2000]; Danielsson [2008]; Hoffmann et al. [2012]; Lago
[2011]; Rajani et al. [2021]; Wang et al. [2017] study intrinsic approaches to formal cost analysis.
Our work is in the extrinsic context of an interactive proof assistant.

On the extrinsic side, Charguéraud and Pottier [2019]; Guéneau et al. [2018] use separation logic
for reasoning about computation costs under call-by-value evaluation using amortized analysis.
Compared to these works, our goal of reasoning about lazy pure functional programs does not
require separation logic. Cost specifications could be made more modular by hiding implementation-
specific constant factors and formulating costs in asymptotic terms. Works on formalizing asymp-
totic complexity include Cutler et al. [2020]; Eberl [2021]; Guéneau [2019].

Danielsson [2008]; Handley et al. [2020] reason about lazy functional programs in a monadic syn-
tax annotated with ticks. An issue in both works is that they require an explicit notion of laziness to
model sharing: for example, in practice, a list that is evaluated once will not be evaluated again under
lazy evaluation. To avoid a łdouble countingž of the cost in a thunk, a pay : nat -> M a -> M (M a)

combinator with an explicit representation of cost must be annotated in the code 15. This prevents
both works to be fully extrinsic in reasoning about laziness. With the clairvoyance monad, thunks
are either paid for or discarded immediately, so it is impossible to count the cost of a thunk twice.
This enables us to translate pure lazy functions mechanically to monadic programs, and our proofs
are completely extrinsic.
On the automated reasoning side, Madhavan et al. [2017] verify a purely functional subset of

Scala by translating higher-order functions to first-order programs via defunctionalization. They
also model memoization by encoding the cache as an expression that changes during the execution
of the program.
For testing lazy functions in Haskell, Sloth is a tool that automatically generates test cases to

check if a function is łunnecessarily strictž [Christiansen 2011]. This tool relies on a łless-strictž
ordering of functions. One function is less-strict than another when, given the same input, its result
is less defined [Christiansen and Seidel 2011].

Foner et al. [2018] develop a library that generates random demands on the output of a function
and instruments inputs to record induced demand. Demands take the form of approximations
whose structure is also derived from pure data types.

Haskell. Although we only discuss Coq here, Haskell is also a potential target of our approach.
The hs-to-coq tool automatically translates Haskell programs to GallinaÐCoq’s specification

languageÐusing shallow embeddings [Spector-Zabusky et al. 2018]. It has been used for veri-
fying a significant portion of Haskell’s containers library [Breitner et al. 2021] and one part of

15The pay combinator is also an annotated version of malias : M a -> M (M a) [Petricek 2012].
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GHC [Spector-Zabusky et al. 2019]. However, hs-to-coq’s pure translation cannot be used for cost
analysis so existing work using this tool has been restricted to functional correctness.

Abel et al. [2005] and Dylus et al. [2019] respectively translate Haskell to monadic embeddings
in Agda and Coq, based on the call-by-name translation by Moggi [1991]. This is enough to model
Haskell’s partiality, but not its lazy cost semantics.
Liqid Haskell augments Haskell with refinement types [Vazou 2016] to enable formal ver-

ification, and it has been applied to cost analysis [Handley et al. 2020]. The major difference is
that our work does not require an explicit notion of laziness, as discussed earlier in this section.
Furthermore, Handley et al. [2020] verify Haskell programs written explicitly in the tick monad; to
analyze arbitrary Haskell programs, some monadic translation is necessary.

Nondeterminism and Dual Logics. Our optimistic and pessimistic specifications are examples of
predicate transformer semantics. They date back to Dijkstra [1975], forming the basis of much
work on the verification of effectful programs in type theory [Nanevski et al. 2008; Swamy et al.
2013; Swierstra 2009; Swierstra and Baanen 2019]. Our predicate transformer semantics are two
conventional effect observations [Maillard et al. 2019] from the clairvoyance monadÐa variant of the
powerset monadÐto the specificationmonads respectively for angelic and demonic nondeterminism.
The duality between pessimistic and optimistic specifications is also the duality of Hoare

logic [Hoare 1969] and reverse Hoare logic [de Vries and Koutavas 2011; O’Hearn 2020]. Those
logics use sets of states to approximate program behavior. In Hoare logic, the postcondition
over-approximates the set of reachable states; in reverse Hoare logic, the postcondition under-
approximates the set of reachable states. Here, we show that abstractions for angelic and demonic
nondeterminism give rise, rather simply, to logics of over- and under-approximations of time
consumption. The notion of approximation underlying our logics is formally defined as follows:
a set of cost-value pairs 𝐴 underapproximates a set of pairs 𝐵 if, for every (𝑣, 𝑐) ∈ 𝐴, there exists
(𝑤,𝑑) ∈ 𝐵 which łcosts less and is more definedž, i.e., such that 𝑑 ≤ 𝑐 and 𝑣 ≤ 𝑤 . Thus, sets of states
are ordered by inclusion in Hoare logic, whereas sets of cost-value pairs follow a more elaborate
order structure in our dual logic, based on the view that those pairs themselves are approximations
of the actual behavior of lazy programs.

9 CONCLUSION AND FUTURE WORK

In this paper, we present a novel and simple framework for formally reasoning about costs of
lazy functional programs. The framework is based on a new model of lazy evaluation: clairvoyant
call-by-value [Hackett and Hutton 2019], which makes use of nondeterminism to avoid modeling
mutable higher-order state in classic models of laziness [Launchbury 1993].

Our framework includes a simple clairvoyance monad and a translation from a typed calculus to
programs in this monad that captures the semantics of clairvoyant call-by-value. Compared with
the denotational semantics of Hackett and Hutton, our translation deals with typed programs, does
not rely on domain theory, and accounts for the cost of every nondeterministic execution. We also
develop dual logics over- and under-approximations similar to those of de Vries and Koutavas [2011];
Hoare [1969]; O’Hearn [2020] that enable local and modular formal reasoning of computation costs.
We show the effectiveness of our approach via several small case studies.

In future work, we would like to apply this methodology to existing programs written in Haskell.
In particular, we would like to augment tools like hs-to-coq [Spector-Zabusky et al. 2018] so
that they can automatically translate Haskell programs to the clairvoyance monad and explore
techniques in Coq that can be used to automate reasoning in those logics.
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