Library HOAS_Typed_Definitions

Definition of Fsub (System F with subtyping).

We represent syntax with an encoding into the lambda calculus.

NOTE: We define a number of Notations which are used only for parsing, since the code here is directly copied from another development. The notations help smooth over trivial differences in the names of lemmas and functions.

Require Export Metatheory.
Require Export Lib_Typed_Lambda.
Require Export Common.

Pre-terms


Module Export Const <: CONST.

Inductive syntax_c : Set :=
| typ_top_c : syntax_c
| typ_arrow_c : syntax_c
| typ_all_c : syntax_c
| typ_sum_c : syntax_c
| exp_abs_c : syntax_c
| exp_app_c : syntax_c
| exp_tabs_c : syntax_c
| exp_tapp_c : syntax_c
| exp_let_c : syntax_c
| exp_inl_c : syntax_c
| exp_inr_c : syntax_c
| exp_case_c : syntax_c.

Definition const := syntax_c.
Definition base_sort := tag.

Lemma eq_base_sort_dec : forall (x y : base_sort), {x = y} + {x <> y}.

Notation Typ := (lt_base Typ).
Notation Exp := (lt_base Exp).
Notation sort := (lambda_sort base_sort).

Definition signature (c : const) : sort :=
  match c with
    | typ_top_c => Typ
    | typ_arrow_c => lt_arrow Typ (lt_arrow Typ Typ)
    | typ_all_c => lt_arrow Typ (lt_arrow (lt_arrow Typ Typ) Typ)
    | typ_sum_c => lt_arrow Typ (lt_arrow Typ Typ)
    | exp_abs_c => lt_arrow Typ (lt_arrow (lt_arrow Exp Exp) Exp)
    | exp_app_c => lt_arrow Exp (lt_arrow Exp Exp)
    | exp_tabs_c => lt_arrow Typ (lt_arrow (lt_arrow Typ Exp) Exp)
    | exp_tapp_c => lt_arrow Exp (lt_arrow Typ Exp)
    | exp_let_c => lt_arrow Exp (lt_arrow (lt_arrow Exp Exp) Exp)
    | exp_inl_c => lt_arrow Exp Exp
    | exp_inr_c => lt_arrow Exp Exp
    | exp_case_c => lt_arrow Exp (lt_arrow (lt_arrow Exp Exp)
                                 (lt_arrow (lt_arrow Exp Exp) Exp))
  end.

End Const.

Module Export L := Lam Const.

Notations


NOTE: The block of notations below is purely to smooth over differences stemming from the fact that much of the code in this development is copied directly from another Fsub development.

Notation exp := syntax (only parsing).
Notation typ := syntax (only parsing).

Notation fv_tt := fv (only parsing).

Notation open_tt := open (only parsing).
Notation open_te := open (only parsing).
Notation open_ee := open (only parsing).

Notation subst_tt := subst (only parsing).
Notation subst_te := subst (only parsing).
Notation subst_ee := subst (only parsing).

Notation subst_tt_open_tt := subst_open (only parsing).

Notation subst_tt_open_tt_var := subst_open_var (only parsing).
Notation subst_te_open_te_var := subst_open_var (only parsing).
Notation subst_te_open_ee_var := subst_open_var (only parsing).
Notation subst_ee_open_te_var := subst_open_var (only parsing).
Notation subst_ee_open_ee_var := subst_open_var (only parsing).

Notation subst_tt_intro := subst_intro (only parsing).
Notation subst_te_intro := subst_intro (only parsing).
Notation subst_ee_intro := subst_intro (only parsing).

Notation subst_tt_fresh := subst_fresh (only parsing).
Notation subst_te_fresh := subst_fresh (only parsing).
Notation subst_ee_fresh := subst_fresh (only parsing).

NOTE: The block of notations below is needed to provide a reasonable way of writing terms.

Notation "r @ s" := (app r s) (at level 40, left associativity).

Notation typ_fvar := fvar.
Notation exp_fvar := fvar.

Notation typ_top :=
  (const typ_top_c).
Notation "'typ_arrow' s1" :=
  (app (const typ_arrow_c @ s1)) (at level 2).
Notation "'typ_all' s1 'in' s2" :=
  (const typ_all_c @ s1 @ (abs Typ s2)) (at level 2).
Notation "'typ_sum' s1" :=
  (app (const typ_sum_c @ s1 )) (at level 2).
Notation "'exp_abs' s1 'in' s2" :=
  (const exp_abs_c @ s1 @ (abs Exp s2)) (at level 2).
Notation "'exp_app' s1" :=
  (app (const exp_app_c @ s1 )) (at level 2).
Notation "'exp_tabs' s1 'in' s2":=
  (const exp_tabs_c @ s1 @ (abs Typ s2)) (at level 2).
Notation "'exp_tapp' s1" :=
  (app (const exp_tapp_c @ s1 )) (at level 2).
Notation "'exp_let' s1 'in' s2" :=
  (const exp_let_c @ s1 @ (abs Exp s2)) (at level 2).
Notation "'exp_inl' s1" :=
  (const exp_inl_c @ s1) (at level 2).
Notation "'exp_inr' s1" :=
  (const exp_inr_c @ s1) (at level 2).
Notation "'exp_case' s1 'left' s2 'right' s3" :=
  (const exp_case_c @ s1 @ (abs Exp s2) @ (abs Exp s3)) (at level 2).

Environments


Inductive binding : Set :=
  | bind_sub : typ -> binding
  | bind_typ : typ -> binding.

Notation env := (list (atom * binding)).
Notation empty := (@nil (atom * binding)).

Notation "[ x ]" := (x :: nil).

Definition subst_tb (Z : atom) (P : typ) (b : binding) : binding :=
  match b with
    | bind_sub T => bind_sub (subst_tt Z P T)
    | bind_typ T => bind_typ (subst_tt Z P T)
  end.

Notation senv := (list (atom * sort)).

Definition to_tag (b : binding) : sort :=
  match b with
    | bind_sub _ => Typ
    | bind_typ _ => Exp
  end.

Notation to_senv := (map to_tag).

Well-formedness


Inductive wf_senv : senv -> Prop :=
  | wf_senv_nil :
      wf_senv nil
  | wf_senv_Exp : forall E x,
      x `notin` dom E ->
      wf_senv E ->
      wf_senv ([(x,Exp)] ++ E)
  | wf_senv_Typ : forall E X,
      X `notin` dom E ->
      wf_senv E ->
      wf_senv ([(X,Typ)] ++ E).

Inductive wf_typ : senv -> typ -> Prop :=
  | wf_typ_top : forall E,
      wf_senv E ->
      wf_typ E typ_top
  | wf_typ_var : forall E (X : atom),
      wf_senv E ->
      binds X Typ E ->
      wf_typ E (typ_fvar X)
  | wf_typ_arrow : forall E T1 T2,
      wf_typ E T1 ->
      wf_typ E T2 ->
      wf_typ E (typ_arrow T1 T2)
  | wf_typ_all : forall L E T1 T2,
      wf_typ E T1 ->
      (forall X : atom, X `notin` L ->
        wf_typ ([(X, Typ)] ++ E) (open_tt T2 X)) ->
      wf_typ E (typ_all T1 in T2)
  | wf_typ_sum : forall E T1 T2,
      wf_typ E T1 ->
      wf_typ E T2 ->
      wf_typ E (typ_sum T1 T2)
.

Inductive wf_exp : senv -> exp -> Prop :=
  | wf_exp_var : forall E (x : atom),
      wf_senv E ->
      binds x Exp E->
      wf_exp E (exp_fvar x)
  | wf_exp_abs : forall L E T e,
      wf_typ E T ->
      (forall x : atom, x `notin` L ->
        wf_exp ([(x,Exp)] ++ E) (open_ee e x)) ->
      wf_exp E (exp_abs T in e)
  | wf_exp_app : forall E e1 e2,
      wf_exp E e1 ->
      wf_exp E e2 ->
      wf_exp E (exp_app e1 e2)
  | wf_exp_tabs : forall L E T e,
      wf_typ E T ->
      (forall X : atom, X `notin` L ->
        wf_exp ([(X,Typ)] ++ E) (open_te e X)) ->
      wf_exp E (exp_tabs T in e)
  | wf_exp_tapp : forall E e T,
      wf_exp E e ->
      wf_typ E T ->
      wf_exp E (exp_tapp e T)
  | wf_exp_let : forall L E e1 e2,
      wf_exp E e1 ->
      (forall x : atom, x `notin` L ->
        wf_exp ([(x,Exp)] ++ E) (open_ee e2 x)) ->
      wf_exp E (exp_let e1 in e2)
  | wf_exp_inl : forall E e,
      wf_exp E e ->
      wf_exp E (exp_inl e)
  | wf_exp_inr : forall E e,
      wf_exp E e ->
      wf_exp E (exp_inr e)
  | wf_exp_case : forall L E e1 e2 e3,
      wf_exp E e1 ->
      (forall x : atom, x `notin` L ->
        wf_exp ([(x,Exp)] ++ E) (open_ee e2 x)) ->
      (forall x : atom, x `notin` L ->
        wf_exp ([(x,Exp)] ++ E) (open_ee e3 x)) ->
      wf_exp E (exp_case e1 left e2 right e3).

Inductive wf_env : env -> Prop :=
  | wf_env_empty :
      wf_env empty
  | wf_env_sub : forall (E : env) (X : atom) (T : typ),
      wf_env E ->
      wf_typ (to_senv E) T ->
      X `notin` dom E ->
      wf_env ([(X, bind_sub T)] ++ E)
  | wf_env_typ : forall (E : env) (x : atom) (T : typ),
      wf_env E ->
      wf_typ (to_senv E) T ->
      x `notin` dom E ->
      wf_env ([(x, bind_typ T)] ++ E)
.

Subtyping


Inductive sub : env -> typ -> typ -> Prop :=
  | sub_top : forall E S,
      wf_env E ->
      wf_typ (to_senv E) S ->
      sub E S typ_top
  | sub_refl_tvar : forall E X,
      wf_env E ->
      wf_typ (to_senv E) (typ_fvar X) ->
      sub E (typ_fvar X) (typ_fvar X)
  | sub_trans_tvar : forall U E T X,
      binds X (bind_sub U) E ->
      sub E U T ->
      sub E (typ_fvar X) T
  | sub_arrow : forall E S1 S2 T1 T2,
      sub E T1 S1 ->
      sub E S2 T2 ->
      sub E (typ_arrow S1 S2) (typ_arrow T1 T2)
  | sub_all : forall L E S1 S2 T1 T2,
      sub E T1 S1 ->
      (forall X : atom, X `notin` L ->
          sub ([(X, bind_sub T1)] ++ E) (open_tt S2 X) (open_tt T2 X)) ->
      sub E (typ_all S1 in S2) (typ_all T1 in T2)
  | sub_sum : forall E S1 S2 T1 T2,
      sub E S1 T1 ->
      sub E S2 T2 ->
      sub E (typ_sum S1 S2) (typ_sum T1 T2)
.

Typing


Inductive typing : env -> exp -> typ -> Prop :=
  | typing_var : forall E x T,
      wf_env E ->
      binds x (bind_typ T) E ->
      typing E (exp_fvar x) T
  | typing_abs : forall L E V e1 T1,
      (forall x : atom, x `notin` L ->
        typing ([(x, bind_typ V)] ++ E) (open_ee e1 x) T1) ->
      typing E (exp_abs V in e1) (typ_arrow V T1)
  | typing_app : forall T1 E e1 e2 T2,
      typing E e1 (typ_arrow T1 T2) ->
      typing E e2 T1 ->
      typing E (exp_app e1 e2) T2
  | typing_tabs : forall L E V e1 T1,
      (forall X : atom, X `notin` L ->
        typing ([(X, bind_sub V)] ++ E) (open_te e1 X) (open_tt T1 X)) ->
      typing E (exp_tabs V in e1) (typ_all V in T1)
  | typing_tapp : forall T1 E e1 T T2,
      typing E e1 (typ_all T1 in T2) ->
      sub E T T1 ->
      typing E (exp_tapp e1 T) (open_tt T2 T)
  | typing_sub : forall S E e T,
      typing E e S ->
      sub E S T ->
      typing E e T
  | typing_let : forall L T1 T2 e1 e2 E,
      typing E e1 T1 ->
      (forall x, x `notin` L ->
        typing ([(x, bind_typ T1)] ++ E) (open_ee e2 x) T2) ->
      typing E (exp_let e1 in e2) T2
  | typing_inl : forall T1 T2 e1 E,
      typing E e1 T1 ->
      wf_typ (to_senv E) T2 ->
      typing E (exp_inl e1) (typ_sum T1 T2)
  | typing_inr : forall T1 T2 e1 E,
      typing E e1 T2 ->
      wf_typ (to_senv E) T1 ->
      typing E (exp_inr e1) (typ_sum T1 T2)
  | typing_case : forall L T1 T2 T e1 e2 e3 E,
      typing E e1 (typ_sum T1 T2) ->
      (forall x : atom, x `notin` L ->
        typing ([(x, bind_typ T1)] ++ E) (open_ee e2 x) T) ->
      (forall x : atom, x `notin` L ->
        typing ([(x, bind_typ T2)] ++ E) (open_ee e3 x) T) ->
      typing E (exp_case e1 left e2 right e3) T
.

Values


Inductive value : exp -> Prop :=
  | value_abs : forall E T e1,
      wf_exp E (exp_abs T in e1) ->
      value (exp_abs T in e1)
  | value_tabs : forall E T e1,
      wf_exp E (exp_tabs T in e1) ->
      value (exp_tabs T in e1)
  | value_inl : forall e1,
      value e1 ->
      value (exp_inl e1)
  | value_inr : forall e1,
      value e1 ->
      value (exp_inr e1)
.

Reduction


Inductive red : exp -> exp -> Prop :=
  | red_app_1 : forall E e1 e1' e2,
      wf_exp E (exp_app e1 e2) ->
      red e1 e1' ->
      red (exp_app e1 e2) (exp_app e1' e2)
  | red_app_2 : forall E e1 e2 e2',
      wf_exp E (exp_app e1 e2) ->
      value e1 ->
      red e2 e2' ->
      red (exp_app e1 e2) (exp_app e1 e2')
  | red_tapp : forall E e1 e1' V,
      wf_exp E (exp_tapp e1 V) ->
      red e1 e1' ->
      red (exp_tapp e1 V) (exp_tapp e1' V)
  | red_abs : forall E T e1 v2,
      wf_exp E (exp_app (exp_abs T in e1) v2) ->
      value v2 ->
      red (exp_app (exp_abs T in e1) v2) (open_ee e1 v2)
  | red_tabs : forall E T1 e1 T2,
      wf_exp E (exp_tapp (exp_tabs T1 in e1) T2) ->
      red (exp_tapp (exp_tabs T1 in e1) T2) (open_te e1 T2)
  | red_let_1 : forall E e1 e1' e2,
      wf_exp E (exp_let e1 in e2) ->
      red e1 e1' ->
      red (exp_let e1 in e2) (exp_let e1' in e2)
  | red_let : forall E v1 e2,
      wf_exp E (exp_let v1 in e2) ->
      value v1 ->
      red (exp_let v1 in e2) (open_ee e2 v1)
  | red_inl_1 : forall e1 e1',
      red e1 e1' ->
      red (exp_inl e1) (exp_inl e1')
  | red_inr_1 : forall e1 e1',
      red e1 e1' ->
      red (exp_inr e1) (exp_inr e1')
  | red_case_1 : forall E e1 e1' e2 e3,
      wf_exp E (exp_case e1 left e2 right e3) ->
      red e1 e1' ->
      red (exp_case e1 left e2 right e3) (exp_case e1' left e2 right e3)
  | red_case_inl : forall E v1 e2 e3,
      wf_exp E (exp_case (exp_inl v1) left e2 right e3) ->
      value v1 ->
      red (exp_case (exp_inl v1) left e2 right e3) (open_ee e2 v1)
  | red_case_inr : forall E v1 e2 e3,
      wf_exp E (exp_case (exp_inr v1) left e2 right e3) ->
      value v1 ->
      red (exp_case (exp_inr v1) left e2 right e3) (open_ee e3 v1)
.

Automation


Hint Constructors wf_senv wf_exp wf_typ wf_env value red.
Hint Resolve sub_top sub_refl_tvar sub_arrow.
Hint Resolve sub_sum typing_inl typing_inr.
Hint Resolve typing_var typing_app typing_tapp typing_sub.
Hint Resolve typing_inl typing_inr.

Hint Extern 1 (binds _ (?F (subst_tt ?X ?U ?T)) _) =>
  unsimpl (subst_tb X U (F T)).

Hint Extern 1 (binds _ Typ _) =>
  match goal with
    | H : binds _ (bind_sub ?U) _ |- _ =>
      change Typ with (to_tag (bind_sub U))
  end.

Hint Extern 1 (binds _ Exp _) =>
  match goal with
    | H : binds _ (bind_typ ?U) _ |- _ =>
      change Exp with (to_tag (bind_typ U))
  end.

The "pick fresh" tactic


Ltac gather_atoms :=
  let A := gather_atoms_with (fun x : atoms => x) in
  let B := gather_atoms_with (fun x : atom => singleton x) in
  let C := gather_atoms_with (fun x : syntax => fv x) in
  let F := gather_atoms_with (fun x : env => dom x) in
  let G := gather_atoms_with (fun x : senv => dom x) in
  constr:(A `union` B `union` C `union` F `union` G).

Tactic Notation "pick" "fresh" ident(x) :=
  let L := gather_atoms in (pick fresh x for L).

Tactic Notation
      "pick" "fresh" ident(atom_name) "and" "apply" constr(lemma) :=
  let L := gather_atoms in
  pick fresh atom_name excluding L and apply lemma.