Library FSetNotin
Lemmas and tactics for working with and solving goals related to
non-membership in finite sets. The main tactic of interest here
is
Authors: Arthur Charguéraud and Brian Aydemir.
notin_solve
.
Authors: Arthur Charguéraud and Brian Aydemir.
Require Import FSetInterface.
Module Notin (X : FSetInterface.S).
Import X.
Lemma in_singleton : forall x,
In x (singleton x).
Lemma notin_empty : forall x,
~ In x empty.
Lemma notin_union : forall x E F,
~ In x E -> ~ In x F -> ~ In x (union E F).
Lemma elim_notin_union : forall x E F,
~ In x (union E F) -> (~ In x E) /\ (~ In x F).
Lemma notin_singleton : forall x y,
~ E.eq x y -> ~ In x (singleton y).
Lemma elim_notin_singleton : forall x y,
~ In x (singleton y) -> ~ E.eq x y.
Lemma elim_notin_singleton' : forall x y,
~ In x (singleton y) -> x <> y.
Lemma notin_singleton_swap : forall x y,
~ In x (singleton y) -> ~ In y (singleton x).
Lemma notin_singleton_rw : forall x y,
~ In x (singleton y) <-> ~ E.eq x y.
The tactic
notin_simpl_hyps
destructs all hypotheses of the form
(~ In x E)
, where E
is built using only empty
, union
, and
singleton
.
Ltac notin_simpl_hyps :=
try match goal with
| H: In ?x ?E -> False |- _ =>
change (~ In x E) in H;
notin_simpl_hyps
| H: ~ In _ empty |- _ =>
clear H;
notin_simpl_hyps
| H: ~ In ?x (singleton ?y) |- _ =>
let F1 := fresh in
let F2 := fresh in
assert (F1 := @elim_notin_singleton x y H);
assert (F2 := @elim_notin_singleton' x y H);
clear H;
notin_simpl_hyps
| H: ~ In ?x (union ?E ?F) |- _ =>
destruct (@elim_notin_union x E F H);
clear H;
notin_simpl_hyps
end.
The tactic
notin_solve
solves goals of them form (x <> y)
and
(~ In x E)
that are provable from hypotheses of the form
destructed by notin_simpl_hyps
.
Ltac notin_solve :=
notin_simpl_hyps;
repeat (progress ( apply notin_empty
|| apply notin_union
|| apply notin_singleton));
solve [ trivial | congruence | intuition auto ].
Lemma test_notin_solve_1 : forall x E F G,
~ In x (union E F) -> ~ In x G -> ~ In x (union E G).
Lemma test_notin_solve_2 : forall x y E F G,
~ In x (union E (union (singleton y) F)) -> ~ In x G ->
~ In x (singleton y) /\ ~ In y (singleton x).
Lemma test_notin_solve_3 : forall x y,
~ E.eq x y -> ~ In x (singleton y) /\ ~ In y (singleton x).
Lemma test_notin_solve_4 : forall x y E F G,
~ In x (union E (union (singleton x) F)) -> ~ In y G.
Lemma test_notin_solve_5 : forall x y E F,
~ In x (union E (union (singleton y) F)) -> ~ In y E ->
~ E.eq y x /\ ~ E.eq x y.
End Notin.