
Deferred Runtime Pipelining for contentious multicore software transactions
(extended version)

Shuai Mu
Stony Brook University

Sebastian Angel
University of Pennsylvania

Dennis Shasha
New York University

Abstract
DRP is a new concurrency control protocol for software
transactional memory that achieves high throughput, even for
skewed workloads that exhibit high contention. DRP builds
on prior works that chop transactions into pieces to expose
more concurrency opportunities, but unlike these works, DRP
performs no static analyses and supports arbitrary workloads.
DRP achieves a high degree of concurrency across most work-
loads and guarantees deadlock freedom, strict serializability,
and opacity. We incorporate DRP into the software transac-
tional objects library STO [18] and find that DRP improves
STO’s throughput on several STAMP benchmarks by up to
3.6×. Additionally, an in-memory multicore database im-
plemented with our modified variant of STO outperforms
databases that use OCC or transaction chopping for con-
currency control. Specifically, DRP achieves 6.6× higher
throughput than OCC when contention is high. Compared to
transaction chopping, DRP achieves 3.3× higher throughput
when contention is medium or low. Furthermore, our imple-
mentation achieves comparable performance to OCC and
transaction chopping at other contention levels.

1 Introduction
The challenge of writing correct and efficient concurrent pro-
grams has inspired many new runtimes [4, 6, 15] and abstrac-
tions [16–18, 24, 29, 30]. For example, transactions, which
can simplify concurrent application design, are commonly
used in databases and distributed systems. However, transac-
tions are rarely used in single-machine multi-threaded applica-
tions. A major reason for this is performance: using (software)
transactional memory [29] introduces a lot of overhead. In-
stead, programmers turn to synchronization primitives such as
locks and semaphores to build their concurrent applications.

Recent efforts on transactional data structures [18, 30, 41]
allow programmers to write applications with transactions
defined over particular objects (rather than arbitrary mem-
ory words) while guaranteeing atomicity and isolation. For
example, STO [18] is a recent library that includes many trans-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’19, March 25–28, 2019, Dresden, Germany.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00
https://doi.org/10.1145/3302424.3303966

actional objects (e.g., arrays, maps, primitive types) that C++
developers can use in their transactions. STO relies on an op-
timized variant of optimistic concurrency control (OCC) [19]
to process transactions. OCC works well in low contention
environments (e.g., read-only workloads, applications with
few threads) since it incurs low locking overhead and aborted
transactions can be re-executed quickly due to memory’s low
latency. However, the number of aborts in OCC becomes ex-
cessive under high contention workloads (e.g., many threads
competing to get the id of the next order), significantly de-
grading performance [5, 39].

The above is problematic since high-contention workloads
are not uncommon, and include skewed workloads with hot
items. To provide high throughput for such high-contention
workloads, recent in-memory multicore databases [12, 37]
propose the use of static analysis techniques that preprocess
the workload to chop transactions into pieces [28]. The exe-
cution of these pieces can be pipelined at runtime [38], which
exposes more concurrently since locks are held for shorter
periods of time and are released early. The drawback of this
approach is that relying on static analysis sacrifices generality
by requiring all transactions to be known ahead of time.

Inspired by these works, this paper introduces a concur-
rency control protocol called Deferred Runtime Pipelining
(DRP) and implements it in STO. DRP extends the runtime
pipelining (RP) scheme of Xie et al. [38] to handle arbitrary
transactions without static analysis, while still guaranteeing
strict serializability (or opacity) and deadlock freedom. The
key idea behind DRP is to defer the execution of transac-
tions using intentions (similar to futures or promises in asyn-
chronous programming), and pipelinine the lock acquisition
and actual execution after a transaction’s logic is known (or
“commits”). This approach has several benefits (many of them
previously documented in the context of lazy transaction
processing [13]), but most importantly, it allows individual
operations to be assigned arbitrary ranks that dictate the order
within the pipeline, avoiding the use of static analysis.

A stumbling block in designing DRP is that some transac-
tions cannot be fully deferred. As one example, consider a
transaction that is not specified in full and that has logic that
changes depending on the value of observed data. To account
for this, we classify transactions into two types, tame and
wild, and design compatible versions of DRP for each. Tame
transactions have foreknowledge of the objects on which they
will act before they execute. This is achieved by deferring
the execution of their operations. Wild transactions, on the

mailto:permissions@acm.org
https://doi.org/10.1145/3302424.3303966

other hand, may alter their read/write sets based on the values
they read. Programmers need not be aware of the tame/wild
distinction, but the system acts slightly differently for the two,
as we discuss in Section 6.2.

As a stepping stone to building DRP and proving its cor-
rectness, we first adapt Xie et al.’s RP scheme [38] to each
transaction type: Tame-RP treats each object as a piece of
unique rank (locks are acquired based on rank); Wild-RP ex-
ecutes transactions optimistically as in OCC, but crucially,
acquires locks in rank order and then performs certification.
The difference between these intermediate protocols and DRP
is that they do not defer the execution of operations. Without
deferring execution, Tame-RP must account for rank mis-
match: the rank of an object might contradict a transaction’s
data dependencies or control flow. Consequently, Tame-RP
must acquire all locks ahead of time (essentially devolving
into predeclaration locking).

DRP’s deferred execution mechanism is designed not only
to determine a transaction’s access set (and thereby make it
tame), but also to avoid rank mismatch. In particular, DRP
enqueues an intention (which is a piece of logic that encodes
data-dependencies and is executed at commit time) into an
object after acquiring a lock, and early-releases the lock even
if data or control dependencies have not been met. DRP’s
use of intentions also allows wild transactions to pipeline
their lock acquisition and early release locks while avoiding
cascading aborts. Specifically, if a wild transaction needs to
abort, it nullifies the intentions that it has enqueued without
forcing other transactions to abort.

To better understand the benefits and limitations of DRP,
we have built a modified version of STO [18]. Our experi-
ments on a 64-core machine show that our modified STO
achieves up to 3.6× higher throughput on the STAMP bench-
mark suite [8] than TL2 [11] and the existing STO [18].
Furthermore, our modifications improve the throughput of
an implementation of the Silo multicore database [35] on
STO by 6.6× at high contention; performance is comparable
when contention is low. Compared to IC3 [37] (an in-memory
multicore database that relies on static analysis to pipeline
operations), our Silo implementation achieves 3.3× higher
throughput at low contention, and comparable performance at
high contention. Our results suggest that DRP is a good fit for
STO, incurring modest operational overhead over OCC, while
extracting concurrency from high contention workloads.

In summary, the contributions of this work are:

• An extension of the runtime pipelining protocol that works
with tame and wild transactions without static analysis (§4).
The resulting protocols guarantee strict serializability,
opacity, and deadlock freedom (§4.3).

• The DRP concurrency control protocol, which uses de-
ferred execution (via intentions) to allow tame transactions
to execute while avoiding rank and dependency mismatch
without having to statically parse their logic (§5). DRP

also allows wild transactions to pipeline lock acquisition
and avoid cascading aborts (§5.2).

• The implementation of DRP into STO (§6), and a thorough
experimental evaluation of the resulting system (§7).

The rest of this paper is structured as follows. Section 2
discusses background on STO, opacity, and concurrency con-
trol protocols based on static analysis. Section 3 discusses
the requirements of DRP, and Section 4 gives the design of
Tame and Wild-RP. Section 5 discusses DRP and the use of
intentions, and Section 6 describes the details of incorporating
DRP into STO. We present our evaluation in Section 7, and
survey other related work in Section 8. Finally, the Appendix
presents the proofs of DRP’s guarantees.

2 Background
In this work we focus on STO [18], a recent software transac-
tional objects library that multi-threaded applications can use
to simplify concurrent programming with the help of trans-
actions. A “client” that issues transactions in the context of
STO is one of the application’s threads. The “server” that
coordinates the processing of transactions is STO library’s
context (i.e., memory), since STO is just a set of functions
that are invoked by threads.

The way that clients issue transactions in STO is differ-
ent from a database. In a database, the server is typically a
standalone service that receives requests from clients over
the network in some standard format such as SQL. In STO,
these transactions are specified directly in C++. Consider the
following transaction in STO that transfers money from one
user (src) to another user (dst), and increments a counter
that tracks the number of transfers processed so far (num):

void transfer(TArray<int>& bal, TBox<int>& num,
int src, int dst, int amt) {

TRANSACTION {
int bal_src = bal[src];
int bal_dst = bal[dst];
bal[src] = bal_src - amt;
bal[dst] = bal_dst + amt;
num = num + 1;

} RETRY (true);
}

In this example, TBox<int> is a transactional object
that acts like an int but keeps additional metadata (e.g.,
locks, version number) to ensure safe access by concur-
rent threads. Similarly, TArray<int> is a transactional con-
tainer, which has a similar role to a table in a database. The
TRANSACTION...RETRY (true) macro simply becomes a
loop that automatically retries the transaction code until it suc-
cessfully commits (in addition to generating begin and com-
mit statements). When a thread issues operations on transac-
tional objects or containers, each access is managed by STO’s
runtime, which implements OCC to provide serializability or
TL2 [11] to guarantee opacity [14] (discussed below).

2.1 Opacity

Guerraoui and Kapałka [14] introduce opacity as a correct-
ness condition for transactional memory. At a high level, it
captures strict serializability [7, 23] with the additional re-
quirement that transactions (even those that will eventually
abort) never observe inconsistent values. The rationale is that
in transactional memory and transactional objects systems,
observing inconsistent state can have dramatic consequences.
For example, observing inconsistent state can lead to divide-
by-zero exceptions or invalid pointer dereferences, which
could crash not just the process executing the transaction but
the entire transactional system. Another example includes
loops: if values read act as loop bounds, it is possible for a
thread to read inconsistent values that lead to an infinite loop.

2.2 Related concurrency control protocols

Concurrency control protocols used in recent in-memory
multi-core databases [20, 35, 40] and software transactional
objects libraries like STO [18] rely on optimized variants
of OCC [19]. This choice results in great performance for
low contention workloads, but can lead to many aborts when
contention is high. To support environments with moderate
contention, Cicada [20] proposes techniques to reduce aborts
(e.g., keeping multiple versions of records), but these tech-
niques do not guarantee opacity. In contrast, our proposed
protocol, DRP, maintains good performance during high con-
tention and guarantees opacity. DRP builds on the work of
transaction chopping [28] and runtime pipelining [38].

Transaction chopping. Shasha et al. [28] describe a tech-
nique to increase concurrency by chopping transactions into
smaller pieces; as long as the pieces of each transaction are
executed serially (though pieces of different transactions may
execute concurrently), the entire execution remains serializ-
able. The benefit is that pieces are smaller than transactions
and therefore locks are held for a shorter amount of time. In
order to chop a transaction, a programmer performs static
analysis of the workload to construct an SC-graph where ver-
tices represent transaction pieces, “sibling” edges are added
between pieces of the same transaction, and “conflict” edges
are added between pieces of different transactions that have
conflicting operations. A valid chopping requires that there
be no cycles involving both kinds of edges in the SC-graph
and that only the first piece has a rollback or abort statement.

Runtime Pipelining (RP). Xie et al. [38] extend transac-
tion chopping with an enforcement mechanism that executes
at runtime and allows transactions to be chopped into even
finer pieces. This runtime mechanism allows even conflict-
ing pieces to enjoy some degree of concurrency since their
execution can be pipelined, as we discuss below.

RP’s fine-grained chopping stems from its static analysis
algorithm that inspects clients’ transactions and derives a
rank (not necessarily unique) for each table in the database.
A piece corresponds to all operations of a transaction that

access tables of the same rank (one can think of pieces as
being assigned this rank). Within a transaction, pieces are
processed sequentially according to their rank. Across trans-
actions, pieces acquire and release locks in a pipeline: when
transaction Ti acquires a lock on some rank r to process some
piece, a conflicting transaction Tj cannot acquire locks on any
rank ≥ r. When Ti’s piece completes, Ti releases the lock on
r and acquires a lock on r′ (r < r′) in order to process its
next piece. This allows Tj to lock any table of rank < r′. This
pipeline ensures serializability and avoids deadlock.

3 Problem statement
Recent multi-core databases [12, 37] implement similar mech-
anisms to RP, and demonstrate that this improves performance
at high contention. Motivated by these results, we strive to
extend STO with RP, which poses three main challenges.
• Ad hoc transactions. STO currently supports transactions

that are defined at runtime and have arbitrary control flow
and access patterns. This prevents the use of RP’s static
analysis to determine ranks and chop transactions.

• Arbitrary data structures. In a database, tables have
a well-known structure (row-column, etc.). This known
structure allows the runtime system to acquire locks on
rows or tables, and maintain metadata on the side to track
ranks and predecessors (prior pieces that have acquired
a lock of a particular rank) in RP. In STO, programmers
can add arbitrary data structures to the system. As a result,
these data structures must themselves expose a locking
abstraction and facilitate dependency tracking since the
rest of the system is unaware of (and has no control over)
the data structure layout and semantics.

• Incremental deployment. As mentioned above, transac-
tional objects are arbitrary data structures that have been
extended with a transactional interface. To support RP, the
locks of all transactional objects need to record metadata
that helps transactions track dependencies and ranks. Since
this is an arduous process for existing transactional objects,
we want the protocol to support transactions that operate
over a mixture of RP-enabled (objects whose locks support
this metadata) and legacy (unmodified) objects.
To address these challenges, we extend RP in several ways.

Section 4.1 introduces a variant of RP, called Tame-RP, that
works without static analysis and supports arbitrary data
structures and legacy objects, but makes the assumption that
a transaction declares which objects it will access before
it starts executing. Section 4.2 introduces a second variant
of RP which removes the requirement that transactions pre-
declare which objects they will access. This variant, called
Wild-RP, is inspired by TL2 [11], and combines ideas from
pessimistic and optimistic approaches to concurrency con-
trol: it uses a local workspace like optimistic approaches, and
Tame-RP (which is pessimistic) to pipeline the certification
process. Section 5 then shows that Tame-RP is not easily

implementable in STO (due to the need to predeclare ob-
jects), and introduces the Deferred Runtime Pipelining (DRP)
protocol. Finally, Section 6 proposes an abstraction that encap-
sulates the logic of DRP in a simple lock primitive that STO
developers can use to build new RP-enabled data structures.

4 Tame and Wild concurrency control
In this section we describe two protocols (Tame-RP and Wild-
RP) that reap the pipelining benefits of RP [38] without re-
quiring static analysis. These protocols push RP’s rank assign-
ment to the extreme: every object (e.g. tables, rows, arbitrary
objects) is assigned a unique rank r. In contrast to RP and
related systems [12, 36], Tame-RP and Wild-RP work with
transactions that are defined at runtime. A second departure
from RP is that transactions in Tame-RP can hold onto locks
across multiple ranks, and can release locks before acquiring
other locks. We start by defining the two transaction types.1

Definition 1 (Tame transaction). A transaction is tame if the
items it must lock are known before the transaction begins.

Definition 2 (Wild transaction). A transaction is wild if the
items it must lock are not known before the transaction begins.

A simple example of a wild transaction is one that credits
the balance of a particular user:
void credit(TMap<String, int>& indices, TArray<int>& bal,

String name, int amt) {
TRANSACTION {

int idx = indices[name];
bal[idx] = bal[idx] + amt;

}
}

Before the above transaction executes, the system does not
know exactly which entry in bal it will access. But if the
entry could be determined (perhaps by executing the transac-
tion optimistically, as we explain later), then we could, in a
second pass, treat such transactions like tame ones. In fact,
our implementation hides the tame/wild distinction from the
programmer entirely as we explain in Section 6.2. The run-
time system treats all transactions as tame until they require
data-dependent locks.

More complex transactions might perform operations based
on non-key predicates, such as update the status of all em-
ployees between the ages of 25 and 35. These might seem
to require special treatment since the set of rows that will
be needed is not known in advance and can change over the
course of the query. However, our approach handles these too
(they execute as wild).

Note that it is sufficient to lock a superset of the items that
the transaction accesses, so we could make any transaction
tame by locking all objects. For practical reasons, we consider
a transaction tame only if we know in advance which items

1Tame and wild transactions correspond to “static” and “dynamic” transac-
tions in TL2 [11]; we avoid these terms because they already have meanings
in program analysis.

the transaction will access either exactly or to such a close
approximation that the extra locking overhead is not an issue.

4.1 RP for tame transactions

Tame-RP ensures that tame transactions are serializable and
deadlock-free (so they never abort for concurrency reasons).
In Tame-RP, a transaction acquires locks in ascending order
of rank, so a transaction may lock an item well before it
is used. As in most locking schemes, the transaction must
acquire a lock on an item x before accessing it, and hold onto
it until after completing the access.

Tame-RP uses ranks to ensure that if transaction Ti conflicts
with Tj, and Ti holds a lock on some object when Tj attempts
to lock it, then Tj must never acquire a lock on an object of
greater rank than the maximum rank of an object accessed by
Ti for the rest of Ti’s execution. Further, Tj must commit after
Ti. In such a case we call Ti the predecessor of Tj. Tame-RP
in fact ensures a stronger transitive condition: if Tk acquires a
lock on some conflicting object after Tj, then Tk is required
to acquire locks on any future conflicting objects after Ti

(even though Ti and Tk may have had no prior conflicts). Ti is
transitively a predecessor of Tk.

Assumptions. Tame-RP makes several assumptions. First, it
assumes that the transaction’s access set is known a priori.
Second, transactions can be aborted one or more times (i.e.,
the effect of a transaction is only externalized after it com-
mits). Last, the locks of RP-enabled objects have the ability to
track the last predecessor, which is the id of the last transac-
tion (or the last set of transactions in the case of shared locks)
that held the locks. Note that our current implementation uses
only mutexes so there is only one predecessor. We discuss the
details of RP-enabled objects in Section 6.

We also introduce a new state for locks, called relaxed,
that acts as a breadcrumb. A relaxed lock can be acquired by
a tame transaction but not by a wild transaction. Its role in
conflicts and in establishing precedence will be specified in
the algorithms below.

Details. For a given transaction T , let the initial value of
maxrank(T) = undefined and predecessor(T) = ∅. At any
time t before transaction T commits, let maxrank(T) be the
highest ranked item that T has locked (with a read or write
lock). predecessor(T) is the set of transactions for which T
had to wait directly. Tame-RP works as follows.
1. T acquires locks in ascending order of rank. A lock that is

relaxed can be acquired by other tame transactions. Locks
need not be acquired all at once; they can be acquired
as the transaction executes (we discuss the mismatch be-
tween control flow and the ranks of objects in Section 5).

2. Before T acquires a lock on an object x, T waits so that
for every T ′ ∈ predecessor(T), maxrank(T ′) ≥ rank(x).

3. After T successfully acquires a lock on object x, T gets
from x the identifier of the last transaction T ′ to hold
a lock on x, and adds T ′ to predecessor(T). If x is a

legacy object that does not support tracking predecessors,
predecessor(T) is unaffected by the acquisition.

4. After T acquires a lock on item x, T records the rank of
that item in maxrank(T) and performs its operation on x
(read or write) when all data dependencies are satisfied.

5. T relaxes a lock on an item x after it no longer needs to
access x. Relaxing a lock does not change maxrank(T).
Locks on legacy objects that do not track predecessors are
never relaxed. T releases the locks on all items it holds
when T commits or aborts.

6. T commits only after all transactions in predecessor(T)
have committed. If a transaction T ′ ∈ predecessor(T)
aborts and T ′ has written to an object that T has read,
then T must abort too (otherwise T might have committed
based on aborted data).

7. If transaction T ′ ∈ predecessor(T) and T ′ commits or
aborts, then remove T ′ from predecessor(T).

Note that the above assumes the use of mutexes. If one
wishes to also support shared locks, then predecessor(T) must
also include any transaction that currently holds a conflicting
lock that is now relaxed on an object that T locks. Specifically,
in Step 3, if the object x supports read locks, then T also gets
from x the identifier of any transaction T ′ that currently holds
a conflicting relaxed lock on x, and adds T ′ to predecessor(T).

It might not be clear why T must wait for all transac-
tions in predecessors(T) to commit. We give an example
to illustrate the need for this requirement. Suppose that
rank(x) < rank(y) < rank(z). Consider the partial inter-
leaved execution:

W3(y) relax3(y)W2(x)R2(y) relax2(x, y)R1(x)

So T2 ∈ predecessor(T1) and T3 ∈ predecessor(T2). Sup-
pose that we allow T2 to commit before T3 does. Doing so
would allow the execution interleaving to continue as follows:

Commit2()W1(z)R3(z)

But this would create the serialization graph cycle: T3 →
T2 → T1 → T3. Indeed, enforcing commit order is essential
to guarantee serializability.

4.2 RP for wild transactions

One way to implement a variant of RP that supports wild trans-
actions is to mimic Optimisitic Concurrency Control (OCC).
In particular, transactions can do an optimistic pass where
they access elements without locking. Then, transactions can
validate their reads, but can do so by accessing elements in
rank order (thereby being compatible with Tame-RP).

However, as we discuss in Section 2.1, opacity forbids any
transaction T (even those that abort) from reading any trans-
actionally inconsistent state. In the absence of user-defined
aborts, tame transactions always commit, because Tame-RP
is deadlock-free. Thanks to the absence of user-defined aborts
and Tame-RP’s pipelining, tame transactions always read

from a transaction-consistent state, even if so far uncommit-
ted. On the other hand, using OCC allows wild transactions
to observe inconsistent states during the optimistic pass. For
example, consider the partial history:

W1(x) relax1(x)R3(x)W2(y) relax2(y)R3(y)W1(y) . . .

Suppose that transactions T1 and T2 are tame, and transac-
tion T3 is wild and performs the reads during the first pass
without acquiring any locks. This violates opacity, since T3
observed an inconsistent state (the value of x after T1 executes
and the value of y before T1 executes).

To avoid this, Wild-RP adapts STO’s mechanism which
is based on TL2 [11], and combines it with RP. In TL2,
committed transactions must have monotonically increasing
version numbers. This is achieved by maintaining a global
version clock. When a wild transaction TW begins, it reads
the current global version, call it v, and before accessing any
data item x, TW will check certain conditions to ensure that x
is transaction-consistent as of version v. If not TW will abort.

In TL2, the version for the objects is incremented at com-
mit time with atomic instructions after all write locks are held.
In Wild-RP, a transaction TW also increments and fetches the
global version at commit time, and uses it to update the ver-
sion of all objects that it modified. The incremented version
is denoted commitversion(TW). Wild-RP works as follows.
1. Wild transaction TW reads the global version number

when it begins. Call that version number v.
2. TW accesses all variables that it requires without obtain-

ing any locks, but TW aborts before accessing x if: (i) any
object x that TW reads has a version v′ such that v′ > v or
(ii) x’s lock is a write lock that is acquired or relaxed; or
(iii) there is a pending write on x.

3. TW acquires locks in rank order on all the items in its
write-set (but not its read-set), waiting until its predeces-
sors have a higher rank. After TW successfully acquires
a lock on object x, TW gets from x the identifier of the
last transaction T ′ that held a lock on x. TW adds T ′ to
predecessor(TW). (As with Tame-RP, if the system sup-
ports read locks, then TW gets from x the identifiers of
any transaction that currently holds a conflicting lock on
x, even if relaxed.)

4. TW waits until all its predecessors have committed or
aborted. TW checks whether any object in its read-set has
a version numbers greater than v or has a write lock. If
an object x still has a version less than or equal to v, then
x has not changed since Step 2. If x has a version number
greater than v, then x may have changed, so TW aborts.

5. TW atomically increments and fetches the global version
number, and the result is commitversion(TW).

6. TW performs its writes and sets the version of all modi-
fied objects to commitversion(TW). As in Tame-RP, TW

can relax a lock on an item x after it no longer needs
to access x. Locks on legacy objects that do not track
predecessors are never relaxed. Relaxing a lock does not

change maxrank(TW).
7. TW releases all of its locks when it commits or aborts.

Note that for wild transactions to coexist with tame trans-
actions, Tame-RP must also atomically increment the global
version number and update it at commit time (this is not
required if there are only tame transactions).

4.3 Tame and Wild-RP’s guarantees

We state our theorems here and highlight the key observation,
but give the proofs in Appendix A.

Theorem 1. Tame-RP guarantees strict-serializability, even
for transactions on legacy objects (i.e., objects without RP-
enabled locks that do not track predecessors).

Our proof of Theorem 1 makes strong use of the enforce-
ment of commit order based on predecessor relationships.

Theorem 2. Tame-RP is deadlock-free and guarantees opac-
ity provided no tame transaction has user-defined aborts.

Our proof of Theorem 2 relies on the acyclicity in the
waiting relationships that also extends to relaxed locks. Since
deadlock-freedom and the no user-defined abort assumption
guarantees no aborts at all, all reads will be of transaction-
consistent states, thus guaranteeing opacity.

Theorem 3. A combination of Tame-RP and Wild-RP is strict
serializable, deadlock-free, and guarantees opacity provided
no tame or wild transaction has a user-defined abort statement.

To establish the good behavior (strict serializability and
opacity) of the combination of Tame-RP and Wild-RP, we
define the notion of the effective commit time of a transaction.
For tame transactions, this is the commit time itself. For a
wild transaction TW that does not abort in Step 2 or Step 4, the
effectivecommit(TW) is the moment after which TW obtains all
its write locks but before it checks that its read-set elements
have version numbers less than begin(TW) (i.e., the moment
before Step 4 begins).

Our proof of Theorem 3 shows that if TW commits and all
its operations happen exactly at effectivecommit(TW), then no
reads-from or final write relationships [23] would be changed
for any transaction (including TW) from what they are in the
actual execution. The reason is that for any committed wild
transaction TW : (i) no reader/writer of a data item x written
by TW will be able to access data item x in the write-set
of TW between effectivecommit(TW) and commit(TW) before
TW writes x, because TW will hold write-locks on x as of
effectivecommit(TW); (ii) no writer of data item x read by
TW can have changed x between the time TW first read x
and effectivecommit(TW), because of the version check of
Wild-RP’s Step 4 (otherwise the TW would have aborted).
Intuitively, the serialization order is based on effectivecommit
time and that guarantees strict serializability. Opacity is guar-
anteed by the version check in Step 2.

Remark. While our algorithms guarantee opacity, it is possi-
ble to achieve better performance when opacity is not needed.
Our algorithms can provide strict serializability and deadlock
freedom for all transactions by changing Wild-RP to use per-
object versions instead of a global version to check if objects
have changed (STO also uses this approach).

5 Deferred Runtime Pipelining (DRF)
Recall from Section 4 that, in principle, tame transactions
can relax their locks whenever they no longer need to access
an object, opening up concurrency opportunities. In practice,
however, there are two main questions that we must answer
before we can incorporate tame transactions into STO: (1)
how does a transaction determine which items it will access?
(2) How does a transaction know when it no longer needs to
access an object so that it can relax the corresponding lock?
In databases, this can sometimes be accomplished by parsing
the query which is written in a domain-specific language
(e.g., SQL) before execution. In STO, this is more difficult
since transactions are arbitrary C++ code, and the objects are
not known until runtime. One possibility is to predeclare the
objects and the number of times that each object is accessed:
void transfer(TArray<int>& bal, TBox<int>& num,

int src, int dst, int amt) {
TRANSACTION {

lock_objects([&bal[src], &bal[dst], num]);
num_accesses([2, 2, 1]);

int bal_src = bal[src];
int bal_dst = bal[dst];
bal[src] = bal_src - amt;
bal[dst] = bal_dst + amt;
num = num + 1;

}
}

Beyond the error-prone nature of this approach (since a
developer might change the transaction but forget to update
the preamble), it is susceptible to rank mismatch.

Definition 3 (Rank mismatch). If transaction T access objects
x, y, and z (in that order), but rank(z) < rank(y) < rank(x),
then T must acquire all locks before accessing x.

Concretely, if the transaction acquires locks as it executes
and the rank of bal[src] is higher than that of bal[dst],
the transaction must block or abort as soon as the execution
reaches bal[src] (but Tame-RP cannot abort). This suggests
that in the worst case all locks must be acquired at the begin-
ning (due to rank mismatch). Furthermore, there is no easy
way for STO to parse the transaction’s logic to learn whether
rank mismatch will occur or not since the transaction is not
defined in “one shot”: the calling thread issues one operation
at a time (as it executes the instructions that make up the
body of the TRANSACTION macro). Consequently, Tame-RP
must assume the worst case (that ranks are the inverse of
the transaction’s data and control flow), and devolves into
predeclaration locking (which supports less concurrency than
two-phase locking and defeats the purpose of pipelining).

We observe that, fundamentally, rank mismatch stems from
the fact that STO (and most transactional systems) execute
transactions eagerly. That is, read operations must actually
return the current value of an object. For example, after
int bal_src = bal[src]; executes, one expects bal_-
src to contain the actual value stored at bal[src]. Interest-
ingly, Faleiro et al. [13] show that one can defer the execution
of a transaction’s operations until later in time (which results
in better cache locality, load balancing, and avoids unnec-
essary work in some cases), while still guaranteeing ACID
semantics. Our key insight is that deferred execution can
also be used to bypass rank mismatch in tame transactions,
avoid cascading aborts in wild transactions, and blur the line
between the two types of transactions.

Below we introduce DRP, a variant of RP that defers the
execution of operations and combines both Tame-RP and
Wild-RP into a single protocol that can be implemented in
STO. Under DRP, tame transactions are a special case of wild
transactions in which the read-set is empty (since all reads
have been deferred), and therefore Wild-RP’s Steps 2 and 4
are skipped, and the lock acquisition in Step 3 is pipelined.

5.1 Deferring execution via intentions

DRP eliminates rank mismatch by deferring the execution of
the transaction to after the commit point. We implement DRP
by expressing operations (read, write, etc.) on transactional
objects as intentions. An intention is a small piece of logic
that will be executed on an object, and can (optionally) return
a value. An intention takes as input concrete values (e.g., a
new value to write to an object) or other intentions (which
express data dependency).

For example, a transaction that increments a transactional
integer and writes its value to another transactional integer can
be represented as follows (this example is purposely verbose;
we add syntactic sugar to make this easier on programmers):
TBox<int> x, y;
// val is old value; what's returned is new value
Intention<int>* i1 = new Intention<int>([](int& val){

return ++val;
});
x.defer_write(i1);
// an intention can take other intentions as input,
// here it takes i1 as input and returns i1's result
y.defer_write(new Intention<int>([&](int& val){

return i1->result;
}), {i1});

Unlike in eager evaluation, defer_write does not acquire
any locks, nor does it execute any of the transaction’s logic.
Instead, it adds the intention to the object’s thread-local buffer,
and records which object is being accessed. This is the opti-
mistic pass of Wild-RP (§4.2), except that deferred operations
do not abort or observe state. This deferred pass does not
block due to rank mismatch since no locks are acquired.

When the transaction calls commit, DRP runs the same
algorithm as Tame-RP (§4.1) but instead of reading or writing
values to objects, it appends intentions to the objects’ inten-

tion queue (a queue that holds all the unprocessed intentions).
Specifically, the transaction starts by acquiring the lock on
the object with the lowest rank (call it x), and appends all the
intentions associated with x in the thread-local buffer into x’s
intention queue. Once the transaction appends its intention
into x’s intention queue, it can relax x’s lock (if x supports re-
lax) so that other transactions can write their intentions to x’s
intention queue (since intentions are ordered and the queue is
protected by a lock, intention execution is serialized). An in-
tention in x is executed in the future when x is accessed again
(e.g., by an eager read), or after all of its data dependencies
are satisfied (i.e., when its input intentions are evaluated). We
discuss the details in Section 6.2.

Since DRP requires extending objects to support an inten-
tion queue, tame transactions can be defined only over objects
that support deferred execution (though these objects need
not have RP-enabled locks). If an object does not support
deferred execution (i.e., it does not implement the defer_⋆
methods), the object is accessed eagerly and the transaction
is treated as a wild transaction as we discuss in Section 6.2.

5.2 Benefits of deferred execution for wild transactions

In addition to avoiding rank mismatch in tame transactions,
DRP also benefits wild transactions in three ways.

Pipelining without cascading aborts. In Wild-RP, the sys-
tem needs to acquire the locks of all objects in the write-set
before verifying the read (Section 4.2, Step 3). In principle,
Wild-RP could install the values and relax the locks (but not
release them), thereby pipelining lock acquisition. However,
if Wild-RP’s certification (Step 4) fails the transaction would
abort, which violates opacity (since the predecessors of the
aborting transaction would have observed state that will be
aborted). Even if opacity were not needed, a failed certifica-
tion would lead to cascading aborts since all predecessors
would need to abort as well.

When DRP processes wild transactions it uses the same
algorithm as Wild-RP except that transactions use intentions
for write operations, which prevents cascading aborts. In
particular, the transaction can pipeline the work of acquiring
a lock, installing the intention, and relaxing the lock for each
object in its write-set. The intentions, however, do not execute
right away since they all take the certification result as input.
If the certification fails, all these intentions will simply be
skipped (which is equivalent to aborting), without affecting
other transactions’ pending intentions to the same objects.

Note that the only difference between the intentions of a
tame transaction and those of a wild transactions is that the
certification result is ignored for tame transactions.

Fewer aborts due to conflicts. DRP also avoids exposing in-
consistent system state before a transaction commits because
it exposes no state. This reduces the incidence of conflicts,
and consequently of aborts. Of course, not all operations in a
wild transaction can be converted into our style of deferred

execution. For example, an object might not support deferred
evaluation, or the transaction might need to read an object
before deciding what to do next. However, DRP ensures that
only those conflicting operations that execute eagerly can
result in aborts.

Better temporal locality. With DRP, many intentions that
have similar dependencies can be executed together, benefit-
ing from temporal locality since the data is likely to be in the
cache. In contrast, eager evaluation accesses data during the
optimistic read and at certification time.

6 Implementing DRP in STO
As we discuss in Sections 4 and 5, DRP requires objects to be
extended with additional functionality to track predecessors
and queue intentions. To incorporate these extensions, we
make two major changes to STO. First, we extend the inter-
face of TObject, which is the abstract class inherited by all
transactional objects, to support locks that can be relaxed and
predecessor tracking. Second, we introduce new interfaces to
support deferred execution; these interfaces vary depending
on the transactional object (vector, list, map, etc.).

6.1 Changes to TObject

We require that all new objects implement the following in-
terface (this is done by overriding the corresponding virtual
functions of the TObject class). The first four operations are
automatically supported by existing legacy objects in STO.

• Lock. Attempts to acquire the object’s lock. This opera-
tion returns the id of the last transaction that acquired the
lock. If the object supports read/write locks, this operation
also returns the ids of threads that currently hold the lock
in a relaxed state. A legacy lock returns only whether it
was successfully acquired or not.

• Unlock. Releases the lock on the object.
• Install. Installs a value to the object.
• Rank (optional). Returns a non-zero rank for the object.

By default, this is the object’s memory address but can be
tuned. Legacy objects return 0.

• Relax (optional). This operation is used in Step 5 of Tame-
RP and Step 6 of Wild-RP. If the object does not support
relax, this function simply returns false.

• QueueIntention (optional). Enqueues an intention into
the object’s execution queue. If the object does not imple-
ment this, the function returns false, which causes the
engine to hold on to the lock until enough inputs are ready
to eagerly execute the intention and install its value.
Beyond per-object information, which can be obtained

through the above interface, we introduce a data structure
that is shared among all threads and stores the maxrank of
each transaction (thread). Transactions update their maxrank
in this data structure whenever they acquire a new lock. This
allows transactions to check the rank of their predecessors to
determine whether they can acquire the next lock or not.

The current implementation of STO does not support read
and write locks; our current implementation of RP-enabled
locks does not include this functionality either. In particular,
locks in STO spinlock using atomic operations on a 64-bit
integer (for ease of reference call it the “lock-integer”). STO
uses one bit of the lock-integer to represent the state of the
lock (acquired or free). STO uses another 5 bits to identify
which thread is holding the lock (consequently the current
implementation of STO supports up to 32 threads). The re-
maining bits of the lock-integer encode the version used by
the OCC and TL2 algorithms (and DRP).

We repurpose one of the bits originally allocated to the
version field in the lock-integer to represent the “relaxed”
state. A thread relaxes the lock by setting this bit. If the
relaxed bit is set, other tame transactions can acquire the lock
by clearing this bit and resetting the last holder field with their
id (wild transactions only look at the lock bit). At release time,
the thread checks if it is the last holder of the lock (using the
corresponding 5 bits of the lock-integer). By transitivity, if a
tame transaction is the last holder and can commit (meaning
all of its predecessors have already committed), then no other
thread can have the lock in either the acquired or relaxed state
(otherwise their id would be in the last holder field of the
lock-integer). The thread then clears both the relaxed bit and
the lock bit with a compare-and-swap operation.

Opacity. Opacity requires changes in each data structure to
ensure that transactions observe the same global version. In
STO, opacity can be turned on or off through compilation
flags. This is achieved by an abstraction of TVersion and
TOpaqueVersion. The latter obeys the TL2 protocol (and
DRP). A macro controls which one is used by each data struc-
ture. If opacity is turned on, all transactions (both tame and
wild) will increment the global version before they commit.
The version will be treated as a special input to all intentions
of the transaction. This does not block the pipelining, and en-
sures that no inconsistent states are exposed to ongoing wild
transactions. If opacity is turned off, an executing intention
will increment only the object-local version.

6.2 Support for deferred execution
In addition to the above interfaces inherited from TObject
which are used by the transaction engine to commit the trans-
actions, each data structure also needs to provide interfaces to
buffer the read/write requests (intentions) at transaction parse
time. In Section 5.1 we foreshadowed that a TBox has the
interface defer_write. More complex data structures can
provide other interfaces that lazily access the structure. For
example, a transactional list should provide an interface to
lazily index an element in the list. We have modified most of
STO’s transactional objects to have this deferred interface. To
demonstrate their usage, below we give the deferred analog
of the transfer example in Section 2.
void transfer(TArray<int>& bal, TBox<int>& num,

int src, int dst, int amt) {
TRANSACTION {

// the next two lines explicitly use deferred
// interfaces to buffer intentions locally
Intention<int>* bal_src = bal.defer_at(src);
bal.defer_update(src, new Intention<int>([&](int& val){

return bal_src->result - amt;
}, {bal_src}));
// the next three lines use syntactic sugar based
// on C++'s operator overloading and implicit
// type conversion to achieve the same effects
auto bal_dst = bal[dst];
bal[dst] = bal_dst + amt;
num += 1;

}
}

The example shows the defer_at and defer_update
interfaces of a list that supports deferred execution. defer_-
at returns an intention that will return the actual element at
the appropriate index when it is evaluated. defer_update
updates the list with another intention. Both intentions will be
buffered locally until after the transaction commits. The above
example also has a few lines that look like eagerly evaluated
code. In fact, these lines are also lazily evaluated but exploit
C++’s operator overloading and support for implicit type
conversion to make writing tame transactions easier.

An object can still provide interfaces for eager evaluation.
A transactional array can have both defer_at and a normal
at function. If an eager read interface is called, the data
structure will add the read result to a thread-local read-set
(supported by STO). At commit time, if the read-set is empty,
then the system will treat the transaction as tame; otherwise
the transaction is treated as wild. Consequently, distinguishing
between tame and wild transactions is done automatically.

In fact, lazy and eager evaluation can share the same inter-
face. An example of this is the [] operator in the above code
snippet. It returns an Intention<int> object by default. But
the returned object can be casted into an integer due to C++’s
user-defined type conversion. In such a case, the conversion
function evaluates the intention eagerly by reading the integer
following Wild-RP’s optimistic read. This hybrid style of lazy
and eager evaluation simplifies writing transactions, and sup-
ports our goal of incremental deployability (§3). Furthermore,
if a programmer accidentally triggers eager evaluation on an
intention, the system can still function, though with lower
performance due to the possibility of aborts.

Resolving intentions. An intention can be executed at any
time when it is needed (e.g., in response to an eager read). We
have chosen a simple strategy in our current implementation:
a transaction waits until all its intentions finish executing
before returning success. As we have shown in our examples,
each intention maintains a set of its data dependencies. An
intention will evaluate its dependencies (if they have not yet
been executed), before it executes. An atomic flag within
each intention is used to detect whether the intention has been
evaluated. After an intention is evaluated, its results can be
accessed via its result member variable.

More complex strategies could improve performance. For

example, a thread could batch transactions and wait for their
execution results. We consider this to be future work.

6.3 Intra-object concurrency

For a complex data structure (e.g., a tree), concurrency inside
the data structure is important for overall system performance.
The interfaces of TObject (Lock, Unlock, Install, etc.) may
limit the concurrency that the data structure can achieve. STO
solves this issue by having concurrent data structures define a
finer grained unit of concurrency control. In particular, instead
of locking the entire object (e.g., the entire tree), or serializing
all intentions to the object, the data structure can identify a
smaller unit on which the transaction engine can operate.

This finer-grained concurrency control is supported at the
interface level by adding an extra argument TransItem to
all of the interfaces we discussed in Section 6.1: from Lock
to QueueIntention. A TransItem is created when the data
structure is accessed (such as when defer_at is called). Each
access creates a TransItem and appends it to a thread-local
buffer. This item records the intention as well as the location
that is being accessed in the data structure. At commit time,
the transaction engine scans all the buffered TransItems; for
each item it follows DRP’s protocol of locking, installing, and
relaxing. TransItem is used in STO to record the read and
write set, and we extend it to support deferred execution.

Rank tuning. In many cases a developer might wish to set
the rank of an object for a given application in order to im-
prove the pipelining (since intentions are resolved more ef-
fectively). We support this by treating the 64-bit integer rep-
resenting the rank as a tuple of the form (custom_rank,
obj_rank). The custom_rank is 16-bits and is set by the
developer; it defaults to 0xFFFF and can be changed with
an object’s set_rank() method. The obj_rank is 48-bits
and corresponds to the 48 meaningful bits of the object’s
x86-64 virtual memory address. Comparing ranks is done
using custom_rank, and ties are broken with obj_rank.
TransItems inherit the custom_rank of their container and
have their own obj_rank.

7 Evaluation
This section studies the overhead introduced by DRP’s mech-
anisms, and its performance on contended workloads. We
use a combination of microbenchmarks and representative
applications to answer five questions:

• What is the performance and memory overhead of man-
aging transactions’ local buffers, RP-enabled locks, and
dependency tracking?

• How does DRP perform under low contention?
• How does DRP perform under high contention?
• How is the performance of DRP impacted by the fraction
of tame transactions?

• What are the benefits of DRP over a simpler protocol
sthat also defers the execution of operations?

0 5 10 15 20 25 30
threads

0

5

10

15

sp
ee
du

p
ov
er
 s
eq

ue
nt
ia
l

OCC DRP

FIGURE 1—Simple microbenchmark with no contention to measure
the cost of DRP’s lock and metadata management (see text for
details). The y-axis shows the speedup over running the operations
one by one on a single thread (i.e., no transaction).

Experimental setup and baselines. We run our experi-
ments on a 60-core Dell PowerEdge R920 with four Intel
Xeon E7-4870 v2 processors (2.30 GHz, 30 MB L3 cache)
and 256 GB of memory, running Ubuntu 16.04.1 (Linux ker-
nel 4.15.0-39). Since STO supports up to 32 threads (§6.1),
we use up to 32 cores in our experiments.

We run the following baselines to compare with DRP:
1. STO with OCC and TL2. These two protocols are part of

STO’s codebase [3]. STO extends standard OCC with an
optimization that improves performance under contended
workload. In particular, STO’s OCC aborts transactions
early if it encounters conflicts (as opposed to during a
certification phase). An active transaction leaves marks
on data items, and later transactions accessing the same
data items will see the marks and terminate early due to
conflicts. In our tests, we find that this optimized OCC
achieves performance similar to 2PL at high contention.

2. STM-TL2 [11] (only for the STAMP benchmarks). We
use STAMP’s implementation of TL2; the code we use is
available in STO’s repository [1].

3. IC3 [37] (only for the TPC-C benchmark). IC3 extends
Silo [35] with static analysis to chop transactions, and
leverages runtime pipelining to achieve good perfor-
mance at high contention. Note that this is not a fair
comparison because IC3 assumes full knowledge of the
workload whereas DRP does not. Nevertheless, we com-
pare to IC3 to demonstrate that DRP is competitive with
systems that make use of static analysis.

4. STO with Deferred 2PL (only for factor analysis). This
is a version of STO where we implement DRP’s deferred
execution, but not the pipelined lock acquisition; instead,
it uses two-phase locking (with a deterministic order) to
acquire locks.

7.1 Lock management overhead

This section discusses the overhead introduced by DRP’s lock
management, dependency tracking, and traversal of objects’

intention queues over the existing STO. We write a simple
microbenchmark where transactions perform little compu-
tation (index an array of 1 million integers and increment
50 entries) and there is no contention (each thread accesses
a shard of the array). This scenario is ideal for optimistic
protocols since transactions never abort, and highlights the
performance penalty that DRP’s bookkeeping introduces in
cases where tracking and locking is unnecessary.

Figure 1 depicts the results. DRP consistently achieves
47–53% of OCC’s throughout. The majority of the overhead
comes from maintaining dependencies and ranks; rank man-
agement is done through a data structure shared across threads
whose accesses lead to cache line bounces. In terms of mem-
ory consumption, DRP uses 2.1× more memory than OCC
(50 MB vs 24 MB). This is consistent with DRP’s new data
structures and the added fields for the 1 million locks. For
comparison, the sequential implementation uses 10 MB.

As we show next, the benefits of DRP’s lack of aborts for
tame transactions and additional concurrency outweigh its
bookkeeping overheads, even under light contention.

7.2 TPC-C benchmark

Workload and setup. We use the same TPC-C workload
used in STO’s experiments. TPC-C simulates an e-commerce
service where products are stored in warehouses. Each ware-
house supplies 10 districts, which sell products to customers
and request products from warehouses. There are 5 possible
types of transactions: new order, payment, delivery, stock
level, and order status. Each thread picks a random ware-
house and district (served by the warehouse) and performs a
transaction (e.g., new order, which simulates a new purchase).

We make 3 out of the 5 transaction types tame (new order,
payment, and delivery) by modifying STO’s TPC-C workload
code to use deferred operators. This required fewer than 500
lines of code. Making the remaining two transactions (stock
level and order status) tame would require either locking the
entire database, or tuning ranks in such a way that they are
compatible with transactions’ data and control flow. Indeed,
IC3 performs a somewhat similar kind of tuning during its
static analysis pass (it creates pieces and assigns ranks to be
compatible with transactions data dependencies and control
flow). Since we believe that this type of intrusive workload-
dependent tuning would weaken our argument that static
analysis is not needed for good performance, we run these two
types of transactions as eagerly evaluated wild transactions
without any modifications.

There are two ways in which we can control the level
of contention in TPC-C: (1) modify the workload itself by
biasing the distribution with which warehouse and districts
are chosen, or by increasing the number of operations per
transaction; (2) modify the number of warehouses and threads.
We take the second approach to retain the standard TPC-
C benchmark. Fewer warehouses increases the probability
that two threads will pick the same warehouse and issue

0 5 10 15 20 25 30
of threads

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

Th
ro

ug
hp

ut
 (t

xn
/s
)

OCC IC3 DRP

(a) Mixed workload

0 5 10 15 20 25 30
of threads

0.0M

0.5M

1.0M

1.5M

Th
ro
ug

hp
ut
 (t
xn

/s
)

OCC IC3 DRP

(b) 100% new-order transactions

FIGURE 2—TPC-C with a constant warehouse-to-thread ratio of
1. The level of contention is relatively low. As required by TPC-C,
throughput measures only completed new-order transactions.

conflicting transactions; more threads increases the load and
the probability of conflicts.

We evaluate DRP’s performance under three scenarios:
• constant ratio: warehouse-to-thread ratio is 1.
• constant warehouses: 1 warehouse, varying threads.
• constant threads: 32 threads, varying warehouses.
For each scenario we run a mixed workload (all five TPC-C

transactions in their specified ratios [32]) and a workload of
only new-order transactions. As stated in the TPC-C specifi-
cation, we measure throughput as the number of completed
new-order transactions per second. We run scenarios five
times and report the mean (standard deviations are < 5% of
the means). In addition to the above scenarios, we also eval-
uate the impact of tame transactions on overall performance
by varying the fraction of transactions that are tame.

Constant ratio. Figure 2a depicts the throughput of Silo
built on the existing STO [2] (labeled as “OCC”) and our
modified version (labeled as “DRP”), as well as IC3 under a
constant ratio of warehouses to threads. This is the “standard”
TPC-C benchmark, and has low contention. DRP’s throughput
on the mixed workload is similar to OCC’s, and 3.3× higher
than IC3. This is due to much fewer aborts in DRP when
compared to OCC, and the finer grained pipelining when
compared to IC3. In particular, IC3 splits transactions into

0 5 10 15 20 25 30
of threads

0.0M

0.1M

0.2M

0.3M

Th
ro
ug

hp
ut
 (t
xn

/s
)

OCC IC3 DRP

(a) Mixed workload

0 5 10 15 20 25 30
of threads

0.0M

0.2M

0.4M

0.6M

Th
ro

ug
hp

ut
 (t

xn
/s

)

OCC IC3 DRP

(b) 100% new-order transactions

FIGURE 3—TPC-C with a single warehouse and varying threads.
Contention increases with the number of threads (to the right). Any-
thing beyond 16 threads is very high contention.

relatively large pieces; pieces hold onto the locks of the tables
they access until they complete. DRP, by contrast, acquires
locks on individual rows and relaxes locks as early as possible.

We also show the case for the 100% new-order workload
(Figure 2b), where the level of contention is even lower. Two
transactions rarely access the same warehouse; even when
they do, the probability that they access the same item is very
low (transactions access on average 10 out of 100K items).

As we discuss in Section 7.1, DRP has relatively high
bookkeeping costs; at low contention the benefit of DRP is
only enough to cover its own overhead. DRP’s performance
under this regime is comparable to that of OCC.

Constant warehouses. Figure 3 shows a scenario where
contention increases with the number of threads (since the
warehouse-to-thread ratio decreases). In this scenario, OCC’s
performance plateaus after 4 cores for both the mixed work-
load and the 100% new-order. Additional threads lead to
higher contention which leads to more aborts. Actually, if we
disable the optimization of the early aborts—which makes it
a more common version of OCC—the throughput will drop to
almost zero after 16 threads (not shown in the figures). DRP’s
pipelining performs well at this higher level of contention,
achieving 6.6× higher throughput than OCC.

IC3 performs better than DRP in the mixed workload af-

1 thread 4 threads 8 threads 16 threads 32 threads

50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

OCC 14 22 26 22 68 109 26 104 193 28 182 378 26 472 845
IC3 28 42 52 33 49 65 35 53 68 39 60 79 44 72 94
DRP 16 25 29 21 34 51 23 39 54 25 43 61 26 42 52

FIGURE 4—Commit latency (in microseconds) of TPC-C new-order transactions corresponding to the experiment in Figure 3a (mixed
workload with varying threads and 1 warehouse). We report the 50/90/99-th percentile latencies (lower numbers are better).

ter 16 threads for several reasons. First, recall that two of
DRP’s transaction types are wild. Transactions of these types
will likely abort (due to the high contention) and retry over
and over—preventing the corresponding threads from issu-
ing other transactions in the meantime (OCC has the same
issue but with all transaction types). Second, unlike DRP,
IC3 statically analyses the workload and optimizes transac-
tions’ data flow. The benefit of this optimization grows as
contention increases, and more than makes up for the limi-
tations of coarse-grained chopping when contention is very
high. In all other cases, DRP is better (up to 2×) than IC3.

We also evaluate the commit latency of (new-order) trans-
actions for all three schemes in this setup. Unlike throughput,
which is impacted by wild transactions that abort because
threads issue one transaction at a time in a closed loop, the
latency of tame transactions is unaffected. We present the
50/90/99-th percentile lantecy results in Figure 4.

With 1 thread, OCC has the lowest latency because it has
the lowest overhead and there is never any contention. The
commit latency with 1 thread under DRP is lower than IC3
because transactions in IC3 are split into dozens of smaller
transactions, each of which contains TX_BEGIN and TX_END
statements that introduce overhead. As contention increases
(more threads), the latency of OCC rises to account for aborts
and repeated retries; at 32 threads, the 99-percentile latency
increases to 845µs. In contrast, since new-order transactions
in DRP are tame and never abort, any additional latency stems
from waiting in the pipeline. At 32 threads, the 99-percentile
latency of DRP is an order of magnitude lower than OCC.

Constant threads. Finally, we show the effect of contention
on each system by holding the number of resources (threads)
constant and varying the amount of choice (number of ware-
houses). Figure 5 depicts the result. As the amount of con-
tention increases (from left to right in the figure), all systems
(aside from IC3) experience performance degradation. The
primary difference is the extent of this degradation. IC3’s
performance is stable due to its initially low starting point and
the fact that its pipelining exposes roughly the same amount
of concurrency across different contention levels.

Factor analysis. In order to understand the performance
gains that DRP gets from tame transactions, we run an exper-
iment where the workload consists of new-order transactions
on a setup with 1 warehouse and 32 worker threads. The ex-
periment includes a mix of unchanged new-order transactions

051015202530
of warehouse

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

Th
ro

ug
hp

ut
 (t

xn
/s

)

OCC IC3 DRP

(a) Mixed workload

051015202530
of warehouse

0.0M

0.5M

1.0M

1.5M

Th
ro
ug

hp
ut
 (t
xn

/s
)

OCC IC3 DRP

(b) 100% new-order transactions

FIGURE 5—TPC-C with 32 threads and varying warehouses. Con-
tention increases as the amount of choice decreases (to the right).

previously implemented in STO (running as wild transac-
tions), and our modified version (running as tame transac-
tions). We vary the fraction of new order transactions that are
tame and we report the results in Figure 6.

As we increase the ratio of wild transactions in the work-
load mix, the performance drop is evident. Having a mere
10% of transactions be wild is sufficient to cut the system’s
performance in half (258K vs 534K transactions per second).
The reason is that wild transactions often abort and retry, wast-
ing work. Furthermore, since tame transactions never abort,
there could be situations in high contention regimes where
wild transactions can starve.

To understand the gains that DRP gets from pipelining—
as opposed to the benefits of deferred execution which have
already been identified in prior works [9, 13]—we run an
experiment where the workload consists of new-order trans-

0 20 40 60 80 100
Percentage of lazy transactions

0.0M

0.2M

0.4M

0.6M

Th
ro
ug

hp
ut
 (t

xn
/s
)

FIGURE 6—TPC-C (new-order only) with 32 threads and 1 ware-
house (high contention), varying the percentage of tame transactions.

0 5 10 15 20 25 30
of threads

0.0M

0.2M

0.4M

0.6M

Th
ro
ug

hp
ut
 (t
xn

/s
)

DRP Deferred 2PL

FIGURE 7—TPC-C new-order transactions with 1 warehouse and
varying threads. Contention increases with more threads.

actions on a setup with 1 warehouse and varying threads
(contention increases as the number of threads increases). As
a baseline we use a concurrency control protocol that defers
the execution of operations as in DRP, but acquires locks
using two-phase locking (2PL). The locks are acquired fol-
lowing a pre-defined order to avoid the overhead of deadlock
detection mechanisms.

As shown in Figure 7, when the contention level is low
(fewer than 4 threads) the deferred 2PL protocol has similar
performance to DRP; at medium and high contention, DRP
performs significantly better (over 3× higher throughput at
very high contention). The main advantage of DRP is that
it can pipeline the accesses to “hot” items, whereas 2PL’s
transactions sit busy waiting until other transactions complete
to acquire the locks for these items.

7.3 STAMP benchmark

STO, as an STM-like system, supports general applications
beyond databases. STAMP proposes 8 representative appli-
cations. We port 2 of them (kmeans and vacation) to use
transactional objects that support deferred execution so they
can be tame. We chose these two applications because they
were the easiest to port and they did not require rank tuning.
For completeness, we also experiment with the unmodified
version of the other four STAMP applications implemented
by STO (labyrinth, genome, bayes and intruder) and observe

kmeans kmeans-high vacation vacation-high
0.0

2.5

5.0

7.5

10.0

12.5

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

DRP STO-TL2 STM-TL2

(a) STAMP applications on 16 threads

kmeans kmeans-high vacation vacation-high
0

5

10

15

20

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

DRP STO-TL2 STM-TL2

(b) STAMP applications on 32 threads

kmeans -m160 -n160 -t0.001 -i inputs/random-n262144-d32-c16.txt
kmeans-hi -m40 -n40 -t0.00001 -i inputs/random-n262144-d32-c16.txt
vacation -n2 -q90 -u98 -r1048576 -t4194304
vacation-hi -n4 -q1 -u90 -r184857 -t12194304

(c) Parameters used for STAMP applications

FIGURE 8—Speedup over a sequential implementation of STAMP
applications. Bars depict the mean speedup across 5 trials. The
postfix “hi” signifies a higher contention setting of the application.
For STO-TL2, we use predicates on vacation and vacation-hi to
improve its performance [18]. STM-TL2 did not finish within 20
minutes on vacation-hi.

that these achieve the same performance as the existing STO.
In other words, since these unmodified applications run using
DRP’s eagerly evaluated wild transactions, we are able to
confirm that DRP does not add overhead over TL2 (which is
used in STO). We do not discuss these further.

Figure 8 depicts the results of the two ported applications
at 16 and 32 cores. We report the speedup over running these
applications on a sequential implementation that does not
use transactions. DRP’s memory consumption on all STAMP
applications is less than 5% higher than STO’s.

STO’s performance advantage over STM-TL2 comes from
its awareness of data structure semantics. As a result, it can
avoid locking at word granularity. Since DRP runs on top
of STO, it inherits the same benefits. DRP is comparable or
outperforms STO-TL2 on every application, sometimes by

up to 3.6×. As in the TPC-C benchmark, the extent of the
benefit depends on the level of contention. At low contention
(e.g., kmeans at 16 cores or vacation), DRP is comparable
to STO-TL2; at medium or high contention (e.g., kmeans-hi,
vacation-hi), DRP’s gains are significant (> 2×) due to the
absence of aborts.

8 Related work
We discuss closely related work to DRP in Section 2. We now
discuss work that relates more generally.

Taming transactions. Many DBMSes [10, 22, 31, 35, 40,
43] restrict their focus to “one-shot” or “static” transactions,
where the transaction’s logic or its read/write set are spec-
ified a priori. Silo [35] observes that a benefit of one-shot
transactions is that since they are specified in one shot, they
avoid potential stalls by slow clients (e.g., when a client gets
the result of a read and thinks for a while before issuing the
next operation). DRP also leverages one-shot transactions.
A key difference is our motivation: these works aim to cut
transactions’ latency to reduce the probability that new opera-
tions will arrive and cause conflicts and therefore aborts, since
their algorithms are based on optimistic concurrency control
schemes. In contrast, DRP acquires transactions’ read/write
sets through the use of intentions, and uses them to pipeline
lock acquisition.

DRP’s mechanisms are similar to those of deterministic
database systems [12, 13, 27, 33, 34] in two ways. First, DRP
avoids deadlock by acquiring locks in a prescribed order.
Second, DRP leverages knowledge of transactions’ logic (e.g.,
their read/write set) to induce a serial execution. Deterministic
database protocols also ensure that any interleaving results
in a precise serial execution. One distinction is that while
DRP leverages transactions’ logic, it does not constrain their
interleaving (which exposes more concurrency) because it
does not need to guarantee a particular serial outcome.

DRP is also similar to Diamond’s DOCC protocol [42],
DASTM [26]. Like those schemes, DRP collects and manages
runtime information to improve performance: Diamond and
DASTM track dependencies to prevent superfluous aborts in
optimistic concurrency control, while DRP leverages transac-
tion logic to early release (“relax”) locks as soon as possible.

Deferred execution. DRP’s use of deferred execution is in-
spired by prior works [9, 13, 25, 34]. A key difference is
that we use lazy evaluation to avoid the rank mismatch prob-
lem inherent with tame transactions (§5), and to allow wild
transactions to pipeline lock acquisition during certification
without cascading aborts (§5.2). To our knowledge, both of
these applications are novel. In contrast, these systems use
lazy evaluation for a variety of other purposes. For example,
lazy transactions [13] and Sloth [9] use lazy evaluation to
batch queries together to reduce the number of round trips
between clients and database servers, exploit temporal lo-
cality, and achieve better load balancing. Calvin [34] and

QueCC [25] capture the transactions’ control and data flow,
create an execution plan, and defer their execution via pushing
the operations into per-partion/object queues.

9 Discussion and summary
We now revisit our problem statement in Section 3. Our goal
was to incorporate the runtime pipelining protocol into in-
memory transactional systems like STO in hopes of reap-
ing the benefits of pipelining for medium to high contention
workloads, but we faced several challenges (and opportuni-
ties) along the way. For instance, wanting to support arbitrary
transactions defined at runtime (i.e., wild transactions) led
us to develop two new protocols that are heavily influenced
by runtime pipelining’s design. Furthermore, being unable
to preprocess or parse transactions (since they are not ex-
pressed in one-shot) led us to a new application of deferred
execution: allowing transactions to prove that they are tame
at commit time (by having an empty read set) or be treated as
wild transactions instead (§5.1). In particular, deferred execu-
tion combats the rank mismatch problem whereby the rank
associated with objects contradicts control flow or data de-
pendencies. In turn, this allowed us to assign arbitrary ranks
to objects avoiding the need for static analysis.

Another one of our goals was incremental deployment. We
stay true to this goal in several ways. First, DRP supports ex-
isting objects that do not have RP-enabled locks that can set
the relax bit. Second, DRP supports both wild and tame trans-
actions simultaneously, and programmers need not specify
the type of a transaction; this is inferred automatically (§6.2).
Third, our implementation supports existing unmodified trans-
actions as wild transactions that execute operations eagerly.
Last, our implementation allows wild transactions to have
some of the operations be lazily evaluated, which has several
benefits (§5.2).

We believe that DRP is a good addition to STO and other
in-memory multi-core transactional systems that currently
rely on OCC, as it improves performance for medium to
high contention workloads, and remains comparable at low
contention. While DRP is not as efficient as IC3 at very
high contention (see for example Figure 3a) since DRP does
not optimize control flow for the particular workload using
static analysis, a similar effect can be achieved with rank tun-
ing (§6.3). In particular, if one can ensure that the ranks of
objects that are read are lower than those of corresponding
write operations, rank mismatch can be reduced or in some
cases eliminated. An interesting avenue for future work is to
tune ranks dynamically as transactions execute in the back-
ground. This could be done either with a greedy search or
with reinforcement learning.

A Proofs of Tame-RP and Wild-RP
This is an extended version of [21]. This section contains the
proofs of the Tame-RP and Wild-RP algorithms.

We assume that algorithms proceed as before except that

legacy data items do not maintain a precedence graph. Instead,
a transaction T that accesses one or more legacy data items
hold locks on those data items until T commits. We call this
Tame with Legacy. If T2 waits-for T1 on a legacy item, we say
T1 ∈ waitlegacy(T2). Call the union of the waitlegacy and
precedence graphs the waitpredecessor graph.

Theorem 1. Tame-RP guarantees strict-serializability, even
for transactions on legacy objects (i.e., ones without RP-
enabled locks that do not track predecessors).

Proof. Observe that if T1 precedes and conflicts with T2 on
some data item, then there is an edge in the serializabil-
ity graph T1 → T2 and, unless T1 has already committed,
T1 ∈ predecessor(T2) (because of acquired or relaxed locks)
or T1 ∈ waitlegacy(T2) (i.e., T1 ∈ waitpredecessor(T2) in
the case of legacy objects). Each edge in the waitpredeces-
sor graph implies a commit ordering: T1 ∈ predecessor(T2)
implies that T1 must commit before T2 by the Tame-RP al-
gorithm; T1 ∈ waitlegacy(T2) implies that T1 must commit
before T2 because (for legacy objects) T1 will not release its
lock before it commits.2

Suppose that there is a cycle in the serialization graph of
committed transactions (aborted transactions whose writes no
transaction reads do not matter): T1 → T2 → T3 → . . . →
Tn → T1 then by construction T1 must commit before T2
which must commit before . . . T1. This yields a contradiction.

Our proof of strict serializability is also by contradiction.
Suppose T1 commits before T2 begins, but every equivalent
serial execution places T2 before T1. That implies that there
is a path in the serialization graph from T2 to T1: T2 → T3 →
. . . → Tm → T1. By construction that would imply that T2
must commit before T3 which must commit before . . .T1,
which contradicts that T1 commits before T2 begins.

Lemma 1. The waitpredecessor graph engendered by the
Tame-RP algorithm is acyclic.

Proof. If T1 → T2 in the waitpredecessor graph, then
maxrank(T1) ≥ maxrank(T2) or T1 acquired a lock on the
item which is maxrank(T2) before T2 did. If T1 → T2 is in
the waitlegacy graph, then T1 acquired a lock on the item
which is maxrank(T2) before T2 did. So, for either predeces-
sor or waitlegacy edges, T1 acquires a lock on an item x1
before T2 acquires a lock on T2’s highest ranking item x2 and
rank(x1) ≥ rank(x2). This is an acyclic relationship.

Lemma 2. For transactions obeying the Tame-RP algorithm,
if Tj waits for Ti, then Ti → Tj in the waitpredecessor graph.
Therefore the waits-for relationship is acyclic.

Proof. Suppose Tj is waiting for a lock held by Ti. There are
two cases: (i) If Ti and Tj have never directly conflicted before,

2If there are no shared locks, Tame-RP can place into predecessor(T) only
the last uncommitted (if any) transaction T′ that held a mutex lock on x. The
relationship between conflict order and commit order still holds because the
transitive closure of the predecessor relationship enforces a commit order.

then Ti → Tj is added to the predecessor or waitlegacy graph
by construction. Thus, the waits-for edge would belong to the
waitpredecessor graph. (ii) If Ti and Tj have directly conflicted
before, then either Tj → Ti or Ti → Tj in the predecessor
graph. But the first is impossible since that would mean that
Ti had locked an item with rank higher than Tj which violates
the construction. So, Ti → Tj. Thus, every edge in the waits-
for graph corresponds to an edge in the waitprecedence graph
and is thus a sub-graph of the waitprecedence graph.

Theorem 2. Tame-RP is deadlock-free and guarantees opac-
ity provided no tame transaction has user-defined aborts.

Proof. By Lemma 2, the waits-for graph is acyclic. There
can be no cycles among waits-for edges and consequently no
deadlock. Because Tame-RP also guarantees strict serializabil-
ity (by Theorem 1), every read of any tame transaction will
be of a transaction consistent state (viz. the state in the strict
serializable order), hence Tame-RP guarantees opacity.

To establish the good behavior of Wild-RP, we need to
define the notion of the effective commit time of a transaction.
For tame transactions, that is the commit time itself. But for
a wild transaction TW , effectivecommit(TW) is the moment
after which TW obtains all its write locks but before its check
that the read-set of TW still have version numbers less than
begin(T) (just before Step 4).

Theorem 3. A combination of Tame-RP and Wild-RP is
strict serializable, deadlock-free, and guarantees opacity pro-
vided no tame or wild transaction has a user-defined abort
statement.

Proof. In a pure tame transaction setting, we know the theo-
rem holds by Theorem 2.

Consider a wild transaction TW that commits. First, note
that all reads of TW are of a transaction consistent state. Wild-
RP achieves this by ensuring that TW reads data items based
on their values when TW begins (that time is denoted v in the
algorithm). This is achieved by the version check (viz. make
sure that no item in the read-set of TW has a version greater
than that of v) in Step 2 and Step 4.

Second, deadlock-freedom follows because, while TW can
abort if it detects locks in Step 2 or changes in data in its
Step 4, its write-lock acquisition follows the Tame-RP proto-
col, so the conditions for Theorem 2 still hold.

To establish the strict serializability of wild and tame
transactions, we need to make use of the notion of effec-
tive commit time. Intuitively, if T1 precedes and conflicts
with T2 on some data item, then effectivecommit(T1) precedes
effectivecommit(T2). As in Theorem 1, a cycle in the serial-
ization graph would then imply effectivecommit(T1) precedes
effectivecommit(T1), which is a contradiction.

So, we must prove that a conflict edge T1 → T2 implies that
effectivecommit(T1) precedes effectivecommit(T2). If both
transactions are tame, we proved that in Theorem 1.

So, let at least one transaction TW be wild and another trans-
action T be wild or tame. Assume further that both commit
(otherwise they leave no effect on the data).

Case 1: T → TW .
(i) T writes x and later TW writes x. So, by the prece-

dence rules of wild transactions, effectivecommit(T) (whether
or not T is wild) will occur before TW obtains all its
write locks on the data items TW needs, which precedes
effectivecommit(TW).

(ii) T is tame and reads x and later TW writes x. T re-
tains at least a relaxed lock, so TW cannot obtain a write
lock on x before T commits. So effectivecommit(T) precedes
effectivecommit(TW).

(iii) T is a wild transaction and reads x before TW writes
x. Because T reads x before effectivecommit(T) and checks
that the version of x has not changed and that there is
no write lock on x in TW’s Step 4, Step 4 of T must pre-
cede effectivecommit(TW). Because effectivecommit(T) pre-
cedes Step 4 of T , we have that effectivecommit(T) precedes
effectivecommit(TW).

(iv) T writes x before TW reads x in which case TW

will read x after T no longer has a lock on x (even a re-
laxed lock). So effectivecommit(T) precedes the write of T
on x which precedes the read of TW on x which precedes
effectivecommit(TW).

Case 2: TW → T .
(i) TW writes x before T reads x and T is tame. T will

commit after effectivecommit(TW) by the normal precedence
rules of Tame DRP.

(ii) TW writes x before T reads x and T is wild. In
that case, TW must have committed (which occurs af-
ter effectivecommit(TW)) and released its locks (even its
relaxed locks) before T first reads x which precedes
effectivecommit(T) otherwise T would abort in Step 2.

(iii) TW writes x before T writes x. In this case T obtains
its lock after TW commits which is after effectivecommit(TW).
Whether T is wild or tame, T will obtain its write
lock on x before effectivecommit(T). So by transitivity,
effectivecommit(TW) precedes effectivecommit(T).

(iv) TW reads x before T writes x. Because TW doesn’t abort,
T cannot write x or even acquire a write lock on x before
TW performs Step 4 which is after effectivecommit(TW). So
TW performs its Step 4 before T acquires a write lock on x
which precedes effectivecommit(T). So, effectivecommit(TW)
is before effectivecommit(T).

In summary, (i) for committed tame and wild transactions,
the serialization order will be in effectivecommit order, ensur-
ing strict serializability; (ii) there will be no deadlock of either
tame or wild transactions ensuring that tame transactions see
a transaction-consistent state; (iii) because of the checks in
Wild-RP’s Step 2 and Step 4, wild transactions will all see a
transaction-consistent state. Taken together this guarantees
opacity for all transactions.

Remark. In the above proof, the role of global versions is to
ensure that all reads of a wild transaction T read a consistent
committed version of the data, even if T ultimately aborts.
This is necessary for opacity, but not for strict serializability
or deadlock-freedom. Note that if, instead of a global version,
each item had its own local version which was incremented
every time a commit to the object was updated by a committed
transaction, then all committed transactions would be strictly
serializable and deadlock-free. (In such a case, a change in the
version of a data item x from time t to t′ would serve only to
indicate that x had been modified between those two times.)
All tame transactions and all committed wild transactions
would also have observed consistent state. However, aborted
wild transactions might have observed inconsistent states.

Acknowledgements

We thank Zhen Sun for his help porting some STAMP bench-
marks to a prior version of DRP, Mihir Nanavati for providing
the test machine, the IC3 authors for sharing their code, and
Michael Walfish for helpful comments on a prior draft of this
paper. We also thank the EuroSys anonymous reviewers for
their great feedback. Finally, we are indebted to our shepherd,
Eddie Kohler, whose detailed comments and suggestions sig-
nificantly improved our work and the exposition of our ideas.
This work was partially funded by NSF grant CNS-1514422,
AFOSR FA9550-15-1-0302, and NYU Wireless.

References
[1] TL2-X86. https://github.com/nathanielherman/sto-

stamp/tree/master/tl2, Mar. 2016.
[2] Silo: Multicore in-memory storage engine (for STO). https:

//github.com/nathanielherman/silo/tree/8a63b,
Apr. 2017.

[3] Software transactional objects. https:
//github.com/nathanielherman/sto/tree/fd80932,
Jan. 2018.

[4] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman. Compiler and runtime support for
efficient software transactional memory. In Proceedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2006.

[5] R. Appuswamy, A. C. Anadiotis, D. Porobic, M. K. Iman, and
A. Ailamaki. Analyzing the impact of system architecture on
the scalability of oltp engines for high-contention workloads.
In Proceedings of the International Conference on Very Large
Data Bases (VLDB), Aug. 2018.

[6] E. D. Berger, T. Yang, T. Liu, D. Krishnan, and G. Novark.
Grace: Safe and efficient concurrent programming. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Dec. 2008.

[7] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal
aspects of serializability in database concurrency control.
IEEE Transactions on Software Engineering, SE-5(3), May
1979.

[8] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for

https://github.com/nathanielherman/sto-stamp/tree/master/tl2
https://github.com/nathanielherman/sto-stamp/tree/master/tl2
https://github.com/nathanielherman/silo/tree/8a63b
https://github.com/nathanielherman/silo/tree/8a63b
https://github.com/nathanielherman/sto/tree/fd80932
https://github.com/nathanielherman/sto/tree/fd80932

multi-processing. In Proceedings of the IEEE International
Symposium on Workload Characterization, Sept. 2008.

[9] A. Cheung, S. Madden, and A. Solar-Lezama. Sloth: Being
lazy is a virtue (when issuing database queries). In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), June 2014.

[10] J. Cowling and B. Liskov. Granola: low-overhead distributed
transaction coordination. In Proceedings of the USENIX
Annual Technical Conference (ATC), June 2012.

[11] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
Proceedings of the International Symposium on Distributed
Computing (DISC), Sept. 2006.

[12] J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein. High
performance transactions via early write visibility. In
Proceedings of the International Conference on Very Large
Data Bases (VLDB), Sept. 2017.

[13] J. M. Faleiro, A. Thomson, and D. J. Abadi. Lazy evaluation
of transactions in database systems. In Proceedings of the
ACM International Conference on Management of Data
(SIGMOD), June 2014.

[14] R. Guerraoui and M. Kapałka. On the correctness of
transactional memory. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), Feb. 2008.

[15] T. Harris and K. Fraser. Language support for lightweight
transactions. In Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), Oct. 2003.

[16] M. Herlihy and E. Koskinen. Transactional boosting: a
methodology for highly-concurrent transactional objects. In
Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), Feb. 2008.

[17] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for dynamic-sized data
structures. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), July 2003.

[18] N. Herman, J. P. Inala, Y. Huang, L. Tsai, E. Kohler,
B. Liskov, and L. Shrira. Type-aware transactions for faster
concurrent code. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), Apr. 2016.

[19] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database Systems,
6(2), June 1981.

[20] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada:
Dependably fast multi-core in-memory transactions. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), May 2017.

[21] S. Mu, S. Angel, and D. Shasha. Deferred runtime pipelining
for contentious multicore software transactions. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), Mar. 2019.

[22] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase
reconciliation for contended in-memory transactions. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2014.

[23] C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM (JACM), 26(4), Oct.
1979.

[24] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and

E. Witchel. Operating system transactions. In Proceedings of
the ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2009.

[25] T. M. Qadah and M. Sadoghi. Quecc: A queue-oriented,
control-free concurrency architecture. In Proceedings of the
ACM/IFIP International Middleware Conference, Dec. 2018.

[26] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel.
Committing conflicting transactions in an STM. In
Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), Feb. 2009.

[27] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the
advantages and disadvantages of deterministic database
systems. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), Sept. 2014.

[28] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction
chopping: Algorithms and performance studies. ACM
Transactions on Database Systems, 20(3), Sept. 1995.

[29] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), Aug. 1995.

[30] A. Spiegelman, G. Golan-Gueta, and I. Keidar. Transactional
data structure libraries. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), June 2016.

[31] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era
(it’s time for a complete rewrite). In Proceedings of the
International Conference on Very Large Data Bases (VLDB),
Sept. 2007.

[32] The Transaction Processing Council. TPC-C benchmark
(revision 5.9.0). http://www.tpc.org/tpcc/, June 2007.

[33] A. Thomson and D. J. Abadi. The case for determinism in
database systems. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), Sept. 2010.

[34] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD),
May 2012.

[35] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), Nov. 2013.

[36] T. Wang and H. Kimura. Mostly-optimistic concurrency
control for highly contended dynamic workloads on a
thousand cores. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), Sept. 2017.

[37] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling
multicore databases via constrained parallel execution. In
Proceedings of the ACM International Conference on
Management of Data (SIGMOD), June 2016.

[38] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and Y. Wang.
High-performance ACID via modular concurrency control. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2015.

[39] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker.
Staring into the abyss: An evaluation of concurrency control
with one thousand cores. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), Aug. 2014.

http://www.tpc.org/tpcc/

[40] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tictoc: Time
traveling optimistic concurrency control. In Proceedings of
the ACM International Conference on Management of Data
(SIGMOD), June 2016.

[41] D. Zhang and D. Dechev. Lock-free transactions without
rollbacks for linked data structures. In Proceedings of the
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), July 2016.

[42] I. Zhang, N. Lebeck, P. Fonseca, B. Holt, R. Cheng,
A. Norberg, A. Krishnamurthy, and H. M. Levy. Diamond:
Automating data management and storage for wide-area,
reactive applications. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Oct. 2016.

[43] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases with
fault durability and recovery through multicore parallelism. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2014.

	1 Introduction
	2 Background
	2.1 Opacity
	2.2 Related concurrency control protocols

	3 Problem statement
	4 Tame and Wild concurrency control
	4.1 RP for tame transactions
	4.2 RP for wild transactions
	4.3 Tame and Wild-RP's guarantees

	5 Deferred Runtime Pipelining (DRF)
	5.1 Deferring execution via intentions
	5.2 Benefits of deferred execution for wild transactions

	6 Implementing DRP in STO
	6.1 Changes to TObject
	6.2 Support for deferred execution
	6.3 Intra-object concurrency

	7 Evaluation
	7.1 Lock management overhead
	7.2 TPC-C benchmark
	7.3 STAMP benchmark

	8 Related work
	9 Discussion and summary
	A Proofs of Tame-RP and Wild-RP

