
Nimble: Rollback Protection for Confidential Cloud Services

Sebastian Angel⋆ Aditya Basu† Weidong Cui⋆ Trent Jaeger†

Stella Lau‡ Srinath Setty⋆ Sudheesh Singanamalla⋄
⋆Microsoft Research † Penn State ‡MIT CSAIL ⋄University of Washington

Abstract
This paper introduces Nimble, a cloud service that helps ap-
plications running in trusted execution environments (TEEs)
to detect rollback attacks (i.e., detect whether a data item
retrieved from persistent storage is the latest version). To
achieve this, Nimble realizes an append-only ledger service
by employing a simple state machine running in a TEE in con-
junction with a crash fault-tolerant storage service. Nimble
then replicates this trusted state machine to ensure the sys-
tem is available even if a minority of state machines crash. A
salient aspect of Nimble is a new reconfiguration protocol that
allows a cloud provider to replace the set of nodes running the
trusted state machine whenever it wishes—without affecting
safety. We have formally verified Nimble’s core protocol in
Dafny, and have implemented Nimble such that its trusted
state machine runs in multiple TEE platforms (Intel SGX
and AMD SNP-SEV). Our results show that a deployment of
Nimble on machines running in different availability zones
can achieve from tens of thousands of requests/sec with an
end-to-end latency of under 3.2 ms (based on an in-memory
key-value store) to several thousands of requests/sec with a
latency of 30ms (based on Azure Table).

1 Introduction
Cloud providers today offer confidential computing services
where VMs support trusted execution environments (TEEs) in
which a customer’s code is isolated from other code (includ-
ing the hypervisor). The promise of TEEs is that customers’
applications enjoy security properties even if the provider
is compromised, such as confidentiality of the application’s
memory, and the integrity of the application’s execution.

Unfortunately, TEEs do not provide persistent state. If a
TEE crashes or is maliciously restarted, its volatile state is
lost. Applications running in TEEs must therefore explic-
itly address this. A common approach is for applications to
persist their state in cloud storage services and to use crypto-
graphic primitives such as authenticated encryption to protect
that state so that it remains confidential and is not modified
by a compromised storage service or OS. But encryption
alone does not prevent rollback attacks. In such attacks, the
provider restarts a customer’s TEE; when the application then
attempts to recover its volatile state from persistent storage,
the provider intercepts the request and returns old data.

Rollback attacks can be terribly harmful. For instance, con-

sider Signal’s “secure value recovery”, which is a service that
runs inside TEEs in a public cloud and allows Signal’s users
to back up cryptographic keys or other secret data under a
short PIN [6]. Users can establish a TLS session with the ser-
vice in the TEE, provide their PIN, and recover their key. To
prevent an attacker from brute forcing a PIN, Signal enforces
a quota on the number of times a wrong PIN can be entered by
persisting a counter that tracks the number of attempts made
so far. But a compromised cloud provider who wishes to brute
force the PIN could simply make some guesses, crash the ap-
plication, rollback the value of the counter, and retry. This
example is far from unique; other types of situations where
rollback attacks are problematic include financial transactions,
revocation of certificates, access control changes, etc.

Given the significance of rollback attacks, we ask: how can
a cloud provider deploy a service that customers’ confidential
computing applications can use to detect rollback attacks?
Importantly, since this will be a core service that runs within
a cloud provider, it is paramount that any solution be simple
to understand and implement, and that the trusted computing
base (TCB) be small and easy for customers to audit.

Prior solutions and their limitations. One can use a repli-
cation protocol to address rollback attacks. For example, the
client could keep the latest version of their data replicated
across a set of machines, and, assuming a threshold number
of these machines are honest, the client can obtain the latest
state. In confidential computing, a cloud provider can offer
a cloud service that runs a BFT protocol inside TEEs. For
many prior works [13, 21, 26, 35, 39, 52], this requires only
a small amount of trusted code inside TEEs (typically code
to manipulate a counter or a log) and they guarantee safety as
long as the trusted code is correct. The drawback is that, to
our knowledge, these works do not support reconfigurations
where the set of TEEs changes over time. Meanwhile, recon-
figuration is an absolute necessity: a cloud provider needs
the ability to replace failed nodes or migrate healthy nodes
whenever it wishes to perform maintenance and updates.

An alternate approach pursued by several proposals [6, 41,
49] is to run an entire replication protocol inside TEEs. If the
original replication protocol supports reconfigurations, then it
stands to reason that the resulting system inside TEEs might
do so as well. The drawback is that this significantly increases
the complexity and size of the TCB. Meanwhile, for a cloud

1

service, it is crucial that customers be able to audit the code
in the TCB, which is not possible given the complexity and
nuance of replication protocols.

Our solution. In order to simultaneously support efficient
and safe reconfigurations while maintaining a small TCB,
we depart significantly from prior works with two key ob-
servations. First, state machine replication (SMR) protocols
are complex because they must guarantee both safety (for
rollback resistance this means that any value a client reads
is the latest value that had been written) and liveness (that
a client’s request is eventually processed). However, we can
separate these two concerns and focus the efforts of the TCB
on guaranteeing safety. Liveness can be done outside of the
TCB. Such a design is acceptable because, in a cloud setting,
a compromised provider can trivially violate liveness anyway
(by simply refusing to run the client’s code in the first place);
liveness, therefore, is a property that an honest provider im-
plements for its own sake to ensure that its service is good
and highly available.

Second, we observe that a lot of the complexity with SMR
is already implemented by existing storage services so one
should not reinvent or reimplement the wheel. Instead, we
should leverage existing services as much as possible to
achieve liveness without significant engineering effort.

By leveraging the above observations, we design Nimble, a
new SMR protocol that features a small and simple TCB for
guaranteeing safety even in the presence of arbitrary reconfig-
urations, and a simple untrusted protocol that reuses existing
infrastructure to tolerate faults and to keep the system live. In-
deed, owing to Nimble’s small TCB, we have formally proven
the safety of Nimble’s core protocol using the IronFleet [27]
methodology with the Dafny program verifier [31].

Nimble is architected as a traditional cloud service built on
top of a crash fault-tolerant cloud storage service, providing
the interface of a highly-available append-only ledger service.
When clients write data to Nimble, Nimble appends this data
to their ledger. To ensure that the ledger service provides
safety even when the provider is Byzantine, Nimble runs a
small amount of trusted code that we refer to as an endorser
inside a TEE. The job of the endorser is very simple: it holds
the tail of the ledger in its protected volatile memory. When a
client asks for the most recent block written to a ledger, the
client provides a nonce (a cryptographically random value) to
the service. The service forwards this nonce to the endorser
who then returns a signature of the current ledger’s tail and the
nonce. The service then gives the client the data in the ledger
in addition to the signature from the endorser that establishes
the freshness of said data. Nimble cannot rollback a ledger
protected by an endorser because endorsers have no API to
rollback their state!

Of course, an endorser can crash and lose its volatile state,
so Nimble relies on a set of endorsers. Nimble ensures safety
by requiring that there be a quorum of signatures for the
nonce and the tail. Nimble ensures liveness (under an honest

provider) by instantiating multiple endorsers. A crucial aspect
of Nimble’s design is that, since the fault-tolerant storage ser-
vice already establishes a total order of operations, endorsers
do not need to run a replication protocol among themselves.

A remaining challenge is that Nimble needs a mechanism
to add, replace, or remove endorsers. This protocol must
ensure safety even when the provider is fully untrusted, and
must not impede progress when the provider is honest. To
address this, Nimble includes a novel reconfiguration protocol
that preserves these desirable properties.

To demonstrate the simplicity and applicability of Nim-
ble, we have implemented Nimble on top of both Intel SGX
and AMD SEV-SNP, as well as several storage services: an
in-memory key-value store, a local disk filestore, MongoDB,
and Azure Tables. Our implementation of Nimble with the in-
memory key-value store can process 50K requests/sec with an
end-to-end latency of under 3 ms. Our geo-replicated Azure
tables implementation can also process 50K reads/sec with
under 3 ms of median latency; write throughput is more mod-
est, at around 3K writes/sec (without any batching), with an
end-to-end latency of 30 ms.

We also demonstrate how to port a significant application to
use Nimble by equipping the Hadoop distributed file system
(HDFS) with rollback protection. With Nimble-HDFS, data
analytics applications running in confidential computing can
be certain that the data they read from it is the latest version
and has not been rolled back.

Limitations. One of the key design tenets behind Nimble is
simplicity: both from the perspective of customers that must
audit the trusted parts of the system but also from the perspec-
tive of engineering teams that must implement and deploy
Nimble. This is why we chose to reuse existing storage ser-
vices rather than implementing our own. As a result, Nimble’s
implementation inherits the performance of existing systems
and may in some cases be more costly than alternatives that
do not use storage as a black box. For example, a co-design of
Nimble’s endorser and the fault-tolerant storage system could
save a network round trip, but at great engineering expense.

2 Context and rollback attacks
This section provides context, and introduces rollback attacks
and their effect on various applications.

2.1 Context: Confidential computing

Cloud providers such as Google and Microsoft offer confiden-
tial computing services where customers’ applications run on
trusted execution environments (TEEs) provided by hardware
(e.g., Intel’s SGX, AMD SEV-SNP). TEEs encrypt and in-
tegrity protect the memory of an application or a whole VM.
Additionally, when a cloud provider launches a TEE, through
a mechanism known as remote attestation (discussed below),
a customer can verify that their binary is the one executing
in the TEE. Confidential computing promises to help cus-
tomers run high-assurance applications in the cloud, which,

2

for example, operate on sensitive data that they wish to keep
hidden from the cloud provider. Some proposed and deployed
applications for confidential computing are key vaults [6],
data analytics [1], machine learning [5], data aggregation [7],
auctions [8], and contact discovery for messaging apps [37].

Remote attestation. A major component in confidential
computing is remote attestation, where a client can confirm
that the code running in a TEE is indeed the expected code.
Details are elsewhere [19], but at a high level, the TEE pro-
duces a quote (which contains, among other things, the hash
of the binary that was loaded into memory) and signs it with
an attestation key that is part of the hardware. A client can ver-
ify this quote through a variety of ways, including checking a
certificate chain or contacting an attestation service.

Persistent state. In practice, applications need to persist data
in a storage service (e.g., S3, DynamoDB, Cosmos DB) that
lives outside of the TEE’s memory for later retrieval (e.g.,
in case they restart). To preserve the data’s confidentiality
and integrity, TEEs can use authenticated encryption prior
to externalizing any state. Specifically, a TEE can store data
encrypted in a database or on disk, and retrieve it at a later
time—and check that it is a valid ciphertext to ensure the data
has not been modified. In addition to authenticated encryp-
tion, TEEs can use other cryptographic techniques such as
oblivious RAM [25] to ensure that their data access patterns
are additionally kept private.

Physical attacks. Modern TEEs such as the latest version
of Intel SGX, Intel TDX, AMD SEV-SNP, and AWS’s Nitro
cannot protect against attackers who have physical access to
the TEE (they give up memory integrity properties in favor of
higher performance). However, existing confidential comput-
ing applications already accept this threat model, as otherwise
they would not be running inside the TEEs of cloud providers.
As a result, a solution to rollback attacks need not defend
against physical attacks either.

Side channel attacks. There is a large literature [15, 17, 30,
38, 47, 48, 51] that has identified software attacks that can
extract information kept in TEE’s memory or violate the in-
tegrity guarantees provided by TEEs. Nevertheless, hardware
vendors have in the past promptly patched vulnerabilities
when discovered and reported by researchers, and there are
academic hardware designs that are provably safe from many
types of side channels [20]. We believe that TEEs will be
more robust to these types of attacks over time.

In this work, we consider these attacks to be out of scope.
As we discuss next, rollback attacks are challenging enough
even in the absence of these other orthogonal issues.

Rollback attacks. While authenticated encryption provides
ciphertext integrity and plaintext confidentiality, it does not
ensure that the data is fresh. In particular, a malicious storage
service could provide a valid ciphertext (encrypted and signed
by the TEE), that is not the latest version. In Section 1 we

discuss Signal’s “secure value recovery” and showcase how
it can be subverted by an attacker who rolls back the appli-
cation’s state. This same class of attacks can be performed
against a banking application (e.g., rolling back a payment),
a confidential VM (rolling back to an older version of the
OS that has a vulnerability), etc. It is therefore imperative
that confidential computing environments have a way for
applications to detect such attacks.

3 Rollback protection
This section describes a solution for applications running
inside TEEs to detect rollback attacks.

Characterizing rollback attacks. An application running
inside a TEE experiences a rollback attack when one of the fol-
lowing events happens: (1) stale responses, where a malicious
storage service provider returns a prior version of data instead
of the latest (i.e., lack of freshness), possibly because the
malicious storage service forks the views of its clients [33];
(2) synthesized requests, where a malicious provider synthe-
sizes requests on its own (i.e., they were never issued by the
application) and applies them to the storage (thereby affecting
future reads); or (3) replay, where a malicious provider uses
valid requests that were previously sent by the application
and applies them to the storage again.

3.1 Our solution

Addressing stale responses. It is well known that lineariz-
ability [28], a widely studied correctness criterion, captures
freshness. Informally, a system satisfies linearizability if ev-
ery operation on an object in the system appears to take place
atomically, in an order that is consistent with the real-time
ordering of the operations themselves. For example, if an
operation W completes before another operation R begins,
then R must observe the effects of W and complete after it.

Our solution to address stale responses is to rely on an
append-only ledger service that guarantees linearizability [28]
even when the provider is compromised (in Sections 4 and 5,
we describe a novel instantiation of such a ledger service, with
high performance and a small TCB). In particular, whenever
the application wishes to update its persistent state, it stores its
updated state in a block and appends the block to the ledger;
whenever the application wishes to read back its persistent
state, it reads the block found at the ledger’s tail.

Addressing synthesized requests. We require an applica-
tion running in a TEE to hold a signing key in a signature
scheme that is known only to the application. When the ap-
plication stores its state in the aforementioned ledger, the
application first signs the state with its signing key and then
stores the state and the signature in a block. When reading
its state from a ledger, the application verifies that there is a
valid signature.

Addressing replay. To prevent a malicious provider from
replaying prior appends, we make the following modification

3

to the solution described thus far: the signature stored in an ap-
pended block covers not only the application’s state, but also
the position of the block in the ledger. When reading its state
from a ledger, an application verifies that the returned position
of the tail matches the position covered by the signature.

Assume that the application’s configuration includes a
label of the ledger (we denote this as ℓ). Let (sk, vk)
denote the application’s signing and verification keys
in a signature scheme, with Sign and Verify methods. The
application maintains a counter, which we denote with
c (when the application is launched for the first time, it
can execute the read protocol to set c).

Update protocol. When an application wishes to update
its persistent state from S to S′, it does the following:
• Issue append(ℓ, B, c + 1) and get receipt, where B =
(S′,σ), and σ = Sign(sk, (ℓ, S′, c + 1)).

• If the append succeeds and receipt is valid, update
c← c + 1, else follow the steps in the read protocol.

Read protocol. When an application wishes to retrieve
persistent state, it does the following:
• nonce← random() // e.g., 128 bits
• (i, B, receipt)← read_latest(ℓ, nonce)
• Parse B as (S,σ).
• If Verify(vk, (ℓ, S, i),σ) passes and receipt is valid with

respect to nonce, set c to i and use S as the state. If not,
abort with Err(“rollback detected”).

Putting things together. We require an append-only ledger
service with the following intuitive APIs. We provide a con-
crete instantiation of such a service in Sections 4 and 5.

• new_ledger(label)→ (ack/nack, receipt)

• append(label, block, exp_index)→ (ack/nack, receipt)

• read_latest(label, nonce)→ (index, block, receipt)

A receipt is a cryptographic object that the client uses to
verify that the operation was executed correctly. The nonce
in read_latest is a random value that prevents the service
from caching and returning old receipts, since each receipt
must cover the nonce. With these checks, a client obtains
linearizability [28] from the ledger service.

The expected index (exp_index) in append is a directive
provided by the application to the ledger service. Its purpose
is to help the honest ledger service determine whether it can
store a particular block in the current tail or whether it must
reject the request and notify the application (an honest ledger
service just needs to maintain for each ledger how many
entries are already appended to support these semantics). In
other words, it acts as a type of concurrency control. This
is important when the application is concurrent and one of
its threads has already stored a block at that position in the
ledger. Given the signature in the block, the ledger service

cannot append a block anywhere different than its expected
index, as the client would detect the inconsistency when it
verifies the signature.

Observe that in the read protocol, if the client’s check
passes, the service could not have rolled back state. By as-
sumption, a receipt is valid for a random nonce if and only
if the service is linearizable. So, it cannot lie about the index
i in the response (i.e., the number of entries in the ledger).
Furthermore, in the update protocol, the client embeds crucial
metadata (including the expected index of the tail) and signs
it with its private key. Since the service provider cannot forge
signatures, it cannot return data that was not previously stored
at that index by the client.

3.2 Storing state in an existing storage service

While the ledger service can be used to append arbitrary data,
it has a very limited API. Therefore, it is often better for an
application to store their state in some existing (untrusted)
storage service better suited to its needs. For example, use
a storage service that has better performance for large data,
or one that supports things like random access reads and
writes, scans, search, stored procedures, etc. We now extend
the solution from the prior subsection to support this.

In a nutshell, for updates, the application proceeds in two
steps: (1) it persists its state in an existing storage service and
then (2) stores a cryptographic digest of that state in the ledger
service using the Update procedure described above. Similarly
for reads, the application reads state from the storage service
and a digest from the ledger service, and in addition to the
checks described thus far, it checks that the digest of the state
retrieved from the storage service equals the digest from the
ledger service. There is one key issue that does not affect
safety, but affects liveness: the application may fail after it
performs step (1) but before step (2), during updates.

We address this as follows. During update, instead of only
storing S′ in the storage service, the application stores (S′, c +
1,σ). This ensures that, by design, the storage service holds a
counter that is at most one higher than the counter stored on
the ledger service (the storage service cannot tamper with S′

or c + 1 since they are protected by σ). When an application
restarts, it can check if the counter in the ledger service is
one lower than the counter in the storage service. If so, this
implies a failure after the application updated the storage
service but before it updated the ledger service. Therefore,
the application uses S′, c + 1, and σ from the storage service
to complete its pending append to the ledger service.

Note that the above mechanism will not lead to the corrup-
tion of the state in the ledger even if the client mistakenly
performs the update more than once. For example, suppose
that the client first issues its update operation to the ledger
and then fails. When the client restarts, the ledger has not
yet processed the update operation (perhaps it is sitting in a
queue somewhere) so the client receives the old counter (c)
from the ledger. If the client re-issues the update, at most one

4

Cloud Storage
(persists hash chains)

Coordinators
(untrusted,
stateless)

Endorsers

Client

Client

Client

FIGURE 1—Nimble’s architecture (see text for details).

of the two requests (the one in the queue or the freshly issued
one) will be applied since they have the same expected index.

Concurrency. If the application has multiple processes that
operate on the same persistent state, then we require the stor-
age service used by the application to be linearizable. Further-
more, the application must be able to deal with the failure of
its processes and achieve exactly-once semantics [42, 54].

4 An overview of Nimble
This section describes Nimble, an append-only ledger service
that fills the key role in our rollback protection method (§3).

Design goals. To support its target application of rollback
protection for confidential services, a key guarantee that we
desire from Nimble is linearizability [28]. Unfortunately, an
untrusted service can trivially violate linearizability by re-
turning stale responses or by presenting different views of
a ledger to different clients [33, 36]. As we discuss below,
Nimble will make such violations detectable by relying on
certain operations being performed correctly inside TEEs.

Given Nimble’s reliance on TEEs, our second design goal is
to naturally ensure that this trusted code is as small as possible
and simple enough that it can be audited by customers.

If the cloud infrastructure on which Nimble is hosted is
malicious, it can trivially violate liveness (by literally not
running the client’s application in the first place), so our third
goal is to ensure that if an honest provider runs Nimble as
specified, the service will be live.

Finally, we wish to avoid reimplementing complex repli-
cation protocols: optimizing them, and ensuring that they are
correct and comply with a plethora of business and technology
standards for deployment within a public cloud is hard and
time consuming. So, we wish to leverage existing services.

Threat model and assumptions. Nimble assumes that
TEEs work as intended: they protect the memory and the exe-
cution of any application running within it from attacks (§2).
Nimble’s code running outside TEEs is untrusted by clients,
and may behave arbitrarily. Nimble makes standard crypto-
graphic hardness assumptions for its safety guarantee. Nimble
ensures liveness during sufficiently long periods of synchrony

and when the service follows its prescribed protocol.
As we discuss below, providing safety requires Nimble

to run a trusted state machine, called an endorser, inside a
TEE. Since TEEs can crash and lose their state, Nimble runs
a collection of endorsers. Unfortunately, if Nimble loses a
majority of its endorsers, it must either give up safety or
liveness. We discuss this further in Section 9.1. Additionally,
for now, we assume that an endorser’s code does not change
over time. We discuss possible solutions to this in Section 9.2.

Design and architecture. Figure 1 depicts Nimble’s archi-
tecture, which is analogous to that of a traditional cloud ser-
vice. Nimble employs a collection of worker processes, which
we refer to as coordinators. They are stateless and untrusted,
and their job is to process requests from clients (i.e., customer
applications running in TEEs). For each ledger, Nimble main-
tains a hash chain (a linked list where each node contains data
and a cryptographic hash of the previous node) and stores that
hash chain in an existing untrusted cloud storage service (e.g.,
Azure Table). Note that this storage service is completely
separate from (and may even be different from) the storage
service used by clients to store their data (§3.2).

To guarantee linearizability despite using an untrusted
cloud storage, Nimble runs a trusted state machine inside
a TEE, which we refer to as an endorser. An endorser stores,
for each ledger, the tail of the associated hash chain in its
memory. An endorser’s code is public, and when launched
inside a TEE, it produces a fresh key pair for a signature
scheme such that the TEE platform can prove (via remote at-
testation) that the public key belongs to a legitimate endorser.
An endorser uses its secret key to sign its response to any
append or read operation. Since an endorser’s state is volatile,
Nimble runs a collection of endorsers to achieve fault toler-
ance. When Nimble boots up, it produces a unique and static
identifier that is derived by hashing the public keys of the
endorsers. We assume that this identifier is public knowledge.

For each request issued, a client expects a response and a
receipt. A receipt contains a list of public keys and signatures
that cover the response and the public identifier. The client
first verifies that the public keys in the receipt belong to
legitimate endorsers based on remote attestation.1 The client
then verifies that there is a quorum of valid signatures from
the public keys in the list (in Nimble, a quorum is a majority
of endorsers). This is analogous to witness cosigning [46].
Additionally, for read_latest, a client sends a nonce and checks
that the endorsers’ signed message includes the nonce. This
prevents a malicious service from replaying a stale receipt.

To support reconfigurations (i.e., addition and/or removal
of endorsers), an endorser maintains additional bookkeeping
and performs additional checks when the set of endorsers
changes. Similarly, a coordinator maintains additional state

1Clients can cache public keys to avoid verifying that they belong to legit-
imate endorsers. So, clients only need to do remote attestation when the
endorser set changes or they lose their local state.

5

in the cloud storage service and implements an untrusted
distributed protocol. Details are in the next section.

Small TCB. Nimble achieves a small TCB because en-
dorsers contain only safety-critical aspects of a replication
protocol. For example, to process appends and reads, en-
dorsers maintain tails of hash chains and provide signed re-
sponses to requests. To support reconfigurations, they main-
tain additional state and perform checks but that code is only
concerned with safety but not liveness.

5 Design details and correctness
This section describes the details of Nimble’s design. We be-
gin with a core protocol that does not support reconfigurations
and then describe modifications to support reconfigurations.

5.1 Core protocol

Nimble is a replicated state machine with a new architecture
where its APIs (see Section 3) are first built on top of an
existing crash fault-tolerant storage service, which we refer
to as the untrusted state machine. A stateless coordinator
process can use the untrusted state machine as a black box
to implement Nimble’s APIs. To obtain linearizability in the
presence of malicious behavior, Nimble uses a collection of
endorsers running another state machine, which we refer to
as the endorser state machine, inside a TEE (a minority of
endorsers in the collection can crash).

We first describe the state machine run by endorsers and
the untrusted state machine, and then describe how they are
invoked in the end-to-end protocol.

Endorser’s state machine. Let (KeyGen, Sign, Verify) denote a
signature scheme and H a collision-resistant hash function.
In our implementation, each state transition of an endorser
is atomic (achieved via synchronization primitives) and an
endorser state machine provides linearizability.

Endorser’s state

• sk, a secret key in a digital signature scheme.

• status ∈ {“uninitialized”, “active”}.

• id, the identity of a particular instance of Nimble.

• M, a label-value map, where a label is a byte vector and
a value is tuple (t, h) in which t is the tail node of a hash
chain and h is an unsigned integer specifying the number
of entries in the hash chain.

Untrusted state machine. As noted earlier, Nimble relies
on a crash fault-tolerant storage service. In particular, Nimble
uses this storage service to realize the untrusted state machine.
It does so by storing all the necessary state in the storage
service, and using its standard APIs (e.g., put, get, insert,
conditional update, atomic batch update) to carefully mutate
the state to achieve the desired semantics.

The untrusted state machine is same as the endorser’s state

machine, with two key differences. First, it does not generate
a key pair nor does it provide a TEE attestation (naturally, it
does not sign any of its responses). Second, it stores all entries
appended to a ledger not just the tail entry and provides an
API to access ledger entries by their index (as we see below,
this is useful for providing liveness in certain cases).

Endorser’s state transitions

1: fn bootstrap
2: (sk, pk)← KeyGen(1λ)
3: status← “uninitialized”
4: return (pk, a) // a is a TEE attestation proving that pk be-

longs to a legitimate endorser running inside a TEE.

5: fn initialize(c)
6: if status ̸= “uninitialized” then return Err(AlreadyInit)
7: if pk /∈ c then return Err(NotInConfig)
8: id ← H(c), M ← ⊥, status← “active”

9: fn new_ledger(ℓ)
10: if status ̸= “active” then return Err(NotInit)
11: if ℓ ∈ M then return Err(LedgerExists)
12: M.insert(ℓ, (0, 0))
13: return Sign(sk, ⟨“new_ledger”, id, ℓ, 0, 0⟩)

14: fn append(ℓ, b, exp_index)
15: if status ̸= “active” then return Err(NotInit)
16: if ℓ /∈ M then return Err(LedgerDoesnotExist)
17: (tprev, hprev)← M.get(ℓ)
18: if exp_index ̸= hprev + 1 then
19: return Err(OutOfOrder, hprev)
20: tcurr ← (H(tprev), b); hcurr ← hprev + 1
21: M.update(ℓ, (tcurr, hcurr))
22: return Sign(sk, ⟨“append”, id, ℓ, tcurr, hcurr⟩)

23: fn read_latest(ℓ, n)
24: if status ̸= “active” then return Err(NotInit)
25: if ℓ /∈ M then return Err(LedgerDoesnotExist)
26: (tcurr, hcurr)← M.get(ℓ)
27: return Sign(sk, ⟨“read_latest”, id, ℓ, tcurr, hcurr, n⟩)

28: fn append_with_read_latest(ℓ, b, exp_index, n)
29: return (append(ℓ, b, exp_index), read_latest(ℓ, n))

Coordinator’s workflow. A coordinator invokes the APIs
provided by the endorser state machine and the untrusted state
machine to provide the APIs we describe in Section 3.

To initialize a Nimble instance, a coordinator process calls
bootstrap on a configurable number of endorsers (denote it as
n) to obtain their public keys. Let c denotes the list of public
keys and the public identity of the instance is H(c). The coor-
dinator then calls initialize(c) on the untrusted state machine
and when that succeeds, it calls initialize(c) on the endorser
state machine, waiting for ⌊n/2⌋ + 1 out of n endorsers to
respond. At this point, the system is setup to process requests.

When a client issues a request (e.g., new_ledger, append,
or read_latest), the coordinator uses the provided argument to
call the corresponding API on the untrusted state machine and
when that returns, it calls the same API on the endorser state

6

machine with the same argument, waiting for ⌊n/2⌋+ 1 out
of n endorsers to respond. The coordinator collects a quorum
of those responses and sends it to the client.

The coordinator retries its workflow to account for network
failures (e.g., reordered or dropped messages). Furthermore,
a coordinator uses the “OutOfOrder” error returned by an
endorser to detect if the endorser is “lagging behind”, and if
so, it issues appends to roll forward the endorser’s state using
blocks in the untrusted state machine.

Achieving liveness. For liveness, we require certain exten-
sions to ensure that a coordinator can eventually produce a
valid receipt for each request it successfully executes. Recall
that Nimble’s liveness holds only when the provider is honest,
so the discussion below is limited to that case.

new_ledger and append. An endorser may execute a re-
quest (e.g., an append), but when it responds with its signed
message to a coordinator, the network may drop the mes-
sage. To address this, an untrusted process colocated with the
endorser stores the signatures generated by an endorser and
provides APIs for a coordinator to retrieve them (ensuring that
a coordinator that repeatedly retries can obtain signed mes-
sages that were generated). Since this mechanism is needed
only for liveness, it does not affect the endorser state machine.

Furthermore, when a coordinator assembles a receipt (re-
call from Section 4 that a receipt is a quorum of signatures),
it persists the receipt in the untrusted state machine alongside
an appropriate ledger entry. Once a receipt is persisted, the co-
ordinator calls an API on the untrusted process colocated with
the endorser to garbage collect the associated signed message.
In this way, even if a coordinator crashes or the message from
Nimble to a client is dropped, a client can eventually retrieve
a receipt for a new_ledger or an append request from Nimble.

read_latest. There are cases where a coordinator may not
succeed in obtaining a valid receipt for a read_latest request.
Specifically, the coordinator may struggle to obtain a quorum
of matching responses as each endorser may be in a slightly
different state. This can occur during periods of concurrent
appends when one append has been applied in one endorser
but not yet in another. Nimble addresses this as follows.

Suppose that a coordinator thread (say “read thread”, for
ease of reference) is unable to obtain a valid receipt for a
read_latest request. After a configurable number of retries, the
“read thread” persists the pending read_latest request in the
untrusted state machine. Furthermore, we modify the coordi-
nator’s workflow so that when a coordinator’s thread receives
an append (call it an “append thread”), if there is a pending
read_latest, it invokes the append_with_read_latest API of
endorsers to execute both the append and the pending read_lat-
est as an atomic operation. The “append thread” also persists
receipts from the endorsers in the untrusted state machine,
including the receipt of the pending read_latest. Meanwhile,
the “read thread” retries invoking read_latest on endorsers
and polls the untrusted state machine to see if a concurrent
thread produced a receipt via the append_with_read_latest

API; one of these code paths will eventually succeed.

Safety and liveness guarantees. We have a formal specifi-
cation and a proof of safety in Dafny [31] (our proof uses
IronFleet’s state machine refinement technique [27]). A chal-
lenge in our context is that we must account for arbitrary
responses from a coordinator and the storage service whereas
IronFleet only considers crash faults.

Lemma 5.1. Assuming the integrity and confidentiality guar-
antees provided by TEEs for executing the specified endorser
state machine and standard cryptographic hardness assump-
tions, whenever Nimble produces a valid receipt for a request,
Nimble respects linearizability.

Proof (sketch). By design and implementation, and the stated
assumptions, each endorser’s state machine is linearizable.
Now suppose that Nimble produces valid receipts for two
requests R1 and R2. Suppose that the quorum of endorsers that
produce a valid receipt for R1 and R2 are respectively Q1 and
Q2. In Nimble, a quorum size is a majority, so Q1 ∩ Q2 must
have at least one endorser. Let e ∈ Q1 ∩ Q2. Given that e’s
state machine is linearizable, then it follows that it processed
requests R1 and R2 such that it respects linearizability. Since
a valid receipt requires that a quorum of endorsers sign the
same response, Nimble’s response must equal e’s response.
This implies that Nimble is linearizable.

Lemma 5.2. When the service is honest and during suffi-
ciently long periods of synchrony, and when clients submit
requests that can be successfully executed, a coordinator pro-
cess can eventually generate valid receipts.

Proof (sketch). The claim holds for new_ledger and append
requests because they are first performed on the untrusted
state machine and the same operation is applied on a quorum
of endorsers in the same order. Even if coordinators are sub-
ject to crash failures, or the network drops or reorders packets,
the untrusted state machine is linearizable and internally fault
tolerant by design and implementation. Since the endorser’s
append API takes an additional hint, expected_index argu-
ment, this allows an honest coordinator to apply appends in
an endorser in the same order as it is applied in the untrusted
state machine. Furthermore, if the network drops signed mes-
sages from an endorser to the coordinator, the coordinator can
eventually retrieve them. Thus, a coordinator can eventually
obtain a valid receipt for new_ledger and append requests.

For read_latest requests, there are two cases: (1) no con-
current appends, and (2) concurrent appends. In the first case,
a coordinator eventually succeeds in obtaining a quorum of
signed messages on the same value (if an endorser is lagging
behind, the coordinator can provide missing appends from
the untrusted state machine to bring them up to date). In the
second case, a coordinator uses append_with_read_latest to
combine the read_latest request with a concurrent append
request to obtain a valid receipt.

7

5.2 A safe and live replacement of endorsers

Nimble’s core protocol is restricted to a static collection of
endorsers. Unfortunately, this restriction is unrealistic: once
an endorser fails, the system loses its initial level of fault-
tolerance. Furthermore, once a majority of endorsers fail,
the system is permanently unavailable as it cannot process
requests nor produce valid receipts ever again.

Nimble includes mechanisms to introduce new endorsers,
and to retire existing endorsers, thereby enabling it to proac-
tively maintain a sufficient number of endorsers and avoid the
aforementioned issues.

A core challenge is that a proactive replacement of en-
dorsers must not allow untrusted components in the sys-
tem (e.g., a coordinator) to abuse it to violate linearizabil-
ity. Another challenge is that the system should not enter a
deadlock state if a coordinator process performing such a
replacement fails at an inopportune time. In our context, there
is another challenge: to achieve high performance, there is
no total ordering of all operations. That is, in Nimble’s core
protocol, operations on different ledgers proceed in parallel
and they only need to be processed by a majority of endorsers
(i.e., not all endorsers). Thus, at any point in time, the state of
endorsers might not be identical.

Unfortunately, existing solutions are a poor fit in our con-
text. If Nimble were to adopt the folklore solution of keeping
membership (i.e., the identity of “current” endorsers) as part
of state that is replicated, the system will necessarily have to
impose a total order on all operations. This adversely affects
performance. Alternatively, each ledger could maintain its
own membership state (i.e., each ledger has the list of en-
dorsers that are responsible for endorsing operations on that
ledger). However, to change endorsers, the system will need
to invoke N instances of the view-change protocol, where N
is the number of ledgers. In practice, N can be millions or
more, so it is not practical.

Below, we describe how Nimble addresses these challenges
without bloating the TCB. In a nutshell, Nimble’s solution
can be viewed as a way to resolve the tension between the
two existing solutions described above.

Nimble’s reconfiguration protocol. We introduce a new
safe and live protocol, orchestrated by a coordinator, to proac-
tively replace endorsers. At a high level, Nimble proceeds
in a sequence of configurations, where in each configuration,
a particular set of endorsers, identified by their public keys,
are responsible for producing receipts. Nimble’s endorsers
keep track of the current configuration as well as the imme-
diately preceding configuration (we denote these with Ccurr

and Cprev in the endorser’s state machine). Furthermore, when
an endorser joins a configuration it “takes over” a previously
generated public identity of a Nimble instance only when it
can confirm that a quorum of endorsers of the prior configu-
ration have “renounced” it. Moreover, every response signed
by an endorser covers, in addition to the public identity, their

value of Ccurr. This ensures that responses produced by an
endorser are tied to a particular configuration and clients can
use it to discover which public keys and quorum size they
need to use to verify the responses produced by Nimble.

To switch from one configuration to the next, Nimble’s
coordinator proceeds in three phases (this protocol can be
invoked at any time). Before we describe these three phases,
we provide some preliminaries.

Let E and N denote sets of existing and new endorsers
respectively. In Nimble, E ∩N is an empty set (this simplifies
the protocol and proofs, as we discuss in [11, Appendix A]).
A coordinator launches endorsers in the set N , calls their
bootstrap method to obtain their public keys. Let CE and CN
respectively denote the sequence of public keys of endorsers
in E and N . Let id denote the identity of the Nimble instance
(the hash of the list of public keys of the first set of endorsers
that bootstrapped the system and that the provider advertises).

At every step in the protocol below, the coordinator reliably
persists responses it has received in the untrusted state ma-
chine, and by design every step is idempotent. A convenient
way to log this information is to use an append-only ledger
in the untrusted state machine (an endorser is not explicitly
aware of this ledger). Before starting the protocol below, the
coordinator appends CN to this ledger. Furthermore, all mes-
sages logged by the coordinator during the protocol are stored
alongside CN . As a result, if a coordinator fails or is slow at
any point in the protocol, another coordinator can safely take
over and complete the remaining steps.

The additional state and transitions needed to support Nim-
ble’s reconfiguration protocol are given below.

Endorser’s additional state

• status ∈ {“uninitialized”, “initialized”, “active”, “finalized”}.

• Cprev, endorsers’ public keys of the previous configuration.

• Ccurr, endorsers’ public keys of the currrent configuration.

• Cnext, endorsers’ public keys of the next configuration.

• σ, a signature on the finalized state and other metadata

Endorser’s updated initialize function

1: fn initialize(i, m, cprev, ccurr)
2: if status = “initialized” then
3: return Sign(sk, ⟨“initialize”, id, Cprev, Ccurr , M⟩)
4: if status ̸= “uninitialized” then return Err(AlreadyInit)
5: if SecretToPublic(sk) /∈ ccurr then
6: return Err(NotInConfig)
7: if i = H(ccurr) and (m ̸= ⊥ or cprev ̸= ⊥) then
8: return Err(InvalidInit)
9: else if i ̸= H(ccurr) and (m = ⊥ or cprev = ⊥) then

10: return Err(InvalidReconf)
11: id ← i, M ← m, Cprev ← cprev, Ccurr ← ccurr
12: status← “initialized”
13: return Sign(sk, ⟨“initialize”, id, Cprev, Ccurr , M⟩)

8

Endorser’s additional state transitions

1: fn finalize(cnext)
2: if status = “finalized” then return (M,σ)
3: if status ̸= “active” then return Err(NotActive)
4: Cnext ← cnext , status← “finalized”
5: σ ← Sign(sk, ⟨“finalize”, id, Ccurr , Cnext , M⟩)
6: sk← ⊥ // erase the endorser’s signing key
7: return (M,σ)

8: fn activate(Rexist , A, Rnext)
9: if status ̸= “initialized” then return Err(NotInit)

10: q← ⌊|Cprev|/2⌋+ 1, κ← ⌊|Ccurr|/2⌋+ 1
11: if |Rexist| < q or |Rnext| < κ then
12: return Err(InsufficientQuorum)
13: // Parse Rexist and Rnext
14: [(p1, M1,σ1, a1), . . . , (pq, Mq,σq, aq)]← Rexist
15: [(ρ1, η1,α1), . . . , (ρκ, ηκ,ακ)]← Rnext
16: for all i ∈ [q] do
17: if ai does not attest to pi then
18: return Err(InvalidAttestation)
19: if ¬Verify(pi,σi, ⟨“finalize”, id, Cprev, Ccurr , Mi⟩) then
20: return Err(InvalidFinalize)
21: for all i ∈ [κ] do
22: if αi does not attest to ρi then
23: return Err(InvalidAttestation)
24: if ¬Verify(ρi, ηi), ⟨“initialize”, id, Cprev, Ccurr , M⟩) then
25: return Err(InvalidInitialize)
26: if ¬verify_state((M1, . . . , Mq), M, A) then
27: return Err(InvalidState)
28: status← “active”

29: fn verify_state([M1, . . . , Mq], M, A)
30: [A1, . . . , Aq]← A
31: for all i ∈ [1, . . . , q] do
32: M′

i ← Mi
33: for all ℓ ∈ Mi do
34: for all a ∈ Ai[ℓ] do
35: M′

i [ℓ].tail← (H(M′
i [ℓ].tail), a)

36: M′
i [ℓ].index← M′

i [ℓ].index + 1

37: if M′
i ̸= M then return false

38: return true

(1) Finalize existing endorsers. A coordinator interacts
with endorsers in E to “finalize” their state. In particu-
lar, a coordinator invokes a new API supported by an en-
dorser, called finalize. It takes as input the new configura-
tion’s public keys CN and it outputs (Mi,σi), where Mi is
the endorser’s state and σi is a signature on the message
⟨“finalize”, id, CE , CN , Mi⟩ (an endorser signs over CN be-
cause it is intended to be consumed by endorsers in N). A
coordinator waits for a quorum of endorsers in E to finalize
their state and persists their responses in the untrusted state
machine. We refer to the aggregated response as Rexist.

Once an endorser provides a response to finalize, it enters
a “finalized” mode where it erases its signing key, and hence
it cannot process any further requests.2 It however continues

2Nimble’s threat model (Section 4) assumes that active endorsers are not
vulnerable (e.g., they do not leak their keys). By erasing a signing key in
finalize, Nimble ensures that if an adversary can break the TEE’s guarantees
in the future, they cannot recover finalized endorsers’ signing keys.

to respond with its finalized state and the signature on the
finalized state, to ensure liveness.

(2) Initialize new endorsers. We modify the initialize
method of the endorser’s state machine described in Sec-
tion 5.1 to support transfering state (including an existing
public identity) to the new endorsers (N). As before, if the
coordinator supplies an empty state and an empty prior con-
figuration (i.e., M and CE are both ⊥), then this means that
this is a new instance of Nimble and the public identity is the
hash of the current configuration (H(CN)). What is new is
that the coordinator could instead supply any state (M), prior
configuration (CE), and public identity (i) that it wishes, and
the endorsers simply accept that information. The endorsers
check that this information is actually safe to use before they
start processing requests during the activate function, which
we describe next. The initialize function outputs a signature
ηi on the message ⟨“initialize”, id, CE , CN , M⟩.

A coordinator waits for a quorum of endorsers in N to ini-
tialize their state and persists their responses in the untrusted
state machine. We refer to the aggregated response as Rnext.

(3) Activate new endorsers. We add a new API called
activate that allows a coordinator to convince an initialized
endorser in N to start processing requests. The coordinator
must provide evidence that it is safe for the endorser to “take
over” the initialized identity. An endorser performs a sequence
of checks: (1) it checks that a quorum of existing endorsers
in E have been finalized; (2) it checks that a quorum of new
endorsers in N have been initialized with the same state; and
(3) the state of a quorum of new endorsers is derived from the
state of a quorum of existing endorsers by picking ledger tails
with the highest positions seen in the quorum.

To prove (1) and (2), the coordinator provides Rexist and
Rnext respectively. To prove (3), the coordinator provides addi-
tional blocks (A) that can be appended to the tail of each of the
ledgers that were supplied by existing endorsers when they
called finalize (Mi) such that the resulting state equals M. This
check is in the verify_state function. An honest coordinator
can find these blocks in the untrusted state machine.

Verifying receipts in the presence of reconfigurations.
Suppose that a client goes offline and Nimble executes several
reconfigurations. We now discuss how such a client can verify
receipts produced by Nimble. Recall that a client retains the
public identity of Nimble (id).

Observe that Nimble’s reconfiguration protocol ensures
that endorsers in a Nimble instance always use the same pub-
lic identity id. Furthermore, an endorser’s signature covers,
in addition to its response, both the public identity id and the
public keys of endorsers in its own configuration (i.e., Ccurr).
We extend the coordinator’s APIs so a client can use them
to retrieve Ccurr and each endorser’s attestation report. This
allows a client to (lazily) learn the public keys of endorsers
in the latest configuration as well as verify that those public
keys belong to legitimate endorsers. Finally, a client does the
following checks to verify a receipt: (1) public keys in the

9

Component Trusted? Language SLoC

Coordinator No Rust 3564
Endorser Yes Rust 1843
Endorser Yes C++ 559
Endpoint Yes Rust 517

FIGURE 2—Implementation of Nimble (SLoC) (excluding existing
libraries and crates used by Nimble)

receipt are in Ccurr; (2) signatures are valid when verified with
the known id and Ccurr (as well as other information specific
to a request); (3) there is a quorum of valid signatures based
on the number of public keys in Ccurr.

Lemma 5.3. Assuming the integrity and confidentiality guar-
antees provided by TEEs for executing the specified endorser
state machine and standard cryptographic hardness assump-
tions, at any point in time, if Nimble produces a valid receipt
for an append operation O using endorsers in E , and if a
coordinator activates a majority of endorsers in N with state
M, then M must contain the effects of executing O.

Proof (sketch). Consider an append request O for which Nim-
ble produces a valid receipt using endorsers in E . This means
that a majority of endorsers in E applied O and provided a
signature on the same response (let Q denote that majority).
Furthermore, any majority of endorsers in E must contain at
least one endorser from the set Q.

Now, by the premise, the coordinator successfully activates
a majority of endorsers inN . This means that the coordinator
must have called their initialize and activate methods such
that all checks in the activate method pass. By assumptions
about TEEs and cryptography, this means that a majority of
endorsers in N must have been given with (Rexist, A, Rnext)
such that all checks in the activate method pass. Again, by the
aforementioned assumptions, the only feasible way to achieve
this is by calling finalize on a majority of endorsers in E to
obtain a valid Rexist. From the aforementioned reasoning, at
least one of states retrieved from a majority of endorsers in E
must contain the effects of applying O. Thus, M provided to a
majority of endorsers inN contains the effects of applying O.
Finally, by design, once an endorser in E returns a response to
the finalize method, it cannnot process any request, as a result,
once Rexist is generated, no valid receipt can be generated by
using a majority of endorsers in E .

Lemma 5.4. When the service is honest and during suffi-
ciently long periods of synchrony, if a majority of endorsers
in E andN are live, then a coordinator that can be subject to
crash failures can eventually obtain a majority of endorsers
in N to start processing requests.

Proof (sketch). We first argue that the claim holds when a
coordinator does not experience crashes. We then argue that
a coordinator that restarts can still complete the protocol by
using state persisted in the untrusted state machine.

We need to establish that the coordinator can provide in-
puts that pass checks in the activate method of the endorser
state machine. By inspection, if the coordinator follows its
prescribed protocol, one can see that nearly all of the checks
in the invoked activate method pass on an endorser state ma-
chine that holds a signing key where the corresponding public
key is in the sequence Ccurr. We now argue that verify_state
check passes too. Suppose that the coordinator computes M as
specified in the protocol. When the service is honest, for every
append request processed by the service, it is first applied on
the untrusted state machine (which is linearizable and crash
fault-tolerant) and then applied on each endorser in the same
order (endorser’s state machine is also linearizable). However,
for any given ledger, some endorsers may be “lagging behind”
others since Nimble requires only a majority of endorsers to
process an append. This implies that an honest coordinator
can retrieve blocks from the untrusted state machine, and con-
struct A such that verify_state((M1, . . . , Mq), M, A) = true.

Now, consider the case where a coordinator may crash.
Observe that each step persists state in the untrusted state
machine. When a coordinator restarts, it can examine the
state in the untrusted state machine to identify the step in
which it failed and repeatedly retry steps in the specified
reconfiguration protocol. Furthermore, by design, all APIs of
an endorser (e.g., initialize, finalize) are idempotent. Even if
a coordinator finished a step but failed before logging state
into the untrusted state machine, a new coordinator can safely
retry the step. As a result, a coordinator that repeatedly retries
eventually activates a quorum of endorsers in N , which then
can produce valid receipts for clients’ requests.

6 Implementation
Nimble is available as an open-source project [3]. Nimble’s
implementation is in Rust. In addition to the Rust-based en-
dorser, we implement an endorser in C++ using the Open
Enclave SDK [4]. The Rust endorser runs inside a confiden-
tial VM supported by AMD SEV-SNP, and the OpenEnclave-
based endorser runs inside Intel SGX. Both a coordinator
and an endorser run as microservices, each exposing an RPC
interface. To ease the adoption of Nimble, we implement an
endpoint that exposes a REST API. The endpoint implements
the client-side verification logic (Section 5.2) and runs inside
a confidential VM (i.e., a client essentially outsources all of
its verification tasks to the endpoint). With an endpoint, a
client only needs to perform remote attestation to ensure that
the right code runs, and establish a secure channel with it.

For cryptographic primitives, endorsers use SHA-256 for
hash functions and ECDSA with P-256 for signatures, both
implemented by OpenSSL.

Figure 2 shows the lines of code for each component in
Nimble. The Rust-based endorser implements the full proto-
col described in Section 5, while the C++ implements only
the core protocol (no reconfiguration).

We implement several optimizations. First, a coordinator
waits only for a quorum of endorsers to provide a matching

10

response (this helps reduce latency, especially when a minor-
ity of endorsers is deployed in a remote region, is slow, or is
disconnected). Second, an endorser stores a copy of the tail
node (rather than its hash), so for read operations, this allows
a coordinator to avoid a round trip with the storage service.

Nimble’s implementation supports reconfigurations to re-
place failed endorsers. However, the coordinator microser-
vice does not proactively invoke the reconfiguration protocol.
Instead, it exposes additional control APIs that allow a moni-
toring process to trigger the addition or removal of endorsers.
In a full deployment of Nimble, we expect to make use of a
monitoring infrastructure to invoke these control APIs.

7 Evaluation
This section answers the following evaluation questions:

• What is the latency and throughput of Nimble operations,
and how do they depend on the underlying storage or TEE
technology used by Nimble?

• How does Nimble’s TCB compare to alternative solutions?

• What is the cost of a reconfiguration, and how does it scale
with the number of ledgers in Nimble?

• How difficult is it to port a real application to use Nimble
and what overheads does Nimble introduce?

7.1 Experimental setup

We run all of our experiments on Azure. We run endorsers
on three different machines, each on a different availability
zone to ensure that a server, rack, or even an entire data center
failure does not cause a loss of a quorum of endorsers. When
we run endorsers in Intel SGX, we use Azure DC32s v3 in-
stances; when we run endorsers in AMD SEV-SNP, we use
Azure DC32as v5 instances. The coordinator runs in Azure
D48ads v5 instances, as does our client (a workload gener-
ator). Finally, we deploy several endpoints that run inside
AMD SEV-SNP and execute verification logic. We use an
Azure load balancer to route requests among the endpoints,
and direct all client requests to this load balancer.

Given that Nimble inherits the performance of its underly-
ing storage, we evaluate two configurations:

• An in-memory key-value store: An unreplicated in-memory
key-value store that does not tolerate failures. This key-
value store has low access latency and high throughput. It
serves as a best-case scenario for Nimble. In a real deploy-
ment of Nimble, this store could be replaced with existing
replicated in-memory key-value stores that provide high
throughput and low latency [23, 43, 44].

• Azure table with geo-replication: Azure storage with the
strongest replication guarantees enabled (RA-GZRS). It
has lower throughput and higher latency than our in-
memory key-value store, and suffers from high tail latency
since it is a multi-tenant cloud service with no SLAs.

7.2 Latency and throughput of Nimble

We start by conducting a series of microbenchmarks on Nim-
ble. To generate workloads, we use wrk2 [50], a popular
constant-load open-loop workload generator. The resulting
workload is sent to our Azure load balancer which is then
split across our REST endpoints. We measure the median and
90-th percentile latencies, as well as the throughput achieved
by Nimble on its different configurations.

Figure 3 depicts the results. Figure 3a shows the perfor-
mance of Nimble when using AMD SEV-SNP endorsers and
our in-memory key-value store. In this configuration, the me-
dian latency of all operations is under 2.5ms, and the 90-th
percentile latency is under 3.2 ms. This latency is possible due
to the fast communication between machines inside Azure
data centers, even if the endorsers and coordinator are in dif-
ferent availability zones. Append and read throughput both
peak at around 50K req/sec, which is quite significant given
that Nimble’s endorsers process and sign individual requests;
we do not do any batching in this experiment. The bottleneck
is indeed computational and comes from the cryptographic
operations performed by the endorsers.

Figure 3b shows the performance of Nimble when using
AMD SEV-SNP endorsers and Azure table storage. In this
configuration we observe two things: (1) the higher storage
latency plays a key role for append operations, leading to
median latencies of around 30–40 ms. More significantly, tail
latencies are very high (sometimes up to 2 seconds), owing to
the fact that we use a shared service without guaranteed SLAs.
The append throughput performance is significantly worse
than our in-memory counterpart, reaching around 2,600 re-
qs/sec. Here the bottleneck is no longer computational and is
instead Azure storage which has an account-wide throughput
limit of 20K entities/sec; in Nimble, every append accesses
multiple rows (entities) in Azure Table to provide the required
untrusted state machine semantics (Section 5.1), which hits
this limit. Reads are not impacted by these salient properties
of storage because of our fast-reads optimization (Section 6).

Figure 3c shows the performance of Nimble when using
Intel SGX endorsers and our in-memory key-value store. The
performance is lower than AMD SEV-SNP endorsers because
our SGX endorsers must continuously cross between the
untrusted host that runs the networking stack and the enclave,
in addition to the hardware being completely different. Finally,
we omit the SGX endorsers and Azure Table configuration
because the performance is very similar to that of Figure 3b,
owing to Azure storage being the bottleneck.

7.3 Comparison of TCB size

A key component of Nimble is its relative simplicity. We
therefore ask how Nimble compares to similar proposals. Fig-
ure 2 gives the breakdown of the complexity of Nimble’s
different components (we use TCB as a proxy for it), and Fig-
ure 4 compares it to other works. The key take away is that the

11

 0

 10

 20

 0 10 20 30 40 50 60

re
sp

o
n
se

 t
im

e
(m

s)

throughput (thousands of requests/sec)

Read 50p
Read 90p

Append 50p
Append 90p

(a) In-memory K/V store and AMD SNP-SEV

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

re
sp

o
n
se

 t
im

e
(m

s)

throughput (thousands of requests/sec)

Read 50p
Read 90p

Append 50p
Append 90p

(b) Azure Table and AMD SNP-SEV

 0

 10

 20

 0 5 10 15 20 25

re
sp

o
n
se

 t
im

e
(m

s)

throughput (thousands of requests/sec)

Read 50p
Read 90p

Append 50p
Append 90p

(c) In-memory K/V store and Intel SGX

FIGURE 3—Microbenchmark of the different operations supported by Nimble. Time is measured end-to-end from the perspective of the client
and includes the time needed for the endpoint to verify the signatures provided by Nimble on behalf of the client.

System TCB restarts? reconfig?

ROTE [35] 1.1K No No
Narrator [39] 5.1K Yes No
TEEMS [22] 11.0K Yes No
CCF [41] 55.5K Yes† Yes

Nimble (this work) 2.3K Yes† Yes

FIGURE 4—Source lines of code (SLoC) comparison of Nimble to
other works that provide a fault-tolerant rollback detection service,
and whether they can support a replica that restarts (fails and then
comes back), as well as replacing the set of replicas. For ROTE,
Narrator, and TEEMS we use the numbers from the papers. For
CCF we use numbers provided by the authors. Note that this table
should be treated qualitatively since these systems are implemented
in different languages with different coding styles, libraries, etc. The
takeaway is that ROTE, Narrator, and Nimble are “simple”; TEEMS
is moderately complex as it implements an entire replication protocol
within the TCB; and CCF is more complex since it implements a
replication protocol in addition to logic that handles blockchain
smart contracts. †CCF and Nimble can handle replica restarts by
treating them as new replicas and engaging reconfiguration.

of ledgers median reconf. time total communication

100K 805 ms 175.59 MB
200K 1.53 sec 337.65 MB
500K 3.72 sec 881.62 MB
1M 7.14 sec 1.68 GB

FIGURE 5—Total reconfiguration time (median across 10 runs) and
the total amount of communication between the coordinator and the
old and new endorsers (measured with tcpdump).

complexity of Nimble’s TCB is similar to that of ROTE [35]
and Narrator [39], despite the fact that Nimble supports re-
configuration and these prior systems do not. When compared
to TEEMS [22] or CCF [41], Nimble is significantly simpler.
Indeed, it is precisely this simplicity that allowed us to for-
mally prove the safety of the core protocol of Nimble using
the Ironfleet methodology [27] and the Dafny program veri-
fier [31]. Doing the same for these other works that include
an entire consensus protocol in their TCB is a daunting task.

7.4 Cost of reconfiguration

One of the key innovations in Nimble is the ability to se-
curely reconfigure from one set of endorsers to another. As

we explain in Section 5.2, this process requires “finalizing”
existing endorsers, which effectively stops request processing
while the reconfiguration takes place. Hence, reconfiguration
time impacts the availability of Nimble. There are two factors
that affect this time: (1) the number of ledgers in the system,
and (2) the difference between the number of ledger entries
processed by the endorsers. We find that (1) is the dominat-
ing factor given that the fast network and endorsers running
on similar hardware in our experimental setup lead to small
differences in which ledger entries they have processed.

To measure the impact of (1), we conduct an experiment
where we populate the system with a varying number of
ledgers and then induce a reconfiguration to replace an exist-
ing set of three endorsers to a brand new set of three endorsers
running on different machines (also on three different avail-
ability zones). Figure 5 depicts the results for both total time
and network communication. We observe a near-linear cost
increase in reconfiguration time in terms of the number of
ledgers. This cost comes from a variety of factors: (i) hashing
of the state at existing endorsers; (ii) determining which state
to initialize the new endorsers and transferring that state; and
(iii) hashing and verification of the provided state at the new
endorsers (e.g., the verify_state method).

Balancing costs. Given that Nimble’s cost of reconfiguration
is high when the system supports many ledgers, and such cost
translates directly to service unavailability, one possibility is
to partition the ledger space so that disjoint sets of endorsers
are responsible for different sets of ledgers. In this manner,
if an endorser in one of the partitions fails, the provider can
perform a reconfiguration that changes only the ledgers within
this partition—without needing to touch the other partitions.
Of course, disaster scenarios such as an entire availability
zone going down could still require endorsers in all partitions
to be swapped, but this is a rarer event.

7.5 Integrating applications with Nimble

One important consideration with a system like Nimble is how
would existing applications use it. To answer this question,
modify the Hadoop Distributed File System (HDFS). We
choose HDFS because (1) it has a lot of state at many different
components and (2) any cloud customer who runs a data
analytics application that uses HDFS is vulnerable to rollback

12

0

5000

10000

15000

create mkdir open delete fileStatus rename

th
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Baseline Nimble (In-memory) Nimble (Table)

FIGURE 6—Results of NNThroughputBenchmark on an HDFS
deployment (Baseline) and a deployment of Nimble-HDFS.

0

100

200

300

400

WordCount sort TeraSort eDFSIO-R eDFSIO-W PageRank

co
m

p
le

ti
o

n
 t

im
e

(s
ec

)

Baseline Nimble (Table)

FIGURE 7—Results of Intel’s HiBench with a dataset scale set to
“large” on a MapReduce deployment running on top of standard
HDFS (Baseline) and a Nimble-HDFS backed by Azure Table.

attacks today—even if HDFS and their application runs on
confidential computing servers. Hence, a rollback-resistant
HDFS would provide significant benefit.

We spent three person months modifying HDFS to inte-
grate with Nimble, for a total of 1,689 lines of Java. We
discuss the specifics in [11, Appendix B]. At a high level, we
observe that HDFS logs data and metadata in order to recover
from crash failures. These logs are committed to disk either
synchronously or periodically in batches (in which case the
system might lose the latest uncommitted state during a fail-
ure). While these logs are in memory, we can protect them by
running HDFS’s namenode and datanode inside TEEs. How-
ever, as soon as they are written to disk, they are vulnerable to
rollback attacks. We identified all such events in HDFS and
replaced them with the approach in Section 3.1. The result is
Nimble-HDFS, a version of HDFS that detects rollbacks.

To measure this overhead, we provision two Azure F64s
v2 machines, one to run the namenode and the other the
datanode of HDFS or Nimble-HDFS. We then run Hadoop’s
NNThroughputBenchmark [9], which is a standard bench-
mark that measures the performance of HDFS operations
such as create, mkdir, etc. We configure Nimble-HDFS to
append an entry to Nimble every 100 operations. At the peak
throughput, the window of vulnerability is tens of ms.

Figure 6 depicts our results. For some operations, Nimble-
HDFS has no overhead over the baseline, particularly those
that do not append entries to Nimble (deviations are basically
experimental noise). For others, Nimble-HDFS introduces
up to a 2 or 3× overhead over the baseline, depending on
the backing store. This cost comes from computing digests,
sending them over HTTP to Nimble’s endpoint, and flushing
operations to disk before moving on.

At first glance, these added costs might appear problematic.

But the reality is that the overhead of Nimble-HDFS is mini-
mal for real applications. To demonstrate this, we run Intel’s
HiBench Suite [2], which consists of big data applications
that run on top of MapReduce. We configure MapReduce to
use either standard HDFS or Nimble-HDFS. The results are
in Figure 7. As we can see, there is essentially no difference
in the job completion time for most of these applications
when using Nimble; the exception is the extended DFSIO
benchmark which is I/O heavy and is meant to measure the
performance of the underlying HDFS instance.

8 Related work
This section discusses works that directly relate to Nimble;
while there are many other works on building untrusted stor-
age systems [14, 16, 24, 33, 34, 36], our focus here is on
projects that guarantee linearizability.

Rollback protection. Many TEEs (e.g., Intel SGX) support
sealing. Sealing enables applications running inside TEEs to
encrypt and sign their state with secret keys known only to
the TEE, prior to storing in untrusted disk. Sealing alone does
not provide rollback protection, but one can additionally use
monotonic counters supported by TEEs. There are several
drawbacks to this combination. First, operations on counters
are slow (e.g., increment latencies are 80–250ms) and wear
out in a few days [12, 35], though recent systems like SPE-
ICHER [12] partially address this issue. Second, monotonic
counters are not as secure as expected (e.g., removing the
BIOS battery or reinstalling TEE software often resets these
counters). Finally, monotonic counters are specific to a given
machine so a crashed application cannot be launched on a
different machine—which is unacceptable in cloud settings.

Memoir [40] provides rollback protection by maintaining a
history of application requests in an append-only hash chain
(which itself is in an untrusted storage) and tracking tail of
the chain in a trusted non-volatile memory supported by a
TPM. If an application restarts, it uses state in the trusted
non-volatile memory and the hash chain to reconstruct its
state. Ariadne [45] similarly uses a TPM’s non-volatile mem-
ory but with a different abstraction (counter instead of hash
chain). The challenge with these approaches in cloud settings
is that, if the TPM or its machine fails, the system becomes
unavailable. Nimble solves this challenge by developing a
fault-tolerant version of Memoir that stores the state in several
TEEs’ volatile memory and supports reconfiguration.

ROTE [35], Narrator [39], and TEEMS [22] are similar to
Nimble in that they propose a solution to help confidential ap-
plications in TEEs detect rollbacks. The main difference with
Nimble is that these works lack a reconfiguration protocol, so
there is no obvious way to add or remove replicas.

CCF [41] provides rollback-resistance and supports recon-
figuration but it is significantly more complex than Nimble
and has a very large TCB since it is designed to run and
validate smart contracts and other blockchain constructs.

13

Kaptchuk et al. [29] formalizes the interactions of a TEE
with an append-only ledger as a way to provide rollback
protection. A key distinction with Nimble is that their work
assumes the existence of the ledger, whereas Nimble focuses
on building the ledger itself.

Wang et al. [49] study pitfalls with running a crash fault-
tolerant replication protocol inside TEEs to achieve a Byzan-
tine fault-tolerance. In particular, they describe concrete at-
tacks including rollback attacks on state kept by individual
nodes on their local disks. For rollback attacks, they propose
a solution based on ROTE [35] that inherits its drawbacks.

Replicated systems with a small TCB. A2M [18] and
Trinc [32] propose trusted primitives for nodes in a distributed
system to prevent malicious nodes from equivocating (i.e.,
sending conflicting messages to different nodes). Unfortu-
nately, these trusted primitives do not aim to provide fault-
tolerance on their own. A straightforward use of a replication
protocol to add fault-tolerance (including reconfigurations)
results in a large TCB, analogous to CCF’s.

A recent line of work focuses on using minimal trusted
primitives to improve various aspects of replication proto-
cols. Yandamuri et al. [52] use a Trinc-type minimal trusted
hardware in communication-efficient Byzantine fault-tolerant
protocols [10, 53] to preserve communication efficiency while
achieving improved fault thresholds. Similarly, Damysus [21]
separates safety and liveness concerns in HotStuff [53] and de-
scribes minimal trusted components that improve fault thresh-
olds. Hybster [13] and FlexiTrust [26] observe that Trinc-type
trusted hardware forces sequential invocations of consensus
instances, so they introduce variants that support parallel in-
stances and achieve better performance. Unfortunately, these
works do not yet support reconfiguration.

9 Discussion
9.1 Disaster recovery

Recall that Nimble runs a set of endorsers inside TEEs and re-
ceipts consist of signatures from a quorum of endorsers. This
raises a question: what happens if Nimble loses a majority of
endorsers? If the endorsers are alive but disconnected (e.g.,
network partition), then Nimble will experience unavailability
until a quorum is accessible again. If the endorsers actually
crashed and their volatile state is gone, then we refer to this
scenario as a total disaster. This could happen for a number of
reasons. Perhaps the service provider experiences a massive
attack or a natural disaster takes down multiple datacenters.

The good news is that total disasters do not affect safety
properties like freshness. By design and implementation, en-
dorsers cannot be restarted. If Nimble loses a majority of its
endorsers, then there is no longer a quorum of endorsers that
can sign responses that a client will accept. The bad news is
that this leads Nimble to lose liveness.

There are some ways to reduce the chance of total disasters.
The most important one is with a reconfiguration protocol

so that failures do not pile up and cause the system to lose
a quorum of endorsers. This is why we developed one for
Nimble. Second, deploy endorsers in different fault domains
(cloud providers already do this for their replicated systems).

Even with such measures, total disasters could still occur.
Unfortunately, there is no “playbook” for how to proceed. An
option is for customers to periodically snapshot the tails of
their ledgers and store them in some location they trust. After
a total disaster, the customer can ask the service provider if
they have a snapshot that is more recent than the one they have
(the customer can check that it includes more updates than
their own and in fact the snapshot is legitimate by verifying
receipts). Then, customers can explicitly ask the service to
create a new instance of Nimble that starts with that agreed-
upon snapshot. Of course, if the snapshot is stale then the
system will not reflect the most recent operations (i.e., the
responses will not be fresh), but observe that a provider cannot
do this unilaterally: the customer must explicitly ask for it. If a
customer does not want to maintain snapshots, then an option
is to accept a snapshot provided by the provider (the customer
can still verify that some prior endorsers signed those tails).
This might be acceptable in extreme situations such as when
the total disaster was due to a public natural disaster that took
down datacenters where endorsers were deployed.

9.2 TCB changes

Our description has so far assumed that endorsers’ trusted
code does not change (i.e., when verifying receipts Rexist and
Rnext, an endorser checks that its own measurement matches
the measurements of an existing quorum of endorsers and
those of a new quorum of endorsers). But what if that trusted
code needs to be updated? For example, if there was an update
to a library or the attestation verification procedure changed.

To address this, we sketch a solution, which omits the afore-
mentioned check requiring measurements to match; instead
customers have to do certain checks. Specifically, the service
provider persists Rexist and Rnext whenever a reconfiguration
occurs, along with a copy of the code running in an endorser
(and other configuration information to reproduce binaries
loaded inside TEEs). The provider then uses this information
to prove to customers that all configuration changes (includ-
ing code changes in the TCB) were legitimate. Customers
must audit code changes and verify attestation reports, and
decide whether to accept the latest set of endorsers.

Note that the above proposal crucially assumes that when-
ever the provider reconfigures from an existing set of en-
dorsers E to a new set of endorsersN with a new trusted code,
a quorum of endorsers in E was not exploited by an adversary
before the reconfiguration. This is because after a quorum
of endorsers in E finalize their state (which is necessary for
reconfiguration), they erase their signing keys (Footnote 2).
However, there is no known way to prove that the trusted code
was updated before it was exploited by an adversary.

14

Acknowledgments

We thank Leslie Lamport, Melissa Chase, the OSDI reviewers, and
our shepherd, Brad Karp, for their thorough comments and helpful
conversations. We thank Jonathan Lee and Jay Lorch for helpful dis-
cussions when the project began, and Amaury Chamayou and Cédric
Fournet for helping us better understand CCF. We also thank Ahmad
Abdullateef, David Altobelli, Anil Bazaz, Pushkar Chitnis, Greg
Kostal, Hervey Wilson, and Sergio Wong for helping us identify
requirements that Nimble must support. Basu and Jaeger were sup-
ported in part by the U.S. Army Combat Capabilities Development
Command Army Research Laboratory under Cooperative Agree-
ment Number W911NF-13-2-0045 (ARL Cyber Security CRA) and
NSF grant CNS-1816282. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the Combat Capabilities Development Command Army Research
Laboratory of the U.S. government. The U.S. government is autho-
rized to reproduce and distribute reprints for government purposes
notwithstanding any copyright notation here on.

References
[1] Big data analytics on confidential computing with Apache

Spark on Kubernetes. https://learn.microsoft.com/en-
us/azure/architecture/example-
scenario/confidential/data-analytics-
containers-spark-kubernetes-azure-sql.

[2] HiBench Suite: The bigdata micro benchmark suite.
https://github.com/Intel-bigdata/HiBench.

[3] Nimble: Rollback Protection for Confidential Cloud Services.
https://github.com/Microsoft/Nimble.

[4] Open Enclave SDK.
https://github.com/openenclave/openenclave.

[5] Reference architecture for privacy preserving machine
learning with Intel SGX and TensorFlow serving.
https://www.intel.com/content/www/us/en/
developer/articles/technical/privacy-
preserving-ml-with-sgx-and-tensorflow.html.

[6] Technology preview for secure value recovery.
https://signal.org/blog/secure-value-recovery/.

[7] PySyft, PyTorch and Intel SGX: Secure aggregation on trusted
execution environments. https:
//blog.openmined.org/pysyft-pytorch-intel-sgx/,
2020.

[8] Fledge services for chrome and android.
https://developer.chrome.com/blog/fledge-
service-overview/, 2022.

[9] Hadoop benchmarking.
https://hadoop.apache.org/docs/stable/hadoop-
project-dist/hadoop-common/Benchmarking.html,
2022.

[10] I. Abraham, D. Malkhi, and A. Spiegelman. Validated
asynchronous byzantine agreement with optimal resilience
and asymptotically optimal time and word communication.
arXiv, 2018.

[11] S. Angel, A. Basu, W. Cui, T. Jaeger, S. Lau, S. Setty, and
S. Singanamalla. Nimble: Rollback protection for confidential

cloud services (extended version). Cryptology ePrint Archive,
Paper 2023/761, 2023.

[12] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani. SPEICHER: securing LSM-based key-value
stores using shielded execution. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST),
2019.

[13] J. Behl, T. Distler, and R. Kapitza. Hybrids on steroids:
SGX-based high performance BFT. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys),
2017.

[14] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza.
Rollback and forking detection for trusted execution
environments using lightweight collective memory. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 2017.

[15] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the intel sgx
kingdom with transient out-of-order execution. In
Proceedings of the USENIX Security Symposium, 2018.

[16] C. Cachin, A. Shelat, and A. Shraer. Efficient
fork-linearizable access to untrusted shared memory. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2007.

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.
Sgxpectre attacks: Leaking enclave secrets via speculative
execution. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2019.

[18] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick to
their word. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), page 189–204, 2007.

[19] V. Costan and S. Devadas. Intel sgx explained. Cryptology
ePrint Archive, Paper 2016/086, 2016.
https://eprint.iacr.org/2016/086.

[20] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In
Proceedings of the USENIX Security Symposium.

[21] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu. DAMYSUS:
streamlined BFT consensus leveraging trusted components. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2022.

[22] B. Dinis, P. Druschel, and R. Rodrigues. Rr: A fault model for
efficient tee replication. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2023.

[23] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast remote memory. In Proceedings of the USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2014.

[24] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
Sporc: Group collaboration using untrusted cloud resources.
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[25] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. Journal of the ACM (JACM),
43(3), 1996.

[26] S. Gupta, S. Rahnama, S. Pandey, N. Crooks, and M. Sadoghi.
Dissecting BFT consensus: In trusted components we trust! In

15

https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/data-analytics-containers-spark-kubernetes-azure-sql
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/data-analytics-containers-spark-kubernetes-azure-sql
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/data-analytics-containers-spark-kubernetes-azure-sql
https://learn.microsoft.com/en-us/azure/architecture/example-scenario/confidential/data-analytics-containers-spark-kubernetes-azure-sql
https://github.com/Intel-bigdata/HiBench
https://github.com/Microsoft/Nimble
https://github.com/openenclave/openenclave
https://www.intel.com/content/www/us/en/developer/articles/technical/privacy-preserving-ml-with-sgx-and-tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/privacy-preserving-ml-with-sgx-and-tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/privacy-preserving-ml-with-sgx-and-tensorflow.html
https://signal.org/blog/secure-value-recovery/
https://blog.openmined.org/pysyft-pytorch-intel-sgx/
https://blog.openmined.org/pysyft-pytorch-intel-sgx/
https://developer.chrome.com/blog/fledge-service-overview/
https://developer.chrome.com/blog/fledge-service-overview/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Benchmarking.html
https://eprint.iacr.org/2016/086

Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2023.

[27] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno,
M. L. Roberts, S. Setty, and B. Zill. IronFleet: Proving
practical distributed systems correct. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
2015.

[28] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS), 12(3), July
1990.

[29] G. Kaptchuk, I. Miers, and M. Green. Giving state to the
stateless: Augmenting trustworthy computation with ledgers.
In Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2019.

[30] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In Proceedings of the USENIX Security
Symposium, 2017.

[31] R. Leino. Dafny: An automatic program verifier for functional
correctness. In Proceedings of the Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR),
2010.

[32] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
Trinc: Small trusted hardware for large distributed systems. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

[33] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[34] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud storage with minimal trust. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

[35] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer,
A. Gervais, A. Juels, and S. Capkun. ROTE: Rollback
protection for trusted execution. In Proceedings of the
USENIX Security Symposium, 2017.

[36] D. Mazières and D. Shasha. Building secure file systems out
of byzantine storage. In Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC), 2002.

[37] moxie0. Technology preview: Private contact discovery for
Signal. https://signal.org/blog/private-contact-
discovery/, 2017.

[38] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss,
and F. Piessens. Plundervolt: Software-based fault injection
attacks against intel SGX. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2020.

[39] J. Niu, W. Peng, X. Zhang, and Y. Zhang. Narrator: Secure
and practical state continuity for trusted execution in the cloud.
In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2022.

[40] B. Parno, J. Lorch, J. J. Douceur, J. Mickens, and J. M.
McCune. Memoir: Practical state continuity for protected
modules. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2011.

[41] M. Russinovich, E. Ashton, C. Avanessians, M. Castro,
A. Chamayou, S. Clebsch, M. Costa, C. Fournet, M. Kerner,

S. Krishna, J. Maffre, T. Moscibroda, K. Nayak,
O. Ohrimenko, F. Schuster, R. Schwartz, A. Shamis,
O. Vrousgou, and C. M. Wintersteiger. CCF: A framework for
building confidential verifiable replicated services. Technical
Report MSR-TR-2019-16, Microsoft, April 2019.

[42] S. Setty, C. Su, J. R. Lorch, L. Zhou, H. Chen, P. Patel, and
J. Ren. Realizing the fault-tolerance promise of cloud storage
using locks with intent. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2016.

[43] A. Shamis, M. Renzelmann, S. Novakovic, G. Chatzopoulos,
A. Dragojevic, D. Narayanan, and M. Castro. Fast general
distributed transactions with opacity. In Proceedings of the
ACM International Conference on Management of Data
(SIGMOD), June 2019.

[44] W. Shen, A. Khanna, S. Angel, S. Sen, and S. Mu. Rolis: A
software approach to efficiently replicating multi-core
transactions. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), 2022.

[45] R. Stackx and F. Piessens. Ariadne: A minimal approach to
state continuity. In Proceedings of the USENIX Security
Symposium, 2016.

[46] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic,
L. Gasser, N. Gailly, I. Khoffi, and B. Ford. Keeping
authorities" honest or bust" with decentralized witness
cosigning. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2016.

[47] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI:
Hijacking Transient Execution through Microarchitectural
Load Value Injection. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2020.

[48] S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam,
C. Garman, D. Genkin, A. Miller, E. Ronen, and Y. Yarom.
SoK: SGX.Fail: How stuff get eXposed. https://sgx.fail,
2022.

[49] W. Wang, S. Deng, J. Niu, M. K. Reiter, and Y. Zhang.
Engraft: Enclave-guarded Raft on Byzantine faulty nodes. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2022.

[50] wrk2: A constant throughput, correct latency recording variant
of wrk. https://github.com/giltene/wrk2.

[51] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems.
In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2015.

[52] S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter.
Communication-efficient BFT protocols using small trusted
hardware to tolerate minority corruption. Cryptology ePrint
Archive, Paper 2021/184, 2021.

[53] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham.
HotStuff: BFT consensus with linearity and responsiveness. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2019.

[54] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu.
Fault-tolerant and transactional stateful serverless workflows.
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

16

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://sgx.fail
https://github.com/giltene/wrk2

	1 Introduction
	2 Context and rollback attacks
	2.1 Context: Confidential computing

	3 Rollback protection
	3.1 Our solution
	3.2 Storing state in an existing storage service

	4 An overview of Nimble
	5 Design details and correctness
	5.1 Core protocol
	5.2 A safe and live replacement of endorsers

	6 Implementation
	7 Evaluation
	7.1 Experimental setup
	7.2 Latency and throughput of Nimble
	7.3 Comparison of TCB size
	7.4 Cost of reconfiguration
	7.5 Integrating applications with Nimble

	8 Related work
	9 Discussion
	9.1 Disaster recovery
	9.2 TCB changes

