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Abstract

Maximum bipartite matching (MBM) is a fundamental problem in combinatorial optimization
with a long and rich history. A classic result of Hopcroft and Karp [HK73] provides an O(m

√
n)-

time algorithm for the problem, where n and m are the number of vertices and edges in the input
graph, respectively. For dense graphs, an approach based on fast matrix multiplication achieves a
running time of O(n2.371) [IM81, MS04]. For several decades, these results represented state-of-the-
art algorithms, until, in 2013, Madry introduced a powerful new approach for solving MBM using
continuous optimization techniques. This line of research, that builds on continuous techniques
based on interior-point methods, led to several spectacular results, culminating in a breakthrough
m1+o(1)-time algorithm for min-cost flow, that implies an m1+o(1)-time algorithm for MBM as well.

These striking advances naturally raise the question of whether combinatorial algorithms can
match the performance of the algorithms that are based on continuous techniques for MBM. One
reason to explore combinatorial algorithms is that they are often more transparent than their
continuous counterparts, and that the tools and techniques developed for such algorithms may be
useful in other settings, including, for example, developing faster algorithms for maximum matching
in general graphs. A recent work of Chuzhoy and Khanna [CK24] made progress on this question
by giving a combinatorial Õ(m1/3n5/3)-time algorithm for MBM, thus outperforming both the
Hopcroft-Karp algorithm and matrix multiplication based approaches, on sufficiently dense graphs.
Still, a large gap remains between the running time of their algorithm and the almost linear-time
achievable by algorithms based on continuous techniques. In this work, we take another step
towards narrowing this gap, and present a randomized n2+o(1)-time combinatorial algorithm for
MBM. Thus in dense graphs, our algorithm essentially matches the performance of algorithms that
are based on continuous methods.

Similar to the classical algorithms for MBM and the approach of [CK24], our algorithm is based
on iterative augmentation of a current matching using augmenting paths in the corresponding
(directed) residual flow network. Our main contribution is a recursive algorithm that exploits the
special structure of the resulting flow problem to recover an Ω(1/ log2 n)-fraction of the remaining
augmentations in n2+o(1) time.

Finally, we obtain a randomized n2+o(1)-time algorithm for maximum vertex-capacitated s-t
flow in directed graphs when all vertex capacities are identical, using a standard reduction from
this problem to MBM.
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1 Introduction

We consider the classicalMaximum Bipartite Matching problem, where the goal is to compute a maximum-
size matching in the given input bipartite graph G. Throughout, we denote the number of vertices and
the number of edges in G by n and m, respectively. Maximum Bipartite Matching is one of the most
central and extensively studied problems in computer science and related disciplines, with connections
to many other fundamental graph optimization problems.

It is well known that Maximum Bipartite Matching can be reduced to computing a maximum s-t flow in
a directed flow network with unit edge capacities. The Ford-Fulkerson algorithm [FF56] for maximum
s-t flow then immediately implies an O(mn)-time algorithm for Maximum Bipartite Matching. The
algorithm is conceptually simple, and maintains a matching M , starting with M = ∅. As long as M
is not optimal, we can augment it by computing an s-t path in the resulting residual flow network.
A celebrated work of Hopcroft and Karp [HK73] provides a significantly more efficient O(m

√
n)-time

implementation of this idea by iteratively computing a maximal collection of internally disjoint aug-
menting s-t paths of shortest possible length in the residual flow network. This result remained the
fastest known algorithm for several decades, except for the special case of very dense graphs, where fast
matrix multiplication techniques were shown to yield an O(nω)-time algorithm [IM81, MS04]. Starting
in 2008, a new paradigm emerged, namely, the use of continuous techniques as a method for obtaining
fast algorithms for various flow problems, that ultimately revolutionized the field. As a first illustra-
tion of this paradigm, the work of Daitch and Spielman [DS08], building on the breakthrough result of
Spielman and Teng [ST04] for efficiently solving Laplacian systems, gave an Õ(m3/2)-time algorithm
for directed maximum s-t flow. Later, Madry [Mad13] used this paradigm to design an algorithm for di-
rected maximum s-t flow with Õ(m10/7) running time, obtaining the first substantial improvement over
the algorithm of Hopcroft and Karp for Maximum Bipartite Matching in sparse graphs. A sequence of
remarkable developments [Mad16, LS19, CMSV17, LS20, AMV20, vdBLN+20] recently culminated in
a deterministic m1+o(1)-time algorithm for directed maximum s-t flow [CKL+22, vdBCK+23], thereby
providing an almost linear-time algorithm for Maximum Bipartite Matching. In all these recent algo-
rithms, the directed flow problem is cast as a linear program, which is then solved via interior-point
methods (IPM). In every iteration of the IPM, one needs to either solve a Laplacian system, or another
efficiently solvable problem on undirected graphs, such as min-ratio cycle in [CKL+22]. This approach
is further combined with dynamic graph data structures to make it even more efficient.

In view of this recent history, it is natural to ask whether combinatorial techniques can be used to design
algorithms for Maximum Bipartite Matching (and also other flow-like problems), whose performance
matches that of algorithms that are based on continuous methods. There are several reasons to
focus on combinatorial techniques. First, they tend to be more transparent than their continuous
counterparts. Second, it is likely that tools and techniques that are developed in order to design
a combinatorial algorithm for as fundamental a problem as Maximum Bipartite Matching will prove
useful in other applications. Lastly, while continuous techniques led to an m1+o(1)-time algorithm for
Maximum Bipartite Matching, the landscape of fast algorithms for the Maximum Matching problem in
general graphs did not benefit from these developments. In dense graphs, a fast-matrix multiplication
based approach gives O(n2.371)-time algorithm for MaximumMatching in general graphs [IM81, MS04].
More interestingly, in sparse to moderately dense graphs, the best known runtime still stands on
Õ(m

√
n) [MV80, Vaz94, GK04, Gab17] and utilizes an augmenting-paths based approach, similar to

that used in combinatorial algorithms for Maximum Bipartite Matching.

In a very recent work, Chuzhoy and Khanna [CK24] made progress on narrowing the striking gap
between the performance of combinatorial and IPM-based approaches forMaximum Bipartite Matching,
by providing a combinatorial deterministic Õ(m1/3n5/3)-time algorithm, thus outperforming both the
Hopcroft-Karp algorithm, and the matrix multiplication based approaches on sufficiently dense graphs.
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Still, a large gap remains between the performance of the best combinatorial algorithms and the almost
linear-time achievable by algorithms based on continuous techniques. In particular, on dense graphs,
the performance gap incurred by the current best combinatorial algorithm is Ω(n1/3). In this work,
we take another step towards narrowing this performance gap, and essentially eliminate it in dense
graphs. Our main result is summarized in the following theorem.

Theorem 1.1 There is a randomized combinatorial algorithm for the Maximum Bipartite Matching
problem, that, given an n-vertex bipartite graph G, outputs a maximum matching M in G with proba-

bility at least 1− 1/ poly(n). The running time of the algorithm is O
(
n2 · 2O(

√
logn·log logn)

)
.

Our algorithm outperforms the Hopcroft-Karp algorithm on graphs with ω(n1.5) edges, and in dense
graphs, it essentially matches the performance of algorithms based on continuous techniques. Further-
more, in almost all edge density regimes, this algorithm outperforms the runtime achieved in [CK24].

Using a standard reduction from vertex-capacitated flow in directed graphs toMaximum Bipartite Matching
(see Theorem 16.12 in [Sch03], for instance), we also obtain a combinatorial algorithm with similar
running time for maximum vertex-capacitated flow when all vertex capacities are identical.

Corollary 1.2 There is a randomized combinatorial algorithm for the directed maximum s-t flow prob-
lem with uniform vertex capacities, that given an n-vertex directed graph G, outputs a maximum s-t

flow with probability at least 1−1/ poly(n). The running time of the algorithm is O
(
n2 · 2O(

√
logn·log logn)

)
.

Similarly to the classical algorithms for Maximum Bipartite Matching, our approach for proving Theo-
rem 1.1 is based on iteratively augmenting a current matching using augmenting paths in the residual
flow network. We employ the multiplicative weights update (MWU) framework, that effectively reduces
the underlying flow problem to decremental single-source shortest paths (SSSP) in directed graphs,
a connection first observed by Madry [Mad10] and also used in [CK24]. As observed in [CK24], this
reduction results in a special case of decremental SSSP that appears significantly easier than general
decremental directed SSSP. Our main contribution is a recursive algorithm that exploits the special
structure of the resulting flow problem to recover an Ω(1/ log2 n)-fraction of the remaining augmen-
tations in n2+o(1) time. We abstract this task as a problem called RouteAndCut, where the input is a
directed graph G, two disjoint sets A,B of its vertices with |A| ≤ |B|, and two additional parameters
1 ≤ η ≤ ∆. The goal is to either compute a collection P of at least Ω(∆/ poly log n) paths that
connects distinct vertices of A to distinct vertices of B with vertex-congestion at most η; or to output
a cut that approximately certifies infeasibility of the desired routing. Our main result is a randomized
algorithm for RouteAndCut, whose running time is bounded by n1+o(1) · (n − |B|). It is worth high-
lighting that when |B| is sufficiently large, this running time may be much smaller than |E(G)|. This
performance gain for large sets B serves as a crucial building block for our n2+o(1)-time algorithm.

As in the work of [CK24], the task of efficiently solving RouteAndCut in turn relies on an efficient
algorithm for maintaining an expander in a dynamically changing graph, a problem that we refer to as
MaintainCluster. One key contribution of our work is the introduction of a parameterized version of both
these problems that allows us to use a bootstrapping approach in the design of our algorithm, where
we exploit efficient algorithms for one problem to obtain efficient algorithms for the other problem
and vice versa. Another key technical contribution is an efficient algorithm for a new problem that we
introduce, called ConnectToCenters, that plays a central role in efficiently maintaining short paths from
all vertices of a given graph G to a pre-specified collection of “center” vertices, even as G undergoes
online updates. This problem may be viewed as a representative abstraction of a common paradigm
used in many graph algorithms, in which an expander is embedded into the input graph, and all graph
vertices are then routed to the vertices of the expander. As such, our algorithm for this problem may
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prove useful in other applications. Finally, another insight utilized by our algorithm is an explicit
recognition of the fact that each iteration of the MWU algorithm leads to very specific kind of updates
in the underlying SSSP instance, namely, well-behaved increases in the lengths of some edges. While
these length increases can easily be simulated as edge deletions, a black-box simulation as an instance
of decremental SSSP gives away some of the inherent algorithmic advantages offered by these special
kind of updates that our algorithm exploits. We give a detailed overview of our algorithm and its
comparison to the algorithm of [CK24] in the next subsection.

We conclude by noting that in addition to the conceptual simplicity of a combinatorial augmenting
path based approach to solve Maximum Bipartite Matching, the techniques developed here for speeding
up augmentations may also prove useful in obtaining faster algorithms for Maximum Matching in
general graphs. We also believe that some of the technical tools that we introduce, such as an efficient
algorithm for the ConnectToCenters problem that we describe in more detail below, are of independent
interest.

1.1 Our Techniques

Our algorithm builds on and extends the techniques of [CK24], which, in turn, build on the algorithm
of [BGS20] for the directed decremental Single-Source Shortest Path (SSSP) problem. We start with
a high-level overview of the algorithm of [CK24], and then provide the description of our improved
algorithm.

It is well known that the Maximum Bipartite Matching problem in a graph G can be equivalently cast
as the problem of computing an integral maximum s-t flow in a corresponding directed flow network
G′ with unit edge capacities. We can view any given matching M in G as defining an s-t flow f in G′ of
value |M |. We let H = G′f be the corresponding residual flow network, that we refer to as the residual
flow network corresponding to matching M . We note that the residual flow network H has a special
structure: namely, each vertex in H has in-degree 1 or out-degree 1. Therefore, if P is a collection of
paths in H causing edge-congestion at most η, then the paths in P cause vertex-congestion at most η
and vice versa. For all problems that we define below, we assume that their input graph also has this
special structure. For convenience, we will focus on edge-congestion, and on edge-based cuts in such
graphs. We also note that any directed graph can be converted into a graph with this special structure
by replacing every vertex v with a pair v+, v− of new vertices, such that all edges that enter v become
incident to v−, and all edges leaving v become incident to v+, and inserting the edge (v−, v+) into the
graph.

The residual network H corresponding to a matching M contains ∆ = OPT − |M | edge-disjoint s-
t paths, where OPT is the value of the maximum bipartite matching. Suppose now that we can
design an algorithm that computes a collection P of Ω(∆/ poly log n) s-t paths in H, that cause
O(poly log n) edge-congestion. Using standard methods, we can then efficiently recover a collection P ′
of Ω(∆/ poly log n) edge-disjoint s-t paths in H, which can in turn be used in order to augment the
current matching M , thereby obtaining a new matching M ′ of cardinality |M |+Ω(∆/ poly log n). In
other words, OPT− |M ′| ≤ (OPT− |M |) · (1− 1/ poly log n), so the gap between the optimal solution
value and the size of the matching the algorithm maintains reduces by at least factor (1−1/poly log n).
It is then easy to verify that, after O(poly log n) such iterations, the algorithm obtains an optimal
matching. This is precisely the high-level approach that was used by [CK24], and we follow it in this
work as well. In order to obtain an algorithm for Maximum Bipartite Matching, it is now sufficient to
design a procedure that, given a residual flow network H corresponding to the current matching M ,
efficiently computes the set P of s-t paths in H with the above properties.

For technical reasons that will become clear later, we define a slightly more general problem, that

3



we call RouteAndCut. In this problem, the input is a directed graph H, two disjoint sets A,B of its
vertices with |A| ≤ |B|, and two parameters 1 ≤ ∆ ≤ min {|A|, |B|} and 1 ≤ η ≤ ∆. The goal is to
either compute a collection Q of Ω(∆/ poly log n) paths, each of which connects a distinct vertex of A
to a distinct vertex of B, such that the paths in Q cause congestion Õ(η); or to compute a cut (X,Y )
in H with |EH(X,Y )| ≪ ∆/η, with X containing a large fraction of vertices of A, and Y containing
a large fraction of the vertices of B. While [CK24] do not explicitly define and solve this problem,
their algorithm can be adapted to solve a special case of RouteAndCut, where η ≤ O(poly log n). So
for brevity, we will say that the algorithm of [CK24] solves this special case of RouteAndCut. Clearly,
an algorithm for the RouteAndCut problem can be used in order to compute a collection P of paths
in the residual flow network H corresponding to the current matching M , with the desired properties
that we described above.

The RouteAndCut problem falls into the broader and the extensively studied class of graph routing
and flow problems. One standard approach for obtaining fast algorithms for such problems, due
to [GK98, Fle00, AAP93], is via the Multiplicative Weight Update (MWU) method. It was further
observed by Madry [Mad10] that this approach can be viewed as reducing a given flow problem to a
variant of decremental SSSP or APSP. In our case, the reduction is to decremental SSSP in directed
graphs. While strong lower bounds are known for exact algorithms for decremental SSSP and APSP
(see, e.g. [DHZ00, RZ11, HKNS15, ABKZ22, ABF23]), we can exploit the special properties of the
SSSP instances that arise from the RouteAndCut problem in order to obtain faster algorithms, an
approach that was also used by [CK24].

We note that [BGWN20] provided a (1 + ϵ)-approximation algorithm for directed decremental SSSP
with total update time Õ(n2/ϵ), assuming all edge lengths are poly-bounded. Unfortunately, their
algorithm can only withstand an oblivious adversary ; in other words, the sequence of edge-deletions
from the input graph G must be fixed in advance and may not depend on the algorithm’s responses
to queries. Instances of decremental SSSP arising from the MWU framework crucially require algo-
rithms that can withstand an adaptive adversary, where the choice of the edge to be deleted in every
update may depend on the algorithm’s past behavior. A recent work of [BGS20] provided a (1 + ϵ)-
approximation algorithm for the directed decremental SSSP problem with an adaptive adversary, that

achieves total update time O
(
n8/3+o(1)

ϵ

)
(assuming that all edge lengths are poly-bounded). While

this total update time is too high for speeding up algorithms for Maximum Bipartite Matching, their
approach was adapted by [CK24] to handle the specific instances of SSSP that they obtain, leading to
faster algorithms forMaximum Bipartite Matching. Specifically, one of the key observations of [CK24] is
that the SSSP instances that arise from applying the MWU method to the Maximum Bipartite Matching
problem have the property that all queries are between a fixed pair (s, t) of vertices, and a rather large
approximation factor is acceptable. Moreover, by slightly modifying the standard MWU framework,
they ensure that it is sufficient that the algorithm for the SSSP problem only responds to shortest-path
queries as long as the current graph H contains a collection of least Ω(∆/ poly log n) disjoint and short
s-t paths, where ∆ is the target number of augmenting paths that the algorithm aims to produce.
We also follow their approach, and reduce the RouteAndCut problem, via a slightly modified MWU
method, to a special case of directed decremental SSSP, that we refer to as decremental s-t-SP, that
has all of the above properties. We note that s-t-SP is somewhat more general than the special case of
the SSSP problem that was considered in [CK24], since they only provide an algorithm for the special
case of RouteAndCut where η ≤ O(poly log n), while we need an algorithm that works for a wider range
of values of parameter η. For now we focus on the description of their algorithm, and we assume for
simplicity that η = 1 in this discussion.

The algorithm of [CK24] for a special case of the decremental s-t-SP problem follows the high-level
approach of [BGS20], that consists of two parts. First, they maintain a partition X of graph H \{s, t}
into a collection of expander-like graphs; we abstract the problem of maintaining each such graph, that
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we call MaintainCluster problem, below. Intuitively, the MaintainCluster subroutine is given as input a
vertex-induced subgraph H ′ of H, and a distance parameter d, with H ′ undergoing an online sequence
of edge deletions. It needs to efficiently support short-path queries in H ′: given a pair x, y ∈ V (H ′) of
vertices, return an x-y path of length at most d in H ′. However, it may, at any time, produce a cut

(A,B) in H ′ of sparsity at most O
(
poly logn

d

)
, after which the vertices on one side of the cut are deleted

from H ′, and the algorithm needs to continue with the resulting graph. The second main ingredient in
the algorithm of [CK24] is the Approximate Topological Order (AT O) framework of [BGWN20] (which
is in turn based on the works of [GWN20] and [Ber17]), combined with the algorithm of [BGWN20]
for decremental SSSP on “almost” DAG’s. The latter algorithm is applied to the graph Ĥ, that is
obtained from H by contracting every almost-expander X ∈ X into a single vertex. We now discuss
each of these components in turn, starting with the AT O framework.

The AT O framework. The Approximate Topological Order (AT O) framework of [BGWN20]1 is a
central component in the algorithms of [BGS20, CK24], as well as our algorithm. The framework was
first introduced as the means of reducing the decremental SSSP problem on general directed graphs
to decremental SSSP on “almost DAG’s”.

An AT O data structure in a dynamic graph H must maintain a partition X of the vertices of H into
subsets. We refer to the sets X ∈ X as clusters, and to X as a clustering. The only allowed changes
to the clustering X are cluster splittings: given an existing cluster X ∈ X and a subset X ′ ⊆ X of its
vertices, delete the vertices of X ′ from X, and add X ′ as a new cluster to X . We assume further that
the input graph H contains two special vertices s and t, and that clusters S = {s} and T = {t} always
lie in X . In addition to maintaining the clustering X , the AT O must maintain an ordering σ of its
clusters. Assume that X = {X1, . . . , Xr}, and that the clusters are indexed according to the ordering
σ. Assume further that a cluster Xi undergoes splitting, with the new cluster X ′i ⊆ Xi inserted into
X . Then the ordering σ must evolve in a consistent manner, that is, the new ordering must be either
(X1, . . . , Xi−1, X

′
i, Xi \X ′i, Xi+1, . . . , Xr), or (X1, . . . , Xi−1, Xi \X ′i, X ′i, Xi+1, . . . , Xr). Consider now

some edge e = (x, y) of H, and assume that x ∈ Xi and y ∈ Xj . If Xi appears before Xj in the
ordering σ, then we say that e is a left-to-right edge; if i = j, we say that it is a neutral edge; and
otherwise we say that it is a right-to-left edge. If e is a right-to-left edge, then we define its span:
span(e) =

∑i
i′=j |Xi′ | (we assume here that the sets in X are indexed according to the ordering σ).

Let Ĥ be the contracted graph corresponding to H: that is, Ĥ is obtained from H by contracting
each of the clusters X ∈ X into a vertex vX . For simplicity, we will refer to the vertices vS and vT as
s and t, respectively. Intuitively, if we could maintain the AT O without introducing any right-to-left
edges, then the corresponding contracted graph Ĥ is a DAG, and the ordering σ associated with the
AT O naturally defines a topological ordering of the vertices of Ĥ. We could then use the algorithm of
[BGWN20] for decremental SSSP in DAG’s, that builds on the work of [Ber17, GWN20], in order to
support approximate shortest path queries in Ĥ between s and other vertices of Ĥ, with total update
time Õ(n2). But in order to be able to support shortest s-t path queries in the original graph H, we
need to ensure that the diameters of the subgraphs H[X] corresponding to the clusters X ∈ X are
sufficiently small, and that we can support approximate shortest-path queries between arbitrary pairs
of vertices within each such graph efficiently.

Towards this end, it was observed by [BGWN20] that the algorithm for decremental SSSP in DAG’s
can be further extended to “almost DAG’s”: suppose G is a directed graph, and let ρ be a fixed
ordering of its vertices. Assume that V (G) = {v1, . . . , vn}, where the vertices are indexed according to
the ordering ρ. If e = (vi, vj) is an edge with i > j, then we say that e is a right-to-left edge of G, and

1According to [BGWN20], while the AT O technique was first explicitly defined in [BGWN20], the work of [GWN20]
can be viewed as (implicitly) using this technique.
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we say that its width is i − j. It was shown in [BGWN20] that the algorithm for decremental SSSP
on DAG’s could be extended to such graphs G, provided that the total width of all right-to-left edges
is relatively small. Specifically, the running time of their algorithm becomes roughly Õ(n2 + Γ · n),
where Γ is the total width of the right-to-left edges.

Assume now that the algorithm for SSSP on the almost-DAG graph G only needs to respond to
approximate shortest-path queries between a specific fixed pair s, t of vertices, and assume, moreover,
that it is only needed to support such queries as long as G contains Ω(∆) short edge-disjoint s-t paths.
It was observed in [CK24] that, in such a case, the running time of the algorithm of [BGWN20] improves
to roughly Õ(n2 +Γ · n/∆). This observation was one of the key insights that allowed them to obtain
a faster running time for the special case of the s-t-SP problem, and for Maximum Bipartite Matching.

We now provide additional relevant details of the algorithm of [CK24]. Like in [BGS20], theMaintainCluster
problem is exploited in order to maintain anAT O of the input graphH. Initially, the clustering X con-
tains three clusters: S = {s}, T = {t}, and U = V (H) \ {s, t}. The algorithm for the MaintainCluster
problem is then initialized on graph H[U ], with an appropriately chosen distance parameter dU . In
general, whenever a new cluster X joins X , the algorithm for the MaintainCluster problem is initialized
on H[X]. Whenever that algorithm produces a sparse cut (A,B) in X, we select a subset Z ∈ {A,B}
of vertices to be deleted from X, update X by deleting these vertices, and add Z as a new cluster to X ,
after which the algorithm for the MaintainCluster problem is initialized on H[Z]. The key idea is that,
since the cuts produced by the algorithm for the MaintainCluster problem are sparse, we can ensure
that the total span of all right-to-left edges is sufficiently small. If we then consider the contracted
graph Ĥ, this, in turn, ensures that the total width of all right-to-left edges in Ĥ is low. We can now
apply the algorithm of [BGWN20] for decremental SSSP on almost-DAG’s to support approximate
shortest s-t path queries in Ĥ, while exploiting the fact that such queries only need to be supported
as long as Ĥ contains a large number of short edge-disjoint s-t paths, in order to speed it up. For
every cluster X ∈ X , we can then use the algorithm for the MaintainCluster problem on H[X], in order
to respond to approximate shortest-path queries between pairs of vertices in X. Combining these
data structures together, we can support approximate shortest s-t path queries in the original graph
H, as long as H contains many short edge-disjoint s-t paths. This high-level approach allows one to
obtain algorithms for decremental s-t-SP, and for the RouteAndCut problem, from algorithms for the
MaintainCluster problem, that we now discuss in more detail.

The MaintainCluster problem. To recap, in the MaintainCluster problem, the input is a graph G
that undergoes an online sequence of edge deletions, and a distance parameter d. The goal is to
efficiently support short-path queries: given a pair x, y of vertices of G, return a path of length at
most d connecting them in G. The algorithm may, however, at any time, produce a cut (A,B) in G

of sparsity at most O
(
poly logn

d

)
, following which, the vertices of one side of the cut are deleted from

G. The algorithm is used in order to maintain individual clusters of the AT O. A similar problem was
considered by [BGS20], who provide an algorithm with total update time Ô(|E(G)| · d2) for it, where
the time to respond to each query is roughly proportional to the number of edges on the path that
the algorithm returns. In [CK24] this problem was considered in a more relaxed setting, where the
number of queries that the algorithm must support is bounded by a given parameter ∆, and the goal
is to minimize the total running time of the algorithm, that is, the sum of the total update time, and
the time required to respond to all queries. The algorithm of [CK24] for this setting has running time

Õ(|E(G)| ·d+ |V (G)|2) ·max
{
1, ∆·d2
|V (G)|

}
, which, for the specific parameters that they employ, becomes

Õ(|E(G)| · d+ |V (G)|2). In order to obtain our improved algorithm for Maximum Bipartite Matching,
we need to generalize this result so that it works for a wider range of parameters, achieving running
time |V (G)|2+o(1).
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The algorithm of [CK24] follows a rather standard approach. First, they use the Cut-Matching game
in order to compute a large expander graph Ĝ, and to embed it into G via short paths that cause
low congestion. The algorithm for the Cut Player is implemented in a rather straightforward manner,
since they can afford a running time that is as high as Θ(|V (Ĝ)|2). The algorithm for the Matching
Player essentially needs to solve an instance of the RouteAndCut problem. Using the MWU approach
as before, it can be reduced to solving an instance of directed decremental SSSP. The algorithm of
[CK24] then uses the standard Even-Shiloach tree data structure in order to solve the latter problem.
In addition to the expander Ĝ and its embedding into G, the algorithm of [CK24] maintains two
additional Even-Shilach trees in G. Both trees are rooted in the vertices of Ĝ, and have depth roughly
d. One of the trees has all its edges directed away from the root, and the other has all of its edges
directed towards the root. In order to respond to a query between a pair x, y of vertices of G, the two
Even-Shiloach trees are used to compute a short path connecting x to some vertex x′ ∈ V (Ĝ), and
a short path connecting some vertex y′ ∈ V (Ĝ) to y. A simple BFS search in the expander Ĝ then
yields a short path connecting x′ to y′, which can be turned into an x′-y′ path in G by exploiting the
embedding of Ĝ into G.

We now describe several sources of inefficiency of the algorithm of [CK24], and then describe our ap-
proach to overcoming them. First, both the algorithms of [CK24] and [BGS20] for the MaintainCluster
problem are only designed for graphs with unit edge-length. However, both of these works solve (a
variant of) the SSSP problem in graphs with arbitrary edge lengths. To overcome this difficulty,
[CK24] use the same approach as [BGS20]: namely, they choose a threshold τ , and initially delete all
edges whose length is greater than τ (called long edges) from the input graph H. The lengths of the
remaining edges (called short edges) are set to 1 for the sake of maintaining the AT O and solving the
MaintainCluster problem on the resulting instances. The long edges however are reinserted into the
contracted graph Ĥ, and the actual lengths of the short edges are used in it as well. This approach
unfortunately results in a rather large number of right-to-left edges with a large width in Ĥ, as it may
potentially include all long edges. In order to overcome this difficulty, we design an algorithm for the
MaintainCluster problem that can handle arbitrary edge lengths, which adds an additional dimension
of technical challenges.

The second main source of inefficiency in the algorithm of [CK24] is their use of Even-Shiloach trees in
their algorithm for MaintainCluster, both in implementing the Matching Player in the Cut-Matching
game, and in order to maintain short paths connecting all vertices of G to the vertices of the expander
Ĝ. It is immediate to see that the problem that the Matching Player needs to solve is essentially
an instance of the RouteAndCut problem. We also observe that an algorithm for a variant of the
RouteAndCut problem can be exploited in order to maintain the paths connecting all vertices of G to
the vertices of V (Ĝ). We abstract this as a new problem, that we call ConnectToCenters, and discuss it
below. We believe that this problem and our algorithm for solving it are of independent interest. We
remark that this reduction from the ConnectToCenters problem to the RouteAndCut problem requires
that the algorithm for the RouteAndCut problem works for arbitrary congestion parameter η ≤ ∆, and
this is the reason for our more general definition of the RouteAndCut problem.

To summarize, as already shown in previous work, in order to obtain an efficient algorithm for the
RouteAndCut problem, it is enough to obtain an efficient algorithm for the MaintainCluster problem,
and we observe that the opposite is also true: an efficient algorithm for the RouteAndCut problem
implies an efficient algorithm for the MaintainCluster problem. This, however, creates a chicken-and-
egg issue, where in order to solve one of the two problems efficiently, we need to design an efficient
algorithm for the other. We overcome this barrier by using a recursive approach, that we describe
next.
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A recursive approach. We parameterize both the RouteAndCut and the MaintainCluster problem
using a parameter r > 0. We say that an instance of the MaintainCluster problem on an n-vertex
graph G with a distance parameter d is r-restricted, if d ≤ 2r·

√
logn. Consider now an instance of the

RouteAndCut problem on an n-vertex graph H, with two subsets A,B of its vertices, and parameters
∆ and η. It is not hard to see that, if P is any collection of Ω(∆/ poly log n) paths connecting
vertices of A to vertices of B, that cause vertex-congestion at most η, then a large fraction of the
paths in P have length Õ(nη/∆). We say that an instance of the RouteAndCut problem is r-restricted
if nη

∆ ≤ 2r·
√
logn. We show a straightforward algorithm for the 1-restricted RouteAndCut problem.

Then for all r ≥ 1, we show that an efficient algorithm for the r-restricted RouteAndCut problem
implies an efficient algorithm for the r-restricted MaintainCluster problem. We also show that an
efficient algorithm for the r-restricted MaintainCluster problem implies an efficient algorithm for the
(r+1)-restricted RouteAndCut problem. Using induction on r, we then simultaneously obtain efficient
algorithms for the RouteAndCut and the MaintainCluster problems for the entire range of values for
the parameter r.

ConnectToCenters Problem. The ConnectToCenters problem is employed as a subroutine in the
algorithm for the MaintainCluster problem, but we feel that it is interesting in its own right, as it
seems to arise in many different settings. Suppose we are given a dynamic n-vertex graph G; for
now we will assume that G undergoes an online sequence of edge deletions, but in fact our algorithm
considers other updates, as described later. In addition to graph G, assume that we are given a
parameter d, and a subset T ⊆ V (G) of vertices that we call centers. The goal is to maintain, for
every vertex v ∈ V (G), a path P (v) of length at most d, connecting v to some vertex of T . As the
time progresses, some vertices may be deleted from T , but we are guaranteed that T always contains
a large enough fraction of the vertices of G, e.g. |T | ≥ Ω(|V (G)|/(dpoly log n). In order to ensure
that the deletion of edges from G does not impact too many paths in P∗ = {P (v) | v ∈ V (G)}, it is
desirable that the paths cause a small edge-congestion (say at most Õ(d)), and for similar reasons it
is desirable that every vertex x ∈ T serves as an endpoint of relatively few such paths (say at most

Õ(d)). At any time, the algorithm may compute a cut (A,B) of sparsity at most O
(
poly logn

d

)
, with

|A∩ T | ≪ |A|, after which the vertices of A are deleted from G and the algorithm continues. We note
that whenever the by now standard paradigm of embedding an expander into the input graph G and
then maintaining short paths connecting all vertices of G to the vertices of the expander is used, one
essentially needs to solve a variant of the ConnectToCenters problem. So far this was typically done by
employing Even-Shiloach trees, but this data structure becomes inefficient once the depth parameter
d is sufficiently large. It is for this reason that we believe that our algorithm for the ConnectToCenters
problem is of independent interest.

It is immediate to see that the initial collection P∗ = {P (v) | v ∈ V (G)} of paths of length O(d) each,
connecting every vertex of G to some vertex of T , that cause edge-congestion Õ(d), can be computed
by employing an algorithm for the RouteAndCut problem. As edges are deleted from G, and vertices
are deleted from T , some of the paths in P∗ may be destroyed. Whenever a path P (v) ∈ P∗ is
destroyed (whether because its last endpoint is deleted from T , or because one of its edges is deleted
from G), we say that vertex v becomes disconnected. We then need to reconnect all disconnected
vertices to T . This, again, can be done by employing an algorithm for the RouteAndCut problem, but
doing so directly may be very inefficient. Assume, for example, that we are given an algorithm A for
the RouteAndCut problem, that, on an n-vertex graph G, has running time O(n2+o(1)). Every time
a subset of vertices of G becomes disconnected, we would need to employ this algorithm in order to
reconnect them to T . However, it is possible that only a small number of vertices become disconnected
at a time, and spending Θ(n2+o(1)) time to reconnect them each time is prohibitively expensive. A
better approach seems to be to consider the set U of vertices that are currently connected, and the
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set U ′ of vertices that are currently disconnected. We could then attempt to route the vertices of U ′

to the vertices of U by constructing a new collection Q = {Q(u) | u ∈ U ′} of paths, where each path
Q(u) connects u to some vertex of U ; and then exploit the existing paths in {P (v) | v ∈ U} in order to
compute paths connecting every vertex of U ′ to the vertices of T . However, we cannot afford to spend
Θ(n2) time in order to compute the set Q of paths. On the other hand, intuitively, if |U ′| ≪ U , then
we may not need to explore the entire graph G in order to compute the set Q of paths. In order to
overcome this difficulty, we require that the algorithm for the RouteAndCut problem has running time
roughly n1+o(1) · (n−|B|), instead of n2+o(1). In particular, if the graph G is sufficiently dense and |B|
is sufficiently large, then this running time may be much smaller than |E(G)|. Our reduction from the
(r + 1)-restricted RouteAndCut problem to the r-restricted MaintainCluster problem follows the high-
level approach of [BGS20] and [CK24]. However, this additional strict requirement on the efficiency of
the algorithm for the RouteAndCut problem, in addition to the requirement that the algorithm should
work for arbitrary values of the congestion parameter η, make the reduction more challenging and
technical.

Assume now that we are given an algorithm A for the RouteAndCut problem, that, on an instance
(G,A,B,∆, η) has running time n1+o(1) · (n − |B|), where n = |V (G)|. As described above, in order
to implement our algorithm for the ConnectToCenters problem, whenever we are given a collection U ′

of vertices that are currently disconnected from T , we can now employ Algorithm A to construct a
collection Q of paths connecting them to the vertices of U (the set of currently connected vertices),
and then compose Q with the collection {P (v) | v ∈ U} of paths to obtain the desired collection
{P (v) | v ∈ U ′} of paths that reconnects the vertices of U ′ to T . Unfortunately, if we follow this
approach, and keep appending paths to each other iteration after iteration, we may obtain paths whose
lengths are prohibitively large. Instead, we follow a layered approach. For a parameter λ = O(log n),
we maintain at all times a partition (U0, . . . , Uλ) of the vertices of G into layers, where U0 = T , and Uλ

contains all vertices that are currently disconnected. For all 1 ≤ i < λ, we also maintain a collection
Qi = {K(v) | v ∈ Ui} of paths, where each path K(v) connects a vertex v ∈ Ui to a vertex in

⋃i−1
i′=0 Ui′ .

The paths in each set Qi have length at most d
4λ , and cause congestion Õ(d) in G. By composing the

paths from different sets Qi, we can obtain, for every vertex v ∈ V (G), a path that connects it to
some vertex of T . At a high level, for all 1 ≤ i < λ, we reconstruct layer Ui and the set Qi of paths
from scratch every time that roughly 2λ−i new vertices become disconnected, and we also ensure that
|Ui| ≤ 2λ−i holds. Therefore, when we employ the algorithm for the RouteAndCut problem in order
to reconnect the vertices of Ui, in the resulting instance of RouteAndCut, n − |B| ≤ 2λ−i holds, and
the running time of the algorithm is roughly n1+o(1) · 2λ−i. Therefore, as index i becomes smaller,
the running time of the RouteAndCut algorithm that is used to reconnect the vertices of Ui increases.
However, for smaller values of index i, we need to reconstruct the set Ui of vertices and the set Qi of
paths less often. This eventually leads to the desired n2+o(1) running time.

Edge-deletion versus edge-length-increase updates. We would like to highlight here what we
feel is a somewhat surprising insight from our work, that may appear minor at first sight, but we
believe that it may be useful in other problems. Consider the following two settings for dynamic
graphs: the first one is the standard decremental setting, where edges are deleted from the input
graph G as the time progresses. The second setting is a somewhat more unusual one, where the only
updates that are allowed in the input graph G is the doubling of the lengths of its edges; we refer to
this type of updates as edge-length-increases. Generally, it is not hard to see that both models are
roughly equivalent. Indeed, in order to simulate edge-length-increases in the standard decremental
setting, we can simply create a large number of copies of each edge e of various lengths, and then, as
the length of e increases, some of these copies are deleted. The reduction in the other direction is also
immediate: we can simulate the deletion of an edge e from G by repeatedly doubling its length, until
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it becomes very high.

The dynamic graphs that arise from using the MWU framework typically only undergo edge-length-
increase updates, which are then typically implemented as edge-deletions, in order to reduce the
problem to the more standard decremental SSSP, as described above. However, the edge-length-
increases that the input graph G undergoes under this implementation of the MWU method are rather
well-behaved: specifically, the lengths of the edges are only increased moderately, and all length
increases occur on the edges that participate in the paths that the algorithm returns in response to
queries. We observe that the resulting SSSP problem appears to be easier if we work with edge-
length-increase updates directly, instead of the more traditional approach of transforming them into
edge-deletion updates.

In order to illustrate this, consider the following simple scenario: we are given a graph G, and initially
the length of every edge in G is 1. Assume also that we have computed another graph X (it may be
convenient to think of X as an expander), and embedded X into G via paths of length at most d, that
cause edge-congestion at most η. If some edge e is deleted from G, then every edge ê ∈ E(X), whose
embedding path Q(ê) uses e, must be deleted from X as well. Therefore, the deletion of a single edge
from G may lead to the deletion of η edges from X. Assume now that, instead, the edges of G only
undergo increases in their lengths, where the length of each edge may be iteratively doubled, but the
total increase in the lengths of all edges is moderate. If the length of an edge e ∈ E(G) is doubled,
then for every edge ê ∈ E(X) whose embedding path Q(ê) uses e, the length of Q(ê) increases only
slightly, and so there is no need to delete ê from E(X). We can usually wait until the length of the
path Q(ê) increases significantly before edge ê needs to be deleted from X. As mentioned already, in
instances arising from the MWU framework, the total increase in the lengths of all edges in G over the
course of the entire algorithm is usually not very large, and in particular most edges whose lengths
are doubled are short. This allows us to maintain the expander X and its embedding into G over the
course of a much longer sequence of updates to G. This is one of the insights that allowed us to obtain
a more efficient algorithm for the MaintainCluster problem.

To summarize, our algorithm departs from the algorithm of [CK24] in the following key aspects.
First, we use the MWU method to reduce the RouteAndCut problem to s-t-SP in dynamic graphs
that undergo edge-length-increases instead of edge-deletion updates. Second, our algorithm for the
RouteAndCut problem has running time that significantly decreases when the set B of vertices contains
almost all vertices of G; in some cases the running time may even be lower than |E(G)|. We extend the
MaintainCluster problem to handle arbitrary edge lengths, but unlike [CK24] we only allow edge-length-
increases, instead of edge-deletion updates. We design an algorithm for the ConnectToCenters problem,
that we believe is of independent interest, and that can be viewed as reducing the MaintainCluster
problem to RouteAndCut. Lastly, we use a recursive approach, in which algorithms for RouteAndCut
rely on algorithms forMaintainCluster and vice versa, by parametrizing both problems with an auxiliary
parameter r, and then inductively develop algorithms for both problems for the entire range of r.

1.2 Organization

We start with preliminaries in Section 2. We then provide a high-level overview of our algorithm in
Section 3, where we also define the RouteAndCut and the s-t-SP problems, state our main results for
them, and describe the modification of the MWU method that we use. In Section 4 we define the
MaintainCluster problem and state our main result for it. We also describe our recursive approach,
state the theorems describing the reductions between the MaintainCluster and the RouteAndCut prob-
lems, and complete the algorithm for the Maximum Bipartite Matching problem using them. Then
in Section 5 we describe our reduction from the (r + 1)-restricted RouteAndCut problem to the r-
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restricted MaintainCluster problem. In Section 6 we describe our algorithm for the ConnectToCenters
problem, and in Section 7 we complete our reduction from the r-restricted MaintainCluster problem to
the r-restricted RouteAndCut problem.

2 Preliminaries

In this paper we work with both directed and undirected graphs. By default graphs are not allowed to
contain parallel edges or self-loops. Graphs with parallel edges are explicitly referred to as multigraphs.

Congestion of Paths and Flows. Let G be a graph with capacities c(e) ≥ 0 on edges e ∈ E(G),
and let P be a collection of simple paths in G. We say that the paths in P cause edge-congestion
η if every edge e ∈ E(G) participates in at most η · c(e) paths in P. When edge capacities are not
explicitly given, we assume that they are unit. If every edge of G belongs to at most one path in P,
then we say that the paths in P are edge-disjoint.

Similarly, if we are given a flow value f(e) ≥ 0 for every edge e ∈ E(G), we say that flow f causes
edge-congestion η if, for every edge e ∈ E(G), f(e) ≤ η · c(e) holds. If f(e) ≤ c(e) holds for every edge
e ∈ E(G), we may say that f causes no edge-congestion.

Assume now that we are given a graph G, a pair s, t of its vertices, and a collection P of simple paths
connecting s to t. We say that the paths in P cause vertex-congestion η if every vertex v ∈ V (G)\{s, t}
participates in at most η paths. If the paths in P cause vertex-congestion 1, then we say that they
are internally vertex-disjoint.

Throughout the paper, by default, when we talk about congestion caused by a set of paths or by a
flow, we mean edge-congestion.

Embeddings of Graphs. Let H,G be two graphs with V (H) ⊆ V (G). An embedding of H into G
is a collection P = {P (e) | e ∈ E(H)} of simple paths in G, where for every edge e = (u, v) ∈ E(H),
path P (e) connects u to v in G. The congestion of the embedding is the maximum, over all edges
e′ ∈ E(G), of the number of paths in P containing e′; equivalently, it is the edge-congestion that the
set P of paths causes in G.

Cuts, Sparsity and Expanders for Directed Graphs. Let G be a directed graph. A cut in G
is a an ordered pair (A,B) of subsets of vertices of G, such that A ∩ B = ∅, A ∪ B = V (G), and
A,B ̸= ∅. Note that we do not require that |A| ≤ |B| in this definition. The sparsity of the cut is:

Φ(A,B) =
|E(A,B)|

min {|A|, |B|}
.

We say that a directed graph G is a φ-expander, for a given value 0 < φ < 1, if the sparsity of every
cut in G is at least φ. Notice that, if G is a φ-expander, then for every partition (A,B) of its vertices,
both |E(A,B)| ≥ φ ·min {|A|, |B|} and |E(B,A)| ≥ φ ·min {|A|, |B|} hold.

We also use the following theorem that provides a fast algorithm for an explicit construction of an
expander, that is based on the results of Margulis [Mar73] and Gabber and Galil [GG81]. The proof
for undirected graphs was shown in [CGL+20].

Theorem 2.1 (Theorem 2.4 in [CGL+20]) There is a constant α0 > 0 and a deterministic algo-
rithm, that we call ConstructExpander, that, given an integer n > 1, constructs a directed graph Hn
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with |V (Hn)| = n, such that Hn is an α0-expander, and every vertex in Hn has at most 9 incoming
and at most 9 outgoing edges. The running time of the algorithm is O(n).

The above theorem was proved in [CGL+20] for undirected expanders, with maximum vertex degree
in the resulting expander bounded by 9. It is easy to adapt this result to directed expanders: if a
graph G is an undirected φ-expander, and a directed graph G′ is obtained from G by replacing every
edge with a pair of bi-directed edges, then it is easy to verify that G′ is a directed φ-expander.

We will also use the following simple observation, that shows that a slight modification of an expander
graph still results in a (somewhat weaker) expander. Similar observations were shown in previous
work for undirected graphs (see e.g. Observation 2.3 in [CGL+20]).

Observation 2.2 Let H be a directed n-vertex graph, that is a φ-expander, for some parameter 0 <
φ < 1. Let H ′ be a graph that is obtained from H as follows. We select an arbitrary set X of n′ ≤ n
vertices of H, add a set Y of n′ new vertices to H, and add two matchings of cardinality n′ to H:
a matching M ′ ⊆ X × Y and a matching M ′′ ⊆ Y × X. Then the resulting graph H ′, defined over
(n+ n′) vertices, is a φ/3-expander.

Proof: Consider any cut (A,B) in H ′. Assume first that |A ∩ Y | ≥ 2|A|
3 . Recall that every vertex

y ∈ Y has one edge ey = (y, y′) ∈ M ′′ with y′ ∈ X. Let Y1 ⊆ A ∩ Y denote the set of all vertices
y ∈ A ∩ Y whose corresponding vertex y′ lies in A, and let Y2 denote the set of all remaining vertices
of A ∩ Y . Since |A \ Y | ≤ |A∩Y |2 , it must be the case that |Y2| ≥ |Y1| ≥ |A|3 . But then the edges of M ′′

that are incident to the vertices of Y2 belong to EH′(A,B), and so |EH′(A,B)| ≥ |Y2| ≥ |A|3 .

Similarly, if |B ∩ Y | ≥ 2|B|
3 , then, by using a similar argument with the edges of the matching M ′

instead of M ′′, we get that |EH′(A,B)| ≥ |B|
3 . Therefore, if either |A ∩ Y | ≥ 2|A|

3 , or |B ∩ Y | ≥ 2|B|
3

hold, then the sparsity of the cut (A,B) is at least 1
3 .

It now remains to consider the case where both |A∩Y | < 2|A|
3 and |B∩Y | < 2|B|

3 hold. Let A′ = A\Y
and B′ = B \ Y . Notice that |A′| ≥ |A|/3 and |B′| ≥ |B|/3 must hold. Then (A′, B′) is a cut in
graph H, and, since H is a φ-expander, |EH(A′, B′)| ≥ φ ·min {|A′|, |B′|} ≥ φ

3 ·min {|A|, |B|}. Since
EH(A′, B′) ⊆ EH′(A,B), we get that the sparsity of the cut (A,B) in H ′ is at least φ

3 .

The following simple observation follows from the standard ball-growing technique, and similar ob-
servations were used in many previous works, including in [CK24], where a proof is provided for
completeness.

Observation 2.3 (Observation 2.2 in full version of [CK24]) There is a deterministic algorithm,
that, given a directed n-vertex graph G = (V,E) with unit edge lengths and maximum vertex de-
gree at most δmax, together with two vertices x, y ∈ V with distG(x, y) ≥ d for some parameter
d ≥ 64δmax log n, computes a cut (A,B) of sparsity at most φ = 32δmax logn

d in G. The running time
of the algorithm is O(δmax ·min {|A|, |B|}).

We will also use the following simple observation a number of times. Intuitively, the observation
allows us to convert a sequence of small sparse cuts into a single balanced sparse cut; a proof of this
observation appears in [CK24].

Observation 2.4 (Observation 2.3 in full version of [CK24]) There is a deterministic algorithm,
whose input consists of a directed n-vertex graph G, parameters 0 < α < 1 and 0 ≤ φ ≤ 1, and a
sequence X = (X1, X2, . . . , Xk) of subsets of vertices of G, such that the following hold:

• Every vertex of V (G) lies in exactly one set in {X1, . . . , Xk};
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• maxi {|Xi|} = αn; and

• for all 1 ≤ i < k, if we denote by X ′i =
⋃k

j=i+1Xj, then either |E(Xi, X
′
i)| ≤ φ · |Xi|, or

|E(X ′i, Xi)| ≤ φ · |Xi|.

The algorithm computes a cut (A,B) in G with |A|, |B| ≥ min
{
1−α
2 · n,

n
4

}
, and |EG(A,B)| ≤ φ ·∑k−1

i=1 |Xi|. The running time of the algorithm is O(|E(G)|).

Chernoff Bound. We use the following standard version of Chernoff Bound (see. e.g., [DP09]).

Lemma 2.5 (Chernoff Bound) Let X1, . . . , Xn be independent randon variables taking values in
{0, 1}. Let X =

∑
1≤i≤nXi, and let µ = E [X]. Then for any t > 2eµ,

Pr
[
X > t

]
≤ 2−t.

Additionally, for any 0 ≤ δ ≤ 1,

Pr
[
X < (1− δ) · µ

]
≤ e−

δ2·µ
2 .

2.1 Even-Shiloach Tree for Weighted Directed Graphs

We use the generalization of the Even-Shiloach data structure of [ES81, Din06] to weighted directed
graphs, due to [Kin99], who extended similar results of [HK95] for unweighted directed graphs.

Theorem 2.6 ([Kin99], see Section 2.1) There is a deterministic algorithm, whose input consists
of a directed graph H with integral edge lengths, a source vertex s ∈ V (H), and a distance parameter
d ≥ 1. The algorithm maintains a shortest-path tree τ ⊆ H rooted in s, up to depth d. In other
words, for every vertex v ∈ V (H) with distH(s, v) ≤ d, vertex v lies in the tree τ , and the length of the
shortest s-v path in τ is equal to that in H. The data structure also maintains, for all v ∈ V (τ), the
current value distH(s, v). The total update time of the algorithm is O(|E(H)| · d).

We will sometimes refer to the data structure from Theorem 2.6 as ES-Tree(H, s, d).

2.2 The Adjacency-List Representation of Graphs

In some of the problems that we consider, the algorithm may not need to explore the entire input graph
G, and in some cases, it is important that the running time of the algorithm is strictly smaller than
|E(G)|. As an example, consider the following routing problem: we are given as input a directed graph
G, and two disjoint sets A,B of its vertices. The goal is to compute a largest-cardinality collection
P of paths, where each path P ∈ P connects a vertex of A to a vertex of B, the paths in P cause
low edge-congestion, and every vertex of A ∪ B serves as an endpoint of at most one path in P. We
emphasize that vertices of A ∪ B may serve as inner vertices on paths in P, and it is possible that
some vertex v ∈ A∪B serves both as an endpoint of some path in P, and as an inner vertex on several
other paths. Consider now a scenario where almost all vertices of G lie in B. In such a case, one can
show that there is an optimal solution P to the problem, such that only a small number of vertices of
B participate in the paths in P. In other words, in order to compute such a collection of paths, it is
not necessary to explore the entire graph G. In such cases, we will often be ineterested in algorithms
with running time roughly O(n1+o(1) · (n − |B|)), that may be significantly smaller than |E(G)|, if
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graph G is sufficiently dense. Therefore, we will need to provide the input graph G to the algorithm in
a way that allows it to achieve this low running time, and does not require spending Ω(|E(G)|) time
in order to read the entire input.

In such cases, we will often require that the (directed) input graph G is provided to the algorithm in
the adjacency-list model: we are given two arrays OUT and IN of length n each. For all 1 ≤ i ≤ n,
entry OUT[i] contains a pointer to a linked-list, that contains all edges in set δ+(vi), that is, all edges
that leave the ith vertex of G. Similarly, IN[i] contains a pointer to a linked-list of all edges in δ−(vi)
– all edges that enter the ith vertex of G. If the edges of G have lengths or weights, then these lengths
or weights also appear in the corresponding lists δ−(vi) and δ+(vi), where these edges are listed.

Typically, if Alg is an algorithm for the routing problem mentioned above, then it will only access
the entries OUT[i], IN[i] of a small subset of the vertices vi ∈ V (G), allowing us to achieve a running
time that is significantly lower than Θ(|E(G)|). Specifically, it is sufficient that the algorithm reads
the entries corresponding to the vertices in V (G) \ B, and of a small subset of vertices in B. This
will allow us to obtain running times for such routing problems roughly of the form O(|V (G)|1+o(1) ·
(|V (G)| − |B|)), which may be significantly lower than Θ(|E(G)|) if set B contains almost all vertices
of G, and G is sufficiently dense.

We note that providing the graph G as input to such an algorithm Alg may require time O(|E(G)|+
|V (G)|), in order to construct the adjacency-list representation of the input graph G. However, in
a typical application, we will construct the adjacency-list representation of the input graph G once,
and then apply Algorithm Alg for solving the routing problem on G multiple times, with different
vertex sets A and B, possibly with small alterations to the graph G between such executions of Alg.
Therefore, we will not need to construct the adjacency-list representation of the input graph G from
scratch every time Algorithm Alg is called.

In some cases, given as input a directed graph G in the adjacency-list representation, our routing

algorithm will need to work with the graph
←−
G , which is obtained from G by reversing the directions

of all its edges. In such cases, we can modify the adjacency-list representation of G to obtain an

adjacency-list representation of
←−
G , by simply switching the arrays OUT and IN.

Finally, given a directed graph G and a vertex v in G, we will denote by δ+G(v), the set of edges leaving
v, and by δ−G(v), the set of edges entering v.

2.3 Overview of the AT O framework

We now provide an overview of the Approximate Topological Order (AT O) framework that was
developed in [BGWN20] and later used in [BGS20]. A very slight modification of this framework was
also used in [CK24]. We follow here the presentation of [CK24], though we further adapt it to allow
for presence of a special cluster, that contains most of the vertices of the underlying graph.

Let G = (V,E) be a directed n-vertex graph with two special vertices s and t and non-negative lengths
ℓ(e) on edges e ∈ E, that undergoes edge-length-increase updates during a time interval T , that we
refer to as the time horizon. Throughout, we refer to a collection I ⊆ {1, . . . , n} of consecutive integers
as an interval. The size of the interval I, denoted by |I|, is the number of distinct integers in it. An
AT O consists of the following components:

• a partition X of the set V of vertices of G into non-empty subsets, such that there is a set
S = {s} and T = {t} in X ;

• (optional) a single set U ∈ X that we refer to as a special cluster, together with an integer
1 ≤ γ ≤ |U |;
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If special cluster U is defined, then all other sets of X are called regular clusters. If the special
cluster is undefined, then all sets of X are called regular clusters, and we set γ = 1; and

• a map ρ, that maps every set X ∈ X to an interval IX ⊆ {1, . . . , n− γ + 1}. The size of the
interval IX must be |X| if X is a regular cluster, and |X| − γ + 1, if it is a special cluster. We
require that all intervals in {IX | X ∈ X} are mutually disjoint.

For convenience, we will denote an AT O by (X , ρ, U, γ), where the special cluster U may be undefined.
Both the partition X and the map ρ evolve over time. We denote by X (τ) the partition X at time
τ , and by ρ(τ) the map ρ at time τ . For every set X ∈ X (τ), we denote by I

(τ)

X the interval IX
associated with X at time τ . If the special cluster U is defined in the initial AT O, then we require
that U ∈ X holds at all times, though some vertices may be deleted from U as the time progresses,
and, additionally, |U | ≥ γ must hold at all times.

The only type of changes that are allowed to the AT O over time is the splitting of the clusters
X ∈ X . In order to split a set X ∈ X , we select a subset Y ⊆ X of vertices (if X is a special cluster,
then |X \ Y | ≥ γ must hold, while otherwise we require that X \ Y ̸= ∅). We add Y to X as a
new cluster, and we delete the vertices of Y from X. We also partition interval IX into two disjoint
subintervals: one of these subintervals, of length |Y |, becomes the interval IY that is associated with
the new cluster Y . The other subinterval, whose length is |X| if X is a regular cluster, and |X|−γ+1
if it is a special cluster, becomes the new interval IX associated with the cluster X. Note that the
total length of the two new intervals is equal to the length of the original interval IX .

Notice that anAT O (X , ρ, U, γ) naturally defines a left-to-right ordering of the intervals in {IX | X ∈ X}:
we will say that interval IX lies to the left of interval IX′ , and denote IX ≺ IX′ iff every integer in
interval IX is smaller than every integer in IX′ . We will also sometimes denote X ≺ X ′ in such a case.
Notice also that, if we are given an ordering σ = (X1, X2, . . . , Xk) of the sets in X , then this ordering
naturally defines the map ρ, where for all 1 ≤ i ≤ k, the first integer in IXi is

∑i−1
j=1 |Xj |+1 if none of

the clusters in {X1, . . . , Xi−1} is special, and it is
∑i−1

j=1 |Xj | − γ + 2 otherwise. For convenience, we
will denote the map ρ associated with the ordering σ by ρ(σ).

Given a vertex v ∈ V , we will sometimes denote by Xv the set of X that contains v. Consider now
some edge e = (u, v) in graph G, and assume that Xu ̸= Xv. We say that e is a left-to-right edge if
Xu ≺ Xv, and we say that it is a right-to-left edge otherwise.

Lastly, we denote by H = G|X the contracted graph associated with G and X – the graph that is
obtained from G by contracting every set X ∈ X into a vertex vX , that we may call a supernode, to
distinguish it from other vertices of G. We keep parallel edges but discard any self-loops.

Intuition. For intuition, we could let X be the set of all strongly connected components of the graph
G. The corresponding contracted graph H = G|X is then a DAG, so we can define a topological order
of its vertices. This order, in turn, defines an ordering σ of the sets in X , and we can then let the
corresponding AT O be (X , ρ(σ), U, γ), where U is undefined and γ = 1. Notice that in this setting,
all edges of G that connect different sets in X are left-to-right edges. However, we will not follow
this scheme. Instead, we will ensure that every set X ∈ X corresponds to some expander-like graph,
and we will allow both left-to-right and right-to-left edges with respect to the AT O. It would still be
useful to ensure that the corresponding contracted graph H is close to being a DAG, since there are
good algorithms for SSSP on DAG’s and DAG-like graphs. Therefore, we will try to limit both the
number of right-to-left edges, and their “span”, that we define below.
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Skip and Span of Edges. For every edge e = (u, v) ∈ E(G) we define two values: the skip of edge
e, denoted by skip(e), and the span of e, denoted by span(e). Intuitively, the skip value of an edge
(u, v) will represent the “distance” between the intervals IXu and IXv . Non-zero span values are only
assigned to right-to-left edges. The span value also represents the distance between the corresponding
intervals, but this distance is defined differently. We now formally define the span and skip values for
each edge, and provide an intuition for them below.

Consider some edge e = (x, y) ∈ E(G). Let X,Y ∈ X be the sets containing x and y, respectively. If
X = Y , then skip(e) = span(e) = 0.

Assume now that X ≺ Y , that is, e is a left-to-right edge. In this case, we set span(e) = 0, and we let
skip(e) be the distance between the last endpoint of IX and the first endpoint of Y . In other words,
if the largest integer in IX is ZX , and the smallest integer in Y is AY , then skip(e) = AY −ZX . Note
that, as the algorithm progresses, sets X and Y may be partitioned into smaller subsets. It is then
possible that skip(e) may grow over time, but it may never decrease.

Lastly, assume that Y ≺ X, so e is a right-to-left edge. In this case, we set skip(e) to be the distance
between the right endpoint of IY and the left endpoint of IX , and we let span(e) be the distance
between the left endpoint of IY and the right endpoint of IX . In other words, if AX and ZX are the
smallest and the largest integers in X respectively, and similarly AY and ZY are the smallest and the
largest integers in Y respectively, then skip(e) = AX − ZY and span(e) = ZX − AY (see Figure 1).
Notice that, as the algorithm progresses, and sets X and Y are partitioned into smaller subsets, the
value span(e) may only decrease, while the value skip(e) may only grow. Moreover, skip(e) ≤ span(e)
always holds.

IY IXZYAY AX ZX

skip(e)

span(e)

Figure 1: Skip and span values of a right-to-left edge.

For intuition, consider again the setting where X represents the strongly connected components of
G, and ρ = ρ(σ), where σ is an ordering of the sets in X corresponding to a topological ordering
of the vertices of H = G|X . Then for any path P in G,

∑
e∈E(P ) skip(e) ≤ n must hold. This is

because the path must traverse the sets of X in their left-to-right order. Consider now inserting a
single right-to-left edge e = (x, y) into G, so x ∈ X, y ∈ Y , and Y ≺ X. In this case, path P will
generally traverse the sets in X from left to right, but it may use the edge e in order to “skip” back.
It is not hard to see that

∑
e′∈E(P ) skip(e

′) ≤ n+skip(e)+ span(e) now holds, since, by traversing the
edge e, path P is ‘set back’ by at most span(e) units. In other words, path P traverses the sets in
X in their left-to-right order, except when it uses the edge e to “skip” to the left. The length of the
interval it “skips” over is bounded by span(e), so this skip adds at most skip(e) + span(e) ≤ 2 span(e)
to
∑

e′∈E(P ) skip(e
′).

Using the same intuitive reasoning, if we allow graph G to contain an arbitrary number of right-to-left
edges, then for any simple path P ,

∑
e∈E(P ) skip(e) ≤ n +

∑
e∈E(G) 2 span(e) holds. However, if we
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are given any collection P of edge-disjoint paths in G, then there must be some path P ∈ P with∑
e∈E(P ) skip(e) ≤ n+

∑
e∈E(G) 2 span(e)

|P| , since every edge e ∈ E(G) may contribute the value 2 span(e)
to at most one path in P. We will use this fact extensively.

From AT O to SSSP in DAG-like Graphs. Like the algorithm of [BGS20] for decremental SSSP,
our algorithm relies on two main technical tools. The first tool allows us to maintain the partition X
of V (G) over time. Intuitively, we will ensure that, for every set X ∈ X , the corresponding induced
subgraph G[X] of G is in some sense expander-like. In particular, we will be able to support short-
path queries between vertices of X efficiently. When G[X] is no longer an expander-like graph, we
will compute a sparse cut (A,B) in this graph, and we will replace X with A and B in X (though
formally we will think about this process as splitting the cluster X: we add a new cluster, A or B, to
X , and then delete the vertices of this new cluster from X). Some of the edges connecting the sets A
and B may become right-to-left edges with respect to the current AT O (X , ρ) that we maintain. We
will control the number of such edges and their span values by ensuring that the cut is φ-sparse, for
an appropriately chosen parameter φ.

Given a dynamically evolving AT O (X , ρ, U, γ) for graph G, we can now construct the corresponding
contracted graph H = G|X . For convenience, the supernodes of H representing the sets S = {s}
and T = {t} of X are denoted by s and t, respectively. Notice that, as the time progresses, graph H
undergoes, in addition to edge-length-increase updates (that we will implement as edge-deletions using
standard methods) another type of updates, that we call vertex-splitting : whenever some set X ∈ X
undergoes a splitting, and a new cluster Y ⊆ X is inserted into X , we need to insert a supernode
corresponding to Y into H, and then possibly delete some edges that are incident to vX from H. We
will say that the new supernode vY was split off from the supernode vX . Consider now any edge
e = (x, y) ∈ E(G), and assume that x ∈ Z and y ∈ Z ′ for some Z,Z ′ ∈ X with Z ̸= Z ′. The length
of the edge e in graph H remains the same: ℓ(e). We will also associate, with every edge e ∈ E(H),
a weight w(e), that is set to be the smallest integral power of 2 that is at least skip(e). As observed
already, as the algorithm progresses, the value skip(e) may grow. In order to avoid inserting edges
into H overtime, we will create a number of parallel edges with different w(e) values corresponding
to every edge of G whose endpoints lie in different clusters of X . Specifically, let e = (x, y) be any
edge, with x ∈ X, y ∈ Y , and X ̸= Y . For every integer 0 ≤ i ≤ ⌈log n⌉, such that 2i ≥ skip(e),
we add an edge ei = (vX , vY ) to H, with length ℓ(e) and w(ei) = 2i. It is easy to verify that this
construction ensures that, for every vertex v ∈ V (H) \ {t} and integer 0 ≤ i ≤ ⌈log n⌉, the number of
vertices in the set

{
u ∈ V (H) | ∃e = (v, u) ∈ E(H) and w(e) = 2i

}
is bounded by 2i+2. Additionally,

by carefully controlling the total span of all right-to-left edges in graph G, we will ensure that there is
always a short s-t path P in H, such that

∑
e∈E(P )w(e) is relatively small. These two properties are

crucial in obtaining a fast algorithm for computing short s-t paths in H, as it undergoes edge-deletion
and supernode-splitting updates.

The AT O framework, combined with an algorithm for maintaining expander-like graphs, gives rise
to the problem of repeately computing short s-t paths in the contracted graph H, as it undergoes
the updates that we have outlined above. In [CK24] a problem call DAG-like SSSP was defined, that
abstracts the above problem. They also provided an algorithm for it, which is essentially identical to
the algorithm of [BGWN20]; a similar algorithm was used in [BGS20]. We now provide the definition
of the DAG-like SSSP problem from [CK24], and summarize their algorithm for it.
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2.4 SSSP in DAG-like Graphs

The presentation in this section is almost identical to the definition of the DAG-like SSSP problem
from [CK24]. The input to the DAG-like SSSP problem is a directed multigraph G = (V,E), with two
designated vertices s and t, a distance parameter d > 0, a precision parameter 0 < ϵ ≤ 1/8, such that
1/ϵ is an integer, and another parameter Γ > 0. Graph G may have parallel edges, but no self-loops.
Every edge e ∈ E of G is associated with an integral length ℓ(e) > 0, and an additional weight w(e),
that must be an integral power of 2 between 1 and 2⌈logn⌉. The graph undergoes the following two
types of updates:

• Edge deletion: given an edge e ∈ E, delete e from G; and

• Vertex splitting: in this operation, we are given as input a vertex v ̸∈ {s, t} in the current
graph, and new vertices u1, . . . , uk that need to be inserted into G; we may sometimes say that
vertices u1, . . . , uk are split-off from v. In addition to vertex v and vertices u1, . . . , uk, we are
given a new collection E′ of edges that must be inserted into G, and for every edge e ∈ E′, we are
given an integral length ℓ(e) > 0 and a weight w(e) that must be an integral power of 2 between
1 and 2⌈logn⌉. For each such edge e ∈ E′, either both endpoints of e lie in {u1, . . . , uk, v}; or
one endpoint lies in {u1, . . . , uk}, and the other in V (G) \ {v, u1, . . . , uk}. In the latter case, if
e = (ui, x), then edge e′ = (v, x) must currently lie in G, and both w(e′) = w(e) and ℓ(e′) = ℓ(e)
must hold. Similarly, if e = (x, ui), then edge e′ = (x, v) must currently lie in G, and both
w(e′) = w(e) and ℓ(e′) = ℓ(e) must hold.

We let T be the time horizon of the algorithm – that is, the time interval during which the graph G
undergoes all updates. We denote by n and by m the total number of vertices and edges, respectively,
that were ever present in G during T . We assume w.l.o.g. that for every vertex v that was ever present
in G, some edge was incident to v at some time during the update sequence, so n ≤ O(m).

For every vertex v ∈ V (G) \ {t} and integer 0 ≤ i ≤ ⌈log n⌉, we define a set:

Ui(v) =
{
u ∈ V (G) | ∃e = (v, u) ∈ E(G) with w(e) = 2i

}
.

Note that as the algorithm progresses, each such set Ui(v) may change, with vertices both leaving and
joining the set. We require that the following property must hold at all times τ ∈ T :

S1. For every vertex v ∈ V (G) \ {t}, for every integer 0 ≤ i ≤ ⌈log n⌉, |Ui(v)| ≤ 2i+2.

As graph G undergoes edge-deletion and vertex-splitting updates, at any time the algorithm may be
asked a query path-query. It is then required to return a simple path P connecting s to t, whose
length

∑
e∈E(P ) ℓ(e) is bounded by (1 + 10ϵ)d, in time O(|E(P )|).

Lastly, the algorithm may return FAIL at any time and halt. It may only do so if the current graph
G does not contain any s-t path P with

∑
e∈E(P ) ℓ(e) ≤ d, and

∑
e∈E(P )w(e) ≤ Γ.

The following theorem provides an algorithm for the DAG-like SSSP problem. Its formal proof, pre-
sented in [CK24], follows almost immediately from the results of [BGWN20]. Specifically, Theorem
5.1 of [BGWN20] provides a similar result with a slightly different setting of parameters, but their
arguments can be easily extended to prove the theorem below, as was shown in [CK24].

Theorem 2.7 (Theorem 5.1 in the full version of [CK24]) There is a deterministic algorithm

for the DAG-like SSSP problem with total update time Õ
(
n2+m+Γ·n

ϵ2

)
; here, m and n are the total

number of edges and vertices, respectively, that were ever present in G.
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3 High-Level Overview of the Algorithm

In this section we provide the definitions of well-structured graphs and well-structured cuts, that are
used throughout the paper. We also define a new problem, called RouteAndCut, which is one of the
main building blocks of our algorithm. We then state the main theorem for this section, that provides
an efficient algorithm for the RouteAndCut problem, and we show that our main result – the proof of
Theorem 1.1 follows from it. The proof of the theorem that provides an algorithm for the RouteAndCut
problem is by induction, and is provided in the remainder of this paper. In this section we also provide
a simple and somewhat inefficient algorithm for the RouteAndCut problem, that will be used as the
induction base. We also define an intermediate problem, called r-Restricted s-t-SP problem, and show
that an algorithm for this problem implies an algorithm for the RouteAndCut problem. We start by
defining well-structured graphs and well-structured cuts.

3.1 Well-Structured Graphs and Well-Structured Cuts

Throughout the paper we will work with special kinds of directed graphs, that for convenience we call
well-structured graphs, and define below.

Definition 3.1 (Well-Structured Graphs) Let G = (L,R,E) be a bipartite directed graph. We
call the edges of EG(L,R) regular and the edges of EG(R,L) special. We say that G is a well-
structured graph, if every vertex of G is incident to at most one special edge. If every vertex of G is
incident to exactly one special edge, then we say that G is a perfect well-structured graph.

If G is a well-structured graph, then we assume that the partition (L,R) of its vertices is given as
part of the description of G. We will sometimes consider well-structured graphs with lengths on their
edges, and we will sometimes restrict our attention to assignments of lengths to edges that have special
properties, that we define below. We call such assignments of lengths to edges proper.

Definition 3.2 (Proper Assignment of Edge Lengths) Let G = (L,R,E) be a well-structured
directed graph, and let ℓ(e) ≥ 0 be an assignment of lengths to the edges e ∈ E. We say that {ℓ(e)}e∈E
is a proper assignment of edge lengths, if, for every regular edge e ∈ E, ℓ(e) = 0, and for every special
edge e ∈ E, ℓ(e) is an integral power of 2 with ℓ(e) ≥ 1. If, for every special edge e ∈ E, ℓ(e) = 1
holds, then we say that {ℓ(e)}e∈E is a proper uniform assignment of edge lengths.

Recall that a cut in a graph G is an ordered pair (A,B) of non-empty subsets of V (G) with A∩B = ∅
and A ∪B = V . We will often use the notion of a well-structured cut, that is defined next.

Definition 3.3 (Well-Structured Cut) Let G = (L,R,E) be a well-structured graph, and let (A,B)
be a cut in G. We say that (A,B) is a weakly well-structured cut, or just a well-structured cut, if all
edges of EG(A,B) are special edges. If, additionally, all edges in EG(B,A) are regular edges, then we
say that (A,B) is a strongly well-structured cut.

3.2 The RouteAndCut problem

In this subsection we define the RouteAndCut problem, which is one of the main building blocks of our
algorithm. Before we do so, we need to define the notion of routing.

Definition 3.4 (Routing) Let G = (V,E) be a directed graph, and let A,B be two disjoint subsets
of its vertices. A partial routing, or just a routing, from A to B is a collection Q of paths in G, such
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that every path in Q connects a vertex of A to a vertex of B, and the endpoints of the paths in Q
are all disjoint. The congestion of the routing is the edge-congestion that the set Q of paths causes
in graph G. Vertices of A ∪ B may serve both as endpoints and as inner vertices of the paths in Q
simultaneously. A partial routing of cardinality |A| is called a complete routing.

We are now ready to define the RouteAndCut problem, and its special case, called r-restricted RouteAndCut.
Intuitively, we use the notion of the r-restricted RouteAndCut problem in order to discretize the prob-
lem instances: our algorithm for RouteAndCut will consider, by induction, r-restricted instances of the
problem, from smaller to larger values of r.

Definition 3.5 (RouteAndCut problem) The input to the RouteAndCut problem is a well-structured
n-vertex graph G = (L,R,E), that is given in the adjacency-list representation, parameters N ≥ n,
∆ ≥ 1, and 1 ≤ η ≤ ∆, and two disjoint subsets A,B of vertices of G, with |A|, |B| ≥ ∆.

The output of the problem is a (possibly partial) routing Q from A to B, whose congestion is bounded
by 4η logN . Additionally, if |Q| < ∆, the output must contain a cut (X,Y ) in G with |EG(X,Y )| ≤
64∆

η log4 n
+ 256|Q|

η , such that, if A′ ⊆ A,B′ ⊆ B denote the subsets of vertices that do not serve as endpoints

of the paths in Q, then A′ ⊆ X and B′ ⊆ Y hold. The algorithm for the RouteAndCut problem is also
allowed to return “FAIL” without producing any output, but the probability of the algorithm doing so
must be bounded by 1/2.

We say that an instance (G,A,B,∆, η,N) of the RouteAndCut problem is r-restricted, for an integer

1 ≤ r ≤
⌈√

logN
⌉
, iff (n−|B|)·η

∆ ≤ 2r·
√
logN holds.

We provide a brief intuition for the parameters ∆ and N in the definition of the RouteAndCut problem,
and for the definition of r-restricted instances. Consider an arbitrary well-structured n-vertex graph
G, two disjoint sets A,B of its vertices and a parameter η, and assume that we need to compute
a large routing from A to B in G, with congestion at most η. Typically, we will set ∆ to be the
cardinality of the desired routing (and if it is not known, we can set ∆ = min {|A|, |B|}). Initially,
we will also set N = n, and consider the resulting instance (G,A,B,∆, η,N) of the RouteAndCut
problem. Now suppose we compute a routing from A to B in graph G of cardinality ∆ that causes
edge-congestion at most η. Assume w.l.o.g. that, if b ∈ B is an inner vertex on some path of the
routing, then it serves as an endpoint of some other path of the routing. Then it is not hard to show

that most of the paths in the routing must have length at most d = O
(
(n−|B|)·η

∆

)
. The definition or

r-restricted instances requires that this parameter d is roughly bounded by 2r
√
logN . It is easy to see

that our starting instance is r∗-restricted, for r∗ =
⌈√

logN
⌉
. In order to solve this problem instance,

we will need to solve the problem recursively on smaller subgraphs G′ of G, but it is important for
us to ensure that the resulting instances are r′-restricted, for r′ < r∗. In order to do so, we will let
the parameter N in the resulting subinstances correspond to the number of vertices in the original
graph G (we may need to slightly adjust it for technical reasons but the adjustments are minor). By
appropriately setting the parameters ∆ and η for the resulting subinstances, we can then ensure that
they are indeed r′-restricted, for some r′ < r∗. Overall, the parameter N can be thought of as roughly
the number of vertices in the original instance of the RouteAndCut problem that we try to solve, and
it is used mostly to define the notion of r-restricted instances. The notion of r-restricted instances
allows us to construct algorithms for the RouteAndCut problem inductively, by going from smaller to
larger values of r.

The following theorem provides one of our main technical results, namely an efficient algorithm for
the RouteAndCut problem.
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Theorem 3.6 There is a randomized algorithm for the RouteAndCut problem, that, on an input

(G,A,B,∆, η,N), has running time at most O
(
n · (n− |B|) · 2O(

√
logN ·log logN)

)
, where n = |V (G)|.

The remainder of this paper is largely dedicated to the proof of Theorem 3.6, but first we show that
the proof of Theorem 1.1 follows from it.

3.3 Completing the Proof of Theorem 1.1

Recall that in the Maximum Bipartite Matching problem, the input is a simple undirected n-vertex
bipartite graph G = (L,R,E), and the goal is to compute a matching of maximum cardinality in G.

We can assume w.l.o.g. that we are given a target integral value C∗ > 0. If C∗ ≤ OPT, then our
algorithm must either produce a matching of cardinality C∗, or terminate with a “FAIL”, but we
require that the algorithm terminates with a “FAIL” with probability at most 1/ poly(n) in this case.
If C∗ > OPT, then our algorithm may return an arbitrary matching, or terminate with a “FAIL”.

We can make this assumption w.l.o.g. since we can use a standard technique of performing a binary
search over the value OPT of the optimal solution. We use bounds W < W ′ on the value of the optimal
solution, initializing W = 1 and W ′ = n, and we start with C∗ = ⌊n/2⌋. Given the current guess
C∗ on OPT, we run the algorithm with this target value C∗. If the algorithm successfully computes
a matching of cardinality at least C∗, then we set W = C∗, and otherwise, we set W ′ = C∗. In

either case, we select the next value C∗ =
⌊
W ′−W

2

⌋
and continue. Once W ′ − W ≤ 1 holds, we

run the algorithm once with C∗ = W ′ and once with C∗ = W , and then output the better of the
two solutions. We say that an algorithm errs in an iteration, if it returns “FAIL”, but C∗ ≤ OPT
holds in that iterations. Notice that, if the algorithm never errs, then after O(log n) iterations it is
guaranteed to terminate with an optimal matching. Since the probability that the algorithm errs in
a single iteration is bounded by 1/ poly(n), and the number of iterations is bounded by O(log n), the
algorithm is guaranteed to return an optimal matching with probability at least 1− 1/ poly(n).

From now on, we assume that we are given a target value C∗, and that G contains a matching
of cardinality C∗. Our algorithm must either compute a matching of cardinality C∗, or to return
“FAIL”, but the probability for returning “FAIL” must be bounded by 1/poly(n). For convenience,
we denote C∗ by OPT. We can assume that n is greater than a large enough constant, since otherwise
the problem can be solved in O(1) time.

It is well known that the Maximum Bipartite Matching problem can be reduced to computing maximum
s-t flow in a directed flow network with unit edge capacities. In order to do so, we start with the graph
G, and direct all its edges from the vertices of L towards the vertices of R. We then add a source
vertex s, that connects with an edge to every vertex of L, and a destination vertex t, to which every
vertex of R is connected. All edge capacities are set to 1. Let G′ denote the resulting directed flow
network. It is easy to verify that the value of the maximum s-t flow in G′ is equal to the cardinality
of maximum matching in G. Moreover, given an integral flow f in G′, we can compute a matching M
of cardinality val(f) in G, in time O(n): we simply include in M all edges of G that carry 1 flow unit.

Our algorithm consists of O(log3 n) phases. Throughout the algorithm, we maintain a matching
M in G, starting with M = ∅, and we denote ∆∗ = OPT − |M |. If M is the matching at the
beginning of a phase, and M ′ is the matching obtained at the end of the phase, then we require
that |M ′| ≥ |M | + Ω(∆∗/ log2 n), where ∆∗ = OPT − |M |. We show a combinatorial algorithm,
that, given an initial matching M , either returns “FAIL”, or computes such a matching M ′, in time

O
(
n2 · 2O(

√
logn log logn)

)
, where the probability that the algorithm returns “FAIL” is bounded by

1/poly(n). This will ensure that the number of the phases is bounded by O(log3 n), and the total
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running time of the algorithm is O
(
n2 · 2O(

√
logn log logn)

)
. From now on we focus on the description

of a single phase.

Implementation of a Single Phase. We assume that we are given some matching M in the input
graph G, and we denote ∆∗ = OPT−|M |. Our goal is to compute a matching M ′ of cardinality at least
|M | + Ω(∆∗/ log2 n). As observed already, matching M defines a flow f of value |M | in the directed
flow network G′ with unit edge capacities. We denote by H = G′f the corresponding residual flow
network, and we say that H is the residual flow network of G with respect to matching M . Observe
that H is a directed flow network with unit edge capacities, and that the value of the maximum s-t
flow in H is at least OPT− |M | = ∆∗.

Next, we will define an instance of the RouteAndCut problem. Consider first the graph H ′ = H \{s, t}.
Notice that, for every edge e = (u, v) of G with u ∈ L and v ∈ R, if e ∈M , then edge (v, u) is present
in H ′, and otherwise edge (u, v) is present in H ′. Therefore, all edges of H ′ that are directed from
vertices of R to vertices of L correspond to the edges of the current matching M . Clearly, every vertex
of H ′ may be incident to at most one edge of EH′(R,L), and so graph H ′ is a well-structured graph.

We let A ⊆ L be the set of vertices v, such that edge (s, v) is present in graph H, and we let B ⊆ R
be the set of vertices u, such that edge (u, t) is present in H. We also define parameters η = 1, N = n,
and ∆ = ∆∗. It is easy to verify that (H ′, A,B,∆, η,N) is a valid input to the RouteAndCut problem,
and we can compute an adjacency-list representation of H ′ in time O(|E(G)|). Recall that there is
an s-t flow f of value ∆∗ in graph H, and, from the integrality of maximum flow in integer-capacity
networks, we can assume that this flow is integral. This flow naturally defines a routing Q∗ from A to
B, that causes congestion η = 1, with |Q∗| = ∆∗.

We apply the algorithm from Theorem 3.6 to instance (H ′, A,B,∆, η,N) of the RouteAndCut problem.
As long as the algorithm returns “FAIL”, we keep executing it, for up to ⌈100 log n⌉ iterations. If the
algorithm from Theorem 3.6 returned “FAIL” in all ⌈100 log n⌉ consecutive iterations, we terminate
our algorithm and return “FAIL”. It is easy to verify that this may happen with probability at most
1/n100. Otherwise, the algorithm from Theorem 3.6 must return a routing Q from A to B with
congestion at most 4 log n. We show that |Q| ≥ ∆∗

logn must hold in the next observation.

Observation 3.7 If Q is the routing returned by the algorithm from Theorem 3.6, then |Q| ≥ ∆∗

logn .

Proof: Let A′ ⊆ A,B′ ⊆ B denote the subsets of vertices that do not serve as endpoints of the paths
in Q. Assume for contradiction that |Q| < ∆∗

logn .

Recall that the algorithm from Theorem 3.6 must also return a cut (X,Y ) in H ′ with |EH′(X,Y )| ≤
64∆∗

log4 n
+ 256|Q| ≤ 512∆∗

logn , such that A′ ⊆ X and B′ ⊆ Y . Also, recall that we have established that

there is a routing Q∗ from A to B in H ′ of cardinality at least ∆∗, that causes edge-congestion 1.
Since |Q| < ∆∗

logn , at least ∆∗

2 of the paths in Q∗ must originate at vertices of A′ and terminate at

vertices of B′. Each such path must contain an edge of EH′(X,Y ), so |EH′(X,Y )| ≥ ∆∗

2 must hold, a
contradiction.

Notice that the paths in Q naturally define a collection Q′ of at least ∆∗

logn s-t paths in graph H (the
residual flow network with respect to G and the current matching M), and they cause congestion at
most 4 log n (since the endpoints of the paths in Q are disjoint). Next, we show an algorithm that

computes a collection Q′′ of Ω
(

∆∗

log2 n

)
edge-disjoint s-t paths in graph H. We will then use the paths

in Q′′ in order to augment the current flow f in graph G′, which, in turn, will allow us to compute
the new augmented matching M .
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In order to compute the collection Q′′ of paths, we construct a directed graph H ′′ ⊆ H, that consists
of all vertices and edges that participate in the paths of Q′. The capacity of every edge in H ′′ remains
unit – the same as its capacity in H. Next, we show that |E(H ′′)| ≤ O(n log n), and that there is an
s-t flow of value at least ∆∗

4 log2 n
in H ′′.

Observation 3.8 |E(H ′′)| ≤ O(n log n), and there is an s-t flow of value at least ∆∗

4 log2 n
in H ′′.

Proof: We start by showing that every vertex v ∈ V (H ′′) \ {s, t} participates in at most 8 log n paths
in Q′. Indeed, consider any vertex v ∈ V (H ′′) \ {s, t}, and let Q ∈ Q′ be a path in which vertex v
participates. Assume first that v ∈ L. Then either edge (s, v) belongs to H and lies on path Q, or
there is a special edge (u, v) incident to v in H, that lies on path Q. Since the paths in Q′ cause
congestion at most 4 log n in H, there may be at most 8 log n paths in Q′ that contain either of the
edges (s, v) or (u, v), and so v participates in at most 8 log n paths in Q′. Using a similar argument,
every vertex u ∈ R participates in at most 8 log n paths in Q′. Therefore, |E(H ′′)| ≤ O(n log n).

Consider now a flow in H ′′, where we send 1
4 logn flow units along every path in Q′. Since the paths

in Q′ cause congestion at most 4 log n, this is a valid s-t flow in H ′′, and the value of this flow is
|Q′|

4 logn ≥
∆∗

4 log2 n
.

Next, we compute an integral maximum s-t flow in H ′′ that obeys the edge capacities in H ′′, using the
standard Ford-Fulkerson algorithm. We start by setting the flow f ′(e) on every edge e ∈ E(H ′) to 0,
and then perform iterations. In every iteration, we use the current flow f ′ in H ′′ in order to compute
a residual flow network H ′′f ′ . If there is no s-t path in H ′′f ′ , then the algorithm terminates. We are

then guaranteed that the value of the current flow f ′ is optimal, so val(f ′) ≥ ∆∗

4 log2 n
. Otherwise, we

compute an arbitrary s-t path P in H ′′f ′ , and we augment the flow f ′ along the path P . Notice that

every iteration of the algorithm can be implemented in time O(|E(H ′′f ′)|) = Õ(n), and the number of
iterations is bounded by n. Therefore, the total running time of the algorithm that computes the set
Q′′ of paths in H ′′ is Õ(n2). The final integral flow f ′ can be decomposed, in time O(|E(H ′′)|) = Õ(n),

into a collection Q′′ of at least Ω
(

∆∗

log2 n

)
edge-disjoint paths connecting s to t in H ′′. Since H ′′ ⊆ H,

we have now obtained the desired collection Q′′ of at least Ω
(

∆∗

log2 n

)
edge-disjoint s-t paths in H.

We note that we could also directly round the initial fractional s-t flow in H ′′, in expected time
Õ(|E(H ′′)|) = Õ(n), e.g. by using the algorithm from Theorem 5 in [LRS13], that builds on the results
of [GKK10]. But since their running time is only bounded in expectation, and since the bottlenecks
in the running time of our algorithm lie elsewhere, we instead use the above simple deterministic
algorithm.

We can now augment the current flow in G′ via the collection Q′′ of augmenting paths, obtaining a
new integral flow in graph G′ of value |M | + |Q′′|, which, in turn, defines a new matching M ′ with

|M ′| ≥ |M |+ |Q′′| ≥ |M |+Ω
(

∆∗

log2 n

)
.

We now bound the running time of a single phase. Recall that we may execute the algorithm from
Theorem 3.6 at most O(log n) times per phase. The running time of a single execution of the algorithm

from Theorem 3.6 is bounded by O
(
n2 · 2O(

√
logN ·log logN)

)
≤ O

(
n2 · 2O(

√
logn·log logn)

)
. Additionally,

the time required to compute the graph H ′′, and to compute the maximum flow in it is bounded by
Õ(n2).

Overall, the running time of a single phase is bounded by O
(
n2 · 2O(

√
logn·log logn)

)
. Since the

number of phases is bounded by O(log3 n), the total running time of the algorithm is bounded by
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O
(
n2 · 2O(

√
logn·log logn)

)
, and the probability that the algorithm ever returns “FAIL” is bounded by

1/poly(n).

3.4 Proof of Theorem 3.6 – High Level Overview

In order to prove Theorem 3.6, we use two large enough constants c1 ≫ c2, whose values we set later,
and we employ the following theorem.

Theorem 3.9 For all r ≥ 1, there is a randomized algorithm for the r-restricted RouteAndCut prob-
lem, that, on an input (G,A,B,∆, η,N) with |V (G)| = n, has running time at most:

c1 · n · (n− |B|) · 2c2
√
logN · (logN)16c2(r−1)+8c2 .

Note that, if (G,A,B,∆, η,N) is an instance of the RouteAndCut problem, and |V (G)| = n, then,

from the problem definition, η ≤ ∆ and (n−|B|)·η
∆ ≤ n holds. Therefore, any instance of the problem

is also an instance of r∗-restricted RouteAndCut problem, for r∗ =
⌈√

log n
⌉
. By using Theorem 3.9

with parameter r∗ =
⌈√

log n
⌉
, we obtain an algorithm for the general RouteAndCut problem whose

running time is:

O
(
n · (n− |B|) · 2O(

√
logN ·log logN)

)
.

Therefore, in order to prove Theorem 3.6, it is enough to prove Theorem 3.9. In the remainder
of this paper we focus on the proof of Theorem 3.9. The proof is by induction on r, and it relies
on a slight modification of the Multiplicative Weight Update (MWU) framework of [GK98, Fle00],
that essentially reduces the r-restricted RouteAndCut problem to a special case of the directed SSSP
problem, that we call r-Restricted s-t-SP. Before we describe this approach, we describe an algorithm
that, given an instance (G,A,B,∆, η,N) of the RouteAndCut problem, constructs a subgraph G′ ⊆ G
with V (G′) = V (G) and |E(G′)| ≤ O((n− |B|) · n), such that a solution to the RouteAndCut problem
instance (G′, A,B,∆, η,N) immediately provides a solution to the RouteAndCut problem instance
(G,A,B,∆, η,N).

3.4.1 An Auxiliary Graph G′ and its Properties

Consider an instance (G = (L,R,E), A,B,∆, η,N) of the r-restricted RouteAndCut problem, for
an integer 1 ≤ r ≤

⌈√
logN

⌉
. Let G′ ⊆ G be a graph, that is constructed as follows. We let

V (G′) = V (G), and we include in G′ all special edges of G. Additionally, for every vertex v ∈ L, if
|δ+G(v)| ≤ 512(n − |B|), then we add all regular edges that leave v in G to graph G′, and otherwise,
we select an arbitrary subset E′(v) ⊆ δ+G(v) of 512(n− |B|) such edges, and include these edges in G′.

Note that G′ is a well-structured n-vertex graph, and (G′, A,B,∆, η,N) is a valid instance of the
r-restricted RouteAndCut problem. Moreover, the out-degree of every vertex v ∈ L is bounded by
512(n − |B|), and so |E(G′)| ≤ O((n − |B|) · n). Given the adjacency-list representation of graph G,
graph G′ can be constructed explicitly in time O((n− |B|) · n).

Since G′ ⊆ G, any routing Q from A to B with congestion at most 4η logN in G′ defines a routing
from A to B with congestion at most 4η logN in G. Assume now that we are given a routing Q from
A to B in G′ with congestion at most 4η logN , such that |Q| < ∆. Let A′ ⊆ A,B′ ⊆ B denote the
subsets of vertices that do not serve as endpoints of the paths in Q. Assume, additionally, that we are
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given a cut (X,Y ) in G′ with |EG′(X,Y )| ≤ 64∆
η log4 n

+ 256|Q|
η , such that A′ ⊆ X and B′ ⊆ Y . Clearly,

(X,Y ) is also a cut in graph G. We claim that EG(X,Y ) = EG′(X,Y ). Indeed, since |Q| < ∆, we
get that |B′| > |B| −∆, and so |X| ≤ n − |B′| < n − |B| + ∆ ≤ 2(n − |B|) (here, we have used the
fact that ∆ ≤ |A| ≤ (n− |B|)). Assume for contradiction that EG(X,Y ) ̸= EG′(X,Y ). Since G′ ⊆ G,
there must be an edge e = (x, y) ∈ EG(X,Y ), such that e ̸∈ E(G′). This can only happen if x ∈ L,
and graph G′ contains a subset E′(x) ⊆ δ+G(x) of 512(n− |B|) edges. Since |X| ≤ 2(n− |B|), at least
510(n− |B|) edges of E′(x) must lie in EG′(X,Y ). Therefore, |EG′(X,Y )| ≥ 510(n− |B|) must hold.

However, |EG′(X,Y )| ≤ 64∆
η log4 n

+ 256|Q|
η ≤ 509∆ ≤ 509(n − |B|), a contradiction. From the above

discussion, we obtain the following claim.

Claim 3.10 There is a deterministic algorithm, that, given an instance (G,A,B,∆, η,N) of the r-
restricted RouteAndCut problem (where graph G is given as an adjacency list), constructs another
instance (G′, A,B,∆, η,N) of the r-restricted RouteAndCut problem with G′ ⊆ G, such that |E(G′)| ≤
O(n·(n−|B|)), and moreover, if (Q, (X,Y )) is a valid solution to instance (G′, A,B,∆, η,N), then it is
also a valid solution to instance (G,A,B,∆, η,N). The running time of the algorithm is O(n·(n−|B|)).

In our algorithms for the RouteAndCut problem, we will use Claim 3.10 in order to ensure that the
number of edges in the input graph is bounded by O(n · (n − |B|)). We now turn to describe the
MWU-based approach for solving r-restricted RouteAndCut.

3.5 Solving r-Restricted RouteAndCut via the Modified MWU Framework and a
Reduction to r-Restricted s-t-SP

In this subsection we provide a high-level description of our algorithm for the r-restricted RouteAndCut
problem, including the modified MWU framework that we use, and a reduction to a problem that we
call r-restricted s-t-SP, that can be viewed as a special case of the SSSP problem. We show that an
algorithm for the r-restricted s-t-SP problem implies an algorithm for the r-restricted RouteAndCut
problem, via the modified MWU framework. Lastly, we provide a simple though not very efficient
algorithm for r-restricted s-t-SP, that will be used as the induction base in the proof of Theorem 3.9.

Let (G,A,B,∆, η,N) be the input to the r-restricted RouteAndCut problem instance, where G =
(L,R,E) is a well-structured graph with |V (G)| = n, that is given as an adjancency list, A and B
are disjoint subsets of V (G), and N ≥ n, ∆ ≥ 1, and 1 ≤ η ≤ ∆ are parameters, with |A|, |B| ≥ ∆.

Since the instance is r-restricted, (n−|B|)·η
∆ ≤ 2r·

√
logN holds. By using the algorithm from Claim 3.10,

we convert this instance into another instance (G′, A,B,∆, η,N) of r-restricted RouteAndCut with
|E(G′)| ≤ O(n · (n − |B|)), in time O(n · (n − |B|)). From now on we focus on solving instance
(G′, A,B,∆, η,N), and, for convenience, we denote G′ by G.

Recall that our goal is to compute a routing Q from A to B, whose congestion is bounded by 4η logN .
Additionally, if |Q| < ∆, we need to compute a cut (X,Y ) in G with |EG(X,Y )| ≤ 64∆

η log4 n
+ 256|Q|

η ,

such that, if A′ ⊆ A,B′ ⊆ B denote the subsets of vertices that do not serve as endpoints of the paths
in Q, then A′ ⊆ X and B′ ⊆ Y hold. Recall also that the edges of EG(R,L) are called special edges,
and the remaining edges of G are called regular edges. From the definition of well-structured graphs,
every vertex of G is incident to at most one special edge. We start with a simple preprocessing step.

A Preprocessing Step. As a preprocessing step, we construct a maximal collection Q0 of disjoint
paths, where every path connects a distinct vertex of A to a distinct vertex of B, and consists of a single
regular edge. We do so by employing a simple greedy algorithm: Start with Q0 = ∅. While there is a
regular edge e = (a, b) with a ∈ A and b ∈ B, add a path Q = (e) to Q0, and delete a and b from A and
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B, respectively. Clearly, this preprocessing step can be executed in time O(|E(G)|) ≤ O(n · (n−|B|)).
If |Q0| ≥ ∆, then we terminate the algorithm and return Q0. We assume from now on that |Q0| < ∆.
Let A1 ⊆ A, B1 ⊆ B denote the sets of vertices that do not serve as endpoints of the paths in Q0.
Since |Q0| < ∆, we get that |B1| ≥ |B| −∆, and so:

n− |B1| ≤ n− |B|+∆ ≤ 2(n− |B|), (1)

since n− |B| ≥ |A| ≥ ∆ from the problem definition. The preprocessing step ensures that there is no
regular edge in G connecting a vertex of A1 to a vertex of B1, so every path connecting a vertex of A1

to a vertex of B1 must contain at least one special edge.

Next, we describe a modified MWU framework that will allow us to compute a solution to the r-
restricted RouteAndCut problem instance. The modified MWU framework is designed in such a way
that it reduces the r-restricted RouteAndCut problem to a special case of SSSP, that we call r-restricted
s-t-SP, which seems more tractable than the general decremental SSSP problem in directed graphs.
We will then design an algorithm for the r-restricted s-t-SP problem, that will allow us to obtain the
desired algorithm for r-restricted RouteAndCut. The algorithm for r-restricted s-t-SP will in turn rely
on an algorithm for the (r − 1)-restricted RouteAndCut problem.

3.5.1 The Modified MWU Framework

We now describe an algorithm that is based on the modified MWU framework, but ignore the issue of
the efficient implementation of the algorithm. We address this issue later, by reducing the problem to
the r-restricted s-t-SP problem.

Throughout the algorithm, we use a parameter Λ = (n− |B1|) · η log
5 n

∆ . While the set B1 of vertices
may change over the course of the algorithm, the value of the parameter Λ is set at the beginning of the
algorithm and remains unchanged throughout the algorithm. Our algorithm maintains an assignment
ℓ(e) ≥ 0 of lengths to the edges of G. At the beginning of the algorithm, we assign an initial length
ℓ(e) to every edge e ∈ E(G), as follows. If e is a regular edge, we set ℓ(e) = 0, and if it is a special
edge, we set ℓ(e) = 1

Λ .

As the algorithm progresses, the lengths of the special edges may grow, but the lengths of the regular
edges remain unchanged. Whenever we talk about distances between vertices and lengths of paths, it
is always with respect to the current lengths ℓ(e) of edges e ∈ E(G).

The algorithm gradually constructs a routing Q from A1 to B1 in G, starting with Q = ∅. It then
performs at most ∆ iterations, and in every iteration, a single path P , connecting some vertex a ∈ A1 to
some vertex b ∈ B1, is added to Q. We add P to Q, and delete a from A1 and b from B1. Additionally,
we may double the lengths of some special edges on the path P . Specifically, our algorithm maintains,
for every special edge e of G, a counter n(e), which, intuitively, counts the number of paths that were
added to Q that contained e, since ℓ(e) was last doubled (or since the beginning of the algorithm, if
ℓ(e) was never doubled yet). At the beginning of the algorithm, we set n(e) = 0 for every special edge
e. Whenever a path P is added to Q, we increase the counter n(e) of every special edge e ∈ E(P ).
If, for any such edge e, the counter n(e) reaches η, then we double the length of edge e, and reset the
counter n(e) to be 0.
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The Oracle

At the heart of our algorithm is an oracle – an algorithm that, in every iteration, either computes
a path P of length at most 1 in the current graph G connecting a vertex of A1 to a vertex of B1,
or produces a new assignment ℓ′(e) for edges e ∈ E(G), that we call a cut-witness, and define next.
Intuitively, the cut-witness is designed in such a way that it can be easily transformed into the desired
cut (X,Y ) in G with |EG(X,Y )| ≤ 64∆

η log4 n
+ 256|Q|

η , such that, if A′ and B′ denote the current sets

A1 and B1 respectively, then A′ ⊆ X and B′ ⊆ Y hold. Once the oracle produces a cut-witness, the
algorithm terminates. We now define the cut-witness formally.

Definition 3.11 (Cut-witness) A cut-witness is an assignment of lengths ℓ′(e) ≥ 0 to every edge
e ∈ E(G), such that, if we denote by A′ and B′ the current sets A1 and B1 of vertices respectively,
and by E∗ the set of all special edges with both endpoints in B′, then:

•
∑

e∈E(G) ℓ
′(e) ≤ ∆

2η log4 n
+
∑

e∈E(G)\E∗ ℓ(e); and

• the distance in graph G, with respect to edge lengths ℓ′(·), from A′ to B′ is at least 1
64 .

Next, we define the notion of an acceptable path in G, and we will require that the oracle, in every
iteration, either returns an acceptable path, or returns a cut-witness.

Definition 3.12 (Acceptable Path) A path P in the current graph G is called acceptable if P is
a simple path, connecting a vertex of A1 to a vertex of B1, the length of P with respect to the current
edge lengths ℓ(·) is at most 1, and no inner vertices of P belong to B1.

We are now ready to define the oracle.

Definition 3.13 (The Oracle) An oracle for the MWU framework is an algorithm that, in every
iteration, either returns an acceptable path P , or returns a cut-witness, or returns “FAIL”. The prob-
ability that the oracle ever returns “FAIL” must be bounded by 1/2.

The MWU-Based Algorithm.

We describe the modified MWU-based algorithm, denoted by ALG-MWU in Figure 2; the description
excludes the implementation of the oracle, that will be discussed later.

Before we discuss the implementation of the oracle, and an efficient implementation of AlgorithmALG-
MWU, we first show that we can use the algorithm in order to solve the r-restricted RouteAndCut
problem. Observe first that, if the total running time of the oracle, over the course of all iterations,
is bounded by T , then the total running time of Algorithm ALG-MWU is bounded by O(|T |) +
O(|E(G)|) ≤ O(|T |) + O(n · (n − |B|)). Moreover, since the probability that the oracle ever returns
“FAIL” is at most 1/2, the probability that algorithm ALG-MWU terminates with a “FAIL” is
bounded by 1/2.

Let Q be the set of paths obtained when Algorithm ALG-MWU terminates, and let Q′ = Q∪Q0 be
the final set of paths that we obtain. Clearly, every path in Q′ connects a vertex of A to a vertex of B.
We start by showing that the paths in Q′ cause congestion at most 4η log n, and that the endpoints
of all paths in Q′ are disjoint, in the following simple observation.

Observation 3.14 The endpoints of the paths in Q′ are disjoint, and the congestion caused by the
paths in Q′ in G is bounded by 4η log n.
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Alg-MWU

• Let A1 ⊆ A and B1 ⊆ B be the sets of vertices that do not serve as endpoints of
any path in the set Q0 constructed in the preprocessing step.

• Initialize the data structures:

– Set Q = ∅;
– For every edge e ∈ E(G), if e is a regular edge, set ℓ(e) = 0, otherwise set

ℓ(e) = 1
Λ .

– For every special edge e, set n(e) = 0.

• Perform at most ∆− |Q0| iterations, where in each iteration we apply the oracle.

– If the oracle returned “FAIL”, then return “FAIL” and terminate the algo-
rithm;

– If the oracle returned a cut-witness, return the cut-witness and terminate the
algorithm;

– Otherwise, the oracle must have returned an acceptable path P connecting a
vertex a ∈ A1 to a vertex b ∈ B1.

∗ remove a from A1 and b from B1;

∗ add P to Q;
∗ for each special edge e ∈ E(P ), increase n(e) by 1, and, if n(e) reaches η,
double ℓ(e) and set n(e) = 0.

Figure 2: Alg-MWU
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Proof: It is easy to verify that the endpoints of all paths in Q′ are disjoint. First, the preprocessing
step, in every iteration selects a regular edge e = (a, b) with a ∈ A and b ∈ B, adds the path Q = (e)
to Q1, and then deletes a from A and b from B. This ensures that vertices a and b cannot serve as
endpoints of any paths that are subsequently added to Q0, or to Q. Additionally, whenever Algorithm
ALG-MWU adds a new path P connecting a vertex a′ ∈ A1 to a vertex b′ ∈ B1 to Q, we delete a′

from A1 and b′ from B1. Therefore, a′ and b′ may not serve as endpoints of paths that are added
subsequently to Q. Hence the endpoints of all paths in Q′ are disjoint.

Next, we show that every special edge of G belongs to at most 2η log n paths of Q. At the beginning
of the algorithm, we set ℓ(e) = 1

Λ = ∆
(n−|B1|)·η·log5 n

≥ ∆
n·η·log5 n . Let i1, i2, . . . , iq denote the indices of

the iterations when ℓ(e) was doubled. Notice that, once ℓ(e) grows above 1, it may no longer be used
by any paths that are added to P, so q ≤ ⌈log Λ⌉+1 ≤ 2 log n must hold. Moreover, for all 1 ≤ j < q,
the number of paths that were added to Q after iteration ij but until iteration ij+1 (inclusive), that
contained e, is bounded by η. Similarly, at most η paths containing e were added to Q until iteration
i1 (inclusive). Altogether, e may belong to at most 2η log n paths of Q. Since paths of Q0 do not
contain special edges, every special edge belongs to at most 2η log n paths in Q′.

Consider now some regular edge e = (u, v) ∈ E(G). Recall that no regular edge in G may connect a
vertex of A1 to a vertex of B1. Therefore, if a path P ∈ Q contains e, then it must contain either the
unique special edge that is incident to u (if it exists), or the unique special edge that is incident to v
(if it exists). Moreover, if a path Q = (e) belongs to Q0, then every path Q′ ∈ Q that contains e must
contain both the unique special edge incident to u and the unique special edge incident to v (since
u ̸∈ A1 and v ̸∈ B1 must hold). Therefore, every regular edge e belongs to at most 4η log n paths in
Q′.

Let A′ and B′ denote the sets A1 and B1, respectively, at the end of Algorithm ALG-MWU. Notice
that A′ is a set of all vertices a ∈ A that do not serve as endpoints of the paths in Q′, and similarly, B′

contains all vertices b ∈ B that do not serve as endpoints of the paths inQ′. We now show an algorithm,
that, given a cut-witness {ℓ′(e)}e∈E(G), computes a cut (X,Y ) in G with |EG(X,Y )| ≤ 64∆

η log4 n
+ 256|Q|

η ,

such that A′ ⊆ X and B′ ⊆ Y hold.

Claim 3.15 There is a deterministic algorithm, that, given a cut-witness {ℓ′(e)}e∈E(G) for G, obtained

at the end of Algorithm ALG-MWU, computes a cut (X,Y ) in G with |EG(X,Y )| ≤ 64∆
η log4 n

+ 256|Q′|
η ,

such that A′ ⊆ X and B′ ⊆ Y hold. The running time of the algorithm is O(|E(G)|) ≤ O(n ·(n−|B|)).

Proof: Consider the cut-witness {ℓ′(e)}e∈E(G). We start by bounding
∑

e∈E(G) ℓ
′(e) in the following

simple observation.

Observation 3.16
∑

e∈E(G) ℓ
′(e) ≤ ∆

η log4 n
+ 2|Q′|

η .

Proof: For every special edge e ∈ E(G), let ℓ0(e) denote the length of e at the beginning of Algorithm
ALG-MWU, and let ℓ∗(e) denote the length of e at the end of the algorithm. We denote by E′ the set
of all special edges e ∈ E(G), such that, at the beginning of Algorithm ALG-MWU, both endpoints
of E′ lied in B1, but e ̸∈ E∗. For every edge e ∈ E′, at least one endpoint of e was deleted from B1

over the course of the algorithm, and e is the only special edge incident to that endpoint, so |E′| ≤ ∆
must hold. Recall that, at the beginning of the algorithm, every special edge was assigned the length
1
Λ . Let Espec denote the set of all special edges in G. For each edge e ∈ Espec, if e ̸∈ E′ ∪ E∗,
then, at the beginning of Algorithm ALG-MWU, e was incident to some vertex x ∈ V (G) \B1, and
moreover, e is the only special edge incident to x. Therefore, |E(G) \ (E′ ∪ E∗)| ≤ n − |B1|, and
|E(G) \ E∗| ≤ n−B1 +∆ ≤ 2(n− |B1|), since ∆ ≤ |A| ≤ n− |B1|. Overall, we get that:
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∑
e∈E(G)\E∗

ℓ0(e) ≤ 2(n− |B1|)
Λ

≤ 2∆

η · log5 n
,

since Λ = (n− |B1|) · η log
5 n

∆ .

Let Ê denote the subset of special edge e ∈ Espec \E∗ with ℓ∗(e) > ℓ0(e). Clearly,
∑

e∈E(G)\E∗ ℓ∗(e) ≤∑
e∈E(G)\E∗ ℓ0(e) +

∑
e∈Ê ℓ∗(e).

Let q be the total number of iterations Algorithm ALG-MWU, so |Q| = q holds, and denote Q =
{P1, . . . , Pq}, where the paths are indexed in the order in which they were added toQ. For all 1 ≤ i ≤ q,
let Ci denote the length of path Pi when it was added to Q. Clearly, Ci ≤ 1, and

∑q
i=1Ci ≤ q.

Consider now some edge e ∈ Ê, and recall that ℓ(e) was doubled at least once during the algorithm.
Let τ be the last time when the length of e was doubled. Then, prior to time τ , there were at least
η iterations i, during which the path Pi that was added to Q contained e, and the length of e during
the corresponding iteration was ℓ∗(e)

2 . In other words, edge e contributes at least ℓ∗(e)η
2 to

∑q
i=1Ci.

Therefore, we get that:

∑
e∈Ê

ℓ∗(e) ≤
2
∑q

i=1Ci

η
≤ 2q

η
≤ 2|Q|

η
.

Altogether, we get that:

∑
e∈E(G)\E∗

ℓ∗(e) ≤
∑

e∈E(G)\E∗

ℓ0(e) +
∑
e∈Ê

ℓ∗(e) ≤ 2∆

η · log5 n
+

2|Q|
η

.

Lastly, from the definition of the cut-witness, we get that:

∑
e∈E(G)

ℓ′(e) ≤ ∆

2η log4 n
+

∑
e∈E(G)\E∗

ℓ(e) ≤ ∆

η log4 n
+

2|Q|
η
≤ ∆

η log4 n
+

2|Q′|
η

.

Consider the graph G with lengths ℓ′(e) on its edges e ∈ E(G). From the definition of a cut-witness,
the length of a shortest-path (with respect to edge-lengths ℓ′(·)) connecting a vertex of A′ to a vertex
of B′ in G′ is at least 1

64 .

Consider a thought experiment, where we select a threshold ρ ∈ (0, 1
64) uniformly at random, and

then let X be the set of all vertices v ∈ V (G), such that the distance from A′ to v, with respect to
the length ℓ′(·) of edges, is at most ρ. Let Y = V (G) \X. It is easy to verify that, since the distance
from A′ to B′ in G is at least 1

64 , A
′ ⊆ X and B′ ⊆ Y must hold. Moreover, the probability that an

edge e ∈ E(G) lies in EG(X,Y ) is bounded by 64ℓ′(e). Therefore, the expectation of |EG(X,Y )| is
bounded by 64

∑
e∈E(G) ℓ

′(e) ≤ 64∆
η log4 n

+ 128|Q′|
η .

By performing a standard ball-growing procedure from the set A′ of vertices in graph G, we can

compute, in time O(|E(G)|), a cut (X,Y ) in G with |EG(X,Y )| ≤ 64∆
η log4 n

+ 256|Q′|
η , such that A′ ⊆ X

and B′ ⊆ Y . The total running time of the algorithm is bounded by O(|E(G)|) ≤ O(n · (n− |B|)).

To summarize, we provided an algorithm for the r-restricted RouteAndCut problem, that assumes the
existence of an oracle.

30



We now discuss an efficient implementation of our algorithm for the RouteAndCut problem, given an
efficient implementation of the oracle. Recall that the time required for the preprocessing step, and
for computing the final cut (X,Y ) by the algorithm from Claim 3.15, is bounded by O(n · (n− |B|)).
If the running time of the oracle is bounded by T , then the running time of Algorithm ALG-MWU is
bounded by O(T +n ·(n−B)). Therefore, the total running time of the algorithm for the RouteAndCut
problem is bounded by O(T + n · (n− |B|)). We now focus on implementing the oracle.

Implementing the Oracle: Intuition.

Below we define a problem called r-restricted s-t-SP. The problem is designed to implement the oracle
from Definition 3.13. However, for convenience, we multiply all edge lengths by factor Λ, and then
round them up to the next integer. We denote the new edge lengths by ℓ̂(e) for e ∈ E(G). Notice that,
throughout the algorithm, the length ℓ̂(e) of every edge e ∈ E(G) is either 0, or it is an integer between
1 and ⌈Λ⌉. We now define the analogues of an acceptable path and a cut-witness with respect to the
new edge lengths, that we refer to as modified acceptable path and modified cut-witness, respectively.

Definition 3.17 (Modified Acceptable Path) A path P in the current graph G is called a mod-
ified acceptable path for G with respect to A1 and B1, if P is a simple path, connecting a vertex of
A1 to a vertex of B1, the length of P with respect to the current edge lengths ℓ̂(·) is at most Λ, and no
inner vertices of P belong to B1.

Definition 3.18 (Modified Cut-witness) A modified cut-witness for graph G with respect to A1

and B1 is an assignment of lengths ℓ′′(e) ≥ 0 to every edge e ∈ E(G), such that if we denote by A′, B′

the current sets A1, B1 of vertices, and by E∗ the set of all special edges with both endpoints in B′,
then:

•
∑

e∈E(G) ℓ
′′(e) ≤ Λ·∆

η log4 n
+
∑

e∈E(G)\E∗ ℓ̂(e); and

• the distance in graph G, with respect to edge lengths ℓ′′(·), from A′ to B′ is at least Λ
32 .

It is immediate to verify that, if {ℓ′′(e)}e∈E(G) is a modified cut-witness for G, then, by setting the

length ℓ′(e) = ℓ′′(e)
2Λ for every edge e ∈ E(G), we obtain a valid cut-witness for G. Additionally, if P is

a valid modified acceptable path for G, then it is also an acceptable path for G.

In order to implement the oracle, it is now enough to design an algorithm that, in every iteration,
either produces a modified acceptable path in G, or produces a modified cut-witness for G, or returns
“FAIL”, such that the probability that the algorithm ever returns “FAIL” is bounded by 1/2. Recall
that n− |B1| ≤ 2(n− |B|) from Inequality 1, and so, from the definition of r-restricted RouteAndCut

problem, (n−|B1|)·η
∆ ≤ 2(n−|B|)·η

∆ ≤ 2 · 2r·
√
logN holds.

We now provide a formal definition of the r-restricted s-t-SP problem, that is designed specifically to
provide such an algorithm. For convenience, in the definition of the problem, we will denote the sets
A1, B1 of vertices by A and B, respectively, and we will denote the edge lengths ℓ̂(e) by ℓ(e).

3.5.2 The r-Restricted s-t-SP Problem

The input to the r-Restricted s-t-SP problem is a well-structured n-vertex graph G = (L,R,E),
parameters N ≥ n, ∆ ≥ 1, and 1 ≤ η ≤ ∆, and two disjoint subsets A,B of vertices of G, such that no
regular edge of G connects a vertex of A to a vertex of B in G, ∆ ≤ n−|B|, and (n−|B|)·η

∆ ≤ 2 ·2r·
√
logN

holds. We also require that |E| ≤ O(n · (n− |B|)) and that 1 ≤ r ≤
⌈√

logN
⌉
.
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Initially, every edge e ∈ E(G) is assigned a length ℓ(e) as follows: if e is a regular edge then ℓ(e) = 0,

and otherwise ℓ(e) = 1. We use a parameter Λ = (n−|B|)η·log5 n
∆ , and we initialize Q = ∅. While the set

B of vertices may change over the course of the algorithm, parameter Λ remains unchanged.

The execution of the algorithm for the r-restricted s-t-SP problem consists of at most ∆ iterations.
In every iteration i, the algorithm must do one of the following:

• either return FAIL;

• or return a modified cut-witness for G with respect to A and B (see Definition 3.18);

• or return a modified acceptable path P for G with respect to A and B (see Definition 3.17).

In the former two cases, the algorithm terminates. In the last case, let a ∈ A, b ∈ B denote the
endpoints of path P . We remove a from A and b from B and add P to Q. Additionally, the lengths
of some of the special edges on P will be doubled; we assume that the algorithm receives a list of all
such edges.

For every special edge e ∈ E(G), the length of e is doubled once e participates in exactly η paths that
the algorithm returned, since the last time the length of e was doubled, or since the beginning of the
algorithm – whatever happened last.

Lastly, we require that the probability that the algorithm ever returns “FAIL” is bounded by 1
2 . This

concludes the definition of the r-restricted s-t-SP problem.

When an algorithm for the problem computes a modified acceptable path P , we may say, for conve-
nience, that it responds to a short-path query. We note that the running time of an algorithm for the
s-t-SP problem includes both the time required to maintain its data structures (total update time),
and time required to compute and output the modified acceptable paths in every iteration (sometimes
referred to as query time).

The following theorem is immediate from the discussion in Section 3.5.1, the definition of the r-
restricted s-t-SP problem, and Inequality 1.

Theorem 3.19 Suppose there is an algorithm for the r-restricted s-t-SP problem, that, given an
input (G,A,B,∆, η,N) with |V (G)| = n, has running time at most n · (n− |B|) · T (n,∆, η,N). Then
there is an algorithm for the r-restricted RouteAndCut problem, that, on input (G,A,B,∆, η,N) with
|V (G)| = n, has running time at most O (n · (n− |B|) · T (n,∆, η,N)) +O(n · (n− |B|)).

Lastly, we show a simple but not very efficient algorithm for s-t-SP, that, combined with Theorem 3.19,
will be used as the induction base in the proof of Theorem 3.9.

3.5.3 A Simple Algorithm for s-t-SP

In this subsection we provide the following simple algorithm for the r-restricted s-t-SP problem.

Theorem 3.20 For all r ≥ 1, there is a deterministic algorithm for the r-restricted s-t-SP problem,

that, on input (G,A,B,∆, η,N) with |V (G)| = n, has running time: O
(
n · (n− |B|) · (n−|B|)·η∆ · log6N

)
.

Proof: We define a dynamic graph H, and we will eventually apply the algorithm for maintaining
the ES-Tree data structure from Theorem 2.6 to graph H, with the distance parameter d = Λ.
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We initialize graph H as follows. We let V (H) = V (G) ∪ {s, t}. For every regular edge e = (u, v) ∈
E(G), we include edge e with length ℓ̃(e) = 1 in H. For every special edge e′ = (u′, v′) ∈ E(G),
we include ⌈log Λ⌉ + 1 parallel edges e1, . . . , e⌈log Λ⌉+1, where for all 1 ≤ i ≤ ⌈log Λ⌉ + 1, the length

ℓ̃(ei) = 2i−1. Lastly, for every vertex a ∈ A, we add an edge (s, a) of length 1, and for every
vertex b ∈ B, we add an edge (b, t) of length 1 to H. Note that graph H can be initialized in time
O(|E(G)| · log n) ≤ O(n · (n−|B|) · log n). We then initialize the algorithm for maintaining the ES-Tree
data structure from Theorem 2.6 on graph H, with the distance threshold d = Λ.

Our algorithm consists of at most ∆ iterations. In every iteration, we check whether distH(s, t) ≤ Λ
holds, in time O(1), using the ES-Tree data structure. Assume first that this is the case. Then we use
the ES-Tree data structure to compute the shortest s-t path P in the current graph H, of length at
most Λ. From our construction, for every vertex b ∈ B, there is an edge (b, t) of length 1 in H. This
ensures that path P may not contain vertices of B as inner vertices. Let P ′ be the path obtained from
P by deleting its first and last vertex. It is then easy to verify that P ′ is a modified acceptable path,
that we return as an output of the current iteration. Let a ∈ A, b ∈ B be the endpoints of path P ′.
Recall that following the current iteration, a is deleted from A and b is deleted from B. Additionally,
the lengths of some special edges of E(P ′) may be doubled. We modify graph H, in order to reflect
these changes as follows. We delete the edges (s, a) and (b, t) from H. Additionally, for every special
edge e′ ∈ E(P ) whose length was doubled in G, we delete the shortest-length copy of e′ from H.

Assume now that, at the beginning of some iteration, we discover that distH(s, t) > Λ holds. Then, in
the current graph H, the length of the shortest path connecting a vertex of A to a vertex of B is at
least Λ− 2 ≥ Λ

2 . We now define the lengths ℓ′(e) of edges e ∈ E(G) as follows. If e is a regular edge
that lies in H, then we set ℓ′(e) = 0. If e = (x, y) is a special edge, then we let ℓ′(e) be the length of
the shortest parallel edge (x, y) in H.

Let A′ and B′ denote the sets A and B of vertices at the end of the algorithm, respectively. Clearly,∑
e∈E(G) ℓ

′(e) ≤
∑

e∈E(G) ℓ(e) holds. Next, we claim that, for every path P connecting a vertex a ∈ A′

to a vertex b ∈ B′ in G, the length
∑

e∈E(P ) ℓ
′(e) ≥ Λ

32 . Indeed, recall that we have established

that the length of such a path P in graph H is at least Λ
2 . The only difference between the edge

lengths
{
ℓ̃(e)

}
e∈E(P )

and {ℓ′(e)}e∈E(P ) is that the length ℓ̃(e) of every regular edge e ∈ E(H) is 1,

and ℓ′(e) = 0. However, since no regular edge may connect a vertex of A to a vertex of B in G, regular
and special edges must alternate on path P , and, since the length of every special edge in H is at least

1, the total length ℓ̃(e) of all special edges e ∈ E(P ) is at least
∑

e′∈E(P ) ℓ̂(e
′)

4 ≥ Λ
32 .

Let E∗ be the set of all special edges with both endpoints in B′. In order to turn the current
assignment {ℓ′(e)}e∈E(G) of edge lengths to a valid modified cut-witness, we set the length ℓ′(e) of
every edge e ∈ E∗ to 0. It is easy to verify that, for every path P connecting a vertex of A to a vertex
of B in G, its length remains at least Λ

32 , and
∑

e∈E(G) ℓ
′(e) ≤

∑
e∈E(G)\E∗ ℓ(e) now holds. Therefore,

we obtain a valid modified cut-witness for G.

It now remains to analyze the running time of the algorithm. We start by analyzing the total update
time – the time required to maintain all data structures, which excludes the query time – the time
required to compute the modified acceptable paths in every iteration.

Let m denote the total number of edges that are ever present in H, and recall that m ≤ O(n ·(n−|B|) ·
logN). Once graph H is initialized, the additional update of the algorithm is bounded by O(m · Λ).
Therefore, the total update time that is required in order to maintain the data structures (excluding
the time required to return the paths in every iteration) is bounded by:
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O(n · (n− |B|) · Λ · logN) ≤ O

(
n · (n− |B|) · (n− |B|) · η

∆
· log6N

)
.

Assume now that the number of iterations in which the algorithm returned a modified acceptable
path is q, and let P1, . . . , Pq denote the paths that the algorithm returned. Then the time that the
algorithm spent on returning these paths is bounded by

∑q
i=1O(|E(Pi)|). Recall that no regular edge

connects a vertex of A to a vertex of B in G, and so regular and special edges alternate on each such
path Pi. Therefore, for all 1 ≤ i ≤ q, |E(Pi)| is asymptotically bounded by the number of special
edges on Pi.

Consider now some special edge e of G. When e is first added to G, we include at most O(log n) copies
of e in H. Every time edge e participates in η of the paths that the algorithm returns, one of the
copies of e is deleted from H. Therefore, copies of a special edge e of G may participate in at most
O(η log n) paths that the algorithm returns, and, overall,

∑q
i=1 |E(Pi)| ≤ O(nη log n) (since there are

at most n special edges in G). We conclude that the total running time of the algorithm is bounded
by:

O

(
n · (n− |B|) · (n− |B|) · η

∆
· log6N

)
+O(nη logN) ≤ O

(
n · (n− |B|) · (n− |B|) · η

∆
· log6N

)
,

since η ≤ ∆ ≤ n− |B| from the problem definition.

By combining Theorem 3.20 with Theorem 3.19, and recalling that, in the r-restricted RouteAndCut
problem, (n−|B|)·η

∆ ≤ 2 · 2r·
√
logN holds, we obtain the following immediate corollary.

Corollary 3.21 There is a deterministic algorithm for the r-restricted RouteAndCut problem, that, on

input (G,A,B,∆, η,N) with |V (G)| = n, has running time at most O
(
n · (n− |B|) · 2r·

√
logN · log6N

)
.

We will use this corollary in our inductive proof of Theorem 3.9, for the base case when r = 1, and
also for general values of r, when the value of the parameter N is sufficiently small.

4 Tools for Expander-Like Graphs and the MaintainCluster Problem

In this section we introduce some tools for expander-like graphs, and define the second main problem
that serves as a subroutine in our algorithm for Maximum Bipartite Matching– the MaintainCluster
problem. We start by definining subdivided graphs, and providing a new definition of cut sparsity,
that extends the standard definition to graphs with edge lengths in a natural way.

4.1 A Subdivided Graph and a New Definition of Cut Sparsity

We first recall a standard definition of cut sparsity in directed graphs. Let G be an arbitrary directed
graph, and assume that the graph is unweighted, so all edge lengths and capacities are unit. Under
the standard definition, the sparsity of the cut (A,B) in G is defined as |EG(A,B)|

min{|A|,|B|} .

Suppose now that we are given a well-structured graph G = (L,R,E), with a proper uniform as-
signment of lengths to its edges, so the lengths of all special edges in G are unit. In this case, for a
well-structured cut (A,B) in G, it would be natural to define its sparsity as |EG(A,B)|

min{|A|,|B|} , to be consistent
with the standard definition of sparsity.
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Assume now that we are given a well-structured graph G = (L,R,E), with a proper assignment of
lengths to its edges, but now the lengths of the special edges may no longer be unit. Several of the
expander-based tools that we define below work best when the underlying graph is unweighted; in
the context of well-structured graphs, this corresponds to having a proper uniform assignment of edge
lengths. A natural way to handle graphs with arbitrary lengths of special edges in this setting is to
suitably subdivide its edges, so that the lengths of the special edges become unit, but the lengths of
all paths are preserved. We now define a subdivided graph of a well-structured graph, a notion that
we will use later, that will also motivate our modified definition of cut sparsity.

Definition 4.1 (Subdivided Graph) Let G = (L,R,E) be a perfect well-structured graph with a
proper assignment of lengths ℓ(e) to its edges e ∈ E, and let G′ = (L′, R′, E′) be another graph. We
say that G′ is the subdivided graph of G, and denote G′ = G+, if G′ can be obtained from G via the
following process. We start with G′ = G, L′ = L,R′ = R and E′ = E, and then consider every special
edge e ∈ E one by one. Let e = (u, v) be any such edge, and denote its length ℓ(e) by q. We replace
edge e with a path P (e) = (u = x1, y1, x2, y2, . . . , xq, yq = v). Note that u ∈ R′ and v ∈ L′ must hold.
We add vertices x2, . . . , xq to R′, and vertices y1, . . . , yq−1 to L′. Edges (x1, y1), . . . , (xq, yq) become
special edges, and edges (y1, x2), . . . , (yq−1, xq) become regular edges of G′. The lengths of the resulting
special edges are set to 1, while the lengths of the resulting regular edges are set to 0, so the length of
the path P (e) is q = ℓ(e).

Note that, if G is a perfect well-structured graph with proper edge lengths, then its subdivided graph
G+ is a perfect well-structured graph with proper uniform edge lengths. Therefore, we can use the
definition of cut sparsity for well-structured graphs with proper uniform edge lengths from above in
graph G+. Every cut (A′, B′) in graph G+ naturally also defines a cut (A,B) in G, where we set
A = V (G) ∩ A′ and B = V (G) ∩ B′. We will define the sparsity of cuts in perfect well-structured
graphs with proper edge lengths in a natural way, so that, if a well-structured cut (A′, B′) in G+ is
φ-sparse according to the standard definition, then the sparsity of the corresponding cut (A,B) in G
is at most O(φ). Notice that, since graph G+ is obtained from G by subdividing some of its edges,
every edge of G may contribute a number of vertices to A′ and/or to B′. We will assign a weight to
every vertex of G in order to reflect this contribution. We use the following definition of vertex weights
throughout the paper.

Definition 4.2 (Vertex Weights) Let G = (L,R,E) be a perfect well-structured graph with a proper
assignment of lengths to its edges. For every vertex v ∈ L ∪ R, the weight w(v) is defined to be the
length of the unique special edge that is incident to v. For a subset S of vertices of G, we define
w(S) =

∑
v∈S w(v), and for a subgraph G′ of G we define w(G′) = w(V (G′)).

We are now ready to define the sparsity of cuts in perfect well-structured graphs.

Definition 4.3 (Cut Sparsity) Let G = (L,R,E) be a perfect well-structured graph with a proper
assignment of lengths on its edges, and let (A,B) be a well-structured cut in G. The sparsity of cut
(A,B) is:

ΦG(A,B) =
|EG(A,B)|

min {w(A), w(B)}
.

We will use the following simple observation whose proof can be found in Section A.1 of the Appendix.

Observation 4.4 Let G = (L,R,E) be a perfect well-structured graph with proper lengths ℓ(e) on
its edges e ∈ E, and let G+ be its subdivided graph. Assume further that we are given a parameter
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0 < φ < 1, and that the length of every edge in G is at most 1
4φ . Let (A′, B′) be a well-structured

cut in G+ of sparsity at most φ, and let (A,B) be the corresponding cut in G, where A = A′ ∩ V (G)
and B = B′ ∩ V (G). Then (A,B) is a well-structured cut in G, w(A) ≥ |A′|/8, w(B) ≥ |B′|/8, and
ΦG(A,B) ≤ 8φ.

The next observation allows us to transform a weakly well-structured cut into a strongly well-structured
cut in a perfect well-structured graph, while roughly preserving its sparsity. The proof appears in
Section A.2 of the Appendix.

Observation 4.5 Let G = (L,R,E) be a perfect well-structured graph with a proper assignment of
lengths ℓ(e) to its edges e ∈ E, and let 0 < φ ≤ 1 be a parameter. Let W =

∑
e∈E ℓ(e), and assume

that, for all e ∈ E, ℓ(e) ≤ W
2 . Let (A,B) be a φ

2 -sparse weakly well-structured cut in G. Then there
is a φ-sparse strongly well-structured cut (A′, B′) in G with w(A′) ≥ w(A)/4 and w(B′) ≥ w(B)/4.
Moreover, there is a deterministic algorithm, that, given G, φ, and cut (A,B) in G, computes cut
(A′, B′) in G with the above properties in time O(min {VolG(A),VolG(B)}).

4.2 The MaintainCluster Problem

We abstract the central technical tool that we use in order to maintain expander-like graphs by the
MaintainCluster problem, that we define next.

As an input to the MaintainCluster problem, we are given a perfect well-structured graph G with a
proper assignment of lengths ℓ(e) to its edges e ∈ E(G), that subsequently undergoes some updates,
though G remains a perfect well-structured graph throughout the algorithm. Recall that we have
defined vertex weights for perfect well-structured graphs, where the weight of a vertex v is the length
of the unique special edge incident to v. For every vertex v ∈ V (G), we denote by w0(v) its initial
weight in the initial input graph G, and we denote W 0(G) =

∑
v∈V (G)w

0(v). We are now ready to
define the MaintainCluster problem.

Definition 4.6 The input to the MaintainCluster problem consists of a perfect well-structured graph
G = (L,R,E) with |V (G)| = n, together with a proper assignment of lengths ℓ(e) to its edges e ∈ E,
and parameters N ≥ W 0(G), 1 ≤ ∆ ≤ N , 1 ≤ η ≤ ∆, and d ≥ (logN)64, such that ∆·d

η ≤ n, and

N is greater than a sufficiently large constant, so that, for example, N > 22
c2 holds, where c2 is the

constant from Theorem 3.9.

The algorithm consists of at most ∆ iterations. At the beginning of every iteration i, the algorithm is
given two vertices x, y ∈ V (G), and it must return a simple path Pi in G connecting x to y of length
at most d. (We may sometimes say that the algorithm is given a short-path query between the pair
(x, y) of vertices, and it returns the path Pi in response to the query). After that the length of some
special edges on path Pi may be doubled. We are guaranteed that the following property holds:

P1. If τ ′ > τ are two times at which the length of some edge e ∈ E(G) is doubled, then the algorithm
returned at least η paths in response to queries during the time interval (τ, τ ′] that contained e.

The algorithm may, at any time, produce a strongly well-structured cut (X,Y ) in G of sparsity

ΦG(X,Y ) ≤ (logN)64

d . If w(X) ≤ w(Y ), then let Z = X and Z ′ = Y ; otherwise, let Z = Y and
Z ′ = X. We also let J ′ ⊆ Z ′ denote the set of vertices that serve as endpoints of the edges of
EG(X,Y ). The vertices of Z ∪ J ′ are then deleted from G, and the algorithm continues with the re-
sulting graph G = G[Z ′ \ J ′]. Note that we are guaranteed that G remains a perfect well-structured
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graph after this modification. Once |V (G)| ≤ n/2 holds, the algorithm terminates, even if fewer than
∆ iterations have passed.

The algorithm may also, at any time, return “FAIL”. The probability that the algorithm ever returns
“FAIL” must be bounded by 1/N4.

For an integer 1 ≤ r ≤
⌈√

logN
⌉
, we say that an instance (G,∆, η, d,N) of the MaintainCluster

problem is r-restricted, if d ≤ 2r·
√
logN .

We prove the following theorem that provides an algorithm for the MaintainCluster problem. Though
we do not use the theorem directly, it easily follows from our results and we believe that it is interesting
in its own right.

Theorem 4.7 There is a randomized algorithm for the MaintainCluster problem, that, on an instance

(G,∆, η, d,N) of the problem, has running time at most O
(
W 0(G) · (W 0(G) + ∆) · 2O(

√
logN ·log logN)

)
.

4.3 The MaintainSpecialCluster Problem

We will sometimes need to use a slight variation of the MaintainCluster problem, that we refer to as
the MaintainSpecialCluster problem. In this problem, as before, we are given a perfect well-structured
graph G with proper lengths ℓ(e) on its edges e ∈ E(G), that subsequently undergoes some updates,
though G remains a perfect well-structured graph throughout the algorithm. Graph G is given in the
adjacency-list representation, and initially all special edges have length 1. For every vertex v ∈ V (G),
we define its initial weight w0(v) exactly as before, and we denote W 0(G) =

∑
v∈V (G)w

0(v) as before.
In addition to the perfect well-structured graph G, the algorithm is given as input a subset β of
vertices of G. Over the course of the algorithm, some vertices may be deleted from the set β, but
we will ensure that, throughout the algorithm, every special edge incident to a vertex in β has length
1. For intuition, the vast majority of the vertices of the input graph G lie in β, and this property
is preserved throughout the entire algorithm. Unlike the MaintainCluster problem, in a short-path
query, we are now given a single vertex x ∈ V (G), and we need to return a path P in the current
graph G that connects x to any vertex of β, such that no inner vertices of P lie in β. The last
endpoint of the path P is then deleted from β, and the lengths of some edges of the path P may
be doubled, like in the MaintainCluster problem. Like in the MaintainCluster problem, the algorithm
may, at any time, return a sparse strongly well-structured cut (X,Y ) in G, but now we require that
w(X) ≥ 1.8w(β ∩X) = 1.8|β ∩X|, that is, much of the weight of the vertices in X must come from
vertices that do not lie in β. The vertices of X, and all endpoints of the edges in EG(X,Y ) are then
deleted from G, and the algorithm continues. We are now ready to define the MaintainSpecialCluster
problem formally.

Definition 4.8 The input to the MaintainSpecialCluster problem consists of a perfect well-structured
graph G = (L,R,E) with a proper assignment of lengths ℓ(e) to its edges e ∈ E, that are given in the
adjacency-list representation, such that the length of every special edge is 1. Additionally, we are given
a subset β ⊆ V (G) of vertices with |β| ≥ 99|V (G)|

100 , and parameters N ≥ W 0(G), 1 ≤ ∆ ≤ |β|
(logN)128

,

1 ≤ η ≤ ∆, and d ≥ (logN)64, such that ∆·d
η ≤ |V (G)| − |β|+∆ · (logN)64, and N is greater than a

sufficiently large constant. Over the course of the algorithm, vertices may be deleted from set β, and
the lengths of some special edges may be increased, but the length of every special edge incident to a
vertex that currently lies in β is always 1.

The algorithm consists of at most ∆ iterations. At the beginning of every iteration i, the algorithm is
given a vertex x ∈ V (G), and it must return a simple path Pi in G connecting x to any vertex y ∈ β,
such that the length of the path is at most d, and no inner vertices on the path lie in β (if x ∈ β, that
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we require that path Pi only consists of the vertex x). After that, the length of some special edges on
path Pi may be doubled, and vertex y is deleted from β. We are guaranteed that Property P1 from the
definition of the MaintainCluster problem holds.

The algorithm may, at any time, produce a strongly well-structured cut (X,Y ) in G of sparsity

ΦG(X,Y ) ≤ (logN)64

d , such that w(X) ≥ 1.8|β ∩ X| holds. Let J ′ ⊆ Y denote the set of vertices
that serve as endpoints of the edges of EG(X,Y ). The vertices of X ∪ J ′ are then deleted from G, and
the algorithm continues with the resulting graph G = G[Y \ J ′]. Note that we are guaranteed that G
remains a perfect well-structured graph after this modification.

The algorithm may also, at any time, return “FAIL”. The probability that the algorithm ever returns
“FAIL” must be bounded by 1/4. Lastly, if the number of vertices in β decreases by a factor 2, the
algorithm terminates.

For an integer 1 ≤ r ≤
⌈√

logN
⌉
, we say that an instance (G, β,∆, η, d,N) of the MaintainSpecialCluster

problem is r-restricted, if d ≤ 2r·
√
logN .

We prove the following theorem that provides an algorithm for the MaintainSpecialCluster problem.

Theorem 4.9 There is a randomized algorithm for the MaintainSpecialCluster problem, that, on an
instance (G, β,∆, η, d,N) of the problem, has running time at most:

O
(
W 0(G) · (W 0(G)− |β|+∆) · 2O(

√
logN ·log logN)

)
.

In order to prove Theorems 4.7 and 4.9, we use induction. Specifically, we will consider r-restricted
instances of both problems problem, from smaller to larger values of r. The following theorem sum-
marizes our main result for the r-restricted MaintainCluster and MaintainSpecialCluster problems. It
uses the large enough constants c1 ≫ c2 that also appear in the statment of Theorem 3.9.

Theorem 4.10 For all r ≥ 1, there is a randomized algorithm for the r-restricted MaintainCluster
problem, that, on an instance (G,∆, η, d,N) of the problem, has running time at most:

c1 · (W 0(G))2 · 2c2
√
logN · (logN)16c2r + c1W

0(G) ·∆ · log4N,

and there is a randomized algorithm for the the r-restricted MaintainSpecialCluster problem, that, on
an instance (G, β,∆, η, d,N) of the problem, has running time at most:

c1 ·W 0(G) · (W 0(G)− |β|+∆) · 2c2
√
logN · (logN)16c2r.

Note that the proof of Theorem 4.7 easily follows from Theorem 4.10. Indeed, consider any instance
(G,∆, η, d,N) of the MaintainCluster problem. From the definition of the problem, d ≤ nη

∆ ≤ n ≤ N

must hold, and so in particular d ≤ 2r·
√
logN , for r =

⌈√
logN

⌉
. Therefore, any instance of the

problem is r-restricted for r =
⌈√

logN
⌉
. By applying Theorem 4.10 with r =

⌈√
logN

⌉
, we obtain

an algorithm for the given instance of the MaintainCluster problem, whose running time is bounded
by:

O
(
W 0(G) · (W 0(G) + ∆) · 2O(

√
logN) · (logN)O(

√
logN)

)
≤ O

(
W 0(G) · (W 0(G) + ∆) · 2O(

√
logN ·log logN)

)
,
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as required.

Similarly, the proof of Theorem 4.9 easily follows from Theorem 4.10. Indeed, consider any instance
(G, β,∆, η, d,N) of the MaintainSpecialCluster problem, and denote n = |V (G)|. As before, from
the definition of the problem, d ≤ nη

∆ ≤ n ≤ N must hold, and so in particular d ≤ 2r·
√
logN ,

for r =
⌈√

logN
⌉
. Therefore, any instance of the problem is r-restricted for r =

⌈√
logN

⌉
. By

applying Theorem 4.10 with r =
⌈√

logN
⌉
, we obtain an algorithm for the given instance of the

MaintainSpecialCluster problem, whose running time is bounded by:

O
(
W 0(G) · (W 0(G)− |β|+∆) · 2O(

√
logN) · (logN)O(

√
logN)

)
≤ O

(
W 0(G) · (W 0(G)− |β|+∆) · 2O(

√
logN ·log logN)

)
.

It now remains to complete the proofs of Theorems 3.9 and 4.10.

4.4 Completing the Proofs of Theorem 3.9 and Theorem 4.10

We prove the two theorems together, by induction on r. Specifically, we first show that, given an
efficient algorithms for the r-restricted MaintainCluster and MaintainSpecialCluster problems, we can
obtain an efficient algorithm for the (r+1)-restricted RouteAndCut problem. This result is summarized
in the following theorem, whose proof is deferred to Section 5.

Theorem 4.11 Suppose that, for some parameter r ≥ 1, there exists a randomized algorithm for the
r-restricted MaintainCluster problem, that, given as input an instance (G,∆, η, d,N) of the problem, has
running time at most: c1 ·(W 0(G))2 ·2c2

√
logN ·(logN)16c2r+c1 ·W 0(G)·∆·log4N . Assume further that

there also exists a randomized algorithm for the r-restricted MaintainSpecialCluster problem, that, on
an instance (G, β,∆, η, d,N) of the problem, has running time at most: c1 ·W 0(G) ·(W 0(G)−|β|+∆) ·
2c2
√
logN · (logN)16c2r. Then there is a randomized algorithm for the (r + 1)-restricted RouteAndCut

problem, that, given as input an instance (G,A,B,∆, η,N) of the problem with |V (G)| = n, has
running time at most c1 · n · (n− |B|) · 2c2

√
logN · (logN)16c2r+8c2.

Next, we show that an efficient algorithm for the r-restricted RouteAndCut problem implies an efficient
algorithm for the r-restricted MaintainCluster and MaintainSpecialCluster problems, in the following
theorem, whose proof is deferred to Sections 6 and 7.

Theorem 4.12 Suppose that, for some parameter r ≥ 1, there exists a randomized algorithm for
the r-restricted RouteAndCut problem, that, given as an input an instance (G,A,B,∆, η,N) of the
problem with |V (G)| = n, has running time at most c1 · n · (n − |B|) · 2c2

√
logN · (logN)16c2(r−1)+8c2.

Then there exists a randomized algorithm for the r-restricted MaintainCluster problem, that, on input
(G,∆, η, d,N) has running time at most: c1 · (W 0(G))2 ·2c2

√
logN · (logN)16c2r+c1 ·W 0(G) ·∆ · log4N ,

and there exists a randomized algorithm for the r-restricted MaintainSpecialCluster problem, that, on
input (G, β,∆, η, d,N) has running time at most: c1 ·W 0(G) ·(W 0(G)−|β|+∆) ·2c2

√
logN ·(logN)16c2r.

The majority of the remainder of this paper is dedicated to the proofs of Theorem 4.11 and Theo-
rem 4.12. The proofs of Theorem 3.9 and Theorem 4.10 easily follow from these theorems, as we show
next.

Recall that, from Corollary 3.21, there is an algorithm for the 1-restricted RouteAndCut problem, that,
given as input an instance (G,A,B,∆, η,N) of the problem with |V (G)| = n, has running time at most
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O
(
n · (n− |B|) · 2r·

√
logN · log6N

)
≤ c1 ·n · (n−|B|) · 2

√
logN · (logN)8c2 , since we can assume that c1

is a large enough constant. This proves the induction base for the RouteAndCut problem. From Theo-
rem 4.12 we then conclude that there exists a randomized algorithm for the 1-restrictedMaintainCluster
problem, that, on input (G,∆, η, d,N) has running time at most: c1 ·(W 0(G))2 ·2c2

√
logN ·(logN)16c2+

c1 ·W 0(G) ·∆ · log4N , and that there is the 1-restricted MaintainSpecialCluster problem, that, on input
(G, β,∆, η, d,N) has running time at most: c1 ·W 0(G) · (W 0(G) − |β| + ∆) · 2c2

√
logN · (logN)16c2 .

This proves the induction base for the MaintainCluster and the MaintainSpecialCluster problems.

For the induction step, consider an integer r ≥ 1, and assume that both Theorem 3.9 and Theorem 4.10
hold for r-restricted instances. Then from Theorem 4.11, there is a randomized algorithm for the (r+1)-
restricted RouteAndCut problem, that, given as input an instance (G,A,B,∆, η,N) of the problem with
|V (G)| = n, has running time at most c1 ·n · (n−|B|) ·2c2

√
logN · (logN)16c2r+8c2 , proving Theorem 3.9

for (r+1)-restricted instances. By applying Theorem 4.12 with integer (r+1), we then conclude that
there exists a randomized algorithm for the (r+ 1)-restricted MaintainCluster problem, that, on input
(G,∆, η, d,N) has running time at most: c1 ·(W 0(G))2 ·2c2

√
logN ·(logN)16c2(r+1)+c1 ·W 0(G)·∆·log4N ,

and that there exists a randomized algorithm for the (r+1)-restricted MaintainSpecialCluster problem,
that, on input (G, β,∆, η, d,N) has running time at most: c1 ·W 0(G) · (W 0(G)− |β|+∆) · 2c2

√
logN ·

(logN)16c2(r+1). This proves proving Theorem 4.10 for (r + 1)-restricted instances of MaintainCluster
and MaintainSpecialCluster. This completes the proofs of Theorems 3.9 and 4.10 from Theorems 4.11
and 4.12. In the next three sections we prove Theorem 4.11 and Theorem 4.12.

5 From r-Restricted MaintainCluster and MaintainSpecialCluster to (r+1)-
Restricted RouteAndCut: Proof of Theorem 4.11

The proof of Theorem 4.11 follows from the following theorem:

Theorem 5.1 Suppose that, for some parameter r ≥ 1, there exists a randomized algorithm for the r-
restricted MaintainCluster problem, that, given as input an instance (G,∆, η, d,N) of the problem, has
running time at most: c1·(W 0(G))2·2c2

√
logN ·(logN)16c2r+c1·W 0·∆·log4N . Suppose further that there

exists a randomized algorithm for the r-restricted MaintainSpecialCluster problem, that, given as input
an instance (G, β,∆, η, d,N) of the problem, has running time at most: c1 ·W 0(G) ·(W 0(G)−|β|+∆) ·
2c2
√
logN · (logN)16c2r. Then there is a randomized algorithm for the (r+1)-restricted s-t-SP problem,

that, given an instance (G,A,B,∆, η,N) of the problem with |V (G)| = n, has running running time
at most c1 · n · (n− |B|) · 2c2

√
logN · (logN)16c2r+7c2.

Before we provide the proof of Theorem 5.1, we show that the proof of Theorem 4.11 follows from it.

Proof of Theorem 4.11: Consider a parameter r ≥ 1, and assume that there exists a randomized
algorithm for the r-restricted MaintainCluster problem, that, on input (G,∆, η, d,N), has running
time at most: c1 · (W 0(G))2 · 2c2

√
logN · (logN)16c2r + c1 ·W 0 ·∆ · log4N . Assume further that there

exists a randomized algorithm for the r-restricted MaintainSpecialCluster problem, that, on input
(G, β,∆, η, d,N), has running time at most: c1 ·W 0(G) · (W 0(G) − |β| +∆) · 2c2

√
logN · (logN)16c2r.

From Theorem 5.1, there exists a randomized algorithm for the (r + 1)-restricted s-t-SP problem,
that, on input (G,A,B,∆, η,N) with |V (G)| = n, has running running time at most c1 · n · (n −
|B|) · 2c2

√
logN · (logN)16c2r+7c2 . From Theorem 3.19, there exists a randomized algorithm for the

(r + 1)-restricted RouteAndCut problem, that, on input (G,A,B,∆, η) with |V (G)| = n, has running
time is at most:
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O
(
c1 · n · (n− |B|) · 2c2

√
logN · (logN)16c2r+7c2

)
+O(n · (n− |B|))

≤ c1 · n · (n− |B|) · 2c2
√
logN · (logN)16c2r+8c2 ,

since c2 is a sufficiently large constant.

From now on we focus on the proof of Theorem 5.1. We denote the randomized algorithms for the
r-restricted MaintainCluster and MaintainSpecialCluster problems from the theorem statement by A
and A′, respectively.

We denote the input to the (r+1)-restricted s-t-SP problem by (G,A,B,∆, η,N), where G = (L,R,E)
is an n-vertex well-structured graph, A and B are two disjoint subsets of vertices of G, and N ≥ n,
∆ ≥ 1, and 1 ≤ η ≤ ∆ are parameters. Recall that no regular edge of G connects a vertex of A to a
vertex of B, ∆ ≤ n− |B|, |E| ≤ O(n · (n− |B|)), and (n−|B|)·η

∆ ≤ 2 · 2(r+1)
√
logN hold.

Recall that, as the algorithm progresses, we maintain lengths ℓ(e) for edges e ∈ E(G), and, additionally,
some vertices may leave the sets A and B. Since the number of iterations is bounded by ∆, at most ∆
vertices may be deleted from A and from B. For convenience, we denote by A0 and B0 the initial sets
A and B, respectively, to distinguish them from the sets that are maintained during the algorithm.

Note that we can assume that N is greater than a sufficiently large constant, so that, for example,
N > 22

c2 holds. Indeed, if this is not the case, then, from Theorem 3.20, we obtain a determinisic
algorithm that solves the input instance of s-t-SP in time:

O

(
n · (n− |B0|) · (n− |B

0|) · η
∆

· log6N
)
≤ O

(
n · (n− |B0|) ·N · log6N

)
≤ c1 · n · (n− |B0|) · 2c2

√
logN · (logN)16c2r+7c2 ,

since n ≤ N ≪ c1, and η ≤ ∆ (recall that, by definition, c1 ≫ c2 holds). Therefore, we assume from
now on that N is sufficiently large.

Additionally, we can assume that (n−|B0|)·η
∆ > 24

√
logN , since otherwise, from Theorem 3.20, we obtain

a determinisic algorithm that solves the input instance of s-t-SP in time:

O

(
n · (n− |B0|) · (n− |B

0|) · η
∆

· log6N
)
≤ O

(
n · (n− |B0|) · 24

√
logN · log6N

)
≤ c1 · n · (n− |B0|) · 2c2

√
logN · (logN)16c2r+7c2 .

Therefore, we assume from now on that:

(n− |B0|) · η
∆

> 24
√
logN (2)

Throughout the algorithm, we use the parameter Λ = (n− |B0|) · η·log
5 n

∆ . We let H be the graph that
is obtained from G, by adding a source vertex s, that connects to every vertex a ∈ A with a length-0
edge, and a destination vertex t, to which every vertex b ∈ B connects with a length-0 edge. If an
edge e ∈ E(G) is a special edge for graph G, then e remains a special edge for H. All other edges of
H, including edges incident to s and t, are called regular edges. For every edge e ∈ E(G), its length
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in H remains the same as in G, so for convenience, we denote the length of every edge e ∈ E(H) by
ℓ(e).

At the beginning of the algorithm, for each edge e ∈ E(H), its length ℓ(e) is set as follows: if e is
a regular edge, then ℓ(e) = 0, and if e is a special edge, then ℓ(e) = 1. The algorithm proceeds as
follows. We start by setting Q = ∅, and then perform at most ∆ iterations. In every iteration, the
algorithm must do one of the following:

R1. either return FAIL;

R2. or return a simple s-t path P of length at most Λ in the current graph H, such that P contains
exactly one vertex of B – the penultimate vertex on the path.

R3. or compute an assignment ℓ′(e) ≥ 0 of lengths to all edges e ∈ E(H), such that, if we denote
by Ẽ the set of all special edges of G with both endpoints in B, then

∑
e∈E(H) ℓ

′(e) ≤ Λ·∆
η log4 n

+∑
e∈E(H)\Ẽ ℓ(e); the length ℓ′(e) of every edge e that is incident to s or to t is 0; and the distance

from s to t in H, with respect to edge lengths ℓ′(·), is at least Λ
32 ;

Note that, if the algorithm returns assignments of lengths ℓ′(e) to edges e ∈ E(H) as in Outcome
R3, then these assignments of edge lengths define a modified cut-witness for G (see Definition 3.18).
In this case, the algorithm terminates, and returns the lengths ℓ′(e) of all edges e ∈ E(H \ {s, t}).
Slightly abusing the notation, for the sake of simplicity, we will call an assignment of lengths ℓ′(e) to
the edges e ∈ E(H) as described in Outcome R3 a cut-witness.

If the algorithm returns an s-t path P as in Outcome R2, then P \{s, t} is a modified acceptable path
for G (see Definition 3.17). To simplify the notation, we say that a path P described in Outcome R2
is an acceptable path. If the algorithm returns an acceptable path P , then we let P ′ = P \ {s, t}, and
we let a ∈ A, b ∈ B be the endpoints of path P ′. We remove a from A and b from B, add P ′ to Q,
and delete the edges (s, a) and (b, t) from H. Additionally, the lengths of some of the special edges on
P may be doubled; we assume that the algorithm receives the list of all such edges.

From the problem definition, for every special edge e ∈ E(H), the length of e is doubled once e
participates in exactly η paths that the algorithm returned since the last time the length of e was
doubled, or since the beginning of the algorithm – whatever happened last.

Lastly, in the case of Outcome R1, we terminate the algorithm and return “FAIL”, but we require
that the probability that the algorithm ever returns “FAIL” is bounded by 1

2 .

Some Useful Bounds

We denote by Espec the set of all special edges in graph G, and we denote by E∗ ⊆ Espec the set of all
special edges e = (u, v), such that u, v ∈ B holds at the end of the algorithm. Recall that the length
of a special edge e may only be increased once it participates in some path that the algorithm returns,
and, if a vertex x ∈ B lies on any path that the algorithm returns, then x is deleted from B. Therefore,
every edge e ∈ E∗ has length 1 throughout the algorithm. We start by bounding |Espec \ E∗| in the
following simple observation.

Observation 5.2 |Espec \ E∗| ≤ 2(n− |B0|).

Proof: We partition the set Espec \E∗ if edges into two subsets: set E1 contains all edges e, such that
at least one endpoint of e lies in V (G) \ B0, and set E2 contains all remaining edges of Espec \ E∗.
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Since every edge of E1 is incident to a vertex of V (G) \ B0, and every vertex of G may serve as an
endpoint of at most one special edge, |E1| ≤ n − |B0| must hold. Consider now some edge e ∈ E2.
From the definition, over the course of the algorithm, at least one endpoint of e was deleted from B.
Since at most ∆ vertices are deleted from B over the course of the algorithm, and since each such
vertex may serve as an endpoint of at most one special edge, we get that |E2| ≤ ∆ ≤ n − |B0|, from
the definition of the s-t-SP problem. Altogether, we get that |Espec \E∗| ≤ |E1|+ |E2| ≤ 2(n− |B0|).

For each edge e ∈ Espec, let ℓ∗(e) be the length of e at the end of the algorithm. In the next simple
observation we bound

∑
e∈Espec ℓ∗(e).

Observation 5.3
∑

e∈Espec ℓ∗(e) ≤ |Espec|+2(n−|B0|) log5 n, and
∑

e∈Espec\E∗ ℓ∗(e) ≤ 4(n−|B0|) log5 n.

Proof: Recall that, at the beginning of the algorithm, for every edge e ∈ Espec, we set ℓ(e) = 1.
Let E′ ⊆ Espec be the set of all edges e ∈ Espec with ℓ∗(e) > 1. Clearly,

∑
e∈Espec ℓ∗(e) ≤ |Espec| +∑

e∈E′ ℓ∗(e).

Let q be the total number of iterations of the algorithm, so that, at the end of the algorithm, |Q| = q
holds, and let Q = {P1, . . . , Pq}, where the paths are indexed in the order in which they were added
to Q. For all 1 ≤ i ≤ q, let Ci denote the length of path Pi when it was added to Q. Clearly, Ci ≤ Λ,
and

∑q
i=1Ci ≤ q · Λ ≤ ∆ · Λ.

Consider now some edge e ∈ E′, and recall that ℓ(e) was doubled at least once during the algorithm.
Let τ be the last time when the length of e was doubled. Then, prior to time τ , there were at least
η iterations i, during which the path Pi that was added to Q contained e, and the length of e during
the corresponding iteration was ℓ∗(e)

2 . In other words, edge e contributes at least ℓ∗(e)η
2 to

∑q
i=1Ci.

Altogether, we get that
∑q

i=1Ci ≥
∑

e∈E′
ℓ∗(e)η

2 . Therefore:

∑
e∈E′

ℓ∗(e) ≤
2
∑q

i=1Ci

η
≤ 2∆Λ

η
≤ 2(n− |B0|) · log5 n,

since Λ = (n− |B0|) · η·log
5 n

∆ . Altogether, we get that:

∑
e∈Espec

ℓ∗(e) ≤ |Espec|+
∑
e∈E′

ℓ∗(e) ≤ |Espec|+ 2(n− |B0|) log5 n.

Lastly, from Observation 5.2, |Espec| − |E∗| ≤ 2(n− |B0|), and so:

∑
e∈Espec\E∗

ℓ∗(e) ≤
∑

e∈Espec

ℓ∗(e)− |E∗| ≤ |Espec|+ 2(n− |B0|) log5 n− |E∗| ≤ 4(n− |B0|) log5 n.

Throughout the algorithm, we use a parameter N ′ = max
{
N, 8n · log5 n

}
. Let τ be any time in the

algorithm’s execution, and let H ′ be any subgraph of H \{s, t}, that is a perfect well-structured graph.
Recall that the weight of every vertex v ∈ V (H ′) is the length of the unique special edge incident to
v. From Observation 5.3, and since |Espec| ≤ n, the total weight of all vertices of H ′ must be bounded
by N ′. Notice also that, since N ≥ n, we get that N ′ ≤ 8N log5 n ≤ N log6N . It is then easy to see
that:
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logN ′ ≤ logN + 6 log logN ≤
(
1 +

1

64c2r

)
logN, (3)

since r ≤
⌈√

logN
⌉
and N is large enough. Additionally,

√
logN ′ ≤

√
logN + 6 log logN ≤

√
logN +√

6 log logN . Therefore:

2
√
logN ′ ≤ 2

√
logN · log6N ≤ 22

√
logN . (4)

We will use these facts later.

Algorithm for the (r + 1)-restricted s-t-SP problem: The description of our algorithm for the
(r + 1)-restricted s-t-SP problem consists of two parts. In the first part, we provide an algorithm for
maintaining an AT O for graph H. This algorithm in turn exploits algorithm A for the r-restricted
MaintainCluster problem and Algorithm A′ for the r-restricted MaintainSpecialCluster problem. In
the second part, we use the algorithm from Theorem 2.7 for the DAG-like SSSP problem on the
corresponding contracted graph.

5.1 Part 1 - Maintaining the AT O

In this part we describe our algorithm for maintaining the AT O (X , ρ, U, γ) for graph H. Notice that

|V (H)| = |V (G)|+ 2 = n+ 2. Throughout, we use a parameter d = (n−|B0|)·η
4∆·2

√
logN

. Notice that:

22
√
logN ≤ d ≤ 2r

√
logN−1. (5)

Here, the first inequality follows from Inequality 2. The second inequality follows since the input

instance of s-t-SP is (r + 1)-restricted, so (n−|B0|)·η
∆ ≤ 2 · 2(r+1)

√
logN holds.

Let U ⊆ V (H)\{s, t} be the collection of all vertices v, such that some special edge of Espec is incident
to v, and let U ′ = V (H) \U . Notice that H[U ] is a perfect well-structured graph (see Definition 3.1).
We let the initial collection X of vertex subsets contain the set U , and, for every vertex v ∈ U ′, a set
Xv = {v}. For convenience, we denote S = {s} and T = {t}. We distinguish between two cases. Case
1 happens when |U | > 2(n − |B0|) · (logN)128. In this case, we let U be the special cluster of the
AT O, and we set γ = |U | − 256(n− |B0|)(logN)64. Otherwise, Case 2 happens, the special cluster of
the AT O is undefined, and we set γ = 1.

Next, we assign, to every resulting set X ∈ X , an interval IX ⊆ {1, . . . , |V (H)| − γ + 1}, so that, for
each regular cluster X ∈ X , |IX | = |X|, and, if the special cluster is defined, then |IU | = |U | − γ + 1.
In order to do so, it is sufficient to define an ordering σ of the sets in X . We let S appear first in the
ordering, followed by the sets in {Xv | v ∈ U ′ ∩ L} in an arbitrary order, followed by set U , which is
followed by the sets in {Xv | v ∈ U ′ ∩R} in an arbitrary order, followed by T . Since vertices of U ′ are
not incident to special edges, it is easy to verify that no edge of H is a right-to-left edge with respect
to this initial AT O. Throughout the algorithm, we refer to each set X ∈ X of vertices as a cluster.
If |X| = 1, then we say that X is a singleton cluster. As the algorithm progresses, cluster U may
be partitioned into smaller and smaller clusters, with each such cluster assigned an interval that is
contained in the initial interval IU , but the clusters in {Xv | v ∈ U ′}, together with their corresponding
intervals IXv , remain unchanged. For convenience, we denote the initial set U by U0. We will ensure
that, throughout the algorithm, the following invariants hold:

I1. If X ∈ X is a non-singleton cluster, then H[X] is a perfect well-structured graph;
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I2. If the special cluster is defined, then U ∈ X holds throughout the algorithm, and moreover,
|U | ≥ γ always holds; and

I3. If e = (x, y) is a right-to-left edge with respect to the current AT O, and X,Y ∈ X are the
clusters that contain x and y, respectively, so that Y appears before X in the ordering σ of
clusters of X defined by the AT O, then e must be a special edge, and moreover, X = {x} and
Y = {y} must hold; in other words, X and Y are both singleton clusters.

It is easy to verify that the invariant holds for the initial AT O.

For each cluster X that is ever added to X , we denote by X0 the set X when it was just added to
X . If |X0| > 1 (that is, X is not a singleton cluster when it is added to X ), then, from Invariant
I1, H[X] is a perfect well-structured graph, so weights of vertices of X are well defined. In such a
case, we denote by W 0(X) the total weight of all vertices of X when X is added to X . Whenever a

non-singleton regular cluster X is added to set X , we define the parameter dX = min
{
|X0|·η

∆ , d
}
. We

may sometimes refer to dX as dX0 . Next, we partition all clusters that are ever added to X into leaf
and non-leaf clusters.

Definition 5.4 (Leaf and Non-Leaf Clusters) Let X be a cluster that was just added to X . We

say that X is a leaf cluster, if |X0| ≤ ∆·(logN)128

η . If X is not a leaf cluster, then we call it a non-leaf
cluster.

Recall that, if U is a special cluster, then |U0| > 2(n− |B0|) · (logN)128. Since ∆ ≤ n− |B0| from the
definition of the s-t-SP problem, we get that a special cluster may not be a leaf cluster.

Recall that in general, once a cluster X is added to the collection X of clusters of an AT O, it must
remain in X throughout the algorithm, though we may delete some vertices from X. A new cluster
Y may only be added to the set X if it is a subset of some cluster X that currently lies in X . When
we describe our algorithm for maintaining the AT O, it will be convenient for us to sometimes remove
a cluster X from the set X , and then immediately reinsert it into X . This is only done for clarity of
exposition and convenience of analysis, and we do not need to do so in order to maintain the AT O.
Additionally, we will sometimes replace a cluster X ∈ X with a new collection of clusters, each of
which contains a single vertex of X. In such a case we could simply identify X with one of the new
clusters and implement this update to X via a sequence of cluster splitting operations, though for
clarity of exposition we will treat all newly inserted clusters as new clusters, and we will think of X
as being removed from X .

Next, we describe an algorithm for maintaining each cluster X that is added to X . We employ different
algorithms for leaf clusters, non-leaf regular clusters, and the special cluster, if it is defined. We now
describe each of the three algorithms in turn.

5.1.1 Leaf Clusters

Let X be a leaf cluster that was just added to X . If X is a singleton cluster, then no further processing
of this cluster is needed. Assume now that X is a non-singleton cluster. We immediately remove X
from X , and instead add, for every vertex v ∈ X, a new singleton cluster {v} to X . We assign, to
each such new cluster {v}, an interval I{v} ⊆ IX of length 1, so that all intervals corresponding to the
vertices of X∩L appear before all intervals corresponding to the vertices of X∩R. Notice that the only
new right-to-left edges that are introduced by this transformation are the edges of EH(X ∩R,X ∩L),
which are all special edges. The number of such edges is |X ∩R| = |X ∩ L| ≤ |X|. We say that these
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new right-to-left edges are bad edges, and that they are owned by the leaf cluster X. We denote the set
of these edges by Ebad(X). From the above discussion, |Ebad(X)| ≤ |X|, and each edge e ∈ Ebad(X)
has span(e) ≤ |X|.

5.1.2 Non-Leaf Regular Clusters

Whenever a new non-leaf regular cluster X is added to X , we initialize Algorithm A for the r-restricted
MaintainCluster problem on graph H[X0], with parameters ∆ and η that remain unchanged, parameter
d replaced with dX , and parameter N replaced with N ′. We denote this instantiation of Algorithm A
by A(X). We now verify that (H[X0],∆, η, dX , N ′) is indeed a valid input instance for the r-restricted
MaintainCluster problem, in the following simple but technical observation, whose proof is deferred to
Section B.1 of Appendix.

Observation 5.5 (H[X0],∆, η, dX , N ′) is a valid input to the r-restricted MaintainCluster problem.

Recall that Algorithm A(X) may, at any time, produce a strongly well-structured cut (Y, Z) in H[X]

of sparsity ΦH[X](Y,Z) ≤ (logN ′)64

dX
. Below, we provide an algorithm for processing such a cut. But

before we do so, we provide the remaining details for processing cluster X.

Recall that the algorithm for the s-t-SP problem consists of at most ∆ iterations. At the beginning
of every iteration i, we will compute, for every non-leaf regular cluster X ∈ X , a pair x, y ∈ V (X) of
vertices (where possibly x = y). The corresponding algorithm A(X) is then required to compute a
simple path PX connecting x to y in graph H[X], whose length is at most dX . We will then process
the resulting paths PX for all non-leaf clusters X ∈ X , in order to obtain a short s-t path Pi in H, as
required. For each non-leaf cluster X ∈ X , we will ensure that E(Pi)∩E(H[X]) ⊆ E(PX). Following
that, the lengths of some special edges on path Pi may be doubled; we assume that our algorithm is
given the list of all such edges. In particular, for each non-leaf regular cluster X ∈ X , we are given a
subset of the special edges on path PX , whose lengths must be doubled. From the definition of the
s-t-SP problem, we are guaranteed that, for every non-leaf regular cluster X ∈ X , for every special
edge e ∈ E(H[X]), if τ ′ > τ are two times at which the length of e is doubled, then the number
of paths PX that Algorithm A(X) returned in response to queries during the time interval (τ, τ ′],
which contain e, is at least η, so Property P1 holds for the instance of the MaintainCluster problem
associated with X. If Algorithm A(X) ever returns “FAIL”, then we terminate our algorithm for the
s-t-SP problem, and return “FAIL” as well.

Lastly, whenever, for a non-leaf regular cluster X ∈ X , |X| falls below |X0|
2 , we terminate Algorithm

A(X), and we say that cluster X is destroyed. We then think of the resulting set X of vertices as a new
cluster that was just added to X , and treat it as such (so we think that, once cluster X is destroyed,
it is deleted from X , and instead a new cluster, that is identical to X, is inserted into X ). It now
remains to describe the algorithm to process sparse cuts produced by Algorithm A(X) for non-leaf
regular clusters X ∈ X .

Processing a Cut (Y,Z) in Cluster X

We assume that we are given a non-leaf regular cluster X ∈ X , and a strongly well-structured cut

(Y,Z) in H[X] of sparsity ΦH[X](Y,Z) ≤ (logN ′)64

dX
. We denote by J ⊆ Y and J ′ ⊆ Z the sets of

vertices that serve as endpoints of the edges of EH(Y,Z). Since the edges of EH(Y,Z) are special
edges, it must be the case that J ⊆ R and J ′ ⊆ L. Denote Y ′ = Y \ J and Z ′ = Z \ J ′. We start with
the following simple observation, whose proof is deferred to Section B.2 of Appendix.
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Observation 5.6 Each of the graphs H[Y ′], H[Z ′] is a perfect well-structured graph.

Assume first that w(Y ) ≤ w(Z). We update the set X of vertices, by deleting the vertices of Y ∪ J ′

from it; in other words, we set X = Z ′. We then add Y ′ as a new cluster to X , and additionally, for
every vertex v ∈ J ∪ J ′, we add a new singleton cluster {v} to X . We define the intervals associated
with the new clusters, as follows. We assign, to every vertex v ∈ J ′ ∪J an interval I{v} ⊆ IX of length
1, and additionally we define two intervals: IY ′ ⊆ IX of length |Y ′| and IZ′ ⊆ IX of length |Z ′|, so
that all resulting intervals IY ′ , IZ′ ,

{
I{v}

}
v∈J∪J ′ are mutually disjoint, and the intervals are ordered

as follows: we place the intervals corresponding to the vertices of J ′ first, followed by interval IZ′ ,
then IY ′ , and lastly the intervals corresponding to the vertices of J . Since we have set X = Z ′, we
let IX = IZ′ . From Observation 5.6, Invariant I1 continues to hold. We now show that Invariant I3
continues to hold, in the following observation, whose proof is deferred to Section B.3 of Appendix.

Observation 5.7 If e = (u, v) is a right-to-left edge that was added due to the above transformation
of AT O, then u ∈ J and v ∈ J ′ holds, and so e ∈ EH(Y,Z), and e is a special edge.

Since we have defined a separate singleton cluster for every vertex of J ∪ J ′, from Observation 5.7,
Invariant I3 continues to hold. Moreover, the only right-to-left edges that we have introduced during
this update are the edges of EH(Y, Z). Notice that the span(e) value of each such edge is at most |X|.
We call all edges of EH(Y,Z) bad edges, and we say that they are owned by cluster X.

Recall that so far we have assumed that w(Y ) ≤ w(Z). If w(Y ) > w(Z), then the algorithm remains
the same, except that at the end we update cluster X by deleting the vertices of Z ∪ J from it; or
equivalently, we set X = Y ′. We also set IX = IY ′ . This concludes the algorithm for processing the
cut (Y,Z) of a non-leaf regular cluster X ∈ X .

5.1.3 The Special Cluster

Recall that Case 1 happens if |U0| > 2(n−|B0|) · (logN)128 holds. In this case, we let U be the special
cluster of the AT O, and we set γ = |U0| − 256(n − |B0|)(logN)64. We now show an algorithm for
processing the special cluster U if Case 1 happened. We initialize Algorithm A′ for the r-restricted
MaintainSpecialCluster problem on graph H[U0], with parameters ∆ and η that remain unchanged,

parameter d replaced by parameter dU = max
{
(logN ′)64,

(
|U0 \B0|+∆

) η

4∆·2
√
logN

}
, and parameter

N replaced with N ′. We also initially set β = B0∩U0, and we ensure that, throughout the algorithm,
β = B∩U holds. In other words, whenever a vertex of β is deleted from B or from U , it is also deleted
from β.

We denote this instantiation of Algorithm A′ by A′(U). We now verify that (H[U0], β,∆, η, d,N ′)
is indeed a valid input instance for the r-restricted MaintainSpecialCluster problem, in the following
simple observation, whose proof is deferred to Section B.4 of Appendix.

Observation 5.8 (H[U0], β,∆, η, dU , N
′) is a valid input to the r-restricted MaintainSpecialCluster

problem.

Recall that Algorithm A′(U) may, at any time, produce a strongly well-structured cut (Y, Z) in H[U ]

of sparsity ΦH[U ](Y, Z) ≤ (logN ′)64

dU
, such that w(Y ) ≥ 1.8|β∩Y | holds. Below, we provide an algorithm

for processing such a cut. But before we do so, we provide the remaining details for processing cluster

U . We will show later that, throughout the algorithm, |β| ≥ |B
0∩U0|
2 holds.

Recall that the algorithm for the s-t-SP problem consists of at most ∆ iterations. At the beginning of
every iteration i, we may compute a single vertex x ∈ U , that is sent as a query to Algorithm A′(U).
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Algorithm A′(U) is then required to compute a simple path P (x) connecting x to some vertex y ∈ β
in graph H[U ], whose length is at most dU , such that no inner vertex of P (x) lies in β (if x ∈ β, then
we require that path P (x) only consists of the vertex x). Our algorithm will then compute a short s-t
path Pi in H, as required, so that E(Pi) ∩ E(H[U ]) ⊆ E(P (x)). Following that, the lengths of some
special edges on path Pi may be doubled; we assume that our algorithm is given the list of all such
edges. In particular, we are given a subset of the special edges on path P (x), whose lengths must be
doubled. Additionally, vertex y that serves as an endpoint of path P (x) is deleted from set B and
from set β. This ensures that the lengths of the special edges that are incident to vertices of β always
remain 1. We note that in some of the iterations the algorithm for the s-t-SP problem may not ask
any queries to algorithm A′(U), and in such iterations the lengths of the special edges of H[U ] are not
doubled. From the definition of the s-t-SP problem, we are guaranteed that, for every special edge
e ∈ E(H[U ]), if τ ′ > τ are two times at which the length of e is doubled, then the number of paths
P (x) that Algorithm A′(U) returned in response to queries during the time interval (τ, τ ′], which
contain e, is at least η, so Property P1 holds for the instance of the MaintainSpecialCluster problem
associated with U . If Algorithm A′(U) ever returns “FAIL”, then we terminate our algorithm for the
s-t-SP problem, and return “FAIL” as well.

Finally, we provide an algorithm for processing the sparse cuts that Algorithm A′(U) may pro-
duce. Suppose Algorithm A′(U) returns a strongly well-structured cut (Y,Z) in H[U ] of sparsity

ΦH[U ](Y,Z) ≤ (logN ′)64

dU
, such that w(Y ) ≥ 1.8|β ∩ Y | holds. We denote by J ⊆ Y and J ′ ⊆ Z the sets

of vertices that serve as endpoints of the edges of EH(Y,Z), and we let Y ′ = Y \ J and Z ′ = Z \ J ′.
Using the same reasoning as in the proof of Observation 5.6, each of the graphs H[Y ′], H[Z ′] is a
perfect well-structured graph. We will show below that |Z ′| ≥ γ must hold. We delete the vertices of
Y ∪ J ′ from U , so that U = Z ′ now holds, and we add Y ′ as a new cluster to X . Additionally, for
every vertex v ∈ J ∪ J ′, we add a new singleton cluster {v} to X . We define the intervals associated
with the new clusters as follows. We assign, to every vertex v ∈ J ′ ∪ J an interval I{v} ⊆ IU of length
1, and additionally we define two intervals: IY ′ ⊆ IU of length |Y ′| and IZ′ ⊆ IU of length |Z ′|−γ+1,
so that all resulting intervals IY ′ , IZ′ ,

{
I{v}

}
v∈J∪J ′ are mutually disjoint, and the intervals are ordered

as follows: we place the intervals corresponding to the vertices of J ′ first, followed by interval IZ′ ,
then IY ′ , and lastly the intervals corresponding to the vertices of J . Since we have set U = Z ′, we
let IU = IZ′ . As before, Invariant I1 continues to hold. Using the same reasoning as in the proof of
Observation 5.7, if e = (u, v) is a right-to-left edge that was added due to the above transformation
of AT O, then u ∈ J and v ∈ J ′ holds, and so e ∈ EH(Y, Z), and e is a special edge. In particular,
Invariant I3 continues to hold. Moreover, the only right-to-left edges that we have introduced during
this update are the edges of EH(Y,Z). Notice that the span(e) value of each such edge is at most
|U0| − γ + 1. We call all edges of EH(Y, Z) bad edges, and we say that they are owned by cluster U .
We denote by Ebad(U) the set of all bad edges that are owned by cluster U over the course of the
algorithm. In the following observation we show that |U | ≥ γ holds throughout the algorithm, and we
bound |Ebad(U)|.

Observation 5.9 Over the course of the algorithm, at most 64|U0 \B0|+128∆ · (logN)64 ≤ 256(n−
|B0|)(logN)64 vertices are deleted from U , and so throughout the algorithm, |U | ≥ γ and |β| ≥ |U

0∩B0|
2

hold. Moreover, |Ebad(U)| ≤ ∆·26
√
logN

η .

Proof: Recall that we denoted by E∗ ⊆ Espec the set of all special edges e = (u, v), such that u, v ∈ B
holds at the end of the algorithm. Let B∗ ⊆ B the set of vertices containing all endpoints of the edges
in E∗, and let Ũ = U0 \ B∗. For every vertex v ∈ U0, we define a weight w̃(v) as follows: if, at the
end of the algorithm, v ∈ U , then w̃(v) is the weight of v at the end of the algorithm; otherwise, w̃(v)
is the weight of v just before it is deleted from U . We use the following observation, whose proof is
very similar to the proof of Observation 5.3, and deferred to Section B.5 of Appendix.
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Observation 5.10
∑

v∈Ũ w̃(v) ≤ 8|U0 \B0|+ 8∆ · (logN ′)64.

Consider now some cut (Y,Z) of U that AlgorithmA′(U) produced. Recall that |EH(Y,Z)| ≤ (logN ′)64

dU
·

w(Y ), and that w(Y ) ≥ 1.8|β ∩ Y | holds. Since B∗ ∩ Y ⊆ β ∩ Y , we get that w(Y ) ≥ 1.8|B∗ ∩ Y |.
Since the weight of every vertex in B∗ remains 1 throughout the algorithm, we get that w(Y \B∗) =
w(Y )−|B∗∩Y | ≥ w(Y )− w(Y )

1.8 ≥ 0.44w(Y ). In particular, |Y ∩B∗| ≤ w(Y )
1.8 ≤

w(Y \B∗)
1.8·0.44 ≤ 1.3w(Y \B∗).

Moreover, |Y | ≤ w(Y ) = w(Y \ B∗) + |Y ∩ B∗| ≤ 2.3w(Y \ B∗) holds. Recall that all vertices of Y ,
and also the endpoints of the special edges in EH(Y,Z) are deleted from cluster U following the cut
(Y,Z). Therefore, the total number of vertices deleted from U following the cut (Y,Z) is at most
2|Y | ≤ 4.6w(Y \B∗) ≤ 4.6

∑
v∈Y ∩Ũ w̃(v). Lastly:

|EH(Y, Z)| ≤ (logN ′)64

dU
· w(Y ) ≤ (logN ′)64

dU
· 2.3w(Y \B∗) ≤ 2.3 · (logN ′)64

dU
·
∑

v∈Y ∩Ũ

w̃(v).

Consider now all cuts (Y1, Z1), . . . , (Yr, Zr) that Algorithm A′(U) ever produced, in the order in
which they were produced. For all 1 ≤ i ≤ r, following the cut (Yi, Zi), the vertices of Yi, along
with some additional vertices, were deleted from U . From the above discussion, the total number
of vertices deleted from U following the cut is bounded by 4.6

∑
v∈Yi∩Ũ w̃(v), and |EH(Yi, Zi)| ≤

2.3·(logN ′)64

dU
·
∑

v∈Y ∩Ũ ·
∑

v∈Yi∩Ũ w̃(v). We conclude that the total number of vertices deleted from U
over the course of the algorithm is bounded by:

4.6
r∑

i=1

∑
v∈Yi∩Ũ

w̃(v) ≤ 4.6
∑
v∈Ũ

w̃(v)

≤ 64|U0 \B0|+ 64∆ · (logN ′)64

≤ 64|U0 \B0|+ 128∆ · (logN)64

≤ 256(n− |B0|)(logN)64,

from Inequality 3. Since, at the beginning of the algorithm, |U | > 2(n− |B0|) · (logN)128 holds, and
since γ = |U0| − 256(n− |B0|)(logN)64, we get that |U | ≥ γ holds throughout the algorithm.

Next, we show that, throughout the algorithm, |β| ≥ |U0∩B0|
2 holds. Recall again that |U0| > 2(n −

|B0|) · (logN)128, and that |U0 \ B0| ≤ n − |B0|. Therefore, |U0 ∩ B0| ≥ |U0| − |U0 \ B0| ≥ (n −
|B0|) · (logN)128. Set β contains all vertices of U0 ∩ B0, except for the vertices that were deleted
from B (whose number is bounded by ∆ ≤ n − |B0|), and the vertices that were deleted from U
(whose number is bounded by 256(n − |B0|)(logN)64). Therefore, throughout the algorithm, |β| ≥
|U0 ∩ B0| − 257(n − |B0|)(logN)64 must hold. Since |U0 ∩ B0| ≥ (n − |B0|) · (logN)128, we get that

|β| ≥ |U
0∩B0|
2 holds throughout the algorithm.

Lastly, we get that:
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|Ebad(U)| ≤
r∑

i=1

|EH(Yi, Zi)|

≤ 2.3 · (logN ′)64

dU
·

r∑
i=1

∑
v∈Y ∩Ũ

w̃(v)

≤ 10∆ · 22
√
logN ′

(|U0 \B0|+∆) · η
·
∑
v∈Ũ

w̃(v)

≤ 10∆ · 22
√
logN ′

(|U0 \B0|+∆) · η
·
(
8|U0 \B0|+ 8∆(logN ′)64

)
≤ ∆ · 26

√
logN

η
,

since dU = max
{
(logN ′)64,

(
|U0 \B0|+∆

) η

4∆·2
√
logN

}
≥
(
|U0 \B0|+∆

) η

4∆·2
√
logN

; we have also

used Inequality 4.

5.1.4 Child Clusters, Descendant Clusters, and a Useful Bound

Let X̃ denote the set of all clusters that ever belonged to X over the course of the algorithm. We
partition X̃ into three subsets: set X̃0 contains all singleton clusters, set X̃1 contains all non-singleton
leaf clusters, and set X̃2 contains all non-leaf clusters. If the special cluster is defined, then we set
X̃ ′2 = X̃2 \ {U}, and otherwise we let X̃ ′2 = X̃2.

Let Ebad be the set of all edges of G that ever served as right-to-left edges of the AT O. For every
cluster X ∈ X̃1 ∪ X̃2, we denote by Ebad(X) the set of all bad edges that cluster X owns. Recall that,
once an edge e = (x, y) is added to the set Ebad(X) of edges, its initial value span(e) is bounded by
|X|. From Invariant I3, once edge e was added to set Ebad, if Y, Y ′ were the clusters of X containing
x and y respectively, then Y = {x} and Y ′ = {y} holds. In other words, when e was added to Ebad, Y
and Y ′ were singleton clusters. Therefore, these clusters, and their corresponding intervals IY and IY ′ ,
remain unchanged for the remainder of the algorithm. In particular, the value span(e) also remains
unchanged for the remainder of the algorithm.

Recall that, from Invariant I1, for every cluster X ∈ X̃ ′2, graph H[X] remains a perfect well-structured
graph for as long as X lies in X . Recall also that we have defined weights of vertices for such graphs:
for every vertex v ∈ X, its weight w(v) is the length of the unique special edge incident to v in H[X].
As the algorithm progresses, the lengths of some special edges grow, and so do the weights of the
vertices in H[X]. For every vertex v ∈ X0, we denote by w0

X(v) the weight of v when cluster X
was first added to set X , and algorithm A(X) was initialized. If v belongs to set X when algorithm
A(X) is terminated (e.g. because |X| fell below |X0|/2), then we let w∗X(v) denote the weight of v in
graph H[X] when algorithm A(X) terminated. Otherwise, we denote by w∗X(v) the weight of v just
before it was deleted from X. We also denote W 0(X) =

∑
v∈X0 w0

X(v), and W ∗(X) =
∑

v∈X0 w∗X(v).
From Observation 5.3, the total length of all edges in Espec at the end of the algorithm is bounded by
|Espec|+ 2(n− |B0|) log5 n ≤ 4n log5 n, and so, for every cluster X ∈ X̃2:

W 0(X) ≤W ∗(X) ≤ 8n log5 n. (6)

Recall that, at the beginning of the algorithm, X may contain at most one non-leaf cluster – the
cluster U . A new non-leaf cluster X ′ may only be inserted into X in one of the following two cases:
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(i) there is some existing non-leaf cluster X ∈ X , for which |X| fell below |X0|/2, and X ′ = X; or (ii)
there is some existing non-leaf cluster X ∈ X , for which Algorithm A(X) or A′(X) just computed a
sparse well-structured cut (Y,Z), and X ′ is contained in one of the sets Y or Z. In the latter case,
the vertices of X ′ (along, possibly, with some additional vertices) are deleted from X. In either one
of the above two cases, we say that X is the parent-cluster of X ′, and X ′ is the child-cluster of X.
We can now naturally define a descendant-ancestor relationship between clusters: Cluster X ′ is a
descendant-cluster of another cluster X, iff there is a sequence X ′ = X1, X2, . . . , Xr = X of r ≥ 1
clusters, such that, for all 1 ≤ i < r, Xi is a child-cluster of Xi+1. If X ′ is a descendant-cluster
of X, then X is the ancestor-cluster of X ′. It is easy to verify that, for every pair X1, X2 ∈ X̃2

of clusters, either X0
1 ∩ X0

2 = ∅, or X0
1 ⊆ X0

2 (in which case X1 is a descendant cluster of X2), or
X0

2 ⊆ X0
1 (in which case X2 is a descendant cluster of X1). From the above discussion, if X1 is a

child-cluster of some cluster X2 ∈ X ′2, then either |X0
1 | < |X0

2 |/2; or, at the time when X1 was created,∑
v∈X1

w(v) ≤
∑

v∈X2
w(v)/2 held, following which the vertices of X1 were deleted from X2.

Consider now a pair X1, X2 ∈ X̃ ′2 of clusters, where X2 is a descendant cluster of X1. We say that X2

is a close descendant of X1 iff |X0
2 | > |X0

1 |/2. In the following claim, we bound the number of close
descendants of every cluster in X̃ ′2. The proof is somewhat technical and deferred to Section B.6 of
Appendix.

Claim 5.11 Every cluster X ∈ X̃ ′2 has at most 64 ⌈log n⌉ close descendants.

For the sake of analysis, we need to bound
∑

X∈X̃ ′
2
W ∗(X). This bound will later be used both in

order to bound the running time of the algorithm, and in order to bound
∑

e∈Ebad span(e).

Observation 5.12
∑

X∈X̃ ′
2
W ∗(X) ≤ (n− |B0|) · (logN)133.

Proof: Recall that for every cluster X ∈ X̃ ′2, W 0(X) ≤ 8n log5 n holds (see Inequality 6). For
all 0 ≤ i < ⌈log n⌉ and 0 ≤ j ≤ 4 ⌈log n⌉, we denote by Xi,j the set of all clusters X ∈ X̃ ′2 with
2i ≤ |X0| < 2i+1 and 2j ≤W 0(X) < 2j+1.

Fix a pair 0 ≤ i < ⌈log n⌉ and 0 ≤ j ≤ 4 ⌈log n⌉ of indices, and consider the collection Xi,j of clusters.
Notice that, if X,X ′ ∈ Xi,j , and X ′ is a descendant-cluster of X, then X ′ is a close descendant of X.
From Claim 5.11, for every cluster X ∈ Xi,j , at most 64 ⌈log n⌉ descendant clusters of X lie in Xi,j .
Using a simple greedy algorithm, we can then paratition the clusters in Xi,j into z = 64 ⌈log n⌉ + 1
subsets Y1, . . . ,Yz, such that, for all 1 ≤ z′ ≤ z, for every pair X,X ′ ∈ Yz′ of clusters, neither of the
two clusters is a descendant of the other. In order to do so, we consider the clusters X ∈ Xi,j one
by one, in the non-decreasing order of |X0|, breaking ties arbitrarily. When cluster X is considered,
there must be some index 1 ≤ z′ ≤ z, such that no descendant of X lies in Yz′ , and we add X to such
a set Yz′ . For all 1 ≤ z′ ≤ z, we now bound

∑
X∈Yz′

W ∗(X) separately.

Fix any index 1 ≤ z′ ≤ z, and denote Y ′ =
{
X0 | X ∈ Yz′

}
. Since, for every pair X,X ′ of clusters in

Yz′ , neither is the descendant of the other, all sets in Y ′ are mutually disjoint.

Assume first that Case 2 happened, so the special cluster is undefined, and |U0| ≤ 2(n−|B0|)·(logN)128

holds. From the construction of the set U of vertices at the beginning of the algorithm, for every special

edge e ∈ Espec, both endpoints of e lie in U0. Therefore, |Espec| ≤ |U
0|
2 ≤ (n− |B0|) · (logN)128. From

Observation 5.3, the total length of all edges in Espec at the end of the algorithm is bounded by
|Espec|+ 2(n− |B0|) log5 n ≤ (n− |B0|) · (logN)129. Since the clusters in Y ′ are mutually disjoint, it
is easy to verify that

∑
X∈Yz′

W ∗(X) ≤ 2(n− |B0|) · (logN)129.

Next, we consider Case 1, where the special cluster is defined. Let U∗ denote the set U of vertices at
the end of the algorithm. Notice that U∗ is disjoint from all sets of vertices in Y ′. For every vertex
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v ∈ U∗, let w∗(v) be the weight of v at the end of the algorithm, and let W ∗(U) =
∑

v∈U∗ w∗(v).
From Observation 5.3, the total length of all edges in Espec at the end of the algorithm is bounded by
|Espec|+ 2(n− |B0|) log5 n, and so:

∑
X∈Yz′

W ∗(X) +W ∗(U) ≤ 2|Espec|+ 4(n− |B0|) log5 n. (7)

Recall that all vertices that serve as endpoints of the edges in Espec lie in U0. From Observation 5.9,
|U0 \ U∗| ≤ 256(n − |B0|) · (logN)64. Therefore, |U∗| ≥ 2|Espec| − 256(n − |B0|) · (logN)64, and
W ∗(U) ≥ |U∗| ≥ 2|Espec| − 256(n− |B0|) · (logN)64. Combining this with Inequality 7, we get that:

∑
X∈Yz′

W ∗(X) ≤ 2|Espec|+4(n−|B0|) log5 n−W ∗(U) ≤ 260(n−|B0|)·(logN)64 ≤ 2(n−|B0|)·(logN)129.

To conclude, we have shown that, for every index 1 ≤ z′ ≤ z:

∑
X∈Yz′

W ∗(X) ≤ 2(n− |B0|) · (logN)129.

Summing this up over all indices 1 ≤ z′ ≤ z, and recalling that z = 64 ⌈log n⌉+ 1 ≤ 128 log n, we get
that:

∑
X∈Xi,j

W ∗(X) ≤ 256(n− |B0|) · (logN)130.

Lastly, by summing up the above inequality over all indices 0 ≤ i < ⌈log n⌉ and 0 ≤ j ≤ 4 ⌈log n⌉, we
get that:

∑
X∈X̃ ′

2

W ∗(X) ≤ 212(n− |B0|) · (logN)132 ≤ (n− |B0|) · (logN)133.

We obtain the following corollary of Observation 5.12, that allows us to bound the total span of all
bad edges owned by the clusters in X̃ ′2.

Corollary 5.13
∑

X∈X̃ ′
2

∑
e∈Ebad(X) span(e) ≤

(n−|B0|)·∆·24
√
logN

η .

Proof: Consider a cluster X ∈ X ′2, and let (Y,Z) be a cut that Algorithm A(X) returned. Recall

that |EH(Y,Z)| ≤ (logN ′)64

dX
·min {w(Y ), w(Z)}. If w(Y ) ≤ w(Z), then let Z ′ = Y , and otherwise let

Z ′ = Z. Then |EH(Y, Z)| ≤ (logN ′)64

dX
· w(Z ′) ≤ (logN ′)64

dX
·
∑

v∈Z′ w∗X(v) holds. Moreover, all vertices
of Z ′ are deleted from X following the cut (Y,Z), and the edges of EH(Y, Z) are added to the set

Ebad(X) of bad edges that X owns. We assign to every vertex v ∈ Z ′ a charge of (logN ′)64

dX
· w∗X(v)

units, so that the total charge assigned to the vertices of Z ′ is at least |EH(Y,Z)|. It is then easy to
see that, at the end of Algorithm A(X), the total number of edges in Ebad(X) is bounded by the total
charge to all vertices of X0, which, in turn, is bounded by:

(logN ′)64

dX
·
∑
v∈X0

w∗X(v) =
(logN ′)64

dX
·W ∗(X).
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Next, we show that dX ≥ |X0|·η
∆·22

√
logN

. Indeed, recall that d = (n−|B0|)·η
4∆·2

√
logN

and so:

dX = min

{
|X0| · η

∆
, d

}
= min

{
|X0| · η

∆
,
(n− |B0|) · η
4∆ · 2

√
logN

}
. (8)

If Case 2 happened, then |U0| ≤ 2(n − |B0|) · (logN)128, and, since X0 ⊆ U0, we get that |X0| ≤
2(n−|B0|) ·(logN)128. If Case 1 happened, then, from Observation 5.9, |X0| ≤ 256(n−|B0|)(logN)64.
Therefore, in any case, |X0| ≤ 2(n− |B0|) · (logN)128 must hold. Substituting the bound n− |B0| ≥
|X0|

2(logN)128
into Inequality 8, we get that dX ≥ |X0|·η

∆·22
√
logN

. Altogether, we get that:

|Ebad(X)| ≤ (logN ′)64

dX
·W ∗(X) ≤ ∆ · 22

√
logN · (logN ′)64

|X0| · η
·W ∗(X) ≤ ∆ · 23

√
logN

|X0| · η
·W ∗(X).

Since for every edge e ∈ Ebad(X), span(e) ≤ |X0|, we get that:

∑
e∈Ebad(X)

span(e) ≤ |X0| · |Ebad(X)| ≤ ∆ · 23
√
logN

η
·W ∗(X).

Finally, from Observation 5.12:

∑
X∈X̃ ′

2

∑
e∈Ebad(X)

span(e) ≤ ∆ · 23
√
logN

η
·
∑
X∈X̃ ′

2

W ∗(X)

≤ (n− |B0|) ·∆ · 23
√
logN · (logN)133

η

≤ (n− |B0|) ·∆ · 24
√
logN

η
.

5.1.5 Bounding the Running Time of Part 1 and Probability of Failure

Recall that, for every cluster X ∈ X̃ ′2, the total running time of Algorithm A(X) is bounded by:

c1 · (W 0(X))2 · 2c2
√
logN ′ · (logN ′)16c2r + c1 ·W 0(X) ·∆ · log4N ′

≤ c1 ·W 0(X) · (W 0(X) + ∆) · 2c2
√
logN · (logN)16c2r+6 ·

(
1 +

1

64c2r

)16c2r

≤ c1 ·W 0(X) · (W 0(X) + ∆) · 2c2
√
logN · (logN)16c2r+7.

(We have used the fact that, from Inequality 4, 2
√
logN ′ ≤ 2

√
logN · log6N , and from Inequality 3,

logN ′ ≤
(
1 + 1

64c2r

)
· logN . Additionally, we used the assumption that N is sufficiently large.).

Summing up over all clusters X ∈ X̃ ′2, from Observation 5.12, we get that the total running time of
all Algorithm A(X) for clusters X ∈ X̃ ′2 is bounded by:
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∑
X∈X̃ ′

2

c1 ·W 0(X) · (W 0(X) + ∆) · 2c2
√
logN · (logN)16c2r+7

≤

∆ ·
∑
X∈X̃ ′

2

W 0(X) +

 ∑
X∈X̃ ′

2

W 0(X)

2 · c1 · 2c2√logN · (logN)16c2r+7

≤ c1 · (n− |B0|)2 · 2c2
√
logN · (logN)16c2r+273

≤ c1 · n · (n− |B0|) · 2c2
√
logN · (logN)16c2r+273.

(We have used the fact that ∆ ≤ n− |B0| from the problem definition).

Assume now that Case 1 happened. In this case, the running time of Algorithm A′(U) is bounded by:

c1 ·W 0(U) · (W 0(U)− |β|+∆) · 2c2
√
logN ′ · (logN ′)16c2r

≤ c1 ·W 0(U) · (W 0(U)− |β|+∆) · 2c2
√
logN · (logN)16c2r+6 ·

(
1 +

1

64c2r

)16c2r

≤ c1 ·W 0(U) · (W 0(U)− |β|+∆) · 2c2
√
logN · (logN)16c2r+7

≤ 2c1 · n · (n− |B0|) · 2c2
√
logN · (logN)16c2r+7.

(As before, we have used the fact that, from Inequality 4, 2
√
logN ′ ≤ 2

√
logN ·log6N , and from Inequality

3, logN ′ ≤
(
1 + 1

64c2r

)
· logN . Additionally, since, at the beginning of the algorithm, the length of

every special edge is 1, W 0(U) = |U0| ≤ n. From the problem definition, ∆ ≤ n− |B0|, and it is easy
to see that W 0(U)− |β| = |U0| − |β| ≤ n− |B0| must hold).

Additional time that is required in order to maintain the AT O is asymptotically bounded by the
total number of edges that are ever present in H, which, from the problem definition, is bounded by
O(|E(H)|) ≤ O(n · (n − |B0|)). Overall, since we can assume that c2 is a large enough constant, the
running time of Part 1 of the algorithm is bounded by:

c1 · n · (n− |B0|) · 2c2
√
logN · (logN)16c2r+c2 .

Notice that, since N ≥ n is large enough, the above running time is also bounded by N3. Therefore,
the total number of clusters that ever lie in X is also bounded by N3. For each regular non-leaf cluster
X ∈ X̃ , the probability that Algorithm A(X) returns “FAIL” is bounded by 1

(N ′)4 ≤
1
N4 . If Case 1

happens, then the probability that Algorithm A′(U) returns “FAIL” is bounded by 1
4 . From the union

bound, the total probability that our algorithm ever returns “FAIL” is bounded by 1
2 , as required.

5.1.6 Bounding the Total Span of Bad Edges

Recall that, from Corollary 5.13,
∑

X∈X̃ ′
2

∑
e∈Ebad(X) span(e) ≤

(n−|B0|)·∆·24
√
logN

η .

If Case 1 happened, then, from Observation 5.9, |Ebad(U)| ≤ ∆·26
√
logN

η . It is easy to verify that, for

every edge e ∈ Ebad(U), span(e) ≤ |U0| − γ ≤ 256(n − |B0|)(logN)64, since γ = |U0| − 256(n −
|B0|)(logN)64. Therefore,

∑
e∈Ebad(U) span(e) ≤

∆·26
√
logN

η ·256(n−|B0|)(logN)64 ≤ (n−|B0|)·∆·27
√
logN

η .
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Lastly, consider a leaf clusterX ∈ X̃1, and recall that |X0| ≤ ∆·(logN)128

η . Recall that |Ebad(X)| ≤ |X0|,
and so

∑
e∈Ebad(X) span(e) ≤ |X0|2 ≤ |X0| · ∆·(logN)128

η .

Note that all clusters in X̃1 are mutually disjoint, and, for each such cluster X, X0 ⊆ U0 holds. If Case
2 happened, then |U0| ≤ 2(n− |B0|) · (logN)128, and so

∑
X∈X̃1

|X0| ≤ |U0| ≤ 2(n− |B0|) · (logN)128.

Otherwise, from Observation 5.9,
∑

X∈X̃1
|X0| ≤ 256(n − |B0|)(logN)64. Therefore, in either case,∑

X∈X̃1
|X0| ≤ 2(n− |B0|) · (logN)128 holds, and so overall:

∑
X∈X̃1

∑
e∈Ebad(X)

span(e) ≤ ∆ · (logN)128

η
·
∑
X∈X̃1

|X0| ≤ 2(n− |B0|) ·∆ · (logN)256

η
.

Summing up over the three types of clusters, we get that:

∑
e∈Ebad

span(e) ≤ 4(n− |B0|) ·∆ · 27
√
logN

η
. (9)

5.2 Part 2: Solving DAG-like SSSP on the Contracted Graph

The second part of our algorithm, we will define a dynamic graph Ĥ that our algorithm will maintain,
which in turn will be used to define an instance of the DAG-like SSSP problem (see Section 2.4). We
will then apply the algorithm for DAG-like SSSP from Theorem 2.7 to this instance of the problem.
We start by defining the dynamc graph Ĥ, and by providing an algorithm for maintaining it.

Definition of the Dynamic Graph Ĥ

Consider any time τ during the time horizon T , the graph H and the collection X of clusters at time
τ . We say that a cluster X ∈ X is distinguished, if it contains some vertex that currently lies in B.

Graph Ĥ at time τ is defined as follows. We start with graph H, and, for every cluster X ∈ X that is
not a distinguished cluster, we contract all vertices in X into a single vertex vX (that we refer to as
a supernode). Additionally, all vertices that lie in distinguished clusters, together with the vertex t,
are contracted into a single supernode, that for convenience we continue to denote by t. We delete all
loops but keep parallel edges. We also denote the supernode vS corresponding to cluster S = {s} by
s. Consider now any edge e in the resulting graph. This edge corresponds to some edge in H whose
endpoints lie in different clusters; we do not distinguish between these two edges. We replace every
edge e = (vX , vY ) in the resulting graph by a collection J(e) of O(log2 n) parallel edges (vX , vY ), as
follows. Let 2j be the smallest power of 2 that is greater than skip(e). If e is a regular edge in H,
then set J(e) contains, for all j ≤ j′ ≤ ⌈log n⌉, a copy ej′ of e, whose length is ℓ̂(ej′) = 1, and weight
w(ej′) = 2j

′
. Assume now that e is a special edge of H, and denote its length in H by ℓ(e) = 2i. For

all i ≤ i′ ≤ ⌈log Λ⌉ and j ≤ j′ ≤ ⌈log n⌉, set J(e) contains a copy ei′,j′ of e with length ℓ̂(ei′,j′) = 2i
′

and weight w(ei′,j′) = 2j
′
. This completes the definition of graph Ĥ.

Consider now some vertex v ∈ V (Ĥ) \ {t}, and some integer 0 ≤ i ≤ ⌈log n⌉. Consider the set of

vertices Ui(v) =
{
u ∈ V (Ĥ) | ∃e = (v, u) ∈ E(Ĥ) with w(e) = 2i

}
. Notice that set Ui(v) may only

contain the nodes s, t, and all nodes vY ∈ V (Ĥ), such that some edge e of H connects a vertex of
X to a vertex of Y , and has value skip(e) ≤ 2i. In the latter case, the distance between intervals
IX and IY in the AT O is at most 2i, and so at most 2i other intervals of the AT O may lie between
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them. Therefore, it is immediate to verify that |Ui(v)| ≤ 2i+2 always holds, establishing Property S1
from the definition of the DAG-like SSSP problem. Let n′ be the total number of vertices that are ever
present in the dynamic graph Ĥ. We bound n′ in the following simple observation.

Observation 5.14 n′ ≤ 2(n− |B0|) + 2.

Proof: Let B∗ be the set of vertices that lie in B at the end of the algorithm. Clearly, n′ ≤ n−|B∗|+2.
On the other hand, since the algorithm consists of ∆ ≤ n − |B0| iterations, and in every iteration
at most one vertex is deleted from B, we get that |B∗| ≥ |B0| − ∆ ≥ 2|B0| − n. Therefore, n′ ≤
n− |B∗|+ 2 ≤ 2(n− |B0|) + 2.

Maintaining the Graph Ĥ

At the beginning of the algorithm, we construct the initial graph Ĥ from graph H as described above.
It is easy to verify that this can be done in time O(|E(H)| · log2 n) ≤ O(n(n− |B0|) log2 n).

Next, we show an algorithm that maintains the graph Ĥ, as graph H and the collection X of clusters
evolve over time. We will ensure that the only updates that Ĥ undergoes are edge deletions and vertex
splitting, as is required from the input to the DAG-like SSSP problem.

Recall that the only updates that graph H undergoes are (i) doubling of the lengths of its edges; and
(ii) deletion of edges incident to s and t. Additionally, some vertices may be deleted from set B.

If an edge e that is incident to s or t is deleted from H, then we delete all copies of e from Ĥ. If the
length of some edge e is doubled, and the initial length of edge e was 2i, then we delete all copies of e
whose length is 2i from graph Ĥ.

Assume now that some vertex v is deleted from set B. Let X ∈ X be the cluster that contains v. If
X remains a distinguished cluster, then no additional updates to graph Ĥ are required. Otherwise,
we perform a vertex splitting operation, that we apply to supernode t, to construct a new supernode
vX . The corresponding collection E′ of edges is defined as follows. Let e = (a, b) be an edge of H,
with exactly one endpoint in X; assume w.l.o.g. that a ∈ X and b ∈ Y , where Y ∈ X is some cluster.
Let 2j be the smallest power of 2 that is greater than skip(e). Assume first that e is a regular edge
in H. Notice that, if Y is not a distinguished cluster, then, for all j ≤ j′ ≤ ⌈log n⌉, graph Ĥ already
contains an edge (t, vY ), that is a copy of e, whose length is 1, and weight is 2j

′
. We add to E′ a copy

(vX , vY ) of e, whose length is 1, and weight is 2j
′
. Once the vertex splitting operation is completed,

we will delete from Ĥ all copies of e that are incident to t. If Y is a distinguished cluster, then, for
all j ≤ j′ ≤ ⌈log n⌉, we insert a copy (vX , t) of the edge e into E′, whose length is 1 and weight is
2j

′
. Assume now that e is a special edge of H, and denote its length in H by ℓ(e) = 2i. Consider a

pair i ≤ i′ ≤ ⌈log n⌉ and j ≤ j′ ≤ ⌈log n⌉ of indices. As before, if Y is not a distinguished cluster,
then graph Ĥ already contains an edge (t, vY ), that is a copy of e, whose length is 2i

′
, and weight

is 2j
′
. We add to E′ a copy (vX , vY ) of e, whose length is 2i

′
, and weight is 2j

′
. Once the vertex

splitting operation is completed, we will delete from Ĥ all copies of e that are incident to t. If Y is
a distinguished cluster, then we insert a copy (vX , t) of the edge e into E′, whose length is 2i

′
and

weight is 2j
′
. The case where b ∈ X and a ̸∈ X is treated similarly.

Lastly, it remains to consider updates to the clusters in X . All such updates can be implemented by
the following two operations: (i) given a cluster X ∈ X , and a subset X ′ ⊆ X of vertices, insert X ′

into X (we call this update cluster splitting); and (ii) given a cluster X ∈ X and a vertex x ∈ X,
delete x from X (we call this update vertex deletion).

Consider first a cluster splitting operation, that is applied to cluster X ∈ X , through which a new
cluster X ′ ⊆ X is inserted into X . Assume first that X is not a distinguished cluster. We apply a
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vertex splitting operation to supernode vX , inserting a new supernode vX′ into Ĥ. The corresponding
set E′ of edges is defined as follows. Let e = (a, b) be an edge of H, with exactly one endpoint in X ′;
assume w.l.o.g. that a ∈ X ′ and b ∈ Y , where Y ∈ X is some cluster. Let 2j be the smallest power
of 2 that is greater than skip(e). Assume first that e is a regular edge in H. Notice that, if Y ̸= X,
then, for all j ≤ j′ ≤ ⌈log n⌉, graph Ĥ already contains an edge (vX , vY ), that is a copy of e, whose
length is 1, and weight is 2j

′
. We add to E′ a copy (vX′ , vY ) of e, whose length is 1, and weight is

2j
′
. If Y = X, then, for all j ≤ j′ ≤ ⌈log n⌉, we insert a copy (vX′ , vX) of the edge e into E′, whose

length is 1 and weight is 2j
′
. Assume now that e is a special edge of H, and denote its length in H by

ℓ(e) = 2i. Consider a pair i ≤ i′ ≤ ⌈log n⌉ and j ≤ j′ ≤ ⌈log n⌉ of indices. As before, if Y ̸= X, then
graph Ĥ already contains an edge (vX , vY ), that is a copy of e, whose length is 2i

′
, and weight is 2j

′
.

We add to E′ a copy (vX′ , vY ) of e, whose length is 2i
′
, and weight is 2j

′
. If Y = X, then we insert a

copy (vX′ , vX) of the edge e into E′, whose length is 2i
′
and weight is 2j

′
. The case where b ∈ X ′ and

a ̸∈ X ′ is treated similarly.

If X ′ is a distinguished cluster, then so is X, and no updates to Ĥ are required. If X is a distinguished
cluster but X ′ is not a distinguished cluster, then the update procedure to graph Ĥ is almost identical
to that when a distinguished cluster becomes a non-distinguished cluster. Specifically, we apply a
vertex-splitting operation to t, following which a supernode vX′ representing the cluster X ′ is inserted
into Ĥ. The remaining details a straightforward and are omitted here.

Lastly, assume that a vertex x is deleted from some cluster X ∈ X . In this case, we consider every
edge e ∈ E(H) that is incident to x one by one. Let y denote the other endpoint of e. If X is not
a distinguished cluster, then we delete every copy of e that is incident to vX from Ĥ. Otherwise, we
delete every copy of e that is incident to t from Ĥ.

To summarize, we view a cluster-splitting operation that is applied to a cluster X as consisting of two
steps. In the first step, a new cluster X ′ ⊆ X is inserted into X , and in the second step, the vertices
of X ′ are deleted from X. Recall that, following such cluster-splitting updates, it is possible that for
some edge e ∈ E(H) whose endpoints lie in different clusters, the value skip(e) increases. In such a
case, we delete from Ĥ all copies of e, whose weight is below the new value skip(e). This concludes
the description of the algorithm for maintaining the graph Ĥ.

It is easy to verify that the total time that is required in order to compute and maintain graph Ĥ
is asymptotically bounded by the total time required to maintain graph H and the collection X of
clusters times O(log6 n). Indeed, from Claim 5.11, every cluster in X̃ ′2 has O(log n) close descendants,
and so it may have at most O(log2 n) descendant clusters overall. Therefore, every vertex of H may
belong to O(log2 n) clusters over the course of the algorithm. For each edge e = (x, y), for every pair
X,X ′ of clusters that contain x and y respectively, at any time during the algorithm, O(log2 n) copies
of e connecting the supernodes corresponding to X and X ′ may be present in Ĥ. Overall, at most
O(log5 n) copies of an edge of H may ever be present in Ĥ, and so the total time that is required
in order to compute and maintain graph Ĥ is asymptotically bounded by the total time required to
maintain graph H and the collection X of clusters times O(log6 n).

Solving the DAG-like SSSP Problem on Ĥ

So far we have defined a dynamic graph Ĥ with lengths and weights on edges and two special edges
s and t, that undergoes an online sequence of edge-deletion and vertex-splitting updates, such that
Property S1 holds. We consider an instance of the DAG-like SSSP problem defined on graph Ĥ with
parameter Γ = 64n · 28

√
logN , parameter d replaced by Λ

4 , and ϵ = 1
10 . We apply the algorithm from

Theorem 2.7 to the resulting instance of the DAG-like SSSP problem. Recall that the total update
time of this algorithm is bounded by:
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Õ
(
(n′)2 + |E(Ĥ)|+ Γ · n′

)
≤ Õ

(
n · (n− |B0|) · 28

√
logN

)
Overall, the total time that is required for Part 1 of the algorithm, and also for maintaining graph Ĥ
and for maintaining the data structures for the DAG-like SSSP problem from Theorem 2.7 is bounded
by:

c1 · n · (n− |B0|) · 2c2
√
logN · (logN)16c2r+2c2 .

Computing the Cut-Witness

Once the algorithm for the DAG-like SSSP problem terminates, we are guaranteed that graph Ĥ
contains no s-t path Q with

∑
e∈E(Q) ℓ̂(e) ≤

Λ
4 and

∑
e∈E(Q)w(e) ≤ Γ.

We now define new lengths ℓ′(e) for edges e ∈ E(H), as follows. For every regular edge e ∈ E(H), we
set ℓ′(e) = 0. Consider now a special edge e ∈ Espec. If both endpoints of e lie in B at the end of the
algorithm, then we set ℓ(e) = 0. Otherwise, if e ̸∈ Ebad, then we set ℓ′(e) = ℓ(e). Lastly, if e ∈ Ebad,
and not both endpoints of e lie in B, we set ℓ′(e) = ℓ(e) + span(e) · η·logn

8∆·27
√
logN

. We now show that

{ℓ′(e)}e′∈E(H) is a valid cut-witness.

Claim 5.15 {ℓ′(e)}e′∈E(H) is a valid cut-witness.

Proof: Let Ẽ denote all edges of G with both endpoints in B at the end of the algorithm. It is easy to
verify that, for each edge e ∈ Ẽ, we have set ℓ′(e) = 0. Additionally, for every edge e that is incident
to s or to t, we have set ℓ′(e) = 0. Next, we bound

∑
e∈E(H) ℓ

′(e), as follows:

∑
e∈E(H)

ℓ′(e) ≤
∑

e∈Espec\Ẽ

ℓ(e) +
∑

e∈Ebad\Ẽ

span(e) · η · log n
8∆ · 27

√
logN

≤
∑

e∈Espec\Ẽ

ℓ(e) +
η · log n

8∆ · 27
√
logN

·
∑

e∈Ebad

span(e)

≤
∑

e∈Espec\Ẽ

ℓ(e) +
(n− |B0|) log n

2

≤
∑

e∈Espec\Ẽ

ℓ(e) +
Λ ·∆

2η log4 n
.

(we have used Inequality 9 and the fact that Λ = (n− |B0|) · η·log
5 n

∆ ).

Lastly, we prove that the distance from s to t in H, with respect to edge lengths ℓ′(·), is at least Λ
32 .

Assume for contradiction that there is an s-t path Q in the current graph H, such that
∑

e∈E(Q) ℓ
′(e) <

Λ
32 . Recall that graph G contains no regular edge connecting a vertex of A to a vertex of B. Therefore,
path Q contains at least one special edge. Moreover, if we discard the first and the last regular edges
on Q, and denote by Q′ the resulting path, then regular and special edges alternate on Q′. Since the
length of every special edge in H is at least 1, we get that the number of regular edges on Q, that we
denote by mr, is bounded by 2

∑
e∈E(Q) ℓ

′(e) + 3 < Λ
8 .
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Let Ê(Q) ⊆ E(Q) be the set of edges that also lie in the contracted graph Ĥ, and denote Ê(Q) =
(ê1, . . . , êz), where the edges are indexed in the order of their appearence on Q. For all 1 ≤ i ≤ z,
let ê′i be the copy of edge ei in Ĥ that has the shortest length and the smallest weight. Then the
sequence (ê′1, . . . , ê

′
z) of edges defines an s-t path in graph Ĥ, that we denote by Q̂. Notice that Ê(Q)

may not contain an edge with both endpoints in the current set B. Therefore, for every special edge
e′i ∈ Ê(Q), ℓ̂(ê′i) = ℓ(êi) ≤ ℓ′(êi), while for every regular edge e ∈ Ê(Q), ℓ̂(e) = 1. We conclude that
the length of path Q̂ in graph Ĥ is bounded by

∑
e∈E(Q) ℓ

′(e) +mr ≤ Λ
4 . To reach a contradiction, it

is now enough to show that
∑

ê′i∈Ê(Q)w(ê
′
i) ≤ Γ.

Indeed, recall that, for every edge e ∈ Ebad, we have set ℓ′(e) = ℓ(e) + span(e) · η·logn
8∆·27

√
logN

. Since∑
e∈E(Q) ℓ

′(e) ≤ Λ
32 , we get that:

∑
e∈E(Q)∩Ebad

span(e) · η · log n
8∆ · 27

√
logN

≤ Λ

32
.

Therefore:

∑
e∈E(Q)∩Ebad

span(e) ≤ Λ ·∆ · 27
√
logN

4η log n
=

(n− |B0|) · 27
√
logN · log4 n

4
,

since Λ = (n− |B0|) · η·log
5 n

∆ . But then:

∑
e∈E(Q)

skip(e) ≤ n+ 2
∑

e∈E(Q)∩Ebad

span(e) ≤ n+
(n− |B0|) · 27

√
logN · log4 n

2
≤ Γ

4
,

since Γ = 64n · 28
√
logN . Since, for all 1 ≤ i < z, w(ê′i) ≤ 2 skip(êi), we get that:

∑
ê′i∈E(Q̂)

w(ê′i) ≤ 2
∑

e∈E(Q)

skip(e) ≤ Γ

2
,

a contradiction.

5.3 Completing the Algorithm

Throughout the algorithm, for every special edge e = (x, y) in graph H, we maintain a counter n(e),
that counts the number of s-t paths containing e that the algorithm reported in response to queries that
contain e, since ℓ(e) was doubled last, or since the beginning of the algorithm – whatever happened
later.

The algorithm contains at most ∆ iterations, and terminates when either (i) all iterations are com-
pleted; or (ii) the algorithm for the DAG-like SSSP problem returns “FAIL”; or (iii) one of the al-
gorithms for the MaintainCluster problem or for the MaintainSpecialCluster problem that we use to
maintain the clusters of X returns “FAIL”. In the latter case, we terminate our algorithm with a
“FAIL”; we have shown that this may only happen with probability at most 1/2. In the second case,
we return the cut-witness as described above.

We now proceed to describe the ith iteration. We use the algorithm for the DAG-like SSSP problem
from Theorem 2.7 to compute a simple s-t path Pi in the current graph Ĥ, with

∑
e∈E(Ĥ) ℓ̂(e) ≤
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(1 + 10ϵ) · Λ4 ≤
Λ
2 , in time O(|E(Pi)|). We denote by ê1, ê2, . . . , êz the sequence of the edges on this

path. For all 1 ≤ j ≤ z, let ej = (xj , yj) be the edge corresponding to êj in graph H. Notice that
x1 = s, and, for all 1 ≤ j < z, there is a cluster of X that contains both yj and xj+1; we denote this
cluster by Xj . Cluster Xj cannot be a distinguished cluster, since path Pi is simple. Lastly, there
must be a distinguished cluster Xz ∈ X , that contains yz.

Recall that, if Case 1 happened, then |U0| ≥ 2(n − |B0|) · (logN)128. Moreover, |U | ≥ γ holds
throughout the algorithm, where γ = |U0| − 256(n − |B0|)(logN)64 ≥ (n − |B0|) · (logN)128. At the
end of the algorithm, |V (G) \B| ≤ (n− |B0|) +∆ ≤ 2(n− |B0|) holds. Therefore, if Case 1 happens,
then U remains a distinguished cluster throughout the algorithm.

For all 1 ≤ j < z, we query Algorithm A(Xj) for the MaintainCluster problem with vertices yj and
xj+1. Let Qj ⊆ H[Xj ] be the simple path connecting yj to xj+1 that the algorithm returns, whose
length is at most dXj . Assume first that either Case 1 did not happen; or Case 1 happened and
Xz ̸= U . In this case, we select an arbitrary vertex xz+1 ∈ B∩Xz, and query Algorithm A(Xj) for the
MaintainCluster problem with vertices yz and xz+1. Let Qz ⊆ H[Xz] be the simple path connecting
yz to xz+1 that the algorithm returns, whose length is at most dXz . If Qz contains any vertex of B
as an inner vertex, then we truncate it, so it connects yz to a vertex of B, and does not contain any
vertex of B as an inner vertex. We then append an edge connecting the last vertex of Qz to t to the
path Qz. (For all 1 ≤ j ≤ z, if Xj is the singleton cluster, then we simply let Qj contain a single
vertex xj = yj+1). If Case 1 happened and Xz = U , then we query Algorithm A′(U) with vertex yz,
to obtain a simple path Qz connecting yz to some vertex b ∈ B, such that Qz has length at most dU
and no inner vertices of Qz belong to B. We then append the edge (b, t) at the end of path Qz.

By concatenating e1, Q1, e2 . . . , ez, Qz, we obtain an s-t path in the current graph H, that we denote
by P ′i . Since the initial path Pi was simple, all custers in X are mutually disjoint, and each of the
paths Q1, . . . , Qz is simple, we get that P ′i is a simple path as well. We now bound the length of P ′i .
Recall that

∑z
j=1 ℓ(ej) ≤

∑z
j=1 ℓ̂(êj) ≤

Λ
2 .

Recall that, for every cluster X ∈ X̃ ′2, dX = min
{
|X0|·η

∆ , d
}
. Notice that clusters X1, . . . , Xz−1 may

not contain vertices of B. Since, at the end of the algorithm, |B| ≥ |B0| −∆, we get that:

z−1∑
j=1

|Xj | ≤ n− |B| ≤ n− |B0|+∆ ≤ 2(n− |B0|).

Moreover, for every cluster X ∈ X̃ ′2, algorithm A(X) terminates once |X| falls below |X0|/2, and so:

z−1∑
j=1

|X0
j | ≤ 2

z−1∑
j=1

|Xj | ≤ 4(n− |B0|).

Altogether, we get that:

z−1∑
j=1

dXj ≤
z−1∑
j=1

|X0
j | · η
∆

≤ 4(n− |B0|) · η
∆

≤ Λ

4
,

since Λ = (n− |B0|) · η·log
5 n

∆ .

Note also that either dXz ≤ dU (if Xz is the special cluster), or dXz ≤ d (otherwise) must hold.

Recall that dU = max
{
(logN ′)64,

(
|U0 \B0|+∆

) η

4∆·2
√

logN

}
. Since Λ = (n − |B0|) · η·log

5 n
∆ , while
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|U0 \ B0| +∆ ≤ 2(n − |B0|) and (n−|B0|)·η
∆ > 24

√
logN from Inequality 2, we get that dU ≤ Λ

4 . Recall

also that d = (n−|B0|)·η
4∆·2

√
logN

≤ Λ
4 . Therefore, dz ≤

Λ
4 must hold. Overall, we get that:

∑
e∈E(P ′)

ℓ(e) ≤
z∑

j=1

ℓ(ej) +
z−1∑
j=1

dXj ≤ dXz ≤ Λ,

as required. We increase the counter n(e) for every edge e ∈ E(P ′). If, for any such edge e, the counter
n(e) reaches η, then we double the length of e, and we reset n(e) = 0.

Notice that the time required to respond to the queries posed to algorithms A(X1), . . . ,A(Xz−1), and
Algorithm A(Xz) (if Xz is a regular cluster) or Algorithm A′(Xz) (if it is a special cluster) is already
accounted for in the analysis of the running times of these algorithms. The additional time that is
required in order to respond to the query is bounded by O(|E(Pi)|).

Overall, the additional time that is required in order to respond to all queries is bounded by
∑∆

i=1O(|E(Pi)|) ≤∑∆
i=1O(|E(P ′i )|). Recall that, for every special edge e ∈ E(H), the length of e in H is doubled

once it participates in η paths that the algorithm returns. Once the length of e reaches Λ, it may
no longer participate in any path that the algorithm returns. Therefore, every special edge may
participate in at most O(η · log Λ) ≤ O(η logN) paths P ′1, . . . , P

′
∆. Since there are at most n spe-

cial edges in H, and since regular and special edges alternate on the paths P ′1, . . . , P
′
∆, we get that∑∆

i=1 |E(P ′i )| ≤ O(nη logN) ≤ O(n∆ logN) ≤ O(n · (n− |B0|) · logN), since η ≤ ∆ and ∆ ≤ n− |B0|
from the problem definition. The total additional time that is required in order to respond to all
queries is then bounded by O(n · (n − |B0|) · logN), and the total running time of the algorithm is
bounded by:

O
(
c1 · n · (n− |B0|) · 2c2

√
logN · (logN)16c2r+2c2

)
≤ c1 · n · (n− |B0|) · 2c2

√
logN · (logN)16c2r+7c2 .

6 Layered Connectivity Data Structure and an Algorithm for the
MaintainSpecialCluster problem

The goal of this section is to prove the second part of Theorem 4.12, by showing that an algorithm for
the r-restricted RouteAndCut problem implies an algorithm for the r-restricted MaintainSpecialCluster
problem with the required running time. In order to prove this theorem, we define a new data structure,
that we call a Layered Connectivity Data Structure, and provide an algorithm for maintaining this data
structure in a graph that undergoes online increases in the lengths of its edges. The same data
structure, and the same algorithm for maintaining it, will also be used in Section 7 in order to prove the
first part of Theorem 4.12, namely that an algorithm for the r-restricted RouteAndCut problem implies
an algorithm for the r-restricted MaintainCluster problem with the required running time. Because of
this, we define both the Layered Connectivity Data Structure, and the algorithm for maintaining this
data structure slightly more generally than what is needed for the MaintainSpecialCluster problem.
But first we start with intuition.

Recall the definition of the MaintainSpecialCluster problem. At a high level, the input is a perfect
well-structured graph G = (L,R,E) with a proper assignment of lengths ℓ(e) on its edges e ∈ E
that are given in the adjacency list representation, together with a subset β ⊆ V (G) of vertices with

|β| ≥ 99|V (G)|
100 , and parameters N ≥ W 0(G), 1 ≤ ∆ ≤ |β|

(logN)128
, 1 ≤ η ≤ ∆, and d ≥ (logN)64, such

that ∆·d
η ≤ |V (G)| − |β| +∆ · (logN)64, and every special edge has length 1. Over the course of the
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algorithm, vertices may be deleted from set β, and the lengths of some edges may be increased, but
the length of every special edge incident to a vertex that currently lies in β remains 1.

The algorithm consists of at most ∆ iterations. At the beginning of every iteration i, the algorithm is
given a vertex x ∈ V (G), and it must return a simple path Pi in G connecting x to any vertex y ∈ β,
such that the length of the path is at most d, and no inner vertices on the path lie in β. After that,
the length of some special edges on path Pi may be doubled, and vertex y is deleted from β. Recall
that, for any edge e ∈ E(G), if ℓ(e) is doubled at times τ ′ and τ with τ ′ < τ , then at least η paths
that the algorithm returns during the time interval [τ ′, τ) must contain e. The algorithm may, at any

time, produce a strongly well-structured cut (X,Y ) in G of sparsity ΦG(X,Y ) ≤ (logN)64

d , such that
w(X) ≥ 1.8|β ∩X| holds. Let J ′ ⊆ Y denote the set of vertices that serve as endpoints of the edges
of EG(X,Y ). The vertices of X ∪ J ′ are then deleted from G, and the algorithm continues with the
resulting graph G = G[Y \ J ′].

A natural way to solve this problem is to simply maintain a collection Q = {K(v) | v ∈ V (G)} of
paths in G, where for each vertex v ∈ V (G), path K(v) connects v to some vertex of β, such that the
length of every path in Q is at most d, and every vertex of β serves as endpoint of a small number
of such paths. Then, whenever a query vertex x arrives, we could simply return the path K(x) in
response to the query, possibly truncating it to ensure that no inner vertices on the path belong to
β. As the time progresses, some of the paths in Q may however be destroyed. For example, as the
lengths of some special edges are doubled, the lengths of some paths in Q may become too large, so
we can no longer use them in order to respond to queries. Additionally, some vertices may be deleted
from β, and so paths connecting vertices of G to such vertices can no longer be used in order to
respond to queries. Lastly, when our algorithm returns a sparse cut (A,B), and some of the vertices
are deleted from G following this, it is possible that, for some of the paths K(v) ∈ Q, some inner
vertices on K(v) are deleted from G, while the first endpoint of the path remain in G. Whenever, for
some vertex v ∈ V (G), the corresponding path K(v) ∈ Q is destroyed, we say that vertex v became
disconnected. We need to ensure that, before we respond to each query, every vertex of G has a
valid path K(v) ∈ Q. Therefore, whenever a vertex v becomes disconnected, we need to compute a
new path K(v) connecting it to some vertex that currently lies in β. The difficulty is that, even if
the number of vertices that are currently disconnected is quite small, if we attempt to connect them
to the vertices of β directly, the amount of time that we need to invest to compute such a routing
may be potentially as large as Ω(|V (G)| · (|V (G)| − |β|). We note that we can ensure that the total
number of vertices that ever become disconnected over the course of the algorithm (counting every
time a vertex becomes disconnected separately, even if the same vertex is disconnected several times),
is relatively small. However, there may be a large number of iterations, in each of which a small
number of vertices become disconnected. Therefore, computing a new collection of paths connecting
these disconnected vertices to β from scratch in every iteration is prohibitively expensive in terms of
the running time. A different approach that could address this issue is the following: let U be the set
of vertices that are currently disconnected, and let U ′ = V (G) \ U . Instead of connecting the vertices
of U to the vertices of β directly, we can instead try to connect them to the vertices of U ′, and then
exploit the paths in {K(v) | v ∈ U ′} in order to route the vertices of U to the vertices of β. In doing
so we will only need to explore a relatively small subgraph of G, and we can use the algorithm for
the r-restricted RouteAndCut problem, whose existence is assumed in the statement of Theorem 4.12,
in order to do so in time roughly O(W (G)1+o(1) · |U |). The difficulty with this approach is that, as
we compose the routing paths with each other, iteration after iteration, we may obtain routing paths
that are very long. To conclude, we need to balance between the need to ensure that all paths in Q
are sufficiently short, with the need to ensure that the total running time invested in reconnecting
the disconnected vertices to β is not too high. We use a natural layering approach, by defining a
Layered Connectivity Data Structure, which we describe below.
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So far we provided intuition for the Layered Connectivity Data Structure in the context of obtaining
an algorithm for the r-restricted MaintainSpecialCluster problem. We will also exploit this data struc-
ture in our algorithm for the r-restricted MaintainCluster problem. Intuitively, instead of the set β
of vertices that is given as part of input to the MaintainSpecialCluster problem, in order to solve
the MaintainCluster problem, we will select a random set β of such vertices of an appropriate car-
dinality, and then embed an expander that is defined over the vertices of β into the input graph
G. The Layered Connectivity Data Structure data structure will then be used to maintain paths con-
necting every vertex of G to some vertex of β. We will also maintain a similar data structure in

graph
←−
G , that is obtained by reversing the direction of every edge in G, obtaining a collection of

paths that, for every vertex v ∈ V (G), connects some vertex of β to v. We now formally define the
Layered Connectivity Data Structure data structure, followed by an algorithm for maintaining such a
data structure in dynamic graphs that arise from the MaintainCluster and MaintainSpecialCluster prob-
lems. Lastly, we design an algorithm for the MaintainSpecialCluster problem that relies on this data
structure.

6.1 The Layered Connectivity Data Structure

We assume that we are given a perfect well-structured graph G = (L,R,E) with |V (G)| = n, and a
proper assignment ℓ(e) of lengths to the edges e ∈ E, that are given in the adjacency-list representation.
Recall that for every vertex v ∈ V (G), its weight w(v) is the length of the unique special edge that is
incident to v inG. We denoteW =

∑
v∈V (G)w(v), and we letH be the subdivided graph corresponding

to G (see Definition 4.1). We assume further that we are given a parameter N ≥ max {n,W/32} that
is greater than a large enough constant, together with additional parameters d′ ≥ 1, ρ ≥ log2N , and

1 ≤ r ≤
⌈√

logN
⌉
, such that d′ ≤ min

{
2r

√
logN

log8 N
, n8

}
. Lastly, we are given a collection β ⊆ V (H) of

vertices, that we refer to as centers, with |β| ≥ W
d′·log2 N .

Let λ = ⌈log(64N)⌉ + 1. A Layered Connectivity Data Structure for graph G consists of the following
ingredients:

• The first ingredient is a partition (U0, U1, . . . , Uλ) of V (H) into disjoint subsets, such that U0 = β.
For all 0 ≤ i ≤ λ, we refer to the vertices in set Ui as layer-i vertices, and we sometimes refer
to the vertices of Uλ as disconnected vertices. We also denote by U≥i =

⋃λ
i′=i Ui′ and by

U≤i =
⋃i

i′=0 Ui′ . Similarly, we denote by U>i =
⋃λ

i′=i+1 Ui′ and by U<i =
⋃i−1

i′=0 Ui′ .

• The second ingredient is collections Q1, . . . ,Qλ−1 of paths in graph H. For all 1 ≤ i ≤ λ − 1,
Qi = {K(v) | v ∈ Ui}, where, for every vertex v ∈ Ui, path K(v) connects vertex v to some
vertex v′ ∈ U<i. We say that vertex v′ is the parent-vertex of v, and vertex v is a child-vertex
of v′. We also say that v is a descendant of v′. The descendant relation is transitive: if v is a
descendant of v′, and v′ is a descendant of v′′, then v is a descendant of v′′. Additionally, every
vertex is a descendant of itself. If vertex x is a descendant of vertex y, then we say that y is
an ancestor of x. Note that ancestor-descendant relation is only determined by the endpoints
of the paths in

⋃λ−1
i=1 Qi, and it is independent of the inner vertices on these paths. For every

vertex x ∈ β and index 0 ≤ i < λ, we denote by Di(x) the set of all vertices v ∈ Ui that are
descendants of x, and we denote by D(x) =

⋃λ−1
i=0 Di(x) the set of all descendant-vertices of x.

Lastly, we require that the following properties hold for a Layered Connectivity Data Structure:

L1. For all 1 ≤ i < λ, the paths in Qi have length at most 4d′ log10N each, and they cause
edge-congestion at most 4d′ log9N in H;
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L2. For every vertex x ∈ β, for every layer 1 ≤ i ≤ λ− 1, |Di(x)| ≤ ρ; and

L3. For every layer 1 ≤ i ≤ λ − 1, every vertex v ∈ U<i \ U0, may serve as an endpoint of at
most one path in Qi.

The Layered Connectivity Data Structure data structure must also maintain, for every vertex x ∈ β and
layer 1 ≤ i < λ, the collection Di(x) ⊆ Ui of layer-i descendants of x. Additionally, for every layer
1 ≤ i ≤ λ− 1 and vertex v ∈ U<i, if v serves as an endpoint of a path K(u) ∈ Qi, then we maintain
a pointer from v to u.

In order to construct and maintain a Layered Connectivity Data Structure, as graph G undergoes up-
dates, we will employ a procedure that we call ReconnectLayer, and describe next.

6.2 Procedure ReconnectLayer

As before, we assume that we are given a perfect well-structured graph G = (L,R,E) with |V (G)| = n,
and a proper assignment ℓ(e) of lengths to the edges e ∈ E, that are given in the adjacency-list
representation, together with a parameter N ≥ max {n,W/32} that is greater than a large enough
constant, and parameters d′ ≥ 1, ρ ≥ log2N , and 1 ≤ r ≤

⌈√
logN

⌉
, where W =

∑
v∈V (G)w(v), and

d′ ≤ min
{

2r
√

logN

log8 N
, n8

}
. We additionally assume that W ·log3 N

|β| ≤ ρ
16 , and that the length of every edge

in G is at most d′. Lastly, we assume that we are given a subdivided graph H corresponding to G, in
the adjacency-list representation, and a subset β ⊆ V (H) of its vertices, with |β| ≥ W

d′·log2 N .

A valid input to Procedure ReconnectLayer consists of an index 1 ≤ i < λ of a layer, and a valid
Layered Connectivity Data Structure for G, such that, for all i ≤ i′ < λ, Ui′ = ∅, and |Uλ| ≤ 2λ−i. We
denote k = |Uλ|. A valid output of Procedure ReconnectLayer is one of the following:

• either a valid Layered Connectivity Data Structure, in which, for all i < i′ < λ, Ui′ = ∅ and
|Uλ| ≤ k

4λ holds; additionally, layers U1, . . . , Ui−1, together with the corresponding collections of
paths Q1, . . . ,Qi−1 must remain the same as in the input Layered Connectivity Data Structure; or

• a strongly well-structured 1
4d′ -sparse cut (A,B) in G with w(A), w(B) ≥ k

214 logN
and w(A) ≥

1.8|β ∩A|; or

• A weakly well-structured cut (A′, B′) inH with |A′| ≥ 511|V (H)|
512 , |A′∩β| < 2|β|

log3 N
, and |EH(A′, B′)| ≤

|V (H)|
1024d′·log6 N .

Next, we show an algorithm, that, given a valid input to Procedure ReconnectLayer, produces a valid
output for the procedure. The algorithm relies on Algorithm A for the r-restricted RouteAndCut
problem, whose existence was assumed in the statement of Theorem 4.12.

Claim 6.1 Suppose that, for some parameter r ≥ 1, there exists a randomized algorithm for the r-
restricted RouteAndCut problem, that, given as an input an instance (G,A,B,∆, η,N) of the problem
with |V (G)| = n, has running time at most c1 · n · (n − |B|) · 2c2

√
logN · (logN)16c2(r−1)+8c2. Then

there is a randomized algorithm, that, given a valid input to Procedure ReconnectLayer, where graph G
and its corresponding subdivided graph H are given in the adjacency-list representation, with the same
parameter r, either produces a valid output for the procedure, or returns “FAIL”. The running time

of the algorithm is at most O
(
c1 ·W · k · 2c2

√
logN · (logN)16c2(r−1)+8c2+14

)
, and the probability that

it returns “FAIL” is at most 1
N10 .
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The remainder of this subsection is dedicated to the proof of Claim 6.1. We denote by A the algorithm
for the r-restricted RouteAndCut problem, whose existence is assumed in the statement of the claim.

The most natural way to design an algorithm for Procedure ReconnectLayer is to simply cast it as a
special case of the r-restricted RouteAndCut problem, in the underlying graph H, with the set A = Uλ

of source vertices, and the set B =
⋃i−1

i′=0 Ui′ of destination vertices. For technical reasons, we must

allow every vertex x ∈ β to serve as an endpoint of at least Θ
(
W ·poly logN

|β|

)
of the resulting routing

paths, while each of the remaining vertices of B may serve as an endpoint of at most one path. To
accommodate this requirement, we slightly modify graph H. The modification essentially replaces

every vertex x ∈ β with Θ
(
W ·poly logN

|β|

)
distinct vertices, while ensuring that the resulting graph

remains a uniform well-structured graph. The main difficulty with this approach, however, is that,
for every vertex x ∈ β, and every layer 1 ≤ i′ < i, there may be up to ρ vertices of Ui′ that are
descendants of x. It is possible that we will connect a distinct vertex of Uλ to each such descendant
vertex of x via the routing computed by the algorithm for the RouteAndCut problem. The vertices of
Uλ from which these routing paths originate are then added to layer Ui, and, as the result, the number
of descendants of x in Ui may become too high. In order to overcome this difficulty, we will iteratively
solve 4λ instances of the RouteAndCut problem, with the goal of constructing, for every vertex v ∈ Uλ,
a collection R(v) of at most 4λ paths that originate at v. Let U ′ ⊆ Uλ be the subset of vertices v with
|R(v)| ≥ 2λ, and let R =

⋃
v∈U ′ R(v). Our goal is to ensure that set U ′ contains almost all vertices of

Uλ, the paths in R cause low edge-congestion, and they terminate at the vertices of
⋃i−1

i′=0 Ui′ . We also

need to ensure that every vertex of β serves as an endpoint to at most Θ
(
W ·poly logN

|β|

)
paths in R,

while every vertex of
⋃i−1

i′=1 Ui′ serves as an endpoint of at most one such path. Intuitively, by sending
1
2λ flow units on every path in R, we obtain a fractional flow where every vertex in U ′ sends at least

1 flow unit to the vertices of
⋃i−1

i′=0 Ui′ , and, for every vertex x ∈ β, the descendants of x, including
x itself, receive at most ρ flow units. We can then compute an integral flow, which defines, for every
vertex v ∈ U ′, a path K(v) connecting v to some vertex in

⋃i−1
i′=0 Ui′ , such that, for every vertex x ∈ β,

at most ρ such paths terminate at the descendant vertices of x.

We now provide a formal description of the procedure. Recall that we have denoted k = |Uλ|. We
assume first that k ≥ 220 ·d′ · log6N . We show an algoritm for the special case where k < 220 ·d′ · log6N
later. We start by describing the modified graph H ′, to which the algorithm for the RouteAndCut

problem will be applied iteratively. Throughout, we use a parameter M = W ·log3 N
|β| . Since W ·log3 N

|β| ≤
ρ
16 from the problem definition, we get that M ≤ ρ

16 .

6.2.1 Modified Graph H ′.

Recall that we are given as input a perfect well-structured graph G, and its corresponding subdivided
graph H. Both graphs are given in the adjacency-list representation. We first define the graph H ′,
and then describe an algorithm to compute its adjacency-list representation efficiently.

Graph H ′ is defined as follows. We start with H ′ = H, and the bipartition (L′′, R′′) of its vertices,
that is identical to the bipartition (L′, R′) of V (H). We then inspect every vertex x ∈ β one by one. If
x ∈ L′′, then we add the collection {x1, . . . , xM−1} of new vertices to graph H ′, that we call copies of
x. The vertices in {x1, . . . , xM−1} are also added to R′′, and, for all 1 ≤ j ≤M − 1, we add a regular
edge (x, xj) to graph H ′. If x ∈ R′′, then we also add a collection {x1, . . . , xM−1} of new vertices to
H ′, called copies of x, but now we add x1 to L′′, and x2, . . . , xM ′−1 to R′′. We add a special edge
(x, x1), and, for all 2 ≤ j ≤M − 1, we add a regular edge (x1, xj) to H ′. This concludes the definition
of graph H ′.
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Note that H ′ is a uniform well-structured graph. Since M = W ·log3 N
|β| , and since |V (H)| = W , we get

that |V (H ′)| ≤ O(W log3N), and moreover, |E(H ′) \E(H)| ≤ O(W log3N). It is easy to modify the
adjacency-list representation of H to obtain the adjacency-list representation of H ′, by inserting all
vertices of V (H ′) \ V (H) and all edges E(H ′) \ E(H) into the former, in time O(W log3N).

6.2.2 Parameters for the RouteAndCut Problem Instances

Our algorithm will perform 4λ iterations. In every iteration, we will apply Algorithm A for the r-
restricted RouteAndCut problem to graph H ′, with suitably chosen sets A′ and B′ of vertices of H ′.
We now define the parameters that will be used in each such instance of the RouteAndCut problem,
and verify that this setting of the parameter indeed defines a valid instance of the problem.

We start by letting N ′ = 64N log3N . It is easy to see that:

logN ′ ≤ logN + 6 log logN ≤
(
1 +

1

64c2r

)
logN, (10)

since r ≤
⌈√

logN
⌉
and N is large enough. Additionally,

√
logN ′ ≤

√
logN + 6 log logN ≤

√
logN +√

6 log logN . Therefore:

2
√
logN ′ ≤ 2

√
logN · log6N ≤ 22

√
logN . (11)

We will use these facts later.

We also use parameters ∆′ = k, and η′ = 220 · d′ · log6N . In all instances of the RouteAndCut problem
that we construct, we will ensure that Uλ ⊆ A′, while set B′ contains all vertices of U0 and their
copies, and additionally, |V (H ′) \ B′| ≤ 4λk holds. We show that all such resulting instances are
valid instances of the r-restricted RouteAndCut problem in the following simple claim, whose proof is
deferred to Section C.1 of Appendix.

Claim 6.2 Let A′, B′ be any pair of disjoint subsets of V (H ′) with Uλ ⊆ A′, and with all vertices of
U0 and their copies lying in B′, such that |V (H ′) \ B′| ≤ 4λk. Then (H ′, A′, B′,∆′, η′, N ′) is a valid
instance of the r-restricted RouteAndCut problem.

We are now ready to describe our algorithm, that consists of at most 4λ iterations. The algorithm
starts with a collection R = ∅ of paths, and in every iteration, at most k paths are added to R. We
now describe a single iteration.

6.2.3 Description of an Iteration

We describe the jth iteration, for 1 ≤ j ≤ 4λ. We construct a set Bj of vertices of H ′ as follows. We
add to Bj all vertices of β and their copies. Additionally, we add to Bj all vertices of U

<i \U0, except
for those that serve as endpoints of the paths that currently lie in R. Notice that set V (H ′) \ Bj

contains all vertices of Uλ, and, additionally, every vertex v ∈ U<i \ U0 that serves as an endpoint
of some path that currently belongs to R. Since at most k paths are added to R in every iteration,
and since the number of iterations is bounded by 4λ, we get that |V (H ′) \ Bj | ≤ 4λ · k. We also set
Aj = Uλ, and we consider the resulting instance (H ′, Aj , Bj ,∆

′, η′, N ′) of the RouteAndCut problem.
From Claim 6.2, this is a valid r-restricted instance of the problem, and therefore we can apply
Algorithm A to this instance. Recall that Algorithm A may return “FAIL”, with probability at most
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1/2. In this case, we simply repeat Algorithm A, until either it does not return “FAIL”, or until it
returns “FAIL” in at least log3N consecutive iterations. In the latter case, we terminate our algorithm
and return “FAIL”, and we say that iteration j of the algorithm terminated with a “ FAIL”. Notice
that the probability that iteration j terminates with a “FAIL” is at most 2− log3 N . We now assume
that iteration j did not terminate with a “FAIL”, and we consider the output of the last execution of
Algorithm A. Let R′j be the routing that the algorithm returned. We consider two cases, depending

on whether |R′j | ≥
(
1− 1

64λ

)
k or not.

Case 1: |R′j | ≥
(
1− 1

64λ

)
k

Recall that the paths in R′j cause congestion at most 4η′ · logN ′. We can assume w.l.o.g. that, for
every path R ∈ R′j , if x ∈ Bj is an inner vertex on path R, then x also serves as an endpoint of
another path in R′j (as otherwise we can truncate path R, so that it terminates at x).

We say that a path Q ∈ R′j is long if Q contains at least d′ · log10N special edges, and we say that it
is short otherwise. We use the next simple claim in order to show that R′j contains many short paths.

Claim 6.3 The number of long paths in R′j is at most k
64λ .

Proof: Let E′ be the set of all special edges of H ′ that participate in the paths in R′j . We claim that
|E′| ≤ 6λk. Indeed, we can partition E′ into two subsets: set E′1 containing all special edges e, such
that at least one endpoint of e lies in V (H ′) \ Bj , and set E′2 containing all remaining edges. Since
|V (H ′)\Bj | ≤ 4λk, we get that |E′1| ≤ 4λk. From the above discussion, for every edge e ∈ E′2, at least
one endpoint of emust serve as an endpoint of a path inR′j , and so |E′2| ≤ |R′j | ≤ k. Therefore, overall,
|E′| ≤ |E′1| + |E′2| ≤ 6λk. Since the paths in R′j cause congestion at most 4η′ logN ′, we get that:∑

Q∈R′
j
|E(Q) ∩ E′| ≤ |E′| · 4η′ · logN ′ ≤ 24η′λk logN ′ ≤ 512kη′ log2N , since λ = ⌈log(64N)⌉ + 1 ≤

8 logN and logN ′ ≤ 2 logN .

Assume for contradiction that there are more than k
64λ long paths in R′j . Then:

∑
Q∈R′

j

|E(Q) ∩ E′| ≥ k

64λ
· d′ · log10N ≥ k

29
· d′ · log9N > 512kη′ log2N

since λ = ⌈log(64N)⌉ + 1 ≤ 8 logN , η′ = 220 · d′ · log6N , and N is sufficiently large. This is a
contradiction since we have shown that

∑
Q∈R′

j
|E(Q) ∩ E′| ≤ 512kη′ log2N .

We let Rj ⊆ R′j be the set of all short paths, so |Rj | ≥
(
1− 1

32λ

)
k. Since the paths in Rj are short,

and since regular and special edges alterante on each path, the length of each such path is at most
4d′ log10N . The paths in Rj cause congestion at most 4η′ · logN ′ ≤ d′ log8N , since logN ′ ≤ 2 logN
from Inequality 10, η′ = 220 · d′ · log6N , and we have assumed that N is large enough. We add the
paths of Rj to set R, and continue to the next iteration.

Case 2: |R′j | <
(
1− 1

64λ

)
k

We now consider the second case, where |R′j | <
(
1− 1

64λ

)
k. Let A′j ⊆ Aj and B′j ⊆ Bj be the sets

of vertices that do not serve as endpoints of the paths in R′j , so |A′j |, |B′j | ≥ k
64λ . Consider the cut

(Ỹ , Ỹ ′) in graph H ′ that the algorithm for the RouteAndCut problem returns, and recall that A′j ⊆ Ỹ ,

B′j ⊆ Ỹ ′, and additionally:
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|EH′(Ỹ , Ỹ ′)| ≤ 64∆′

η′ log4(|V (H ′)|)
+

256|R′j |
η′

≤ 512k

η′
≤ k

1024d′ log6N
,

since η′ = 220 · d′ · log6N .

Since A′j ⊆ Ỹ , we get that |Ỹ ∩Uλ| ≥ k
64λ . Next, we show that |Ỹ | ≤ O(k logN), |A′j | ≥ |Ỹ ∩β| · logN ,

and that Ỹ ′ must contain at least |β| ·
(
1− 2

log3 N

)
vertices of β, in the following simple observation,

whose proof is deferred to Section C.2 of Appendix.

Observation 6.4 |Ỹ | ≤ O(k logN), |Ỹ ′ ∩ β| ≥ max
{
|β| ·

(
1− 2

log3 N

)
, |β| − 2k

log3 N

}
, and |A′j | ≥

|Ỹ ∩ β| · logN .

If Case 2 happens, then we transform the cut (Ỹ , Ỹ ′) in H ′ into either a weakly well-structured cut

(A′, B′) in H with |A′| ≥ 511|V (H)|
512 , |A′∩β| < 2|β|

log3 N
, and |EH(A′, B′)| ≤ W

1024d′·log6 N ; or into a strongly

well-structured 1
4d′ -sparse cut (A,B) inG with w(A), w(B) ≥ k

214 logN
, and w(A) ≥ 1.8|β∩A|. We do so

in three steps. In the first step, we obtain a weakly well-structured cut (X1, X
′
1) inH. If this cut has the

required properties, namely that |X1| ≥ 511|V (H)|
512 , |X1 ∩ β| < 2|β|

log3 N
, and |EH(X1, X

′
1)| ≤ W

1024d′·log6 N ,

then we return this cut and terminate the algorithm. Otherwise, in the second step, we compute a
weakly well-structured cut (X2, X

′
2) in G. Finally, in the third step, we compute the required strongly

well-structured cut (A,B) in G.

Step 1: a Weakly Well-Structured Cut in H. We start by defining a cut (X1, X
′
1) in H with

X1 = Ỹ ∩V (H) and X ′1 = Ỹ ′ ∩V (H). Clearly, |EH(X1, X
′
1)| ≤ |EH′(Ỹ , Ỹ ′)| ≤ k

1024d′ log6 N
. Moreover,

|X1| ≥ |A′j | ≥ k
64λ . Furthermore, from Observation 6.4, we get that |X1| ≤ |Ỹ | ≤ O(k logN); |X1| ≥

|A′j | ≥ |Ỹ ∩β| · logN = |X1∩β| · logN ; and |X ′1∩β| ≥ |Ỹ ′∩β| ≥ max
{
|β| ·

(
1− 2

log3 N

)
, |β| − 2k

log3 N

}
.

Next, we turn the cut (X1, X
′
1) into a weakly well-structured one. In order to do so, we consider every

vertex v ∈ X1 one by one. When vertex v ∈ X1 is considered, we check whether there is a regular edge
(v, u) that is incident to v and belongs to EH(X1, X

′
1). If so, then v ∈ L′ must hold. We then we move

v from X1 to X ′1. Notice that this move may introduce at most one new edge to the cut EH(X1, X
′
1)

– the special edge that is incident to v, while at least one edge that is incident to v is removed
from EH(X1, X

′
1). Therefore, throughout this transformation, |EH(X1, X

′
1)| cannot grow, and |X1|

decreases by at most |EH(X1, X
′
1)| ≤ k

d′·log6 N . Since, at the beginning of Step 1, |X1| ≥ k
64λ ≥

k
256 logN

held, at the end of this step, |X1| ≥ k
512 logN holds, and moreover |X1| ≥ |X1∩β|·logN

2 . Since we did not

remove any vertices from X ′1, it is still the case that |X ′1 ∩ β| ≥ max
{
|β| ·

(
1− 2

log3 N

)
, |β| − 2k

log3 N

}
.

It is easy to verify that every edge in EH(X1, X
′
1) is a special edge, and so (X1, X

′
1) is a weakly

well-structured in H. Notice that the time required for this step is bounded by O(VolH(X1)) ≤
O(|X1| ·W ) ≤ O(k ·W · logN).

We now consider two cases. The first case happens if |X ′1| < k
512 . Then we are guaranteed that:

|EH(X1, X
′
1)| ≤

k

1024d′ · log6N
≤ |V (H)|

1024d′ · log6N
.

Additionally, we get that |X ′1| ≤ k
512 ≤

|V (H)|
512 , and |X ′1 ∩ β| ≥ |Ỹ ′ ∩ β| ≥ |β| ·

(
1− 2

log3 N

)
. Therefore,

|X1| ≥ 511|V (H)|
512 , and |X1 ∩ β| < 2|β|

log3 N
. We return cut (X1, X

′
1) in H and terminate the algorithm.
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From now on, we assume that |X ′1| ≥ k
512 . We denote φ = 1

d′ . Since |EH(X1, X
′
1)| ≤ k

d′ log6 N
, while

|X1| ≥ k
512 logN , the sparsity of the cut (X1, X

′
1) in H is at most 1

d′ log4 N
= φ

log4 N
. Moreover, (X1, X

′
1)

is a weakly well-structured cut in H and |X1 ∩ β| < 2k
log3 N

.

Step 2: a Weakly Well-Structured Cut in G. Next, we turn the cut (X1, X
′
1) in H into a cut

(X2, X
′
2) in G, in a natural way: we let X2 = X1∩V (G), and X ′2 = X2∩V (G). Recall that the length

of every edge in G is at most d′ ≤ 1
φ . From Observation 4.4, (X2, X

′
2) is a weakly well-structured

cut in G of sparsity at most 8φ
log4 N

, with w(X2) ≥ |X1|
8 ≥ k

212 logN
and w(X ′2) ≥

|X′
1|
8 ≥ k

212 logN
.

The time required to compute the cut (X2, X
′
2) in G given the cut (X1, X

′
1) in H is bounded by

O(|V (H)|) ≤ O(W ). Clearly, |X2 ∩ β| ≤ |X1 ∩ β| < 2k
log3 N

.

Step 3: a Strongly Well-Structured Cut in G. Recall that for every special edge e ∈ E(G),
ℓ(e) ≤ d′ ≤ n

8 (from the definition of the input to Procedure ReconnectLayer), while
∑

e∈E(G) ℓ(e) ≥
n
2 .

We can now apply the algorithm from Observation 4.5 to cut (X2, X
′
2) compute a strongly well-

structured cut (A,B) in G with w(A) ≥ w(X2)
4 ≥ k

214 logN
and w(B) ≥ w(X′

2)
4 ≥ k

214 logN
, whose

sparsity is at most 16φ
log4 N

≤ 1
4d′ .

We now show that w(A) ≥ 1.8|β ∩ A|. Recall that the algorithm from Observation 4.5 starts with
the cut (A,B) = (X2, X

′
2), and considers every special edge e = (u, v) ∈ EG(B,A) in turn. For

each such edge, it either moves u from B to A, or it moves v from A to B. We partition the set
A ∩ β of vertices into three subsets: set β1 contains all vertices v ∈ A ∩ β that lied in X2; recall that
|β1| ≤ |X2∩β| ≤ 2k

log3 N
. We now define the remaining two sets β2 and β3. Each vertex v ∈ (β∩A)\β1

was added to set A by the algorithm from Observation 4.5. Therefore, for each such vertex v, there
is a special edge (v, u) ∈ EG(X

′
2, X2). If u ∈ β holds (in which case u ∈ β1 holds), we add v to β2,

and otherwise we add it to β3. It is easy to verify that |β2| ≤ |β1| ≤ 2k
log3 N

. Consider now a vertex

v ∈ β3, and the corresponding special edge e = (v, u). Since w(v), w(u) ≥ 1, it is easy to see that
|β3| ≤ w(A)/2. Overall, we get that:

|β ∩A| = |β1|+ |β2|+ |β3| ≤
4k

log3N
+

w(A)

2
≤ 0.51w(A).

Therefore, w(A) ≥ 1.8|β ∩A|, as required.

The running time of the algorithm from Observation 4.5 is bounded by O(VolG(X2)) ≤ O(VolH(X1)) ≤
O(|X1| · |V (H)|) ≤ O(k ·W · logN). We return the cut (A,B) and terminate the algorithm.

Overall, the total time we have spent on iteration j when Case 2 happens, excluding the time required
to execute Algorithm A, is bounded by O(k · W · logN). This concludes the description and the
analysis of a single iteration.

6.2.4 Constructing a New Layered Connectivity Data Structure.

If any iteration terminated with a “FAIL”, then the algorithm terminates with a “FAIL”. Since the
number of iterations is bounded by 4λ ≤ 32 logN , and the probability that a single iteration termi-
nates with a “FAIL” is bounded by 2− log3 N , we get that the overall probability that our algorithm
implementing procedure ReconnectLayer terminates with a “FAIL” is bounded by 1

N10 . We assume
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from now on that no iteration terminated with a “ FAIL”. If, in any iteration, Case 2 occurred, then
the algorithm terminated with a cut.

We assume from now on that neither of the 4λ iterations terminated with a “FAIL”, and that, in
each iteration, Case 1 occurred. Therefore, for all 1 ≤ j ≤ 4λ, we have computed a collection Rj of
paths, with |Rj | ≥

(
1− 1

32λ

)
k, such that the length of every path in Rj is at most 4d′ log10N . Let

R =
⋃4λ

j=1Rj . Since, for all 1 ≤ j ≤ 4λ, the paths in Rj cause congestion at most d′ log8N , and

λ = ⌈log(64N)⌉ + 1 ≤ 4 logN , we get that the paths in R cause congestion at most 4d′ log9N . For
every vertex v ∈ Uλ, let R(v) ⊆ R be the set of paths that originate at v. Clearly, |R(v)| ≤ 4λ holds.

We say that a vertex v ∈ Uλ is good if |R(v)| ≥ 2λ, and we say that it is bad otherwise. We claim that
at most k

4λ vertices of Uλ may be bad. Indeed, let Π be the collection of all pairs (v, j), where v ∈ Uλ

and 1 ≤ j ≤ 4λ, such that no path of Rj originates at v. Since, for all 1 ≤ j ≤ 4λ, |Rj | ≥
(
1− 1

32λ

)
k,

we get that |Π| ≤ k
32λ ·4λ = k

8 . However, if more than k
4λ vertices of Uλ are bad, then |Π| > k

4λ ·2λ ≥
k
2 ,

a contradiction. We let U ′ ⊆ Uλ be the set of all good vertices, so |U ′| ≥
(
1− 1

4λ

)
k.

Let R̃ ⊆ R be a set of path that contains, for every vertex v ∈ U ′, exactly 2λ paths that originate at v.
From our construction, the paths in R̃ have length at most 4d′ log10N each, and they cause congestion
at most 4d′ log9N . Additionally, every vertex x ∈ β, the number of paths in R that terminate at x is
bounded by:

(4λ) ·M ≤ 4λ ·W log3N

|β|
≤ λρ

4
,

since M = W ·log3 N
|β| and W ·log3 N

|β| ≤ ρ
16 from the problem definition. Our algorithm also ensures that

vertex y ∈ U<i \ β may serve as an endpoint of at most one such path. Consider now some vertex
x ∈ β, and let D<i(x) be the set of all descendant vertices of x that belong to layers U1, . . . , Ui−1,
including vertex x itself. From Property L2 of Layered Connectivity Data Structure, |D<i(x)| ≤ i · ρ.
Let R̃x ⊆ R̃ denote the collection of all paths Q ∈ R̃, such that Q terminates either at one of the
vertices in D<i(x). Then |R̃x| ≤ λρ

4 + λ · ρ ≤ 1.5λ · ρ.

Notice that for every path Q ∈ R̃, if v ∈ U<i is the last endpoint of Q, then we can compute a
vertex x ∈ β with v ∈ D<i(x) in time O(1), using the current Layered Connectivity Data Structure. We
compute the collection β′ ⊆ β of vertices, where a vertex x ∈ β′ if and only if some path in R̃ terminates
at a vertex of D<i(x). This set of vertices can be computed in time O(|R̃|) ≤ O(λk) ≤ O(k logN).

Let V ′ ⊆ U<i be the set of vertices that serve as endpoints of the paths in R̃. From our construction,
every vertex v ∈ V ′ \β serves as an endpoint of exactly one such path. Next, we construct an auxiliary
directed flow network H̃. We start by letting V (H̃) = U ′ ∪ V ′ ∪ β′. For every path Q ∈ R̃, if v is the
first endpoint of Q, and v′ is the last endpoint of Q then we add a directed edge e = (v, x) to the flow
network, whose capacity is 1. We say that edge e corresponds to the path Q. For every vertex u ∈ V ′,
if x ∈ β′ is the ancestor of v, then we add an edge (u, x) of capacity 1 to the graph. Additionally,
we add a source vertex s, and connect it to every vertex in U ′ with an edge of capacity 1, and a
destination vertex t. Every vertex x ∈ β′ connects to t with an edge of capacity ρ. This concludes
the description of the directed flow network H̃. We claim that the value of the maximum s-t flow in
this network is |U ′|. Indeed, since the total capacity of all edges incident to s is |U ′|, the value of the
maximum s-t flow cannot be greater than |U ′|. Consider now the following fractional flow in H̃: we
send one flow unit on every edge incident to s, and, for every path Q ∈ R̃, we send 1

2λ flow units on

its corresponding edge (v, u) ∈ E(H̃), and the same amount of flow on edge (u, x), where x ∈ β′ is
the ancestor of u. Since, for every vertex v ∈ U ′, set R̃ contains exactly 2λ paths originating at v, the
total amount of flow leaving v is exactly 1. Since every vertex u ∈ V ′ is an endpoint of at most one
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path in R̃, if x ∈ β′ is the ancestor of u, then edge (u, x) carries at most 1 flow unit.

Consider now some vertex x ∈ β′, and recall that |R̃x| ≤ 1.5λ · ρ. Since, for every path Q ∈ R̃x, the
corresponding edge carries 1

2λ flow units, the total amount of flow entering x is at most 1.5λ·ρ
2λ ≤ ρ. We

set the flow on the edge (x, t) to be equal to the total amount of flow entering x. Overall, we obtain
a valid s-t flow in H̃, whose value is |U ′|.

Next, we employ the standard Ford-Fulkerson algorithm in order to compute an integral flow of
value |U ′| in H̃. We start by setting the flow on every edge of H̃ to 0, and then perform at most
|U ′| ≤ k iterations. In every iteration, we compute a residual flow network, along with an augmenting
path, and then modify the current flow accordingly. Clearly, every iteration can be executed in time
O(|E(H̃)|) ≤ O(k logN), while the number of iterations is bounded by k. Altogether, the running
time of the algorithm that computes the flow network H̃, and computes a maximum integral s-t flow
in it is bounded by O(k2 logN) ≤ O(k ·W logN).

We are now ready to construct a new Layered Connectivity Data Structure. The sets U0, . . . , Ui−1 of
vertices, and the sets Q1, . . . ,Qi−1 of paths remain unchanged. For all i < i′ < λ, we set Ui′ = ∅.
We also set Ui = U ′ and Uλ = V (H) \

(⋃i
i′=0 Ui′

)
. Since |U ′| ≥

(
1− 1

4λ

)
k, we get that |Uλ| ≤ k

4λ .

For every vertex v ∈ U ′, we consider the unique edge e of H̃ that leaves the vertex v and carries one
flow unit, and we let Q ∈ R̃ be the path corresponding to e. We then set K(v) = Q, and we let
Qi = {K(v) | v ∈ Ui}. Since, for every vertex x ∈ β′, the capacity of the edge (x, t) in H̃ is ρ, this
guarantees that the number of descendant-vertices of x in Ui is bounded by ρ, as required. For every
vertex u ∈ V ′, if x ∈ β′ is its ancestor, then the capacity of the edge (u, x) is 1, so u may serve as an
endpoint in at most 1 path in Qi. Additionally, our construction guarantees that the paths in Qi have
length at most 4d′ log9N each, and they cause edge-congestion at most 4d′ log9N in H, as required.
Therefore, we obtain a valid Layered Connectivity Data Structure.

6.2.5 Analysis of the Running Time

Recall that the time required to construct the adjacency-list representation of graph H ′ from the
adjacency-list of H is bounded by O(W log3N). The algorithm consists of 4λ = O(logN) itera-
tions. In every iteration, we apply Algorithm A for the r-restricted RouteAndCut problem to in-
stance (H ′, Aj , Bj ,∆

′, η′, N ′) at most O(log3N) times. Recall that |V (H ′)| ≤ O(W · log3N), and
|V (H ′) \ Bj | ≤ 4λk ≤ O(k logN). Therefore, the running time of each execution of Algorithm A is
bounded by:

c1 · |V (H ′)| · (|V (H ′)| − |Bj |) · 2c2
√
logN ′ · (logN ′)16c2(r−1)+8c2

≤ O
(
c1 ·W · k · 2c2

√
logN ′ · (logN ′)16c2(r−1)+8c2+4

)
≤ O

(
c1 ·W · k · 2c2

√
logN · (logN)16c2(r−1)+8c2+10 ·

(
1 +

1

64c2r

)16c2(r−1)+8c2+4
)

≤ O
(
c1 ·W · k · 2c2

√
logN · (logN)16c2(r−1)+8c2+10

)
(We have used the fact that, from Inequality 11, 2

√
logN ′ ≤ 2

√
logN · log6N , and from Inequality 10,

logN ′ ≤
(
1 + 1

64c2r

)
· logN .

The time spent on executing Algorithm A in all 4λ = O(logN) iterations is then bounded by:
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O
(
c1 ·W · k · 2c2

√
logN · (logN)16c2(r−1)+8c2+14

)
.

If the algorithm terminates with a cut, then we may need to invest additional O(k ·W · logN) time
in order to convert the cut returned by Algorithm A into a desired well structured cut in H or in G.
Lastly, if the algorithm terminates with a new Layered Connectivity Data Structure, then the additional
time that is required in order to compute the flow network H̃, the maximum integral s-t flow in it,
and then compute the corresponding set Qi of paths, is bounded by O(k ·W · logN). Overall, we get
that the running time of the algorithm is bounded by:

O
(
c1 ·W · k · 2c2

√
logN · (logN)16c2(r−1)+8c2+14

)
.

6.2.6 Special Case: k < 220 · d′ · log6N .

It now remains to consider a special case where k < 220 · d′ · log6N . In this case, we employ the
following simple algorithm. We start with U ′ = ∅, R = ∅, and T = V (H) \ Uλ. In every iteration, we
will add a single path to R, connecting some vertex in Uλ to a vertex of T . For every vertex x ∈ β,
we maintain a counter nx, that counts the number of paths in R that terminate at the vertices of⋃

i′<iDi′(x). Once this number reaches ρ, we remove vertex x, and all vertices in
⋃

i′<iDi′(x) from T .
We also delete from T any vertex that serves as an endpoint of a path in R, except for the vertices
that lie in β. We initialize nx = 0 for all x ∈ β. We will ensure that |R| ≤ k < 220 · d′ · log6N . This
ensures that the total number of vertices x ∈ β for which nx = ρ holds at the end of the algorithm is
bounded by k

ρ . From Requirement L2 of the Layered Connectivity Data Structure, for each such vertex
x ∈ β, |D(x)| ≤ λ · ρ, and so the total number of vertices that are ever deleted from T over the course
of the algorithm is bounded by k

ρ · λ · ρ+ k ≤ 2λ · k ≤ 8k logN . Therefore, throughout the algorithm,

|V (H) \ T | ≤ k + 8k logN ≤ 9k logN ≤ 224 · d′ · log7N holds.

We consider every vertex v ∈ Uλ one by one. When vertex v is considered, we either compute a path
K(v) connecting v to a vertex of T , such that no inner vertices on K(v) lie in T ; or we compute a set
Sv ⊆ V (H) \ T of vertices with no outgoing edges, that contains v. In the former case, the length of
K(v) is at guaranteed to be at most |V (H) \ T | ≤ 214 · d′ · log7N ≤ 4d′ log10N . We add vertex v to
set U ′, add path K(v) to set R, and, if u ∈ T is the other endpoint of path K(v), and x ∈ β is the
vertex for which u ∈ D(x), we increase the counter nx, and, if u ̸∈ β, delete u from T . If nx reaches
ρ, then we delete from T all vertices of

⋃
i′<iDi′(x). We then continue to the next iteration. In the

latter case, if we obtain a set Sv ⊆ V (H) \ T of vertices with no outgoing edges with v ∈ Sv, we just
continue to the next iteration.

If, at the end of this procedure, |U ′| ≥
(
1− 1

4λ

)
k, then we obtain a new Layered Connectivity Data Structure

by keeping the layers U0, . . . , Ui−1 unchanged, together with the corresponding collectionsQ1, . . . ,Qi−1
of paths, setting Ui = U ′ and Qi = R = {K(v) | v ∈ U ′}. Note that the paths in Qi cause congestion
at most k ≤ 220 · d′ · log6N ≤ 4d′ log9N . We also let Uλ contain all vertices that originally lied in Uλ

and were not added to U ′, and, for all i < i′ < λ, we set Ui′ = ∅. From our construction, for every
vertex x ∈ β, |Di(x)| ≤ ρ holds, as required, and every vertex v ∈ U<i serves as endpoint of at most
one path in Qi. It is immediate to verify that we obtain a valid Layered Connectivity Data Structure,
with |Uλ| ≤ k

4λ .

Assume now that, at the end of the algorithm, |U ′| <
(
1− 1

4λ

)
k holds. Consider the cut (Ỹ , Ỹ ′)

in H, where Ỹ =
⋃

v∈Uλ\U ′ Sv and Ỹ ′ = V (H) \ Ỹ . Clearly, EH(Ỹ , Ỹ ′) = ∅. Moreover, from our

construction, |Ỹ | ≥ |Uλ \U ′| ≥ k
4λ ≥

k
512 logN . At the same time, Ỹ ⊆ V (H)\T , so |Ỹ | ≤ |V (H)\T | ≤
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224 · d′ · log7N . Since the total number of vertices x ∈ β with nx = ρ at the end of the algorithm is

bounded by k
ρ ≤

W
ρ , while, from the problem definition, W ·log3 N

|β| ≤ ρ
16 , we get that W ≤ |β|·ρ

16 log3 N
, and

|Ỹ ′ ∩ β| ≥ |β| − W
ρ ≥ |β|

(
1− 2

log3 N

)
.

Since EH(Ỹ , Ỹ ′) = ∅, cut (Ỹ , Ỹ ′) is weakly well-structured in H, and it is 1
d′ log4 N

-sparse. If |Ỹ ′| < k
512 ,

then we return cut (Ỹ , Ỹ ′) in H, that is guaranteed to have all required properties. Otherwise, we
transform cut (Ỹ , Ỹ ′) into a a strongly well-structured 1

4d′ -sparse cut (A,B) in G with w(A), w(B) ≥
k

214 logN
and w(A) ≥ 1.8|β∩A|, exactly as before, and output this cut as the outcome of the algorithm.

We now provide an algorithm to efficiently implement the above procedure. Throughout the algorithm,
we denote Z = V (H) \ T . Each vertex v ∈ Z is classified as either marked or unmarked ; a vertex
v ∈ Z is marked only if we have correctly established that no path connects v to a vertex of T . Notice
that vertices may leave T , but they cannot join T . Therefore, if, at some time τ during the algorithm,
no path conencts v to vertices of T , then this remains so for the remainder of the algortihm. For every
vertex v ∈ Z that is unmarked, we maintain a heap h(v) that contains all unmarked vertices u ∈ Z
with edge (v, u) ∈ E(H), and also all vertices u′ ∈ T with edge (v, u′) ∈ E(H).

At the beginning of the algorithm, Z = Uλ, and all vertices in Z are unmarked. Notice that the
time that is required in order to construct the initial heaps h(v) for vertices v ∈ Z is bounded by
O(|Uλ| · |V (H)|) ≤ O(k ·W ). Next, we perform iterations. In every iteration, we select an arbitrary
vertex v ∈ Z, and perform a DFS, starting from v, in the graph that is obtained from H by deleting
the marked vertices, until a vertex of T is reached. In other words, when the DFS search arrives at
some vertex z, it only explores edges (z, u) with u ∈ h(z). Whenever the DFS search backtracks from
a vertex a, we know that no path connects a to a vertex of T , so we mark a. We then examine all edges
(b, a) ∈ E(H) with b ∈ Z, and delete a from the corresponding heap h(b). The time that the DFS
spent on exploring vertex a, on marking it, and on deleting it from the heaps of vertices b ∈ Z with
(b, a) ∈ E(H) is charged to vertex a itself. Excluding the time charged to the newly marked vertices,
the DFS search from a single vertex v takes time O(|Z|) = O(k logN). If, as the result of the search,
we arrive at a vertex of T , then we obtain the desired path K(v). Otherwise, vertex v becomes marked
as well, and we process it like all other marked vertices. Notice that the number of such DFS searches
that our algorithm performs is bounded by |Uλ| ≤ k, and so the total time spent on the DFS searches,
excluding the time charged to the marked vertices, is bounded by O(k2 logN) ≤ O(k ·W · logN).

Recall that, throughout the algorithm, |Z| = |V (H) \ T | ≤ O(k logN) holds. Every vertex in Z may
be marked at most once. When a vertex a ∈ Z is marked, we need to consider all vertices b ∈ Z
with (b, a) ∈ E(H), and delete a from the heap h(b). Since |Z| ≤ O(k logN), we spend O(k logN) to
process each newly marked vertex, and O(k2 log2N) ≤ O(k ·W log2N) time on all marked vertices
throughout the algorithm.

Once every vertex of Uλ is either added to U ′ or is marked, the algorithm terminates. The set Ỹ of
vertices can then be constructed by simply including all marked vertices of Z in it. From the above
discussion, the total running time of the algorithm for this special case is O(k · W · log2N). This
completes the proof of Claim 6.1.

6.3 ConnectToCenters Problem

Suppose we are given a perfect well-structured graph G with a proper assignment ℓ(e) of lengths to
its edges, together with a parameter d′ ≥ 1, and a subset β ⊆ V (G) of vertices of G. Assume further
that G undergoes an online sequence of updates of the following two kinds: (i) double the length of a
special edge e ∈ E(G); and (ii) delete a vertex v ∈ β from the set β. Intuitively, the purpose of the

73



ConnectToCenters problem is to maintain the Layered Connectivity Data Structure in G with Uλ = ∅,
except that we slightly relax Requirement L1, and allow the lengths of the paths in

⋃λ−1
i=1 Qi to be

bounded by 16d′ log10N , instead of 4d′ log10N . The parameter ρ corresponding to the data structure

is ρ = 212·W 0·log3 N
|β| , where W 0 is the initial total weight of all vertices of G. The algorithm is allowed,

at any time, to return a strongly well-structured 1
4d′ -sparse cut (A,B) in G with w(A) ≥ 1.8|β ∩ A|.

Following that, if w(A) ≤ w(B), then the vertices of A, and the endpoints of the edges in EG(A,B)
are deleted from G, while otherwise the vertices of B, and the endpoints of the edges in EG(A,B) are
deleted from G. In either case, the algorithm must continue with the resulting graph. The algorithm is
also allowed, at any time, to return a weakly well-structured cut (A′, B′) in graph H – the subdivided

graph corresponding to G – with |A′| ≥ 511|V (H)|
512 , |A′ ∩ β| < 2|β|

log3 N
, and |EH(A′, B′)| ≤ |V (H)|

1024d′·log6 N ,

after which the algorithm terminates. It is also allowed, at any time, to terminate with a “FAIL”, but
we require that the probability that this ever happens is bounded by 1/N7. We model this algorithm
as consisting of a number of phases, where every phase consists of a number of iterations. In every
iteration, the algorithm must either (i) produce a valid Layered Connectivity Data Structure for the
current graph G with Uλ = ∅ (with the relaxed Requirement L1), after which the phase terminates;
or (ii) produce a strongly well-structured 1

4d′ -sparse cut (A,B) in G, after which G is updated as
described above, and some vertices may be deleted from β; or (iii) produce a weakly well-structured

cut (A′, B′) in graph H, with |A′| ≥ 511|V (H)|
512 , |A′ ∩ β| < 2|β|

log3 N
, and |EH(A′, B′)| ≤ |V (H)|

1024d′·log6 N , after

which the algorithm terminates. At the end of each phase, the algorithm is given a collection of special
edges of G whose lengths are doubled, and a collection of vertices that are deleted from β, and then
a new phase begins. The algorithm only needs to continue as long as |β| remains sufficiently large (it
most contain at least 1/4 of the vertices from the original set β), and as long as the total increase in
the lengths of the edges is not too large. We now define the total increase of edge lengths formally,
followed by a formal defintion of the ConnectToCenters problem.

Definition 6.5 (Total increase in edge lengths) Let G be a perfect well-structured graph with a
proper assignment ℓ(e) of lengths to its edges, that undergoes an online sequence of updates, consisting
of the following operations: (i) double the length of a special edge e ∈ E(G); and (ii) delete a vertex
from V (G), together with its incident edges. Consider any time τ during the update sequence, and
denote by E0 the set of special edges in the initial graph G. For each edge e ∈ E0, let ℓ0(e) be the
length of e at the beginning of the algorithm, and let ℓτ (e) be the length of e at time τ if e ∈ E(G) at
time τ ; or the length of e just before it was deleted from τ otherwise. Then the total increase in edge
lengths at time τ is:

∑
e∈E0

(
ℓτ (e)− ℓ0(e)

)
.

We are now ready to define the ConnectToCenters problem.

Definition 6.6 (ConnectToCenters problem) The input to the ConnectToCenters problem consists
of a perfect well-structured graph G = (L,R,E) with |V (G)| = n, and a proper assignment ℓ(e)
of lengths to the edges e ∈ E, that are given in the adjacency list representation, together with a
subdivided graph H corresponding to G in the adjacency-list representation. Let W 0 denote the weight
of all vertices in this initial graph G. Additionally, we are given a parameter N ≥ max

{
n,W 0/8

}
that is greater than a large enough constant, and parameters d′ ≥ 1, and 1 ≤ r ≤

⌈√
logN

⌉
, such that

d′ ≤ min
{

2r
√
logN

log8 N
, n8

}
. Lastly, we are given a set β ⊆ V (H) of vertices, with |β| ≥ W 0

256d′ . We denote

by β0 the initial set β.

The algorithm consists of a number of phases, and every phase is partitioned into iterations. In every
iteration, the algorithm is required to return one of the following:

O1. either a valid Layered Connectivity Data Structure in the current graph G with the parameter
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ρ = 212·W 0·log3 N
|β0| , in which Requirement L1 is relaxed to allow the lengths of the paths in

⋃λ−1
i=1 Qi

to be bounded by 16d′ log10N and Uλ = ∅;

O2. or a strongly well-structured 1
d′ -sparse cut (A,B) in G with w(A) ≥ 1.8|β ∩A|;

O3. or a weakly well-structured cut (A′, B′) in graph H, with |A′| ≥ 511|V (H)|
512 , |A′ ∩ β| < 2|β|

log3 N
, and

|EH(A′, B′)| ≤ |V (H)|
1024d′·log6 N .

In the case of Outcome O3, the algorithm terminates. In the case of Outcome O2, the endpoints of
the edges in EG(A,B) are deleted from G. Additionally, if w(A) ≤ w(B), then the vertices of A are
deleted from G, and otherwise the vertices of B are deleted from G. All the vertices of β that are
deleted from G are also deleted from β, along with some additional vertices that may be deleted from
β (given by the adversary). In case of Outcome O1, the current phase terminates, and the algorithm
is given a collection of special edges of G, whose lengths are doubled, together with a list of vertices
that are deleted from β.

Once the total increase in the edge lengths becomes greater than 8n, or at least 3/4 of vertices in the
initial set β are deleted from β, the algorithm terminates. The algorithm may also return “FAIL” and
terminate at any time, but we require that the probability that this ever happens is bounded by 1

N7 .

Next, we provide an algorithm for the ConnectToCenters problem, that relies on the algorithm for
the r-restricted RouteAndCut problem, whose existence is assumed in Theorem 4.12. We then show
that the algorithm for the r-restricted MaintainSpecialCluster problem with the properties required
in Theorem 4.12 follows immediately from the algorithm for the ConnectToCenters problem. This
algorithm will also be used as one of the main ingredients in our algorithm for the MaintainCluster
problem, that will complete the proof of Theorem 4.12.

6.4 An Algorithm for the ConnectToCenters Problem

In this subsection, we provide an algorithm for the ConnectToCenters problem, that is summarized in
the following theorem.

Theorem 6.7 Suppose that, for some parameter r ≥ 1, there exists a randomized algorithm for the
r-restricted RouteAndCut problem, that, given as an input an instance (G,A,B,∆, η,N) of the problem
with |V (G)| = n, has running time at most c1 ·n · (n− |B|) · 2c2

√
logN · (logN)16c2(r−1)+8c2. Then there

is a randomized algorithm for the ConnectToCenters problem, for the same value of parameter r, whose
running time is at most:

O
(
c1 ·W 0 · (W 0 − |β0|+ |β′| · ρ+ Λ) · 2c2

√
logN · (logN)16c2(r−1)+8c2+26

)
,

where Λ is the total increase in the edge lengths over the course of the algorithm, β′ is the set of all
vertices deleted from β over the course of the algorithm (including the vertices that are deleted from H
following updates to graph G), and W 0 is the total initial weight of the vertices in the input graph G.

The remainder of this subsection is dedicated to the proof of Theorem 6.7. The algorithm is quite
straightforward: in every iteration we simply apply the algorithm for the ReconnectLayer problem
from Claim 6.1 to the current graph G, and the current Layered Connectivity Data Structure. The only
subtlety is that the algorithm requires that the length of every edge in G is at least d′. If this is not
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the case, and e = (u, v) is a special edge of length greater than d′, then we can define a strongly well-
structured cut (A,B) in G with A = {u} and B = V (G) \ {u}, whose sparsity is at least 1/d′ (since
w(u), w(v) ≥ d′), and return this cut. We also need to verify that, whenever we apply the algorithm
from Claim 6.1 to the current graph G, we indeed obtain a valid instance of the ReconnectLayer
problem. The main difficulty is in the analysis of the running time of this algorithm, that we discuss
below.

6.4.1 The Data Structures

Recall that we are given as input a perfect well-structured graph G = (L,R,E) with |V (G)| = n,
and a proper assignment ℓ(e) of lengths to the edges e ∈ E, that are given in the adjacency list
representation, together with a subdivided graphH = (L′, R′, E′) corresponding to G in the adjacency-
list representation. We denote by W 0 the weight of all vertices in this initial graph G. Recall that
we are also given a parameter N ≥ max

{
n,W 0/8

}
that is greater than a large enough constant, and

parameters d′ ≥ 1, and 1 ≤ r ≤
⌈√

logN
⌉
, such that d′ ≤ min

{
2r

√
logN

log8 N
, n8

}
. We also denote by β0

the initial set β ⊆ V (H) of vertices that is given as part of the problem input; recall that |β0| ≥ W 0

256d′ .

Throughout, we use the parameter ρ = 212·W 0·log3 N
|β0| .

Recall that graph H is obtained from G by replacing every special edge e = (u, v) with a new path,
that we denote by P ∗(e), and call the path representing e in H. The number of special edges on P ∗(e)
is exactly ℓ(e). Therefore, |V (H)| =

∑
v∈V (G)w(v), and initially, |V (H)| = W 0.

Assume that at some time during the algorithm’s execution, the length ℓ(e) of a special edge e ∈ E(G)
is doubled. Then for every special edge e′ = (x, y) on path P ∗(e), we replace the edge by a path
(x, x′, y′, y), where x′, y′ are new vertices, edges (x, x′) and (y′, y) are special, and edge (x, y′) is
regular; we call this process the splitting of edge e′. Notice that, since (x, y) is a special edge of H,
x ∈ R′ and y ∈ L′ must hold. We add x′ to L′ and y′ to R′. It is easy to verify that H remains
the subdivided graph of G after this update. Since the total increase in the lengths of the edges of G
over the course of the algorithm is bounded by Λ, the total time required to maintain graph H in the
adjacency-list representation, once the representation of the initial graph H is given, is bounded by
O(Λ).

Our algorithm maintains a valid Layered Connectivity Data Structure for the current graph G, with the
parameter ρ defined above, and with Requirement L1 relaxed to allow the lengths of the paths in⋃λ−1

i=1 Qi to be bounded by 16d′ log10N . However, whenever a new path is added to set
⋃λ−1

i=1 Qi, we
require that its initial length is bounded by 4d′ log10N .

At the beginning of the algorithm, we set U0 = β, U1 = U2 = · · · = Uλ−1 = ∅, and Uλ =
V (H) \ β. For all 1 ≤ i < λ, we also set Qi = ∅. It is easy to verity that this is a valid
Layered Connectivity Data Structure. Throughout, we denote Q =

⋃λ−1
i=1 Qi. We also maintain, for

every vertex x ∈ β and layer 1 ≤ i < λ, the set Di(x) of the descendants of x at layer i, and, for every
vertex v ∈

⋃λ−1
i=1 Di(x), a pointer from v to x. At the beginning of the algorithm, for all x ∈ β and

1 ≤ i < λ, we set Di(x) = ∅. Additionally, for every layer 1 ≤ i < λ, for every vertex v ∈ U<λ, if v
serves as an endpoint of a path K(u) ∈ Qi, then we maintain a pointer from v to u.

For every edge e ∈ E(H), we will maintain a list S(e) of all vertices v ∈
⋃λ−1

i=1 Ui with e ∈ K(v).
The task of maintaining these lists is quite straightforward. We will ignore it when we describe the
remainder of the algorithm below, but we will show how to extend the algorithm in order to maintain
these lists efficiently later.

For every vertex v ∈
⋃λ−1

i=1 Ui, we will maintain the length ℓ̂(v) of the path K(v) ∈ Q. When the path
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K(v) is first added to Q, we initialize its length ℓ̂(v). Then whenever a special edge on path K(v)
undergoes splitting, we increase ℓ̂(v) by 1. The time that is required in order to maintain the values
ℓ̂(v) for vertices v ∈

⋃λ−1
i=1 Ui is clearly subsumed by the time required to compute and to maintain

the collection Q of paths. In our description of the remainder of the algorithm below, we will ignore
the task of maintaining these values.

Before we provide the algorithm, we need one more definition, and a simple bound. We denote by G0

the initial graph G. For every vertex v ∈ V (G0), we denote by w0(v) the weight of v at the beginning
of the algorithm. If v lies in G at the end of the algorithm, then we let w∗(v) be the weight of v at
the end of the algorithm, and otherwise we let w∗(v) be the weight of v just before it is deleted from
G. We also denote W ∗ =

∑
v∈V (G0)w

∗(v). Since the total increase in the lengths of edges over the

course of the algorithm is at most 8n, we get that W ∗ ≤ W 0 + 16n. Since N ≥ max
{
n,W 0/8

}
, we

get that W ∗ ≤ 32N .

6.4.2 The Algorithm

We now describe the algorithm for executing a single phase. We denote by M the multiset of all
vertices that ever lied in Uλ over the course of the algorithm. If a vertex is added to and removed from
Uλ multiple times during the algorithm, we add multiple copies of that vertex to M . We will bound
the running time of the algorithm in terms of |M |, and then later we will bound |M |. Whenever our
algorithm computes a strongly well-structured 1

d′ -sparse cut (A,B) in G with w(A) ≥ 1.8|β ∩ A|, we
call Procedure ProcessCut that we describe below. Following this procedure, the vertices that serve as
endpoints of the edges in EG(A,B), along with the vertices of A (if w(A) ≤ w(B)) or the vertices of
B (otherwise) are deleted from G. We partition the execution of a single phase into three stages.

First stage. The first stage continues as long as the current graph G contains an edge of length
greater than d′. Let e = (u, v) be any such edge, and recall that it must be a special edge. Consider
the cut (A,B) in G, where A = {u}, and B = V (G) \ {u}. It is immediate to verify that this cut is
strongly well-structured. Moreover, since w(u) = w(v) = ℓ(e), while |EG(A,B)| = 1, the sparsity of
the cut (A,B) is at most 1

d′ , and w(A) ≥ 1.8|β ∩A| (as |A| = 1). We then output the cut (A,B), and
call Procedure ProcessCut that is described below. This completes the description of the algorithm
for the first stage of a phase. At the end of the first stage, graph G does not contain any edge whose
length is greater than d′.

Second stage. The second stage is executed as long as Uλ ̸= ∅. We let 1 ≤ i < λ be the smallest
index for which

∑λ
j=i+1 |Uj | ≥ 2λ−i−1 holds. Notice that, since |Uλ| ≥ 1, if we choose i = λ− 1, then∑λ

j=i+1 |Uj | ≥ 2λ−i−1 = 1 holds, so such an index i must exist. We need the following claim.

Claim 6.8
∑λ

j=i |Uj | ≤ 2λ−i.

Proof: Assume otherwise, that is,
∑λ

j=i |Uj | > 2λ−i. Since we did not choose index i − 1 instead

of i, it must be the case that i = 1. Recall however that λ = ⌈log(64N)⌉ + 1, and so 2λ−1 ≥ 64N .
Therefore,

∑λ
j=1 |Uj | ≥ 64N . However, |V (H)| ≤W ∗ < 64N must hold, a contradiction.

For every layer i ≤ j ≤ λ − 1 and vertex v ∈ Uj , we delete v from Uj and add it to Uλ. We also
delete path K(v) from set Qj , and delete v from the set Dj(x), where x is its ancestor-vertex in β.
We denote by k = |Uλ|, so 2λ−i−1 ≤ k ≤ 2λ−i. Notice that the running time that we have spent so far
in this iteration is O(2λ−i) +O(λ · log n) ≤ O(k) +O(log2N).
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Next, we apply the algorithm for Procedure ReconnectLayer from Claim 6.1 to the current graphs G,
H, and the index i. For brevity of notation, we denote this procedure by Π. We verify that we obtain
a valid input to Procedure ReconnectLayer.

First, the current weight of all vertices in G is bounded by W ∗ ≤ 32N , so N ≥ max {n,W/32} holds.
The inequalities 1 ≤ r ≤

⌈√
logN

⌉
and 1 ≤ d′ ≤ min

{
2r

√
logN

log8 N
, n8

}
hold from the definition of the

ConnectToCenters problem. The length of every edge in G is at most d′, and, for all i ≤ j < λ, Uj = ∅
holds, while |Uλ| ≤ 2λ−i from Claim 6.8. Recall that we have set ρ = 212·W 0·log3 N

|β0| . Since |β0| ≤ W 0,

we get that ρ ≥ log2N . Let W =
∑

v∈V (G)w(v). From the problem definition, W ≤ W ∗ ≤ 32W 0,

and |β| ≥ |β
0|
4 . Therefore:

W · log3N
|β|

≤ 128W 0 · log3N
|β0|

≤ ρ

16
,

as required.

It remains to verify that |β| ≥ W
d′ log2 N

holds. From the definition of the ConnectToCenters problem,

|β0| ≥ W 0

256d′ , and, throughout the algorithm, |β| ≥ |β0|
4 ≥

W 0

1024d′ holds. Since the total weight W of

the vertices of G is bounded by W ∗ ≤ 32W 0, and N is sufficiently large, we get that |β| ≥ W 0

1024d′ ≥
W

215d′ ≥
W

d′ log2 N
holds. Therefore, we obtain a valid input for Procedure ReconnectLayer. Recall that

the running time of procedure Π is bounded by:

O
(
c1 ·W · k · 2c2

√
logN · (logN)16c2(r−1)+8c2+14

)
≤ O

(
c1 ·W 0 · k · 2c2

√
logN · (logN)16c2(r−1)+8c2+14

)
,

and the probability that it returns “FAIL” is at most 1
N10 . If the procedure returns “FAIL”, then we

terminate our algorithm, and return “FAIL” as well. Otherwise, we consider three cases.

In the first case, the procedure returns a weakly well-structured cut (A′, B′) in H with |A′| ≥ 511|V (H)|
512 ,

|A′ ∩ β| < 2|β|
log3 N

, and |EH(A′, B′)| ≤ |V (H)|
1024d′·log6 N . In this case, we return the cut (A′, B′), and the

algorithm terminates. We say that Procedure Π produced a type-1 outcome in this case.

In the second case, the procedure returns a valid Layered Connectivity Data Structure, in which, for all
i < i′ < λ, Ui′ = ∅ and |Uλ| ≤ k

4λ holds; additionally, layers U1, . . . , Ui−1, together with the correspond-
ing collections of pathsQ1, . . . ,Qi−1 remain the same as in the input Layered Connectivity Data Structure.
In this case we say that Procedure Π produced a type-2 outcome. Notice that, at the beginning of
the procedure, |Uλ| = k held, while at the end of the procedure, |Uλ| ≤ k

4λ . Therefore, at least
k
(
1− 1

4λ

)
vertices were removed from Uλ by this procedure. For each such vertex v, we charge the

vertex O
(
c1 ·W 0 · 2c2

√
logN · (logN)16c2(r−1)+8c2+14

)
units for the execution of the procedure, so that

the total charge to all vertices that were removed from Uλ by the procedure is at least the total running
time of the procedure.

Lastly, we consider the third case, where Procedure Π returned a strongly well-structured 1
4d′ -sparse

cut (A,B) in G with w(A), w(B) ≥ k
214 logN

and w(A) ≥ 1.8|β ∩ A|. In this case, we say that the

outcome of Procedure Π is of type 3. We then output the cut (A,B), and call Procedure ProcessCut
that is described below. Recall that, following this cut, all vertices that serve as endpoints of the edges
in EG(A,B), and also either all vertices of A or all vertices of B, are deleted from G. Let Z denote
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the set of all vertices that are deleted from G. Notice w(Z) ≥ min {w(A), w(B)} ≥ k
214 logN

. For every

vertex v ∈ Z, we charge the vertex O
(
c1 ·W 0 · w(v) · 2c2

√
logN · (logN)16c2(r−1)+8c2+15

)
units for the

execution of the iteration, so that the total charge to all vertices of Z is at least as high as the running
time of the iteration.

Third Stage. The second stage terminates once we obtain a valid Layered Connectivity Data Structure
(with relaxed Requirement L1), with Uλ = ∅. Recall that, following this, the algorithm is given a set
E′ ⊆ E(G) of special edges whose lengths need to be doubled, and a set β̂ ⊆ β of vertices, that need
to be deleted from β. For every special edge e ∈ E′, we consider each of the special edges e′ ∈ P ∗(e)
one by one. We start by performing a splitting update of the edge e′, that introduces two new special
edges e1, e2 in graph H, that replace edge e′, and two new vertices, that we add to set Uλ. We initialize
S(e′1) = S(e′2) = ∅. For every vertex v ∈ S(e), we update the corresponding path K(v) by splitting
the edge e′, and we update the length ℓ̂(v) of the path by increasing it by (additive) 2. If ℓ̂(v) becomes
greater than 16d′ log10N , then let Uj be the layer to which v belongs. We delete v from Uj and add
it to Uλ. We also delete the path K(v) from Qj , and we say that path K(v) is destroyed. We also
delete v from set Dj(x), where x ∈ β is the ancestor of v. Let Λ′ denote the total initial length of the
edges in E′, so the lengths of all edges increased by additive Λ′ in this iteration, and the number of
edge-splitting operations performed in graph H is bounded by Λ′. Since, from Requirement L1, for
all 1 ≤ i < λ, the paths in Qi cause edge-congestion at most 4d′ log9N , and since λ ≤ O(logN), we
get that, for every edge e′ ∈ E(H), |S(e)| ≤ O(d′ log10N). Therefore, the total running time of the
algorithm for Stage 3 so far is O(Λ′ · d′ · log10N).

Next, we process the vertices of β̂, that are deleted from set β. We consider the vertices x ∈ β̂ one by
one. For each such vertex x, for every layer 1 ≤ j < λ, and for every descendant v ∈ Di(x) of x at layer
j, we delete v from Uj and add it to Uλ. We also delete the path K(v) from Qj (we may sometimes say
that the path is destroyed). This completes the description of the algorithm for the third stage of a
phase. Recall that, from Property L2 of the Layered Connectivity Data Structure, for every vertex x ∈ β,
for every layer 1 ≤ j ≤ λ−1, |Dj(x)| ≤ ρ. Therefore, the total number of vertices that are added to Uλ

due to the deletion of their ancestors from β is bounded by O(|β̂| ·ρ ·λ) ≤ O(|β̂| ·ρ · logN). The running
time of Stage 3 is bounded by O(Λ′ ·d′ ·log10N)+O(|β̂|·ρ·logN) ≤ O(Λ′ ·W 0 ·log10N)+O(|β̂|·ρ·logN),
since d′ ≤ n ≤W 0 from the problem definition. This completes the description of the algorithm for a
single phase.

Recall that Λ bounds the total increase in the lengths of edges of the course of the algorithm. Let Ŵ
denote the total weight of all vertices that were ever deleted from G over the course of the algorithm,
and let β′ be the set of all vertices that were deleted from β over the course of the algorithm. Observe
that the vertices of β0 \ β′ remain in G throughout the algorithm, and so:

Ŵ ≤W ∗ − |β0 \ β′| ≤W 0 + 2Λ− |β0|+ |β′|. (12)

From the above discussion, the total running time of algorithms for stages 1, 2 and 3 (excluding the
running times of the executions of Procedure Π and Procedure ProcessCut), over the course of the
entire algorithm, is bounded by:

O(|β′| · ρ · logN) +O(Λ · d′ · log10N).

Since, from the problem definition, d′ ≤ n ≤W 0, this is bounded by:

O(|β′| · ρ · logN) +O(Λ ·W 0 · log10N).
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Next, we bound the total running time of all executions of Procedure ReconnectLayer over the course
of the algorithm. Observe first that type-1 outcome of the procedure may only occur once over the
course of the algorithm. The running time of Procedure ReconnectLayer in case of type-1 outcome is
bounded by:

O
(
c1 ·W 0 · k · 2c2

√
logN · (logN)16c2(r−1)+8c2+14

)
,

where k ≤ |V (H) \ β|. Recall that β′ is the set of all vertices that were deleted from β over the
course of the algorithm, so |β| ≥ |β0| − |β′|. Recall also that |V (H)| ≤ W ∗ ≤ W 0 + 2Λ. Therefore,
k ≤ |V (H) \ β| ≤ W ∗ − |β0|+ |β′| ≤ W 0 + 2Λ− |β0|+ |β′|. We then get that the total running time
of Procedure ReconnectLayer when type-1 outcome occurs is bounded by:

O
(
c1 ·W 0 · (W 0 − |β0|+ Λ+ |β′|) · 2c2

√
logN · (logN)16c2(r−1)+8c2+14

)
.

Recall that we have charged the running times of the executions of Procedure Π in which type-2 or
type-3 outcomes occured to vertices that were removed from Uλ by the procedure (in case of type-2
outcome), or to the weights of the vertices that were deleted from G following the procedure. Recall
also that M is the multiset of all vertices that ever lied in Uλ. The total running time of the remaining
executions of Procedure Π is bounded by:

O
(
c1 ·W 0 · (Ŵ + |M |) · 2c2

√
logN · (logN)16c2(r−1)+8c2+15

)
≤ O

(
c1 ·W 0 · (W 0 + |β′| − |β0|+ Λ+ |M |) · 2c2

√
logN · (logN)16c2(r−1)+8c2+15

)
,

from Inequality 12. The total running time of the algorithm, excluding Procedure ProcessCut, is
therefore bounded by:

O
(
c1 ·W 0 · (W 0 − |β0|+ |β′| · ρ+ Λ+ |M |) · 2c2

√
logN · (logN)16c2(r−1)+8c2+15

)
.

Next, we describe Procedure ProcessCut and analyze its running time, and then bound |M |.

6.4.3 Procedure ProcessCut

Procedure ProcessCut is called whenever our algorithm produces a strongly well-structured 1
d′ -sparse

cut (A,B) in G with w(A) ≥ 1.8|β ∩A|. Let Z be the set of vertices of G that contains all endpoints
of the edges in EG(A,B). Additionally, if w(A) ≤ w(B), we add the vertices of A to Z, and we add
the vertices of B to Z otherwise. Recall that, following this cut, the vertices of Z are deleted from G.
Additionally, some vertices may be deleted from β. We denote the latter set of vertices by β̂, and we
assume that Z ∩ β ⊆ β̂.

We start by updating the graph H, as follows: we delete the vertices of Z from H, and, for every
special edge e ∈ E(G) that is incident to a vertex of Z, we delete all vertices and edges on the
corresponding path P ∗(e) from H. For every vertex v that is deleted from H, if Uj is the layer of the
Layered Connectivity Data Structure to which v belongs, we delete v from Uj and from set Dj(x), where
x ∈ β is the ancestor of v, and we also delete path K(v) from Qj . Note that the update of graph H
takes time O(w(Z)). We denote by Z ′ the set of vertices that were deleted from H, so |Z ′| ≤ O(w(Z)).
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Next, we consider the vertices x ∈ β̂ one by one. For each such vertex x, for every layer 1 ≤ j < λ,
and for every descendant v ∈ Dj(x) of x at layer j, we delete v from Uj and add it to Uλ. We also
delete the path K(v) from Qj (we may sometimes say that the path is destroyed). Additionally, if x
remains in H, we add it to Uλ as well. Let n′ be the number of vertices that were added to Uλ so far.
Recall that, from Property L2 of the Layered Connectivity Data Structure, for every vertex x ∈ β̂, for
every layer 1 ≤ j ≤ λ− 1, |Dj(x)| ≤ ρ. Therefore, n′ ≤ |β̂| · λ · ρ ≤ 8|β̂| · ρ · logN . The running time

of the algorithm so far is bounded by O(w(Z) + |β̂| · ρ · logN).

Lastly, it is possible that, for some vertices v ∈
⋃λ−1

j=1 Uj , some vertex of K(v) was deleted from H by
the procedure, while vertex v itself was not deleted. Note that, if the ancestor x ∈ β of v was deleted
from β, then we have already removed v from its corresponding layer. Let V ′ ⊆

⋃λ−1
j=1 Uj denote the

set of all vertices v ∈
⋃λ−1

j=1 Uj , such that v ̸∈ Z ′, the ancestor x ∈ β of v is not in β̂, and some vertex
on path K(v) is in Z ′. We further partition set V ′ into two subsets: set V ′1 contains all vertices v ∈ V ′,
such that the last vertex u on path K(v) lies in Z ′; while set V ′2 contains all remaining vertices.

From Requirement L3 of Layered Connectivity Data Structure, |V ′1 | ≤ λ·Z ′ ≤ O(w(Z)·logN). Since the
Layered Connectivity Data Structure data structure maintains, for every vertex v ∈ V ′ a pointer from
the last endpoint u ofK(v) to vertex v itself, set V ′1 can be computed in time O(|V ′1 |) ≤ O(w(Z)·logN).

In order to compute the set V ′2 of vertices, consider the collection EG(A,B) of edges. Recall that,
for every edge e ∈ EG(A,B), we have defined a path P ∗(e) that represents edge e in graph H ′. Let
E′ ⊆ E(H) be the set of edges that contains, for each edge e ∈ EG(A,B), the first and the last edge
on path P ∗(e). We claim that, for every vertex v ∈ V ′2 , path K(v) must contain an edge of E′.

Observation 6.9 For every vertex v ∈ V ′2, path K(v) must contain an edge of E′.

Proof: Assume first that w(A) ≤ w(B). Consider the graph H \ E′, and let (a, b) be any edge in
this graph with a ∈ Z ′ and b ̸∈ Z ′. From the definition of the set Z ′ of vertices and the set E′ of
edges, it must be the case that a is the last endpoint of some path P ∗(e) for an edge e ∈ EG(A,B);
equivalently, a ∈ V (G) is the tail of one of the edges in EG(A,B). But then a ∈ L′, and it only has
a single incoming edge in H, which must belong to E′. Consider now some vertex v ∈ V ′2 , and its
corresponding path K(v). Assume for contradiction that K(v) does not contain an edge of E′. Since
K(v) connects two vertices of V (H) \ Z ′, and contains at least one vertex of Z ′ as an inner vertex,
it must contain an edge (a, b) with a ∈ Z ′ and b ̸∈ Z ′. But the only edge entering a lies in E′, a
contradiction.

If w(A) > w(B), then the proof is the same, except that we consider an edge (a, b) with a ̸∈ Z ′ and
b ∈ Z ′. In this case, b must be a head of an edge of EG(A,B), and so it has no outgoing edges in
H \ E′.

In order to compute the set V ′2 of vertices, we consider the edges e ∈ EG(A,B) one by one. When
edge e is considered, we let e′ and e′′ be the first and the last edges on the corresponding path P ∗(e).
We then add to V ′2 all vertices that lie in set S(e′) ∪ S(e′′). Notice that, from Requirement L1 of
the Layered Connectivity Data Structure, the congestion caused by the set Q of paths is bounded by
O(d′λ log9N) ≤ O(d′ log10N), and so for every edge e∗ ∈ E(H), |S(e∗)| ≤ O(d′ log10N). Alto-
gether, we get that: |V ′2 | ≤ O

(
|EG(A,B)| · d′ · log10N

)
. Since cut (A,B) is 1

d′ -sparse, we get that

|EG(A,B)| ≤ min{w(A),w(B)}
d′ ≤ w(Z)

d′ . Overall, we get that |V ′2 | ≤ O(w(Z) · log10N), and set V ′2 can
be computed in time O(w(Z) · log10N). From our discussion, |V ′| ≤ O(w(Z) · log10N), and it can be
computed in time O(w(Z) · log10N).

For every vertex v ∈ V ′, let 1 ≤ j ≤ λ be the index of the layer to which v belongs. If j < λ, then we
delete v from Uj and add it to Uλ, and we also delete the path K(v) from Qj . Additionally, if x ∈ β
is the ancestor of v, then we delete v from set Dj(x).
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From our discussion, the total number of vertices that were added to Uλ over the course of the
procedure is bounded by O(w(Z) · log10N) +O(|β̂| · ρ · logN), and the running time of the procedure
is bounded by O(w(Z) · log10N) +O(|β̂| · ρ · logN).

Recall that we have denoted by Ŵ the total weight of all vertices that were ever deleted from G
over the course of the algorithm, and by β′ the set of all vertices that remain in β at the end of the
algorithm. Recall also that, from Inequality 12, Ŵ ≤ W 0 + 2Λ − |β0| + |β′|. Therefore, the total
number of vertices that were ever added to set Uλ by Procedure ProcessCut is bounded by:

O(Ŵ · log10N) +O(|β′| · ρ · logN) ≤ O
(
(W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

)
,

and the total running time of all calls to Procedure ProcessCut over the course of the algorithm is
bounded by

O(Ŵ · log10N) +O(|β′| · ρ · logN) ≤ O
(
(W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

)
.

The total running time of the algorithm for the ConnectToCenters problem is then bounded by:

O
(
c1 ·W 0 · (W 0 − |β0|+ |β′| · ρ+ Λ+ |M |) · 2c2

√
logN · (logN)16c2(r−1)+8c2+15

)
. (13)

6.4.4 Bounding |M | and the Running Time of the Algorithm

Recall that M is the multiset containing all vertices that were ever added to Uλ over the course of the
phase. We partition the set M into six subsets, M1, . . . ,M6, depending on the process through which
the vertices were added to Uλ, and we then bound the cardinality of each set separately.

Set M1. Recall that at the beginning of the algorithm, every vertex of V (H) \ β0 is added to Uλ.
Set M1 contains all these vertices, and, additionally, whenever a new vertex is inserted into graph H
due to the splitting of a special edge, this new vertex, which is then added to Uλ, is also added to M1.
Lastly, if Procedure ReconnectLayer ever terminates with a type-1 outcome, then all vertices that were
added to Uλ in the same iteration, just prior to that execution of Procedure ReconnectLayer, are also
added to set M1. Since the vertices of β0 \ β′ always lie in U0 and are never added to Uλ, it is easy to
see that |M1| is asymptotically bounded by the total number of vertices ever present in H, excluding
the vertices of |β0 \ β′|. Therefore, |M1| ≤ O(W ∗ − |β0 \ β′|) ≤ O(W 0 + 2Λ− |β0|+ |β′|).

Set M2. The second set M2 contains all vertices v that were added to Uλ when the length of the
current path K(v) ∈ Q exceeded 16d′ log10N . Recall that, when path K(v) was added to Q, its length
was bounded by 4d′ log10N . Therefore, between the time path K(v) was added to Q, and the time it
was destroyed, its edges underwent at least 4d′ log10N splitting updates. Recall that the total increase
in the lengths of all edges in G is denoted by Λ, so the total number of edge splitting updates in graph
H is bounded by Λ. Since every edge of H may belong to at most 4d′λ log9N ≤ 32d′ log10N paths
in Q, we get that the total number of edge splitting updates that the paths in Q undergo over the
course of the algorithm is bounded by O(Λ · d′ log10N). Since each destroyed path must undergo at
least 4d′ log10N edge-splitting updates, we get that |M2| ≤ O(Λ).

Set M3. The third set, M3, contains all vertices v that were added to Uλ because the ancestor-vertex
of v was deleted from β during Phase 3 of the algorithm. Note that, from Property L2 of the
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Layered Connectivity Data Structure, every vertex x ∈ β has at most λ · ρ descendants at any time.
Therefore, |M3| ≤ O(|β′| · ρ · λ) ≤ O(|β′| · ρ · logN).

Set M4. The fourth set, M4, contains all vertices that were added to Uλ by Procedure ProcessCut.
As we showed already, |M4| ≤ O

(
(W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

)
.

Set M5. The fifth set, M5, contains all vertices that were added to Uλ during the iterations of Stage 2,
just prior to the call to Procedure ReconnectLayer, that resulted in a type-3 outocme of the procedure.
Recall that in each such iteration, the number of vertices that were added to Uλ was bounded by

k, while the total weight of the vertices that are subsequently deleted from G is at least Ω
(

k
logN

)
.

Therefore, |M5| ≤ O(Ŵ · logN) ≤ O
(
(W 0 + 2Λ− |β0|+ |β′|) · logN

)
from Inequality 12,

So far we have defined five subsets M1, . . . ,M5 of the set M , and we have shown that:

5∑
j=1

|Mj | ≤ O
(
(W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

)
. (14)

Set M6. We let the sixth set, M6, contain all remaining vertices of M . Each such vertex v must
have been added to Uλ during an iteration of the second stage, just prior to a call to Procedure
ReconnectLayer, that resulted in a type-2 outcome. Consider any such iteration of Phase 2, and let
1 ≤ i < λ be the layer that was chosen by the iteration. We then say that this iteration of Phase 2 is
a type-i iteration. For brevity, in the remainder of the proof, we use “type-i iteration” only to refer to
type-i iterations of Phase 2 in which Procedure ReconnectLayer resulted in a type-2 outcome. Recall
that, at the beginning of such an iteration,

∑λ
j=i+1 |Uj | ≥ 2λ−i−1 holds, and the vertices of

⋃λ−1
j=i Uj

are then moved from their current layers to Uλ. Let k =
∑λ

j=i |Uj |, so 2λ−i−1 ≤ k ≤ 2λ−i. Then at
the beginning of the iteration, at most k vertices were added to Uλ, while at the end of the iteration,
|Uλ| ≤ k

4λ held. Moreover, layers U1, . . . , Ui−1 remain unchanged over the course of the iteration.

From the description of our algorithm, for any pair 1 ≤ i′, i′′ ≤ λ of indices, a vertex may only move
directly from layer Ui′ to layer Ui′′ if either i′ = λ or i′′ = λ. At the beginning of a type-i iteration,
|U>i| ≥ 2λ−i−1 holds, while at the end of the iteraiton, |U>i| ≤ k

4λ ≤
2λ−i

4λ . Therefore, between every

pair of type-i iterations, at least 2λ−i−1 − 2λ−i

4λ ≥ 2λ−i−2 vertices must have moved from
⋃i

i′=1 Ui′ to
Uλ. For all 1 ≤ i < λ, we denote by M i

6 ⊆M6 the set of vertices that were added to M6 during type-i
iterations. We start by bounding the number of type-i iterations, for 1 ≤ i < λ.

Claim 6.10 There is a large enough constant c∗, such that for all 1 ≤ i < λ, the total number of

type-i iterations is bounded by c∗·(W 0−|β0|+|β′|·ρ+Λ)·log10 N
2λ−i .

Proof: The proof is by induction. The base case is when i = 1. From the above discussion, between
every pair of type-1 iterations, at least 2λ−3 new vertices must have been moved from U1 to Uλ. All
such vertices must belong to M1∪· · ·∪M5. Since

∑5
j=1 |Mj | ≤ O

(
(W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

)
,

and c∗ is a sufficiently large constant, we get that the total number of type-1 iterations is bounded by:

O

(
(W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

2λ

)
≤ c∗ · (W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

2λ−1
.

Consider an index 1 < i < λ, and assume that the claim holds for all indices 1 ≤ i′ < i. We
define a potential function Φi =

∑λ
j=i+1 |Uj |. Recall that, at the beginning of a type-i iteration,
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Φi =
∑λ

j=i+1 |Uj | ≥ 2λ−i−1 holds, while at the end of the iteration, |Uλ| ≤ 2λ−i

4λ , and for all i < i′ < λ,

Ui′ = ∅, so Φi ≤ 2λ−i

4λ . Therefore, in every type-i iteration, Φi decreases by at least 2λ−i−1 ·
(
1− 1

2λ

)
≥

0.48 ·2λ−i. The potential Φi is increased whenever vertices are added to sets M1, . . . ,M5, and the total
increase due to the addition of such vertices to M1, . . . ,M5 is bounded by

∑5
j=1 |Mj |. Additionally,

for all 1 ≤ i′ < i, each type-i′ iteration may increase the potential Φi by at most 2λ−i′

4λ . Since, from

the induction hypothesis, the number of type-i′ iterations is bounded by c∗·(W 0−|β0|+|β′|·ρ+Λ)·log10 N
2λ−i′ ,

the total increase in the potential Φi due to type-i′ iterations is bounded by:

c∗ · (W 0 − |β0|+ |β′| · ρ+ Λ) · log10N
2λ−i′

· 2
λ−i′

4λ
≤ c∗ · (W 0 − |β0|+ |β′| · ρ+ Λ) · log10

4λ
.

Therefore, the total increase in the potential Φi over the course of the entire algorithm is bounded by:

5∑
j=1

|Mj |+(i− 1) · c
∗ · (W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

4λ

≤ 0.26c∗ · (W 0 − |β0|+ |β′| · ρ+ Λ) · log10N.

Since every successful type-i iteration decreases the potential Φi by at least 0.48 · 2λ−i, we get that
the total number of type-i iterations is bounded by:

0.26c∗ · (W 0 − |β0|+ |β′| · ρ+ Λ) · log10N
0.48 · 2λ−i

≤ c∗ · (W 0 − |β0|+ |β′| · ρ+ Λ) · log10N
2λ−i

.

Since, for all 1 ≤ i < λ, every type-i iteration adds at most O(2λ−i) vertices to Uλ, we get that
|M i

6| ≤ O
(
(W 0 − |β0|+ |β′| · ρ+ Λ) · log10N

)
, and altogether:

|M6| =
λ−1∑
i=1

|M i
6| ≤ O

(
(W 0 − |β0|+ |β′| · ρ+ Λ) · λ · log10N

)
.

Combining this with Inequality 14, and substituting λ ≤ O(logN), we get that:

|M | ≤ O
(
(W 0 − |β0|+ |β′| · ρ+ Λ) · log11N

)
.

Lastly, substituting this bound on |M | into the bound from Equation 13, we get that the total running
time of the algorithm so far is bounded by:

O
(
c1 ·W 0 · (W 0 − |β0|+ |β′| · ρ+ Λ+ |M |) · 2c2

√
logN · (logN)16c2(r−1)+8c2+15

)
≤ O

(
c1 ·W 0 · (W 0 − |β0|+ |β′| · ρ+ Λ) · 2c2

√
logN · (logN)16c2(r−1)+8c2+26

)
6.4.5 Maintaining the Additional Data Structures

It remains to show an algorithm that maintains, for every edge e ∈ E(H), the set S(e) of vertices,
whose corresponding path K(v) contains e. Additionally, for every vertex x ∈ β, we need to maintain,
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for all 1 ≤ i < λ, the set Di(x) of the descendants of x at layer i, and, for every vertex v ∈
⋃λ−1

i=1 Ui, a
pointer to its unique ancestor in β. Lastly, for every layer 1 ≤ i ≤ λ− 1 and vertex v ∈

⋃i−1
j=1 Uj , if v

serves as an endpoint of a path K(u) ∈ Qi, then we need to maintain a pointer from v to u. We now
show how to extend our algorithm, in a straightforward manner, to maintain these additional data
structures.

At the beginning of the algorithm, for every edge e ∈ E(H), we set S(e) = ∅, and for every vertex
x ∈ β and index 1 ≤ i < λ, we set Di(x) = ∅. Whenever a new vertex v is added to any layer Ui, for
1 ≤ i < λ, we inspect its corresponding path K(v), that is added to Qi. For every edge e ∈ E(K(v)),
we add vertex v to the list S(e). Let y denote the last endpoint of path K(v), and let x ∈ β be the
unique ancestor of y. We then add v to Di(x), and we add a pointer from v to x, and another pointer
from y to v.

Whenever any vertex u is deleted from a set Ui, for any 1 ≤ i < λ, we again inspect the corresponding
path K(v), and, for every edge e ∈ E(K(v)), we delete v from set S(v). If y is the other endpoint of
path K(v), then we delete the pointer from y to v. Additionally, if x ∈ β is the unique ancestor of v
at level 0, then we delete v from Di(x). Note that the time required to execute all these updates is
asymptotically bounded by the time required to compute all paths K(v) that are ever added to Q.

Therefore, the total update time of the algorithm remains bounded by:

O
(
c1 ·W 0 · (W 0 − |β0|+ |β′| · ρ+ Λ) · 2c2

√
logN · (logN)16c2(r−1)+8c2+26

)
.

Recall that the algorithm from Procedure ReconnectLayer may terminate with a “FAIL”, and if this
happens, our algorithm terminates with a “FAIL” as well. However, the number of calls to Procedure
ReconnectLayer is bounded by |M | ≤ Õ((W 0)2) ≤ N3, and the probability that a single call terminates
with a “FAIL” is bounded by 1

N10 . Therefore, overall, the probability that our algorithm terminates
with a “FAIL” is bounded by 1

N7 .

6.5 An Algorithm for the MaintainSpecialCluster Problem

In this subsection we prove the second part of Theorem 4.12, by showing that an algorithm for
the r-restricted RouteAndCut problem implies an algorithm for the r-restricted MaintainSpecialCluster
problem with the required running time. We summarize this result in the following theorem.

Theorem 6.11 Suppose that, for some parameter r ≥ 1, there exists a randomized algorithm for
the r-restricted RouteAndCut problem, that, given as an input an instance (G,A,B,∆, η,N) of the
problem with |V (G)| = n, has running time at most c1 · n · (n − |B|) · 2c2

√
logN · (logN)16c2(r−1)+8c2.

Then there exists a randomized algorithm for the r-restricted MaintainSpecialCluster problem, that, on
input (G, β,∆, η, d,N) has running time at most: c1 ·W 0(G) ·(W 0(G)−|β|+∆) ·2c2

√
logN ·(logN)16c2r.

The remainder of this subsection is dedicated to the proof of Theorem 6.11. Recall that we are given
as input a perfect well-structured graph G = (L,R,E) with a proper assignment of lengths ℓ(e) to its
edges e ∈ E, that are given in the adjacency-list representation, such that the length of every special
edge is 1. We are also given a subset β ⊆ V (G) of vertices with |β| ≥ 99|V (G)|

100 , and parameters N ≥
W 0(G), 1 ≤ ∆ ≤ |β|

(logN)128
, 1 ≤ η ≤ ∆, and d ≥ (logN)64, such that ∆·d

η ≤ |V (G)|− |β|+∆ · (logN)64.

Lastly, we are given an integer 1 ≤ r ≤
⌈√

logN
⌉
, and we are guaranteed that d ≤ 2r·

√
logN .

Over the course of the algorithm, vertices may be deleted from set β, and the lengths of some edges
may be increased, but the length of every special edge incident to a vertex that currently lies in β
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is always 1. We denote by β0 the initial set β of vertices. Once |β| falls below |β0|
2 , the algorithm

terminates.

Recall that the algorithm consists of at most ∆ iterations. At the beginning of every iteration i, the
algorithm is given a vertex x ∈ V (G), and it must return a simple path Pi in G connecting x to any
vertex y ∈ β, such that the length of the path is at most d, and no inner vertices on the path lie in
β (if x ∈ β, that we require that path Pi only consists of the vertex x). After that, the length of
some special edges on path Pi may be doubled, and vertex y is deleted from β. In this case, we say
that vertex y was deleted from β directly. If τ ′ > τ are two times at which the length of some edge
e ∈ E(G) is doubled, then we are guaranteed that the algorithm returned at least η paths in response
to queries during the time interval (τ, τ ′] that contained e.

The algorithm may, at any time, produce a strongly well-structured cut (X,Y ) in G of sparsity

ΦG(X,Y ) ≤ (logN)64

d , such that w(X) ≥ 1.8|β ∩X| holds. Let J ′ ⊆ Y denote the set of vertices that
serve as endpoints of the edges of EG(X,Y ). The vertices of X ∪ J ′ are then deleted from G, and
the algorithm continues with the resulting graph G = G[Y \ J ′]. Let Z be the set of vertices that are
deleted from G following this cut. Notice that the vertices of Z ∩ β are deleted from graph G, and
hence from set β as well. We say that the vertices of Z ∩ β are deleted from β indirectly.

Let Λ denote the total increase in the lengths of edges over the course of the algorithm, and denote
W 0 = W 0(G) = n. We also denote the initial graph G by G0, and the set of all vertices that were
deleted from β over the course of the algorithm, either directly or indirectly, by β′. We need the
following claim and its corollary, whose proofs are deferred to Section C.3 and C.4 of Appendix,
respectively.

Claim 6.12 Λ ≤ 4n− 4|β0|+ 5∆ · (logN)64 ≤ 4n and |β′| ≤ 45n− 45|β0|+ 56∆ · (logN)64.

Corollary 6.13 Throughout the algorithm,
∑

v∈V (G)\β w(v) ≤ 0.2|β|.

Note that the subdivided graph H of G is identical to graph G, so we can use the adjacency list
representation of G also as the adjacency list representation of H. We define a parameter d′ =

d
(logN)64

. Recall that, from the definition of the MaintainSpecialCluster problem, we are guaranteed

that d ≤ 2r·
√
logN , and also that d ≤ η

∆

(
n− |β0|+∆ · (logN)64

)
≤ n, since η ≤ ∆, and ∆ ≤ |β0|

(logN)128

from the problem definition. Therefore, d′ ≤ min
{

2r
√
logN

log8 N
, n8

}
. Since |β0| ≥ 99n

100 from the problem

definition, and d′ ≥ 1 (as d ≥ (logN)64), we get that |β0| ≥ W 0

256d′ .

We apply the algorithm for the ConnectToCenters problem from Theorem 6.7 to graph G, set β
of vertices, and parameters N, d′, and r. From our discussion, this is a valid input to the prob-

lem. Recall that the algorithm uses a parameter ρ = 212·W 0·log3 N
|β0| . Since, from the definition of the

MaintainSpecialCluster problem, |β0| ≥ 99n
100 , while W 0 = n, we get that ρ = O(log3N). Our algorithm

consists of at most ∆ phases, that correspond to the phases of the ConnectToCenters problem. Recall
that the purpose of each such phase is to construct a valid Layered Connectivity Data Structure with
Uλ = ∅. Our algorithm will only respond to queries at the end of each phase, once such a data
structure is obtained.

We now consider a single phase of the algorithm for the ConnectToCenters problem, and one of its
iterations. Assume first that the algorithm produces a strongly well-structured 1

d′ -sparse cut (A,B)

in G with w(A) ≥ 1.8|β ∩A|. Since d′ = d
(logN)64

, the sparsity of the cut is at most (logN)64

d . We claim

that w(A) < w(B) must hold in the following simple obsevation, whose proof is deferred to Section
C.5 of appendix.

86



Observation 6.14 w(A) < w(B) must hold.

We delete from G the vertices of A, and the endpoints of the edges of EG(A,B) that lie in B, and
continue with the resulting graph.

Next, we show that the algorithm to the ConnectToCentersmay never produce a weakly well-structured
cut (A′, B′) in graph H, with |A′| ≥ 511|V (H)|

512 , |A′ ∩ β| < 2|β|
log3 N

, and |EH(A′, B′)| ≤ |V (H)|
d′·log6 N . Indeed,

assume for contradiction that the algorithm produces such a cut. Since every special edge incident to
a vertex of β has length 1, we get that |V (H) \ β| =

∑
v∈V (G)\β w(v)| ≤ 0.2|β| from Corollary 6.13.

But then:

|A′| ≤ |V (H) \ β|+ 2|β|
log3N

≤ 0.21|β|.

Since |V (H)| ≥ |β|, it is then impossible that |A′| ≥ 511|V (H)|
512 , a contradiction.

Therefore, if the algorithm for the ConnectToCenters problem does not produce a a strongly well-
structured 1

d′ -sparse cut (A,B) in G with w(A) ≥ 1.8|β ∩A|, it must produce a valid
Layered Connectivity Data Structure, with Uλ = ∅. In this case, our algorithm is ready to respond to a
query. Let x be a query vertex that it receives. If x ∈ β, then we return a path consisting of the vertex
x itself. Otherwise, we construct a path P connecting x to some vertex y ∈ β, as follows. Since Uλ = ∅,
there must be an integer 1 ≤ i < λ with x ∈ Ui. We consider the path K(x) ∈ Qi, that connects x to
some vertex x1 ∈ Ui1 , for some 0 ≤ i1 < i. If x′ ∈ β, then we terminate this process, and otherwise we
consider the path K(x1), which is concatenated to path K(x). After at most λ such iterations, we must
obtain a path P , that connects x to some vertex y ∈ β. Since the length of every path in set

⋃λ−1
j=1 Qj is

at most 4d′ log10N , the final length of the resulting path is bounded by 4λd′ log10N ≤ 32d′ log11N < d,
since d′ = d

(logN)64
, and N is sufficiently large. In time O(d), we can turn this path into a simple path,

and truncate it so that it still connects x to some vertex of β, but the inner vertices on the path do not
belong to β. The time required to respond to a single query is bounded by O(d), and the total time
required to respond to all queries is bounded by O(d · ∆) ≤ O

(
n · (n− |β0|+∆) · (logN)64

)
, since,

from the problem definition, ∆ · d ≤ η ·
(
|V (G)| − |β|+∆ · (logN)64

)
, and η ≤ ∆ ≤ |β| ≤ n.

Recall that, in our setting, ρ = O(log3N), and so the running time of the algorithm for the ConnectToCenters
problem from Theorem 6.7 is bounded by:

O
(
c1 ·W 0 · (W 0 − |β0|+ |β′|+ Λ) · 2c2

√
logN · (logN)16c2(r−1)+8c2+29

)
.

Since, from Claim 6.12, Λ ≤ 4n−4|β0|+5∆ · (logN)64 and |β′| ≤ 45n−45|β0|+56∆ · (logN)64, while
n = W 0, we get that the total running time of the algorithm is bounded by:

O
(
c1 ·W 0 · (W 0 − |β0|+∆) · 2c2

√
logN · (logN)16c2(r−1)+8c2+100

)
≤ c1 ·W 0 · (W 0 − |β|+∆) · 2c2

√
logN · (logN)16c2r.

Finally, recall that the algorithm for the ConnectToCenters problem may terminate with a “FAIL”,
with probability at most 1

N7 . If this happens, then our algorithm terminates with a “FAIL” as well,
but the probability for this happening is bounded by 1

N7 .
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7 From the MaintainCluster Problem to RouteAndCut Problem – Com-
leting the Proof of Theorem 4.12

The goal of this section is to complete the proof of Theorem 4.12, by providing an algorithm for the
MaintainCluster problem, that is summarized in the following theorem.

Theorem 7.1 Suppose that, for some parameter r ≥ 1, there exists a randomized algorithm for
the r-restricted RouteAndCut problem, that, given as an input an instance (G,A,B,∆, η,N) of the
problem with |V (G)| = n, has running time at most c1 · n · (n − |B|) · 2c2

√
logN · (logN)16c2(r−1)+8c2.

Then there exists a randomized algorithm for the r-restricted MaintainCluster problem, that, on input
(G,∆, η, d,N) has running time at most: c1 · (W 0(G))2 ·2c2

√
logN · (logN)16c2r+c1 ·W 0(G) ·∆ · log4N .

We assume that there exists a randomized algorithm A for the r-restricted RouteAndCut problem, for
some integer r ≥ 1, that, on an input an instance (G,A,B,∆, η,N) of the problem with |V (G)| = n,
has running time at most c1 · n · (n− |B|) · 2c2

√
logN · (logN)16c2(r−1)+8c2 .

Recall that the input to the r-restricted MaintainCluster problem consists of a perfect well-structured
n-vertex graph G = (L,R,E) with a proper assignment ℓ(e) of lengths to its edges. Recall that we
have defined vertex weights for perfect well-structured graphs, where the weight w(v) of a vertex v is
the length of the unique special edge incident to v. For every vertex v ∈ V (G), we denote by w0(v)
its initial weight, and we denote W 0(G) =

∑
v∈V (G)w

0(v). Additionally, we are given a parameter

N ≥ W 0(G), that is greater than a large enough constant, with r ≤
⌈√

logN
⌉
, and parameters

1 ≤ ∆ ≤ N , 1 ≤ η ≤ ∆, and (logN)64 ≤ d ≤ 2r·
√
logN , such that ∆·d

η ≤ n. In particular:

d ≤ nη

∆
≤ n. (15)

Since d ≥ (logN)64, we get that (logN)64 ≤ n ≤ N , and so:

log logN ≤ log n ≤ logN. (16)

Since we have assumed that N is greater than a large enough constant, and in particular that N > 22
c2 ,

we can also assume that n is greater than a large enough constant. We also get following inequality
that will be useful for us later:

log(16N) = 4 + logN ≤
(
1 +

1

32c2r

)
logN. (17)

Additionally,
√

log(16N) ≤
√
4 + logN ≤ 2 +

√
logN , and so:

2c2
√

log(16N) ≤ 22c2 · 2c2
√
logN ≤ 2c2

√
logN · logN, (18)

since N is sufficiently large.

The algorithm consists of at most ∆ iterations. At the beginning of every iteration i, the algorithm
is given two vertices x, y ∈ V (G), and it must return a simple path Pi in G connecting x to y, whose
length is at most d. (We may sometimes say that the algorithm is given a short-path query between
the pair (x, y) of vertices, and it returns the path Pi in response to the query). The lengths of some of
the special edges on path Pi are then doubled. If e is a special edge of G, and τ < τ ′ are consecutive
times during the algorithm’s execution when the length of e was doubled, then we are guaranteed that
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the number of the paths Pi that the algorithm returned in response to the queries during time interval
(τ, τ ′] with e ∈ E(Pi) is at least η.

The algorithm may, at any time, produce a strongly well-structured cut (X,Y ) in G of sparsity

ΦG(X,Y ) ≤ (logN)64

d . If w(X) ≤ w(Y ), then let Z = X and Z ′ = Y ; otherwise, let Z = Y and
Z ′ = X. We also let J ′ ⊆ Z ′ denote the set of vertices that serve as endpoints of the edges of
EG(X,Y ). The vertices of Z ∪ J ′ are then deleted from G, and the algorithm continues with the
resulting graph G = G[Z ′ \ J ′]. This modification ensures that G remains a perfect well-structured
graph. Once |V (G)| ≤ n/2 holds, the algorithm terminates, even if fewer than ∆ iterations have passed.
The algorithm may also, at any time, return “FAIL”, but the probability of this ever happening must
be bounded by 1/N4.

We can assume w.l.o.g. that, in the initial graph G, the length of every edge is at most d. Indeed, if
(x, y) is an edge of G of length greater than d, then cut (A,B) with A = {x} and B = V (G) \ {x}
is a strongly well-structured cut of sparsity at most 1

d , since w(x), w(y) = d, and |EG(A,B)| = 1. As
long as special edges of length greater than d lie in G, we can therefore produce 1

d -sparse cuts that
will result in the removal of such edges from G. The time required to perform this preprocessing step
is O(|E(G)|) ≤ O(W 0(G)). We will also ensure that, throughout the algorithm, every edge of G has
length at most 2d. Therefore, if we denote by W (τ) the total weight of all edges at some time τ during
the algorithm’s execution, then W (τ) ≤ 2n ·d ≤ 2n2 must hold (we have used Inequality 15). Since the
algorithm terminates once the number of vertices falls below n/2, the total weight W of all vertices
of G satisfies n

2 ≤W ≤ 2n2, at all times, and therefore, at all times the following inequality holds:

log n− 1 ≤ logW ≤ 4 log n. (19)

Throughout, we denote by G0 the initial graph G, and by Espec be the set of all special edges of G0.
For each such edge e ∈ Espec, let ℓ0(e) be the length of e at the beginning of the algorithm, and let
ℓ∗(e) be defined as follows. If e lies in graph G at the end of the algorithm, then ℓ∗(e) is the length
of edge e at the end of the algorithm. Otherwise, ℓ∗(e) is the length of the edge e just before it was
deleted from G. We will use the following simple observation to bound

∑
e∈Espec ℓ∗(e). The proof is

deferred to Section D.1 of Appendix.

Observation 7.2 ∑
e∈Espec

ℓ∗(e) ≤ 2
∑

e∈Espec

ℓ0(e) +
2d∆

η
≤ 2

∑
e∈Espec

ℓ0(e) + 2n.

Throughout the algorithm, instead of working with graph G, it will be convenient for us to work
with its corresponding subdivided graph G+ (see Definition 4.1). We denote the two sides of the
bipartition of the vertices of G+ by L+ and R+, respectively. Recall that graph G+ is obtained from
G by replacing every special edge e = (u, v) with a new path, that we denote by P ∗(e), and call the
path represeinting e in G+. The number of special edges on path P ∗(e) is exactly ℓ(e). For every
special edge e′ on path P ∗(e), we say that e is the parent-edge of e′, and that e′ is the child-edge of e.

Assume that at some time during the algorithm’s execution, the length ℓ(e) of an edge e ∈ E(G)
is doubled. Then for every special edge e′ = (x, y) on path P ∗(e), we replace the edge by a path
(x, x′, y′, y), where x′ and y′ are new vertices, edges (x, x′) and (y′, y) are special, and edge (x′, y′) is
regular; we call this process the splitting of edge e′. Notice that, since (x, y) is a special edge of G+,
x ∈ R+ and y ∈ L+ must hold. We add x′ to L+ and y′ to R+. It is easy to verify that G+ remains
the subdivided graph of G after this update.

In order to simplify the notation, we will denote G+ by H from now on, and we will also denote the
bipartition (L+, R+) by (L′, R′). Recall that H is a uniform perfect well-structured graph. The initial
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number of vertices in H is W 0. As the algorithm progresses and edges of H are subdivided, we will
denote by W the current number of vertices in H, which is equal to

∑
v∈V (G)w(v).

From now on we will mostly work with graph H. In every iteration, we are given a pair (x, y) of
vertices of H, and we need to return a simple path P connecting x to y in H, of length at most d.
Such a path can be easily trasformed into a path in graph G of length at most d connecting x to y.
After that, some special edges on path P are split. From the definition of the MaintainCluster problem,
we are guaranteed that the following property holds throughout the algorithm.

Q’1. Consider any special edge e of H that did not lie in the original graph H = (G0)+. Assume that
e was added to H at some time τ during the algorithm’s execution, and was later split at some
time τ ′ > τ (so after time τ ′, edge e no longer lies in H). Then the number of paths P that the
algorithm returned in response to queries during the time interval (τ, τ ′] with e ∈ E(P ) is at
least η.

Notice that W 0 = 2
∑

e∈Espec ℓ0(e), and the total number of vertices that ever belonged to H over the
course of the algorithm is bounded by

∑
e∈Espec 2ℓ∗(e) ≤ 4

∑
e∈Espec ℓ0(e) + 4n ≤ 2W 0 + 4n ≤ 6W 0,

from Observation 7.2. In particular, |V (H)| ≤ 6W 0 holds at all times.

Throughout, we use a parameter d′, that is the smallest integral power of 2 that is greater than
d

(logN)28
, and we set φ = 4

d′ . Intuitively, if, at any time during the algorithm’s execution, the length of

any special edge e = (x, y) in G becomes at least d′/2, then we can immediately produce a cut (A,B)
with A = {x} and B = V (G) \ {x}. It is easy to verify that (A,B) is a strongly well-structured cut in
G. Moreover, since w(x), w(y) = ℓ(e), the sparsity of the cut is at most φ, and so our algorithm could
output this cut. In reality our algorithm is somewhat more complex, but it uses a similar method to
ensure that, at all times, the lengths of all edges in G are bounded by d′. Additionally, as long as the
algorithm does not terminate,

∑
e∈E(G) ℓ(e) ≥

|V (G)|
2 ≥ n

4 > d′ must hold.

Let W be the total weight of all vertices of G at any time during the algorithm’s execution. Then
W ≥ |V (G)| ≥ n

2 ≥
d
2 (from Inequality 15). Therefore, throughout the algorithm:

d′ ≤ 2d

log28N
≤ 4W

log28N
(20)

holds. As long as the lengths of all edges in G are bounded by d′/2, our algorithm may produce, at
any time, a weakly well-structured cut (A,B) in the current graph H, of sparsity at most φ

4 . Let
A′ = A∩V (G) and B′ = B∩V (G). From Observation 4.4, (A,B) is a weakly well-structured cut in G
of sparsity at most 2φ. Furthermore, using the algorithm from Observation 4.5, we can transform cut
(A,B) into a strongly well-structured cut (A∗, B∗) in G, of sparsity at most 4φ. We then return cut
(A∗, B∗), following which graph G is updated with the deletion of the vertices on the side of the cut
whose current weight is smaller, and the endpoints of the edges in EG(A

∗, B∗). We update graph H
by deleting from it every vertex that was deleted from G, and, additionally, for every edge e that was
deleted from G, its corresponding path P ∗(e) is deleted from H. As before, the algorithm is allowed to
halt and return “FAIL” at any time, but we are required that this happens with probability at most
1/N4.

7.1 Partition into Phases and Probability of Failure

Our algorithm is partitioned into phases. A phase terminates if one of the following happened: (i) the

algorithm returned “FAIL”, in which case we say that the phase is of type 1 ; or (ii) at least Ŵ
log30 N
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vertices have been deleted from graph H during the current phase, where Ŵ is the number of vertices
in H at the beginning of the phase, in which case we say that the phase is of type 2 ; or (iii) at least
∆′ = ∆

log30 N
queries have been responded to; in which case we say that the phase is of type 3. We

will ensure that the probability that the algorithm returns “FAIL” in a single phase is bounded by
1
2 . Since the total number of vertices that ever belong to graph H is bounded by 6W 0 ≤ O(N), we
get that the total number of type-2 and type-3 phases is bounded by O(log30N · logN) ≤ log32N .
If ⌈16 logN⌉ consecutive type-1 phases occur, then we terminate the algorithm and return “FAIL”.
Notice that, for each type-2 phase and type-3 phase, the probability that it is followed by ⌈16 logN⌉
consecutive type-1 phases is bounded by

(
1
2

)⌈16 logN⌉ ≤ 1
N16 . Therefore, overall, the probability that

the algorithm ever returns “FAIL” is bounded by (logN)32

N16 < 1
N4 , as required. The total number of

phases in the algorithm is then bounded by O(log32N · logN) ≤ O(log33N).

At a very high level, our algorithm follows a somewhat standard framework, though the specific
details are quite different. As a first step, we select a random subset T of vertices of H, that we
call terminals, where every vertex of H is selected to be added to T independently with probability
1
d′ . Next, we will attempt to embed an expander X, whose vertex set is T , into graph H, so that

every embedding path has length Õ(d′), and the paths cause edge-congestion O(poly log n). We show
that, with high probability, if we are unable to compute such an embedding, then we can compute a

cut (A,B) in H, that can be transformed into a (logN)64

d -sparse strongly well-structured cut (A′, B′)

in G with w(A′), w(B′) ≥ Ŵ
log30 N

. We then output this cut, and update graphs G and H with the

corresponding deletions of vertices and edges, which must lead to the deletion of at least Ŵ
log30 N

vertices from H. Therefore, with high probability, if we cannot successfully compute an expander
X, and embed it into H, the current phase will terminate. Assume now that we have successfully

computed an expander X over the set T of roughly Ŵ
d′ vertices, and embedded it into H. Then we will

employ the Layered Connectivity Data Structure from Section 6, with the set V (X) of vertices serving
as the set β of centers, in order to maintain a collection Qout of short paths, connecting every vertex

of V (H) to some vertex of V (X). We will also employ the same data structure on graph
←−
G , that is

obtained from G by reversing the direction of each of its edges, to maintain a collection Qin of short
paths, that, for every vertex v ∈ V (H), contains a path that connects some vertex of V (X) to v.

We now formally describe the algorithm for executing a single phase. We assume w.l.o.g. that, at
the beginning of the phase, graph G does not contain any edge of length greater than d′. Otherwise,
as long as such an edge e = (x, y) lies in G, then cut (A,B) with A = {x} and B = V (G) \ {x} is
a strongly well-structured cut of sparsity 1

d′ ≤ φ, since w(x) = d′, and |EG(A,B)| = 1. As long as
special edges of length greater than d′ lie in G, we can therefore produce φ-sparse cuts that will result
in the removal of such edges from G. The time required to perform this preprocessing step, including
updating the graph H, is O(|V (H)|) ≤ O(W 0). Therefore, we assume that, at the beginning of the
phase, G does not contain edges of length greater than d′. We denote by Ŵ the number of vertices in
H at the beginning of the phase.

We start with a preprocessing step, in which we sample the vertices ofH to be added to the set T . Then
we describe our two main data structures. The first data structure maintains a large expander that is
defined over the set T of vertices, while the second data structure is Layered Connectivity Data Structure

in graphs G and
←−
G .

7.2 Preprocessing Step: Subsampling

Recall that the number of vertices in H at the beginning of the phase, denoted by Ŵ , is bounded by
12W 0 ≤ 12N .
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In this step, we construct a set T of vertices of H, that we call terminals, as follows: every vertex
v ∈ V (H) is added to T with probability 1

d′ independently. This is the only randomized part in our
algorithm for the Maximum Bipartite Matching problem. Next, we will define four “bad” events, and we
will show that each of them may only happen with low probability. Eventually, if our algorithm returns
“FAIL” and halts, we will guarantee that at least one of these bad events must have happened. This
will ensure that the probability that the phase terminates with the “FAIL” is at most 1

2 , as required.

7.2.1 Bad Event E1

Observe first that the expected cardinality of T is Ŵ
d′ . We say that bad event E1 happens if |T | > 8Ŵ

d′ or

|T | < Ŵ
2d′ . From Lemma 2.5, Pr

[
|T | > 8Ŵ

d′

]
≤ 2−8Ŵ/d′ ≤ 1

512 , and Pr
[
|T | < Ŵ

2d′

]
≤ e−Ŵ/(8d′) ≤ 1

512 ,

since d′ ≤ 4Ŵ
log28 N

from Inequality 20. Overall, we get that Pr [E1] ≤ 1
256 , and, if E1 does not happen,

then Ŵ
2d′ ≤ |T | ≤

8Ŵ
d′ holds.

Before we define the remaining two bad events, we need to inspect the well-structured cuts of H more
closely.

7.2.2 Well-Structured Cuts and Their Structure

Recall that a cut (A,B) of H is weakly well-structured iff all edges of EH(A,B) are special. Let E′

be any subset of special edges of H. We denote by C(E′) the collection of all weakly well-structured
cuts (A,B) in H with EH(A,B) = E′. Next, we investigate the structure of the cuts in C(E′).

Let J(E′) denote the set of all vertices v ∈ V (H), such that some edge of E′ leaves v, and let J ′(E′)
denote the set of all vertices u ∈ V (H), such that some edge of E′ enters u. Next, we denote by
S∗(E′) the set of all vertices v ∈ H, such that there is a path in H \ E′ connecting a vertex of J(E′)
to v. Notice that, for every cut (A,B) ∈ C(E′), it must be the case that S∗(E′) ⊆ A. Indeed, assume
otherwise, and let v ∈ S∗(E′) be any vertex that lies in B. Since J(E′) ⊆ A must hold, there is a path
P connecting a vertex of A to v, such that P is disjoint from the edges of E′. But then some edge of
P must lie in EH(A,B), contradicting the fact that EH(A,B) = E′.

Similarly, we denote by S∗∗(E′) the set of all vertices v ∈ H, such that there is a path in H \ E′
connecting v to a vertex of J ′(E′). From the same arguments as above, for every cut (A,B) ∈ C(E′),
S∗∗(E′) ⊆ B must hold.

Let X ′ be the set of all strongly connected components of H \ (S∗(E′) ∪ J(E′) ∪ S∗∗(E′) ∪ J ′(E′)),
where for each X ∈ X ′, we view X as a set of vertices corresponding to the connected component.
Denote X (E′) = X ′ ∪ {S∗(E′) ∪ J(E′), S∗∗(E′) ∪ J ′(E′)}. Clearly, X (E′) is a partition of V (H).
Consider again any cut (A,B) ∈ C(E′). As observed already, S∗(E′)∪J(E′) ⊆ A and S∗∗(E′)∪J ′(E′) ⊆
B must hold. Moreover, it is easy to see that, since EH(A,B) = E′, for all X ∈ X ′, either X ⊆ A, or
X ⊆ B must hold. From the definition of the sets S∗(E′), S∗∗(E′) of vertices, graph H \ E′ contains
no path connecting a vertex of S∗(E′)∪ J(E′) to a vertex lying outside this set. Similarly, no path in
H \ E′ may connect a vertex of V (H) \ (S∗∗(E′) ∪ J ′(E′)) to a vertex of S∗∗(E′) ∪ J ′(E′). It is now
easy to verify that, for every pair X,X ′ ∈ X (E′) of sets, it cannot be the case that H \ E′ contains
both a path P connecting a vertex of X to a vertex of X ′, and a path P ′ connecting a vertex of X ′

to a vertex of X. Indeed, if such paths did exist, then neither of these paths could contain vertices
of S∗(E′) ∪ J(E′) ∪ S∗∗(E′) ∪ J ′(E′), and so the vertices of X ∪X ′ should have belonged to a single
strongly connected component of H \ (S∗(E′) ∪ J(E′) ∪ S∗∗(E′) ∪ J ′(E′)).

We can now define an arbitrary topological ordering (X1, X2, . . . , Xq) of the sets in X (E′), such that
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X1 = S∗∗(E′) ∪ J(E′), Xq = S∗(E′) ∪ J ′(E′), and for all 1 ≤ i < j ≤ q, there is no edge of E(H) \ E′
that connects a vertex of Xj to a vertex of Xi. Notice that, for all 1 ≤ i ≤ q, we can define a cut
(Ai, Bi) with Ai = Xi+1 ∪ · · · ∪ Xq and Bi = X1 ∪ · · · ∪ Xi. From our discussion so far, the only
edges that connect vertices of Ai to vertices of Bi are the edges of E′, and so for each such 1 ≤ i < r,
cut (Ai, Bi) lies in C(E′). We call all cuts in {(Ai, Bi) | 1 ≤ i ≤ q} canonical cuts corresponding to
E′, and denote the set of all such cuts by C′(E′). Notice that C′(E′) ⊆ C(E′), and it is possible
that C(E′) \ C′(E′) ̸= ∅. Note that the definition of the set C′(E′) of cuts depends on the topological
ordering of the sets in X (E′), and there may be several such topological orderings. We assume that
we are given some tie-breaking rule that selects a single topological ordering of the sets in X (E′), and
we define C′(E′) with respect to that topological ordering. We also assume that the above unique
topological ordering can be computed in time O(n), given the sets in X (E′). We are now ready to
define the second bad event.

7.2.3 Bad Event E2

We start with intuition. Recall that our goal is to embed an expander over the set T of vertices
into H, with polylogarithmic congestion. Intuitively, if we are not able to do so, we will construct a
cut (A,B) in H, such that |T ∩ A|, |T ∩ B| ≥ Ω(|T |/poly logN), and |EH(A,B)| is sufficiently low.
If this happens, we would like to be able to compute a sparse and a roughly balanced cut in graph
H. If we denote by E′ = EH(A,B), then ideally we would like to ensure that some canonical cut
corresponding to E′ has this property. The second bad event happens if this is not the case for some
such cut (A,B). Next, we formally define the second bad event, and show that it can only happen
with small probability.

We say that bad event E2 happens if there is a weakly well-structured cut (A,B) in H, with |A ∩
T |, |B ∩ T | ≥ |T |

log4 N
, and |EH(A,B)| ≤ |T |

log6 N
, such that, if we denote by E′ = EH(A,B), then for

every canonical cut (A′, B′) ∈ C′(E′), either |A′| ≤ Ŵ
log5 N

, or |B′| ≤ Ŵ
log5 N

holds.

Claim 7.3

Pr [E2] ≤
1

64
.

Proof: Recall that, if event E1 does not happen, then Ŵ
2d′ ≤ |T | ≤

8Ŵ
d′ holds, and so, if E′ is a set of

special edges with |E′| ≤ |T |
log6 N

, then |E′| ≤ 8Ŵ
d′ log6 N

.

For every subset E′ of at most 8Ŵ
d′ log6 N

special edges, we define a bad event E(E′) to be the event that

there is some cut (A,B) in H with EH(A,B) = E′, such that |A ∩ T |, |B ∩ T | ≥ |T |
log4 N

, and for every

canonical cut (A′, B′) ∈ C′(E′), either |A′| ≤ Ŵ
log5 N

, or |B′| ≤ Ŵ
log5 N

holds. We bound Pr [E(E′)] for
each such set E′ of edges separately, and then use the union bound in order to bound Pr [E2].

Fix any subset E′ of at most 8Ŵ
d′ log6 N

special edges. LetX ∈ X (E′) be the set of vertices with maximum

cardinality. We claim that Event E(E′) may only happen if |X| ≥ Ŵ − 2Ŵ
log5 N

, in the following simple

observation.

Observation 7.4 If E(E′) happened, then |X| ≥ Ŵ − 2Ŵ
log5 N

must hold.

Proof: Assume otherwise, that is, Event E(E′) happened, but |X| < Ŵ − 2Ŵ
log5 N

. Denote X (E′) =
(X1, X2, . . . , Xq), where the sets are listed according to their topological order, and assume that
X = Xi.
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Assume first that |Xi| ≥ Ŵ
4 . Then either |

⋃
i′<iXi′ | ≥ Ŵ

log5 N
, or |

⋃
i′>iXi′ | ≥ Ŵ

log5 N
. In the former

case, cut (Ai, Bi) is a canonical cut with |Ai|, |Bi| ≥ Ŵ
log5 N

, while in the latter case, cut (Ai−1, Bi−1)

is a canonical cut with |Ai−1|, |Bi−1| ≥ Ŵ
log5 N

, a contradiction (if i = 1 then we are guaranteed that

(Ai, Bi) is the cut with the desired properties, and if i = q, then we are guaranteed that (Aq−1, Bq−1)
is such a cut).

Assume next that |Xi| < Ŵ
4 . In this case, we let 1 < j < q be the smallest index for which

∑
j′<j |Xj′ | ≥

Ŵ
2 . It is easy to verify that

∑
j′<j |Xj′ | ≤ 3Ŵ

4 must hold, and so cut (Aj , Bj) ∈ C′(E′) satisfies that

both |Aj |, |Bj | ≥ Ŵ
log5 N

, a contradiction.

We assume from now on that |X| ≥ Ŵ − 2Ŵ
log5 N

holds for the set E′ of edges. Let Y = V (H) \ X,

so |Y | ≤ 2Ŵ
log5 N

. Consider now any cut (A,B) ∈ C(E′), and assume that |A ∩ T |, |B ∩ T | ≥ |T |
log4 N

.

Notice that all vertices of X must lie on one side of the cut (A,B). If X ⊆ A, then B ⊆ Y , and,

since |T ∩ B| ≥ |T |
log4 N

, we get that |T ∩ Y | ≥ |T |
log4 N

. Similarly, if X ⊆ B, then A ⊆ Y , and, since

|T ∩A| ≥ |T |
log4 N

, we get that |T ∩ Y | ≥ |T |
log4 N

. In either case, we conclude that Event E(E′) may only

happen if |X| ≥ Ŵ − 2Ŵ
log5 N

and |T ∩ Y | ≥ |T |
log4 N

.

We start by bounding the probability that |T ∩ X| < Ŵ
4d′ . Since we have assumed that |X| ≥ Ŵ −

2Ŵ
log5 N

≥ Ŵ
2 , and since every vertex is selected into T independently with probability 1/d′, we get that

E [|T ∩X|] ≥ Ŵ
2d′ . From Lemma 2.5, Pr

[
|T ∩X| < Ŵ

4d′

]
≤ e−Ŵ/(16d′).

Assume now that |T∩X| ≥ Ŵ
4d′ , so in particular |T | ≥ Ŵ

4d′ . In this case, if |T∩Y | ≥ |T |
log4 N

, then |T∩Y | ≥
Ŵ

4d′ log4 N
must hold. Since E [|T ∩ Y |] = |Y |

d′ ≤
2Ŵ

d′ log5 N
, from Lemma 2.5, Pr

[
|T ∩ Y | ≥ Ŵ

4d′ log4 N

]
≤

2−Ŵ/(4d′ log4 N) ≤ e−Ŵ/(16d′).

Altogether, we get that:

Pr
[
E(E′)

]
≤ Pr

[
|T ∩X| < Ŵ

4d′

]
+Pr

[
|T ∩ Y | ≥ |T |

log4N
| |T ∩X| ≥ Ŵ

4d′

]
≤ 2 · e−Ŵ/(16d′).

Observe that H has Ŵ special edges, and so the number of sets E′ containing at most 8Ŵ
d′ log6 N

special

edges is bounded by:

(2Ŵ )8Ŵ/(d′ log6 N) ≤ (24N)8Ŵ/(d′ log6 N) ≤ 232Ŵ/(d′ log5 N).

(We have used the fact that Ŵ ≤ 12Ŵ 0 ≤ 12N). Using the union bound over all sets E′ of at most
8Ŵ

d′ log6 N
special edges, we get that the probability that event E(E′) happens for any such set of edges

is bounded by:

2
32Ŵ

d′ log5 N · 2 · 2−
Ŵ

16d′ log4 N ≤ 2
− Ŵ

32d′ log4 N ≤ 1

512
,

since d′ ≤ 8Ŵ
log28 N

from Inequality 20.
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Finally, if Event E2 happened, then either E1 happened, or, for some set E′ of at most 8Ŵ
d′ log6 N

special

edges, event E(E′) has happened. Therefore, overall, Pr [E2] ≤ 1
256 + 1

512 ≤
1
64 .

7.2.4 Bad Event E3

We start again with intuition. Once we construct the expander X and embed it into H, we will need
to route the remaining vertices of H to the vertices of T via paths that cause congestion roughly Õ(d′).
If we are unable to do so, we will compute a sparse cut that separates some vertices of H from most
terminals in T . Denote this cut by (A,B). The bad scenairo that we would like to avoid is when
one side of the cut (say A) contains almost all vertices of H, while the other side of the cut contains
few vertices of H, but it contains most terminals. If this happens, then the vertices of B will be
subsequently deleted from H, thereby destroying the expander that we have constructed. As we need
to invest a large amount of time into constructing the expander X and embedding it into H, we would
like to avoid such a situation. Let E′ = EG(A,B). If some canonical cut (A′, B′) ∈ C′(E′) is roughly
balanced with respect to the vertices of H, then we can return cut (A′, B′) instead of cut (A,B), and
ensure that a sufficiently large number of vertices is deleted from H, and the current phase can be
terminated. However, if C′(E′) contains no such cut, then it is not clear how to bypass the problem
mentioned above. The third bad event is designed to capture exactly this scenario. We now formally
define it and show that it is unlikely to happen.

We say that the bad event E3 happens if there is a weakly well-structured cut (A,B) in H, with

|EH(A,B)| ≤ |T |
log6 N

, such that one of the sides of the cut contains at least Ŵ
2 vertices of H and at

most |T |32 vertices of T , and additionally, if we denote by E′ = EH(A,B), then for every canonical cut

(A′, B′) ∈ C′(E′), either |A′| ≤ Ŵ
log5 N

, or |B′| ≤ Ŵ
log5 N

holds.

Claim 7.5

Pr [E3] ≤
1

64
.

Proof: As before, if event E1 does not happen, and E′ is a set of special edges with |E′| ≤ |T |
log6 N

, then

|E′| ≤ 8Ŵ
d′ log6 N

must hold. For every subset E′ of at most 8Ŵ
d′ log6 N

special edges, we define a bad event

E ′(E′) to be the event that there is some weakly well-structured cut (A,B) in H with EH(A,B) = E′,

such that one side of the cut cut contains at least Ŵ/2 vertices of H and at most |T |32 vertices of T ,

and additionally, for every canonical cut (A′, B′) ∈ C′(E′), either |A′| ≤ Ŵ
log5 N

, or |B′| ≤ Ŵ
log5 N

holds.

We bound Pr [E ′(E′)] for each such set E′ of edges separately, and then use the union bound in order
to bound Pr [E3].

Fix any subset E′ of at most 8Ŵ
d′ log6 N

special edges. LetX ∈ X (E′) be the set of vertices with maximum

cardinality. Using the same arguments as in the proof of Claim 7.3, Event E ′(E′) may only happen if

|X| ≥ Ŵ − 2Ŵ
log5 N

. We assume from now on that |X| ≥ Ŵ − 2Ŵ
log5 N

holds. Let Y = V (H) \X, so that

|Y | ≤ 2Ŵ
log5 N

.

Consider now some weakly well-structured cut (A,B) in H with EH(A,B) = E′, and assume that

one of the sets Z ∈ {A,B} contains at least Ŵ/2 vertices of H and at most |T |32 vertices of T .
Since set X must be contained in one of the sides of the cut, it must be the case that X ⊆ Z, and
|T ∩X| ≤ |T |32 = |T∩X|+|T∩Y |

32 . Therefore, |T ∩X| ≤ |T∩Y |31 must hold.

Using the same reasoning as in the proof of Claim 7.3, Pr
[
|T ∩X| < Ŵ

4d′

]
≤ e−Ŵ/(16d′).
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Assume now that |T∩X| ≥ Ŵ
4d′ . In this case, if |T∩X| ≤ |T |32 holds, then |T∩Y | ≥ 31|T∩X| ≥ 31Ŵ

4d′ must

hold. Notice that, since |Y | ≤ 2Ŵ
log5 N

, E [|T ∩ Y |] ≤ 2Ŵ
d′ log5 N

. From Lemma 2.5, Pr
[
|T ∩ Y | ≥ 31Ŵ

4d′

]
≤

2−31Ŵ/(4d′) ≤ e−Ŵ/(16d′).

Altogether, we get that:

Pr
[
E ′(E′)

]
≤ Pr

[
|T ∩X| < Ŵ

4d′

]
+Pr

[
|T ∩X| ≤ |T |

32
| |T ∩X| ≥ Ŵ

4d′

]
≤ 2 · e−Ŵ/(16d′).

As in the proof of Claim 7.3, the number of sets E′ containing at most 8Ŵ
d′ log6 N

special edges is bounded

by 232Ŵ/(d′ log5 N).

Using the union bound over all sets E′ of at most 8Ŵ
d′ log6 N

special edges, we get that the probability

that event E ′(E′) happens for any such set of edges is bounded by:

2
32Ŵ

d′ log5 N · 2 · 2−
Ŵ

16d′ log4 N ≤ 2
− Ŵ

32d′ log4 N ≤ 1

512
,

since d′ ≤ 8Ŵ
log28 N

from Inequality 20.

Finally, if Event E3 happened, then either event E1 happened, or, for some set E′ of at most 8Ŵ
d′ log6 N

special edges, event E ′(E′) has happened. Therefore, overall, Pr [E3] ≤ 1
256 + 1

512 ≤
1
64 .

7.2.5 Bad Event E4

Recall that for every edge e ∈ E(G), there is a corresponding path P ∗(e), containing 2ℓ(e) vertices,
that represents e in graph H. Recall that we have ensured that, at the beginning of the phase, the
length of every edge e ∈ E(G) is at most d′. The fourth bad event, E4, happens if there is some edge
e ∈ E(G), such that at least 16 logN vertices of P ∗(e) are in T .

Claim 7.6 Pr [E4] ≤ 1
64 .

Proof: For every special edge e ∈ E(G), let E ′′(e) be the bad event that at least 16 logN vertices
of P ∗(e) are added to T . Since the total number of vertices on P ∗(e) is 2ℓ(e) ≤ 2d′, and every edge
is chosen to be added to T with probability 1

d′ , the expectation of |P ∗(e) ∩ T | is at most 2. From
Lemma 2.5, the probability of E ′′(e) is then bounded by 2−16 logN ≤ N−16.

By using the union bound over all special edges e ∈ E(G), and since the number of such edges is
bounded by n ≤ N , we get that:

Pr [E4] ≤ N ·N−16 ≤ 1

64
.

Lastly, we let E be the bad event that either of the events E1, E2, E3, or E4 happened. Clearly:

Pr [E ] ≤
4∑

i=1

Pr [Ei] ≤
1

16
.
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Note that we can check, in time O(N), whether events E1 and E4 hold. If either of these events holds,
we terminate the algorithm and return “FAIL”. Therefore, we assume from now on that neither of the
events E1, E4 happened.

As the phase progresses, vertices may be deleted from graphs G and H. We view the set T of terminal
vertices as static, that is, it does not change even as some vertices of T are deleted from H.

7.3 Finalizing Cuts

In this subsection we define a special kinds of cuts in graph H, that we call finalizing cuts. If, at any
time during the execution of a phase, our algorithm computes such a cut in the current graph H, we
will be able to terminate the current phase, by either correctly establishing that at least one of the
events E2, E3 must have happened, or by providing a strongly well-structured φ-sparse cut (A,B) in

the current graph G, such that w(A), w(B) ≥ Ŵ
log30 N

. In the former case, we will terminate the current

phase with a “FAIL”, while in the latter case, once cut (A,B) is processed, and the corresponding

vertices and edges are deleted from H, we are guaranteed that at least Ŵ
log30 N

vertices have been

deleted from H since the beginning of the phase, and so the current phase terminates. We are now
ready to define finalizing cuts in H.

Definition 7.7 (Finalizing Cut) Let (A,B) be a cut in graph H at any time during the execution
of a phase. We say that the cut (A,B) is a finalizing cut, if the following hold:

• all edges in EH(A,B) are special edges;

• |EH(A,B)| ≤ |T |
8 log6 N

; and

• one of the sides of the cut Z ∈ {A,B} contains at least |V (H)| − Ŵ
32 vertices of H, and at most

|T | ·
(
1− 7

log4 N

)
vertices of T .

Next, we show that, if our algorithm ever produces a finalizing cut during a phase, then the phase can
be terminated, in the following claim.

Claim 7.8 Suppose, at any time during the execution of a phase, there is a finalizing cut (Ã, B̃) in the
current graph H. Assume further that neither of the events E2, E3 has happened, and that every edge
in the current graph G has length at most d′/2. Then there is a strongly well-structured φ-sparse cut

(A∗, B∗) in the current graph G, such that w(A∗), w(B∗) ≥ Ŵ
log30 N

. Moreover, there is a deterministic

algorithm, that, given the graph G at the beginning of the current phase (that we denote by G0), the
sequence of the strongly well-structured φ-sparse cuts (A1, B1), . . . (Aq, Bq) in G that the algorithm
has produced during the current phase so far, the current graphs G and H, and the finalizing cut
(Ã, B̃) in the current graph H, either correctly estabishes that at least one of the events E2, E3 has
happened, or computes a strongly well-structured φ-sparse cut (A∗, B∗) in the current graph G, such

that w(A∗), w(B∗) ≥ Ŵ
log30 N

. The running time of the algorithm is O(Ŵ 2).

The remainder of this subsection is dedicated to the proof of Claim 7.8. We denote by G0 the graph
G at the beginning of the current phase, and by H0 its corresponding subdivided graph H. The main
idea of the proof is to exploit the cuts (A1, B1), . . . (Aq, Bq) in graph G, together with the finalizing
cut (Ã, B̃) in graph H, in order to compute another well-structured cut (S̃, S̃′) in H0, such that

|EH(S̃, S̃′)| ≤ |T |
log6 N

, and one side of the cut contains all but at most Ŵ
16 vertices of H0, but only a
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relatively small fraction of the vertices of T . Let E′′ = EH(S̃, S̃′). By inspecting all canonical cuts in
C′(E′′), we will then either correctly establish that at least one of the events E2, E3 happened, or we
will compute a cut (A∗, B∗) in G with the required properties.

In the following technical claim, whose proof is deferred to Section D.2 of Appendix, we provide an
algorithm for computing the cut (S̃, S̃′) in H0 with the desired properties.

Claim 7.9 There is a deterministic algorithm, that, given the graph G0, the sequence of the strongly
well-structured φ-sparse cuts (A1, B1), . . . (Aq, Bq) in G that the algorithm has produced during the
current phase so far, the current graphs G and H, such that all edge lengths in G are bounded by d′/2,
and the finalizing cut (Ã, B̃) in the current graph H, computes a weakly well-structured cut (S̃, S̃′)

in H0, such that |EH0(S̃, S̃
′)| ≤ |T |

log6 N
, and one side Z̃ ∈

{
S̃, S̃′

}
of the cut contains all but at most

Ŵ/8 vertices of H0, and at most
(
1− 2

log4 N

)
· |T | vertices of T . The running time of the algorithm

is O(Ŵ 2).

We are now ready to complete the proof of Claim 7.8. Let E′′ = EH0(S̃, S̃
′). We construct, in

time O(|E(H0)|) ≤ O(Ŵ 2), the collection X (E′′) of subsets of H0 associated with the set E′′ of
edges, and then examine all canonical cuts (A,B) ∈ C′(E′′). For each such cut, we check whether

|A| ≤ Ŵ
log5 N

, or |B| ≤ Ŵ
log5 N

hold. From the definition of canonical cuts, we can check this, for every

cut (A,B) ∈ C′(E′′), in time O(|V (H)|) ≤ O(Ŵ ). We first claim that if, for each such canonical cut

(A,B), either |A| ≤ Ŵ
log5 N

or |B| ≤ Ŵ
log5 N

holds, then at least one of the events E2, E3 must have

happened.

Observation 7.10 If, for every canonical cut (A,B) ∈ C′(E′′), either |A| ≤ Ŵ
log5 N

or |B| ≤ Ŵ
log5 N

holds, then at least one of the events E2, E3 must have happened.

Proof: Recall that one side Z̃ ∈
{
S̃, S̃′

}
of the cut (S̃, S̃′) in H contains all but at most Ŵ/8 vertices

of H0, and at most
(
1− 2

log4 N

)
· |T | vertices of T . Denote the other side of the cut by Z̃ ′. We now

consider two cases. The first case happens if |Z̃ ∩ T | ≤ |T |32 . Then Z̃ contains at least Ŵ
2 vertices of H

and at most |T |32 vertices of T . Since, for every canonical cut (A,B) ∈ C′(E′′), either |A| ≤ Ŵ
log5 N

or

|B| ≤ Ŵ
log5 N

holds, we conclude that Event E3 must have happened.

Otherwise, |Z̃ ∩ T | ≥ |T |32 , and, since |Z̃ ∩ T | ≤
(
1− 2

log4 N

)
· |T |, we get that |Z̃ ∩ T |, |Z̃ ′ ∩ T | ≥ |T |

log4 N
.

Since, for every canonical cut (A,B) ∈ C′(E′′), either |A| ≤ Ŵ
log5 N

or |B| ≤ Ŵ
log5 N

holds, we conclude

that Event E2 must have happened.

If, for every canonical cut (A,B) ∈ C′(E′′), either |A| ≤ Ŵ
log5 N

or |B| ≤ Ŵ
log5 N

hold, then we terminate

the algorithm, and report that at least one of the events E2, E3 has happened. We assume from now

on that there is a canonical cut (A,B) ∈ C′(E′′) with |A|, |B| ≥ Ŵ
log5 N

. Recall that (A,B) is a weakly

canonical cut in graph H0, and |EH0 | ≤
|T |

log6 N
≤ 8Ŵ

d′ log6 N
≤ 8

d′ logN ·min {|A|, |B|} ≤ φ
64 min {|A|, |B|}.

Therefore, (A,B) is a weakly canonical cut of sparsity at most φ
64 in H0. Recall also that every edge

in G0 has length at most d′

2 = 2
φ .

For every vertex v ∈ V (G0), we denote the weight of v in G0 by w0(v), and, for every subset S ⊆ V (G0)
of vertices, we denote w0(S) =

∑
v∈S w0(v). Similarly, for every vertex v ∈ V (G), we denote the weight

of v in G by w(v), and for a subset S ⊆ V (G) of vertices, we denote w(S) =
∑

v∈S w(v). Note that,
for every vertex v ∈ V (G), w0(v) ≤ w(v).
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Consider now the cut (A′, B′) in G0, where A
′ = A∩V (G0) and B′ = B∩V (G0). From Observation 4.4,

(A′, B′) is a weakly well-structured cut in G0, whose sparsity is at most φ
8 , with w0(A

′) ≥ |A|8 ≥
Ŵ

8 log5 N
,

and w0(B
′) ≥ |B|8 ≥

Ŵ
8 log5 N

.

Recall that d′ ≤ 2d
(logN)28

≤ n
256 ≤

Ŵ
128 ≤

∑
e∈E(G0)

ℓ(e)

2 . Therefore, the length of every edge in G0

is bounded by

∑
e∈E(G0)

ℓ(e)

2 . We call now apply the algorithm from Observation 4.5 to graph G0,

parameter φ
8 , and the cut (A′, B′) in G0, to compute a cut (A′′, B′′) in G0 with w0(A

′′) ≥ w0(A′)
4 ≥

Ŵ
32 log5 N

and w0(B
′′) ≥ w0(B′)

4 ≥ Ŵ
32 log5 N

, such that (A′′, B′′) is a strongly well-structured cut in G0,

whose sparsity is at most φ/4. The running time of the algorithm is bounded by O(|E(G0)|) ≤ O(Ŵ 2).

Lastly, we define the cut (A∗, B∗) in the current graph G as follows: A∗ = A′′ ∩ V (G) and B∗ =
B′′ ∩ V (G). Since (A′′, B′′) is a strongly well-structured cut in G0, and G ⊆ G0, it is easy to verify
that (A∗, B∗) is a strongly well-structured cut in G. Moreover, since the current phase has not

terminated yet, the total weight of all vertices deleted so far from G is bounded by Ŵ
log30 N

, so w(A∗) ≥

w0(A
∗) ≥ w0(A

′′) − Ŵ
log30 N

≥ w0(A′′)
2 > Ŵ

log30 N
. Similarly, w(B∗) ≥ w0(B

∗) ≥ w0(B′′)
2 > Ŵ

log30 N
. Since

|EG(A
∗, B∗)| ≤ EG0(A

′′, B′′), we conclude that cut (A∗, B∗) has sparsity at most φ. We output the
cut (A∗, B∗) as the outcome of the algorithm. From the above discussion, the running time of the
algorithm is bounded by O(Ŵ 2).

7.4 First Data Structure: Expander X and its Embedding

Throughout the phase, we will maintain an expander X, that is defined over the terminals, and is
embedded into H. We start by providing the algorithm to initialize this data structure, and then
provide the algorithm for maintaining it throughout the phase.

7.4.1 Initialization

In this step, we will either compute an expander X over the set T of vertices and embed it into H via
short paths that cause low congestion; or we will compute a sparse cut (A,B) in H, following which
a sufficient number of vertices will be deleted from H, so that the current phase will terminate. We
summarize the algorithm for initializing the expander in the following lemma, whose statement uses
the constant α0 from Theorem 2.1.

Lemma 7.11 There is a randomized algorithm, that either returns “FAIL”, or computes one of the
following:

• either a finalizing cut in H;

• or a strongly well-structured 1/d′-sparse cut (A,B) in G with w(A), w(B) ≥ Ŵ
(logN)30

;

• or a graph X∗ with V (X∗) = T , such that X∗ has maximum vertex degree at most 24, and it
is an α0

81 -expander. In the latter case, the algorithm additionally computes a set F ⊆ E(X∗) of

at most α0·|T |
500 edges, and an embedding P∗ of X∗ \ F into H via paths that have length at most

O
(
d′ · (logN)16

)
each, that cause congestion O

(
(logN)13

)
.

The probability that the algorithm returns “FAIL” is at most 1
N7 , and the running time of the algorithm

is bounded by:
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O
(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+3

)
.

The remainder of this subsubsection is dedicated to proving Lemma 7.11.

Recap of the Cut-Matching Game

We use the Cut-Matching Game – a framework that was initially proposed by [KRV09]. The specific
variant of the game is due to [KKOV07]. Its slight modification (that we also use) was proposed
in [CGL+20], and later adapted to directed graphs in [BGS20]; the same modification was used in
[CK24]. We also note that [Lou10] extended the original cut-matching game of [KRV09] to directed
graphs, though we do not use this variation here. We now define the variant of the game that we use.

The game is played between two players: the Cut Player and the Matching Player. The game starts
with a directed graph X that contains n̂ vertices and no edges, and proceeds in iterations. In the ith
iteration, the Cut Player chooses a cut (Ai, Bi) in X with |Ai|, |Bi| ≥ n̂/10, and |EX(Ai, Bi)| ≤ n̂/100.
It then computes two arbitrary equal-cardinality sets A′i, B

′
i of vertices with |A′i| ≥ n̂/4, such that

either Ai ⊆ A′i, or Bi ⊆ B′i holds. The matching player then needs to return two perfect matchings: a
matchingMi ⊆ A′i×B′i, and a matchingM′i ⊆ B′i×A′i, both of cardinality |A′i|. The edges ofMi∪M′i
are added to X, and the iteration terminates. If there is no cut (A,B) in X with |A|, |B| ≥ n̂/10, and
|EX(A,B)| ≤ n̂/100, then the game must terminate, though we may choose to terminate it earlier.
The following bound on the number of iterations in this variant of the Cut-Matching Game was shown
by [BGS20], extending a similar result of [KKOV07] for undirected graphs.

Theorem 7.12 (Lemma 7.4 in [BGS20]; see also Theorem 7.3 and the following discussion)
The number of iterations in the above Cut-Matching Game is bounded by O(log n̂).

From the above theorem, there is an absolute constant cCMG > 0, such that, after cCMG log n̂ iterations
of the above game, for every cut (A,B) in X with |A|, |B| ≥ n̂/10, |EX(Ai, Bi)| > n̂/100 must hold.
Notice that the maximum vertex degree in the final graph X is bounded by 2cCMG log n̂.

Implementing the Cut Player

There are several known algorithms that we could use in order to implement the cut player. For
example, [BGS20], generalizing the results of [CGL+20] to directed graphs, provided such an algorithm,
whose running time is Ô(n̂) (see Theorem 7.3 in [BGS20]). We use instead the algorithm of [CK24],
whose analysis is very simple, even though its running time is somewhat higher. The algorithm is
summarized in the following theorem, that uses the constant α0 from Theorem 2.1.

Theorem 7.13 (Theorem 8.5 in [CK24]) There is a deterministic algorithm, that, given an n̂-
vertex directed graph G with maximum vertex degree at most O(log n̂), returns one of the following:

• Either a cut (A,B) in G with |EG(A,B)| ≤ n̂/100 and |A|, |B| ≥ n̂/10; or

• another directed graph X ′ with |V (X ′)| ≥ n̂/4 and maximum vertex degree at most 18, such that
X ′ is an α0-expander, together with a subset F ⊆ E(X ′) of at most α0·n̂

1000 edges of X ′, and an
embedding P of X ′ \ F into G via paths of length at most O(log2 n̂), that cause congestion at
most η̃ ≤ O(log2 n̂).

The running time of the algorithm is Õ(n̂2).
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Next, we discuss the implementation of the matching player, which is different from that of [CK24]: to
make the algorithm more efficient, we rely on Algorithm A for the r-restricted RouteAndCut problem,
whose existence we have assumed.

Implementing the Matching Player

We use the parameter N ′ = max
{
N, Ŵ

}
, so that |V (H)| ≤ N ′ and N ≤ N ′ ≤ 12N holds, and addi-

tional parameters ∆̂ =
⌈
|T |
4

⌉
and η′ = (logN ′)8. Throughout the algorithm, we will sometimes com-

pute disjoint subsets A,B of vertices of H of cardinality ∆̂ each, and we will view (H,A,B, ∆̂, η′, N ′)
as an instance of the r-restricted RouteAndCut problem. We show that this must be indeed a valid
instance of the problem, in the following simple observation whose proof is deferred to Section D.3 of
Appendix.

Observation 7.14 For any pair (A,B) of disjoint subsets of V (H) of cardinality ∆̂ each, (H,A,B, ∆̂, η′, N ′)
is a valid input to the r-restricted RouteAndCut problem.

The matching player will be implemented by applying Algorithm A for the r-restricted RouteAndCut
problem to instances (H,A,B, ∆̂, η′, N ′), where A,B are disjoint subsets of V (H) of cardinality ∆̂

each. Throughout, we will use a parameter z = 4|T |
log4 N

.

Proof of Lemma 7.11: the Cut-Matching Game

We let c̃ be a large enough constant, so that, in Theorem 7.13 the parameter η̃ ≤ c̃ log2 n̂. We start
with the graph X, whose vertex set is T , and edge set is ∅, and then run the Cut-Matching game on
it. Recall that the number of iterations in the game is bounded by cCMG · log n̂. This ensures that the
graph X that is maintained over the course of the game has maximum vertex degree O(log n̂).

Description of a Single Iteration

We now describe the execution of the ith iteration. First, we apply the algorithm from Theorem 7.13
to the current graph X. We say that the current iteration is a type-1 iteration, if the algorithm returns
a cut (Ai, Bi) in X with |EX(Ai, Bi)| ≤ n̂/100 and |Ai|, |Bi| ≥ n̂/10, and otherwise we say that it
is a type-2 iteration. Assume first that the current iteration is a type-1 iteration. Then we compute

two arbitrary disjoint subsets A′i, B
′
i of V (X) of cardinality

⌈
n̂
4

⌉
=
⌈
|T |
4

⌉
= ∆̂ each, such that either

Ai ⊆ A′i or Bi ⊆ B′i holds. We treat (A′i, B
′
i) as the move of the cut player. Recall that the running

time of the algorithm from Theorem 7.13 is Õ(n̂2) ≤ Õ(Ŵ 2).

Next, we consider two instances of the r-restricted RouteAndCut problem: instance (H,A′i, B
′
i, ∆̂, η′, N ′),

and instance (H,B′i, A
′
i, ∆̂, η′, N ′). We apply Algorithm A to each of these two instances. If the al-

gorithm returns “FAIL” on any of these instances, we repeat it up to ⌈10 logN⌉ times, or until it
terminates with a valid output, whichever happens first. If, for any of the two instances of the
RouteAndCut problem, the algorithm returned “FAIL” repeatedly in each of its ⌈10 logN⌉ applica-
tions, then we terminate the algorithm and return “FAIL”. Since the probability that an algorithm
for the RouteAndCut problem returns “FAIL” is at most 1/2, the probability that the current iteration
termintates with a “FAIL” is bounded by 2

N10 . We assume from now on that the last application of
Algorithm A to each of the two instances did not terminate with a “FAIL”. We denote by Q′i and
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Q′′i the routings that these algorithms return, where Q′i is the routing from A′i to B′i. Recall that the
running time of Algorithm A on each of these two instances is bounded by:

c1 · Ŵ 2 · 2c2
√
logN ′ · (logN ′)16c2(r−1)+8c2

≤ O
(
c1 · Ŵ 2 · 2c2

√
logN · (log(12N))16c2(r−1)+8c2+1

)
≤ O

(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+1 ·

(
1 +

1

32c2r

)16c2(r−1)+8c2+1
)

≤ O

(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+1 ·

(
1 +

1

32c2r

)32c2r
)

≤ O
(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+1

)
(we have used Inequalities 17 and 18). Since Algorithm A may be applied up to O(logN) times to
the resulting instances of the RouteAndCut problem, the total time spent in a single iteration by the
executions of Algorithm A is bounded by:

O
(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+2

)
.

We now consider two cases. The first case happens when both |Q′i|, |Q′′i | ≥ ∆̂ − z. In this case, we
say that the current iteration is of type (1a). Recall that the paths in each of the sets Q′i, Q′′i cause
congestion at most 4η′ · logN ′ ≤ 4(logN ′)9 ≤ 4(log(12N))9 ≤ (logN)10, since η′ = (logN ′)8 and
N ′ ≤ 12N . Since regular and special edges must alternate on each such path, and since the total
number of special edges is at most Ŵ/2,

∑
P∈Q′

i
|E(P )| ≤ Ŵ · (logN)10. Similarly,

∑
P∈Q′′

i
|E(P )| ≤

Ŵ · (logN)10. We say that a path Q ∈ Q′i ∪ Q′′i is long, if it contains more than 8d′ · (logN)14 edges.
Clearly, the number of long paths in Q′i is bounded by:

Ŵ · (logN)10

8d′ · (logN)14
≤ Ŵ

2d′(logN)4
≤ |T |

log4N
≤ z.

(We have used the fact that |T | ≥ Ŵ
2d′ , as Event E1 did not happen.) Similarly, at most z paths in Q′′i

are long. We discard all long paths from both Q′i and Q′′i . At the end of this process, every path in
Q′i ∪Q′′i has length at most 8d′ · (logN)14, and |Q′i|, |Q′′i | ≥ ∆̂− 2z.

The set Q′i of paths naturally defines a matchingM′i ⊆ A′i × B′i, where for every path Q ∈ Qi whose
endpoints are a ∈ A′i, b ∈ B′i, we add an edge e = (a, b) to the matching. We also let Q(e) = Q be its
embedding into G. Similarly, the set Q′′i of paths defines a matching M′′i ⊆ B′i × A′i, together with
an embedding Q(e) ∈ Q′′i for each edge e ∈ M′′. Recall that matching M′i has cardinality at least
∆̂− 2z, while |A′i| = |B′i| = ∆̂. Therefore, by adding a set F ′i of at most 2z additional edges (that we
refer to as fake edges), we can turn matchingM′i into a perfect one. Similarly, we add a collection F ′′i
of at most 2z fake edges to M′′i in order to turn it into a perfect matching. The edges of M′i ∪M′′i
are then added to graph X, and the current iteration terminates.

Assume now that one of the two sets Q′i,Q′′i computed by Algorithm A contains fewer than ∆̂ − z
paths; we assume w.l.o.g. that it is Q′i. In this case we say that the current iteration is of type (1b).

Let A′′i ⊆ A′i, B
′′
i ⊆ B′i be the sets of vertices that do not serve as endpoints of the paths in Q′i, so

|A′′i |, |B′′i | ≥ z. Recall that the algorithm must also return a cut (Z,Z ′) in H, such that:
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|EH(Z,Z ′)| ≤ 64∆̂

η′ log4 Ŵ
+

256|Q′i|
η′

≤ 512∆̂

η′
≤ 256|T |

(logN ′)8
≤ Ŵ

d′(logN)7
,

since η′ = (logN ′)8, ∆̂ =
⌈
|T |
4

⌉
, |T | ≤ 8Ŵ

d′ since Event E1 did not happen, and N ′ ≥ N . We are also

guaranteed that A′′i ⊆ Z and B′′i ⊆ Z ′, so |Z ∩ T |, |Z ′ ∩ T | ≥ z = 4|T |
log4 N

. We use the following simple

claim, that either computes a finalizing cut in H, or returns a strongly well-structured 1/d′-sparse cut

(A,B) in G with w(A), w(B) ≥ Ŵ
(logN)30

. The proof is deferred to Section D.4 of Appendix.

Claim 7.15 There is a deterministic algorithm, that, given a cut (Z,Z ′) in graph H with |Z∩T |, |Z ′∩
T | ≥ 4|T |

log4 N
and |EH(Z,Z ′)| ≤ Ŵ

d′(logN)7
, either computes a finalizing cut in H, or returns a strongly

well-structured 1/d′-sparse cut (A,B) in G with w(A), w(B) ≥ Ŵ
(logN)30

. The running time of the

algorithm is O(Ŵ 2).

If the algorithm from Claim 7.15 returns a finalizing cut in H, then we output this cut as the outcome

of the algorithm. Otherwise, we output the 1/d′-sparse cut (A,B) in G with w(A), w(B) ≥ Ŵ
(logN)30

that the algorithm returns.

Finally, assume that the current iteration i is of type 2. In this case, the algorithm for the Cut Player
from Theorem 7.13 computed a directed graph X ′ with |V (X ′)| ≥ n̂/4 and maximum vertex degree at
most 18, such that X ′ is an α0-expander, together with a subset F ′ ⊆ E(X ′) of at most α0·n

1000 edges of
X ′, and an embedding P of X ′ \F ′ into X via paths of length at most O(log2 n̂), that cause congestion
at most c̃ log2 n̂.

Denote F̂ =
⋃i−1

i′=1(F
′
i ∪F ′′i ) – the collection of the fake edges that we have computed so far. Since for

all 1 ≤ i′ < i, |F ′i ∪ F ′′i | ≤ 4z and i ≤ cCMG log n, we get that |F̂ | ≤ 4cCMGz log n̂.

We also denote Q̂ =
⋃i−1

i′=1(Q′i ∪ Q′′i ). Note that Q̂ defines an embedding of X \ F̂ into H. All paths

in Q̂ have lengths at most 8d′ · (logN)14. Each set Q′i ∪Q′′i causes congestion at most 2(logN)10, and
so the total congestion caused by the paths in Q̂ is bounded by η̂ = O

(
(logN)11

)
. We now terminate

the execution of the Cut-Matching Game.

As our next step, we will construct a set F ⊆ E(X ′) of fake edges, and an embedding of the remaining
edges of X ′ into H. The latter is done by comining the embedding P of X ′ \ F ′ into X with the
embedding Q̂ of X \ F̂ into H.

Constructing the Set F of Fake Edges for X ′ and Embedding X ′ \ F into H

We start with F = F ′. Next, we process every edge e ∈ E(X ′) \ F ′ one by one. When an edge
e = (u, v) is processed, we consider the path P ′(e) ∈ P, that serves as an embedding of e into
graph X. Recall that the length of the path is at most O(log2 n̂). Let P (e) = (e1, e2, . . . , ek), where
k ≤ O(log2 n̂) ≤ O(log2N). If path P (e) contains any edges of F̂ , then we add e to the set F of fake
edges. Otherwise, for all 1 ≤ j ≤ k, we consider the path Q(ej) ∈ Q̂, that serves as the embedding
of the edge ej into graph G. Recall that the length of Q is at most 8d′ · (logN)14. By concatenating
the paths Q(e1), . . . , Q(ek), we obtain a path P ′(e) connecting u to v in G, whose length is at most
O
(
d′ · (logN)16

)
. We turn P ′(e) into a simple path in time Õ(d′), obtaining the final path P̂ (e), that

will serve as an embedding of the edge e.

Once every edge of X ′ \F ′ is processed, we obtain a final set F of fake edges, and, for every remaining
edge e ∈ E(X ′) \ F , a simple path P̂ (e) of length O

(
d′ · (logN)16

)
, that serves as the embedding of
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e in G. Recall that |V (X ′)| ≥ n̂/4, and graph X ′ is an α0-expander with maximum vertex degree at

most 18. Next, we bound the congestion caused by the paths in set P∗ =
{
P̂ (e) | e ∈ E(X ′) \ F

}
in

H, and the cardinality of the set F of fake edges.

Consider any edge e ∈ E(H). Recall that e may participate in at most η̂ = O
(
(logN)11

)
paths in set

Q̂ =
{
Q(e′) | e′ ∈ E(X) \ F̂

}
. Every edge e′ ∈ E(X) \ F̂ , whose corresponding path Q(e′) contains

the edge e, may in turn participate in at most O(log2N) paths of P. Therefore, overall, every edge e
of G participates in at most O

(
(logN)13

)
paths of P∗.

In order to bound the number of the fake edges in F , recall that |F̂ | ≤ 4cCMGz logN . Since the paths
in P cause congestion at most c̃ log2 n̂ = c̃ log2N , we get that every edge of F̂ may participate in at
most c̃ log2N paths of P. Therefore, |F \F̂ | ≤ (4cCMGz logN)·(c̃ log2N) ≤ 4c̃·cCMG ·z ·log3N ≤ α0·|T |

2000 ,

since z = 4|T |
log4 N

, and N is sufficiently large. Since |F ′| ≤ α0·|T |
1000 , we get that |F | ≤ 3α0·|T |

2000 .

Note that graph X ′ has all required properties, except that V (X ′) may not contain all terminals. In
our last step, we fix this problem, by connecting the terminals that do not lie in X ′ to the vertices of
X ′.

Extending the Expander to All Terminals

Let T0 ⊆ T be the set of terminals that lie in X ′, so |T0| ≥
⌈
|T |
4

⌉
. We partition the terminals of T \T0

into three subsets T1, T2, T3 arbitrarily, so that every subset contains at most
⌈
|T |
4

⌉
terminals. We now

perform last three iterations, that we will denote by iterations (i + 1), (i + 2) and (i + 3). In each of
these three iterations, we will only invoke the algorithm of the Matching Player, in order to connect
the vertices in one of the subsets T1, T2, T3 to T0.

We now describe iteration (i+1). The remaining two iterations are performed similarly. We let A′i+1 be

any subset of T0 containing exactly ∆̂ =
⌈
|T |
4

⌉
vertices. We also let B′i+1 be any subset of ∆̂ terminals

with T1 ⊆ B′i+1, so that A′i+1 and B′i+1 are disjoint. Next, we consider two instances of the r-restricted

RouteAndCut problem: instance (H,A′i+1, B
′
i+1, ∆̂, η′, N ′), and instance (H,B′i+1, A

′
i+1, ∆̂, η′, N ′). We

apply Algorithm A to each of these two instances. As before, if either of these algorithms returns
“FAIL”, then we repeat it at most ⌈10 logN⌉ times, or until it terminates with a valid input – whatever
happens first. If the algorithm returned “FAIL” in all ⌈10 logN⌉ applications, then we terminate the
current algorithm with a “FAIL”. We assume from now on that in the last application of algorithm A
to both instances a valid output was computed, and we denote by Q′i+1 and Q′′i+1 the routings that
these algorithms return, where Q′i+1 is the routing from A′i+1 to B′i+1.

If either of the sets Q′i+1,Q′′i+1 of paths has cardinality less than ∆̂ − z, then we employ the same
algorithm as before to either compute a finalizing cut in H, or to compute a strongly well-structured

1/d′-sparse cut (A,B) in G with w(A), w(B) ≥ Ŵ
(logN)30

. We then terminate the algorithm and return

the resulting cut. We assume from now on that |Q′i+1|, |Q′′i+1| ≥ ∆̂ − z. We use the set Q′i+1 of
paths as before (except that we ingore those paths that terminate at vertices of B′i+1 \ T1), in order
to compute a matching M ′i+1 ⊆ T0 × T1, with |M ′i+1| ≥ |T1| − 2z, together with an embedding of the
edges of M ′i+1 into the graph H, via paths of lengths at most 8d′ · (logN)14, that cause congestion
at most O(log10N). We then add a collection F ′i+1 of at most 2z fake edges to M ′i+1 to turn it into
a matching of cardinality |T1|. Similarly, we use the paths in Q′′i+1, in order to compute a matching
M ′′i+1 ⊆ T1×T0, with |M ′′i+1| = |T1|, together with a subset F ′′i+1 ⊆M ′′i+1 of at most 2z fake edges, and
an embedding of the edges of M ′′i+1 \F ′′i+1 into the graph H, via paths of lengths at most 8d′ ·(logN)14,
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that cause congestion at most O(log10N). The remaining two iterations are executed similarly, except
that we use sets T2 and T3 of terminals instead of T1.

Consider now the final graph X∗, that is obtained from X ′ by adding the vertices of T1 ∪ T2 ∪ T3 to
it, and the edges of M∗ =

⋃3
j=1(M

′
i+j ∪M ′′i+j). Then V (X∗) = T , maximum vertex degree in X∗ is

at most 18 + 6 = 24. Moreover, from Observation 2.2, graph X∗ is an α0
81 -expander.

Recall that each of the sets
{
F ′i+j , F

′′
i+j | 1 ≤ j ≤ 3

}
of fake edges has cardinality at most 2z ≤ 8|T |

log4 N
.

We add the fake edges from all these sets to the set F of fake edges. Since initially |F | ≤ 3α0·|T |
2000 , and

since the number of edges that we added to F in this step is bounded by 100|T |
log4 N

, we get that |F | ≤ α0·|T |
500

holds. For every edge e ∈ M∗ \ F , we have computed an embedding path P̃ (e), that is added to the
set P∗ of paths. The final set P∗ of paths is an embedding of X∗ \F into H, where the length of every
path is O

(
d′ · (logN)15

)
, and the paths in P∗ cause congestion O

(
(logN)16

)
.

Running Time and Failure Probability Analysis

The algorithm has O(log n̂) ≤ O(logN) iterations. The probability that it returns “FAIL” in a single
iteration is at most 2

N10 , and so the probability that the algorithm ever returns “FAIL” is at most 1
N9 .

the total time spent in a single iteration on the executions of Algorithm A is bounded by:

O
(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+2

)
.

Additionally, in every iteration we use the algorithm for the Cut Player from Theorem 7.13, whose
running time is Õ(Ŵ 2).

The algorithm from Claim 7.15, whose running time is O(Ŵ 2), may only be incurred once over the
course of the execution of our algorithm.

Additionally, when computing the embedding P∗ ofX∗\F intoG, we spend time at mostO
(
d′ · (logN)16

)
per edge of X ′, and, since |E(X ′)| ≤ O(Ŵ ), the time required to compute the embedding is bounded

by: O
(
Ŵ · d′ · (logN)15

)
≤ O

(
Ŵ 2
)
, since d′ ≤ 2d

(logN)28
and d ≤ n from Inequality 15. Overall, the

running time of the algorithm is bounded by:

O
(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+3

)
+ Õ(Ŵ 2)

≤ O
(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+3

)
.

7.4.2 Maintaining the Expander

At the beginning of the phase, we execute the algorithm from Lemma 7.11. If the algorithm terminated
with a “FAIL”, which may only happen with probability at most 1

N7 , then we terminate the algorithm
for the current phase and return “FAIL”. If the algorithm returned a finalizing cut in H, then we apply
the algorithm from Claim 7.8 to this cut. If the algorithm from Claim 7.8 estabishes that at least one
of the events E2, E3 happened, we terminate the phase with a “FAIL”. Otherwise, we obtain a strongly

well-structured φ-sparse cut (A∗, B∗) in the current graph G, such that w(A∗), w(B∗) ≥ Ŵ
log30 N

. In this

case, we output the cut (A∗, B∗). Once this cut is processed, at least Ŵ
log30 N

vertices are deleted from

H, and the current phase terminates. Finally, if the algorithm from Lemma 7.11 returns a strongly
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well-structured 1/d′-sparse cut (A,B) in G with w(A), w(B) ≥ Ŵ
(logN)30

, then as before we output

this cut, and, once it is processed, at least Ŵ
log30 N

vertices are deleted from H, and the current phase

terminates. Therefore, we assume from now on that the algorithm from Lemma 7.11 computed a graph
X∗, that we will denote for simplicity by X from now on. Recall that V (X) = T , maximum vertex
degree in X is at most 24, and X is an α0

81 -expander. Recall that we are also given a set F ⊆ E(X) of

at most α0·|T |
500 fake edges, and an embedding P∗ of X \ F into H. We let d′′ = Θ

(
d′ · (logN)15

)
and

η′′ = Θ
(
(logN)13

)
be such that every path in P∗ has length at most d′′, and the congestion caused

by the paths in P∗ is at most η′′. For convenience, we will denote the set P∗ of paths by Q from now
on, and, for every edge ê ∈ E(X) \ F , we denote by Q(ê) ∈ Q its corresponding embedding path.

Recall that, since Event E1 did not happen, we are guaranteed that Ŵ
2d′ ≤ |T | ≤

8Ŵ
d′ . As the phase

progresses, some vertices and edges may be deleted from X and from G. We will view the set T of
terminals as a static set, so even if some vertices of T are deleted from X or from G, the set T remains
unchanged.

Throughout the algorithm, for every edge e ∈ E(H), we maintain a collection S′(e) ⊆ E(X) of edges
ê ∈ E(X) \ F , such that e ∈ Q(ê). Clearly, the time required to compute these initial sets S′(e) of
edges, for all e ∈ E(H), is subsumed by the time required to compute the embedding of X \ F into
H. Additionally, for every edge ê ∈ E(X) \ F , we maintain the length ℓ̂(ê) of the path Q(ê), which is
equal to the number of edges on the path, and must initially be bounded by d′′.

As the phase progresses, graph H undergoes changes, that may require updating the expander X
and its embedding. Specifically, we need to ensure that, even as vertices and edges are deleted from
H, V (X) ⊆ V (H), and, for every edge ê ∈ E(X) \ F , Q(ê) ⊆ H continue to hold. Additionally, as
edges in H undergo splitting, some of the embedding paths in Q may become longer, and we may
need to delete the corresponding edges from X, in order to ensure that the lengths of all embedding
paths are suitably bounded. Lastly, we need to ensure that, throughout the phase, for every pair
x, y ∈ V (X) of vertices, there is a path connecting x to y in X \F , whose length is at most O(logN).
Whenever our algorithm discovers that this is no longer the case, it may compute a sparse cut (A,B)
in X, and delete the vertices of the smaller side of the cut from X. We now describe all updates that
graph X undergoes over the course of the phase formally. We will ensure that, despite these updates,
throughout the phase, |V (X)| ≥ |T |/2 holds.

First Type of Updates: Due to Edge Splitting

Recall that, as the algorithm progresses, the lengths of some edges e ∈ E(G) may be doubled. When-
ever this happens, we update the corresponding path P ∗(e) in H, by splitting every special edge
e′ ∈ E(P ∗(e)). The latter is done by replacing the special edge e′ = (x, y) with a path (x, z, z′, y),
where z, z′ are new vertices, and (x, z), (z′, y) are new special edges. Notice that once edge e′ is
split, it no longer lies in graph H. For every edge ê ∈ E(X) \ F that lies in S′(e′), we consider the
corresponding embedding path Q(ê), that must contain the edge e′. We replace e′ with the new path
(x, z, z′, y) on Q(ê), and insert ê into the sets S′((x, z)), S′((z′, y)), that correspond to the new special
edges (x, z) and (z′, y). We also update the length ℓ̂(ê) of path Q(ê), which increases by additive 2.
If, as the result of this procedure, the length of path Q(ê) became greater than 8d′′, then edge ê is
deleted from graph X.

We denote by Ê1 the set of all edges that were deleted from graph X over the course of the phase due
to this type of updates. We now show that the number of such edges must be small.

Claim 7.16 |Ê1| ≤ α0·|T |
5000 .
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Proof: Recall that, over the course of the phase, the algorithm only needs to respond to at most ∆′

queries. Given such a query between a pair (x, y) of vertices, the algorithm must return a path P of
length at most d connecting x to y. Denote by ℓ̃(P ) the length of the path P at the time when it was
returned in response to the query. Then the lengths of some edges on path P are doubled. If P is the
set of all paths that the algorithm returned in response to queries over the course of the phase, then∑

P∈P ℓ̃(P ) ≤ ∆′ · d must hold.

Let G0 denote the graph G at the beginning of the phase. Recall that, if e is any edge of G0, and
τ, τ ′ are two consecutive times during the current phase when the length of e is doubled, then e must
have participated in at least η paths that the algorithm returned during the time interval (τ, τ ′].
However, the first time that the length of e is doubled during the current phase may occur even before
it participates in η such paths. For every edge e ∈ E(G0), denote by ℓ̃0(e) the length of e at the
beginning of the current phase. If e ∈ E(G) at the end of the phase, then we denote by ℓ̃∗(e) the
length of e at the end of the phase; otherwise, ℓ̃∗(e) is the length of e just before it is deleted from G.

Let E′ ⊆ E(G0) be the set of all edges e with ℓ̃∗(e) > 2ℓ̃0(e), so E′ contains all edges of G0 whose
lengths were doubled at least twice. Consider now any edge e ∈ E′, and assume that ℓ̃∗(e) = 2i. Let
τ be the time during the current phase when the length of e was doubled from 2i−2 to 2i−1, and let
τ ′ be the time when it was doubled from 2i−1 to 2i. Then e participated in at least η paths that were
returned by the algorithm in response to queries during the time interval (τ, τ ′]. For each such path

P , it contributed 2i−1 = ℓ̃∗(e)
2 to ℓ̃(P ). Therefore, every edge e ∈ E′ contributes at least η·ℓ̃∗(e)

2 to∑
P∈P ℓ̃(P ). We conclude that

∑
e∈E′ ℓ̃∗(e) ≤ 2

η

∑
P∈P ℓ̃(P ) ≤ 2∆′·d

η .

Notice that, for every edge e ∈ E(G), at any time during the execution of the algorithm, the number
of special edges on P ∗(e) is equal to the current length of e, while the splitting of a speical edge on
P ∗(e) increases the number of special edges on P ∗(e) by 1. Therefore, if the current length of e is ℓ(e),
then the edges of P ∗(e) underwent ℓ(e)− ℓ̃0(e) splittings since the beginning of the algorithm.

Consider the graph H at the beginning of the current phase, that we denote by H0. Note that,
whenever a special edge e ∈ E(H) undergoes a splitting, the edge itself is deleted from H, and instead
two new edges are inserted. Consider now a special edge e ∈ E(H), and suppose it underwent a
splitting at some time. We say that this splitting operation is unimportant if e ∈ E(H0), and we
say that it is important otherwise. Note that, if an edge e ∈ E(H) undergoes an important splitting
update, then its parent-edge must lie in E′. Therefore, from the above discussion, the total number
of important splitting operations in graph H is bounded by

∑
e∈E′ ℓ̃∗(e).

Consider now some edge ê ∈ E(X)\F , and its embedding path Q(ê). Let µ(ê) be the total number of
important splitting operations that the edges of path Q(ê) underwent over the course of the algorithm.
Since the embedding Q of X \ F into H causes congestion at most η′′, we get that

∑
e∈X\F µ(ê) ≤

η′′ ·
∑

e∈E′ ℓ̃∗(e) ≤ 2∆′·d·η′′
η . On the other hand, if ê ∈ Ê1, then the length of Q(ê) increased from d′′

to 8d′′ over the course of the algorithm, and so the edges on Q(ê) must have undergone at least 6d′′

important splitting operations so µ(ê) ≥ 6d′′. Therefore:

|Ê′| ≤ 2∆′ · d · η′′

6ηd′′
≤ O

(
∆ · d

η · d′ · (logN)33

)
≤ O

(
n

d′ · (logN)33

)
≤ O

(
Ŵ

d′ · (logN)33

)
<

α0 · |T |
5000

,

since d′′ = Θ
(
d′ · (logN)16

)
, ∆′ = ∆

(logN)30
, and η′′ = Θ

(
(logN)13

)
. We have also used the fact that

∆·d
η ≤ n from the problem definition, that Ŵ ≥ n

2 , and that |T | > 8Ŵ
d′ , since Event E1 did not happen.
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Second Type of Updates: Due to Sparse Cuts in X

Throughout the execution of the phase, we may sometimes find cuts (A,B) inX\F , with |EX\F (A,B)| ≤
α0
220
·min {|A|, |B|}. Denote A and B by Z and Z ′, where Z is the smaller of the two sets, breaking ties

arbitrarily. We then delete the vertices of Z from graph X. Notice that |EX\F (A,B)| ≤ α0
220
· |Z|. We

charge the vertices of Z for the edges of EX\F (A,B), where each vertex v ∈ Z is charged α0
220

units,
so the total charge is at least |EX\F (A,B)|.

Let Ê2 be the set of edges in the initial graph X, that is defined as follows. Initially, Ê2 = ∅. Whenever
our algorithm computes a cut (A,B) in X \ F , with |EX\F (A,B)| ≤ α0

220
·min {|A|, |B|}, we add the

edges of EX\F (A,B) to set Ê2. From the charging scheme that we just described, it is easy to verify

that, at the end of the algorithm, |Ê2| ≤ α0·|T |
220

holds.

Third Type of Updates: Due to Sparse Cuts in G

Recall that our algorithm may, at any time, produce a strongly well-structured φ-sparse cut (A,B) in
graph G. If w(A) ≤W (B), then the vertices of A are deleted from G, and otherwise the vertices of B
are deleted from G. Additionally, the endpoints of the edges of EG(A,B) are also deleted from G, and
graph H is also updated with corresponding edge- and vertex-deletions. This may require updating
graph X, for example, if some of the embedding paths in Q use vertices or edges that were deleted
from H. We emphasize that edges and vertices may only be deleted from G via this procedure, and
the only other updates that graph G undergoes is the doubling of the lengths of its edges.

Let (A1, B1), . . . , (Aq, Bq) denote the sequence of all strongly well-structured φ-sparse cuts in G that
our algorithm produced during the current phase, indexed in the order in which the algorithm produced
them. If the last sparse cut that the algorithm produced caused the total number of vertices that

were deleted from H over the course of the phase to reach Ŵ
log30 N

(after which the current phase is

immediately terminated), then we do not include that cut in this sequence. For all 1 ≤ i ≤ q, denote
by τi the time when cut (Ai, Bi) was produced, by Ei = EG(Ai, Bi) at time τi, and by Ji ⊆ Ai, J

′
i ⊆ Bi

the vertices that serve as endpoints of the edges in Ei (with respect to G(τi) – graph G at time τi).
If w(Ai) ≥ w(Bi), then we denote Zi = Ai \ Ji, and otherwise we denote Zi = Bi \ J ′i . We also
let Zi = V (G(τi)) \ Zi contain the remaining vertices of the current graph G(τi). For convenience, if
Zi = Ai \ Ji, then we say that cut (Ai, Bi) is of type 1, and otherwise we say that it is of type 2.

We denote by G0 the graph G at the beginning of the phase, and, for all 1 ≤ i ≤ q, we denote by Gi

the graph G that is obtained after cut (Ai, Bi) has been processed. Therefore, for all 1 ≤ i ≤ q, graph
Gi is obtained from graph Gi−1 by deleting the vertices of Zi from it, or, equivalently, Gi = Gi−1[Zi].

We denote by H0 the graph H at the beginning of the current phase. For all 1 ≤ i ≤ q, we denote by H ′i
the graph H just before the cut (Ai, Bi) is processed, and we denote by Hi the graph H immediately
after cut (Ai, Bi) is processed. Therefore, graph Hi is obtained from H ′i by deleting from it all vertices
and regular edges that were deleted from Gi−1; additionally, for every special edge e that was deleted
from Gi−1, all vertices and edges on the corresponding path P ∗(e) are deleted from H ′i. We denote
V (Hi) by Z∗i , and we denote by Z

∗
i = V (H ′i) \ V (Hi) the set of all vertices that were deleted from H ′i

when cut (Ai, Bi) of G was processed.

We note that, in addition to the updates due to processing the cuts (Aj , Bj), the only other kind of
updates that graph H undergoes is the splitting of some of its special edges, that happens whenever
the length of the corresponding parent-edge is doubled. Therefore, for all 1 ≤ i ≤ q, graph H ′i can be
obtained from Hi−1 by executing a sequence of special edge splitting operations.
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Consider some index 1 ≤ i ≤ q, and consider an edge e = (x, y) ∈ Ei. Recall that this edge is
represented by a path P ∗(e) in graph H. Additionally, every regular edge e′ that is incident to x or y
in G is present in graph H. We let Γ(e) ⊆ E(H ′i) contain all regular edges that are incident to x or
y in H ′i, and all edges of P ∗(e). We then set Γi =

⋃
e∈Ei

Γ(e). Notice that, if (Ai, Bi) is a type-1 cut

(so Zi = Ai \ Ji), then graph H ′i \ Γi contains no edge connecting a vertex of Z∗i to a vertex of Z
∗
i .

Similarly, if (Ai, Bi) is a type-2 cut (so Zi = Bi \ J ′i), the graph H ′i \ Γi contains no edge connecting
a vertex of Z

∗
i to a vertex of Z∗i . Therefore, it may be convenient to think of the update to graph H ′i

due to the cut (Ai, Bi) in G as follows: first, we delete the edges of Γi from H ′i. Then we obtain a
sparsity-0 cut in the resulting graph (with the cut being (Z∗i , Z

∗
i ) if (Ai, Bi) is a type-1 cut, or (Z

∗
i , Z

∗
i )

otherwise). After that we delete the vertices of one of the sides of the cut (vertices of Z
∗
i ) from the

resulting graph, obtaining graph Hi.

Before we describe the updates to the expander X, recall that X undergoes other types of updates, in
which edges and vertices may be deleted from it. But for the sake of analyzing the updates of type 3,
it will be helpful for us to ignore the other types of updates that expander X undergoes. Therefore,
we denote the initial graph X by X0, and, for 1 ≤ i ≤ q, we denote by Xi the graph that is obtained
from Xi−1 once the cut (Ai, Bi) is processed. Except for updating the graph X while processing the
cuts (Ai, Bi), we currently do not allow any other updates to X. We will show how combine all types
of updates to X together later.

Fix again an index 1 ≤ i ≤ q, and consider an edge e = (x, y) ∈ Ei. Recall that we have defined
a collection Γ(e) of edges of H ′i, that includes all edges on the path P ∗(e), and all regular edges
that are incident to x or to y in H ′i. We define the corresponding subset Γ̂(e) of edges of Xi−1 \ F :
Γ̂(e) =

⋃
e′∈Γ(e) S

′(e′). In other words, an edge ê ∈ E(Xi−1) \ F belongs to the set Γ̂(e) if and only
if its corresponding embedding path Q(ê) contains at least one edge of Γ(e). We need the following
simple observation.

Observation 7.17 For every edge e = (x, y) ∈ Ei, |Γ̂(e)| ≤ 2η′′.

Proof: Let T (e) be the set of all terminals that lie on path P ∗(e). Since we have assumed that Event
E4 did not happen, |T (e)| ≤ 16 logN .

We classify the edges in set Γ̂(e) into three different types, and bound the number of edges of each
type separately. Consider any edge ê ∈ Γ̂(e).

We say that ê is of type 1, if at least one of its endpoints lies on P ∗(e). On this case, at least one
endpoint of ê belongs to set T (e). Since |T (e)| ≤ 16 logN , and since the degree of every vertex in X
is at most 24, we get that the total number of type-1 edges in Γ̂(e) is bounded by O(logN) ≤ η′′.

We say that edge ê is of type 2, if it is not of type 1, and, additionally, its embedding path Q(ê)
contains at least one edge of P ∗(e). Since every inner vertex on P ∗(e) has in- and out-degree 1, and
the endpoints of ê do not lie on P ∗(e), it must be the case that P ∗(e) ⊆ Q(ê). Since the embedding
of X \ F into H causes congestion at most η′′, we get that the total number of type-2 edges in Γ̂ is
bounded by η′′.

If edge ê is not of the first two types, then we say that it is of type 3. We claim that no type-3 edges
may exist. Indeed, assume for contradiction that some edge ê ∈ Γ̂(e) is of type 3. Then path Q(ê)
must contain some regular edge e′ of H ′i that is incident to x or y; assume w.l.o.g. that e′ is incident
to x. However, x is not an endpoint of ê, and so it is not an endpoint of Q(ê). Since the only edge
leaving x in G is e, path Q(ê) must contain the first edge on P ∗(e). But then ê must belong to one of
the first two types, a contradiction.

Fix again an index 1 ≤ i ≤ q. We now define the set Γ̂i of edges ofXi−1\F , as follows: Γ̂i =
⋃

e∈Ei
Γ̂(e).

Note that, equivalently, Γ̂i contains all edges ê of Xi−1 \ F , whose embedding path Q(ê) contains at
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least one edge of Γi. Notice that, from Observation 7.17, |Γ̂i| ≤ 2|Ei| · η′′. We denote Ê3 =
⋃q

i=1 Γ̂i.
We need the following simple observation.

Observation 7.18
∑q

i=1 |Ei| ≤ φ·Ŵ
log30 N

, and |Ê3| ≤ α0·|T |
220

.

Proof: Fix an index 1 ≤ i ≤ q. Since cut (Ai, Bi) is φ-sparse in Gi−1, |Ei| ≤ φ ·min {w(Ai), w(Bi)}.
Moreover, once cut (Ai, Bi) is processed, the total weight of all vertices in G decreases by at least

min {w(Ai), w(Bi)} ≥ |Ei|
φ , and so at least |Ei|

φ vertices are deleted from H ′i to obtain Hi. Since we

have assumed that, by the time that cut (Aq, Bq) has been processed, fewer than Ŵ
log30 N

vertices were

deleted from H, we get that
∑q

i=1 |Ei| ≤ φ·Ŵ
log30 N

.

From Observation 7.17, for all 1 ≤ i ≤ q, |Γ̂i| ≤ 2|Ei| · η′′. Therefore:

|Ê3| =
q∑

i=1

|Γ̂i| ≤ 2η′′ ·
q∑

i=1

|Ei| ≤
2φ · η′′ · Ŵ
log30N

≤ O

(
Ŵ

d′ · log17N

)
≤ α0 · Ŵ

221 · d′
≤ α0 · |T |

220
,

since η′′ = Θ(log13N), φ = 4
d′ , and N is large enough.

We are now ready to describe the type-3 updates to the expander X. Fix an index 1 ≤ i ≤ q. In
order to update expander Xi−1 following the cut (Ai, Bi) in graph Gi−1 that our algorithm produced,
we start by deleting the edges of Γ̂i from Xi−1. For each such edge ê ∈ Γ̂i, we consider every edge
e ∈ Q(ê), and update the set S′(e) of edges by deleting ê from it. Next, we denote Ti = V (Xi−1)∩Z∗i ,
and T i = V (Xi−1) ∩ Z

∗
i . If T i ̸= ∅, then we delete the vertices of T i from Xi−1, obtaining the final

graph Xi. We now discuss this latter update in more detail, presenting a slightly different view of this
update, that will be helpful for us later.

Assume first that (Ai, Bi) in Gi−1 is a type-1 cut, so Zi = Ai \ Ji. As observed already, in this case,
graph H ′i \ Γi contains no edge connecting a vertex of Z∗i to a vertex of Z

∗
i . It is then easy to verify

that graph Xi−1 \ Γ̂i contains no edge connecting a vertex of Ti to a vertex of T i. Indeed, if such an
edge ê existed, then its corresponding path Q(ê) would connect a vertex of Z∗i to a vertex of Z

∗
i in H ′i,

and so it must contain an edge of Γi. But then ê ∈ Γ̂i holds, a contradiction. Therefore, if (Ai, Bi) is
a type-1 cut, and Ti, T i ̸= ∅, then (Ti, T i) is a cut of sparsity 0 in Xi−1 \ Γ̂i.

Next, assume that (Ai, Bi) is a type-2 cut. As observed already, in this case, graph H ′i \Γi contains no
edge connecting a vertex of Z

∗
i to a vertex of Z∗i . From the same arguments as above, graph Xi−1 \ Γ̂i

contains no edge connecting a vertex of T i to a vertex of T i. Therefore, if (Ai, Bi) is a type-2 cut, and
Ti, T i ̸= ∅, then (T i, Ti) is a cut of sparsity 0 in Xi−1 \ Γ̂i.

To conclude, we can view the update to graph Xi−1 as follows: first, we delete all edges of Γ̂i from
Xi−1. Then we either delete all vertices from Xi−1 (if Ti = ∅), or delete no vertices from Xi−1 (if
T i = ∅), or we obtain a sparsity-0 cut in the resulting graph Xi−1 \ Γ̂, and we delete all vertices on
one side of this cut from Xi−1. This view of the update procedure will be helpful for us later. It is
easy to verify that, at the end of this update, the collection {Q(ê) ∈ Q | ê ∈ E(Xi) \ F} defines a valid
embedding of graph Xi \ F into graph Hi. Indeed, we have ensured that Ti ⊆ V (Hi). Additionally,
for every edge ê ∈ E(Xi) \ F , both endpoints of ê lie in set Z∗i , and, since path Q(ê) is disjoint from
the edges of Γi, it may not use vertices of Z

∗
i , and must therefore be contained in Hi.

Lastly, we would like to claim that |V (Xq)| remains sufficiently large compared to |T | = |V (X0)|, but
unfortunately this may not be the case. Instead we will show that, if 1 ≤ i ≤ q is the smallest index,

for which |Xi| ≤ |T | ·
(
1− 8

log4 N

)
holds, then we can compute a finalizing cut in graph Gi−1. In our
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algorithm, we will monitor the number of vertices in the current graph Xi, and, if it ever falls below

|T | ·
(
1− 8

log4 N

)
, we will compute a finalizing cut, and apply the algorithm from Claim 7.8 to it, after

which the current phase will be terminated, so in particular no further cuts (Aj , Bj) will be produced
by the algorithm during the current phase. Therefore, essentially we only need to consider the case

where |V (Xq−1)| ≥ |T | ·
(
1− 8

log4 N

)
but |V (Xq)| < |T | ·

(
1− 8

log4 N

)
. The following claim summarizes

the algorithm that will allow us to complete the current phase in such a case. For a vertex v ∈ V (G0),
we denote by ŵ(v) its weight at the beginning of current phase, and for a subset S of vertices of G0,
we denote by ŵ(S) =

∑
v∈S ŵ(v).

Claim 7.19 Suppose that |V (Xq−1)| ≥ |T | ·
(
1− 8

log4 N

)
but |V (Xq)| < |T | ·

(
1− 8

log4 N

)
. Then there

is a deterministic algorithm, that, given graphs G0, X0, and the sequence (A1, B1), . . . , (Aq, Bq) of cuts
in G, and graph Hq−1, computes a finalizing cut (Ã, B̃) in Hq−1. The running time of the algorithm
is O(Ŵ 2).

Proof: For convenience, in this proof we denote graph Gq−1 by G′ and graph Hq−1 by H ′. We
compute the finalizing cut (Ã, B̃) in H ′ as follows. First, for every vertex v ∈ V (G′), if v ∈ Aq, then
we add v to Ã, and otherwise we add v to B̃. Next, we consider every special edge e = (x, y) in G′.
If x, y ∈ Aq, then we add all inner vertices on path P ∗(e) to Ã. If x, y ∈ Bq, then we add all inner
vertices on path P ∗(e) to B̃.

Next, we consider two cases. The first case happens if (Aq, Bq) is a type-1 cut, so V (Gq) = Aq \ Jq.
For each remaining special edge (that must have first endpoint in Aq and last endpoint in Bq), we add
all inner vertices of P ∗(e) to B̃.

Note that, for every special edge e of G′, the first and the last edges on path P ∗(e) are special edges,
so the resulting cut (Ã, B̃) in H ′ is weakly well-structured. Clearly:

|EH′(Ã, B̃)| = |EG′(Aq, Bq)| ≤ φ ·min {w(Aq), w(Bq)} ≤
4

d′
· Ŵ

log30N
≤ 8|T |

log30N
,

since φ = 4
d′ . We have also used the fact that, since the current phase has not terminated yet,

w(Aq), w(Bq) ≤ Ŵ
log30 N

, and that, since Event E1 did not happen, |T | ≥ Ŵ
2d′ .

Notice that, from our construction, Ã = V (Hq) ∪ Jq. All vertices of B̃ are deleted from H ′ when

the cut (Aq, Bq) is processed, and, since the current phase did not terminate yet, |B̃| ≤ Ŵ
log30 N

.

Since Ã = V (Hq) ∪ Jq, we get that |Ã ∩ T | ≤ |Tq| + |Jq|. Recall that we have assumed that |Tq| =
|V (Xq)| < |T | ·

(
1− 8

log4 N

)
. Additionally, |Jq| ≤ |EG′(Aq, Bq)| ≤ 8|T |

log30 N
. Altogether, we conclude

that |Ã ∩ T | ≤ |T | ·
(
1− 7

log4 N

)
, and |Ã| ≥ |V (H ′)| − Ŵ

32 . Therefore, cut (Ã, B̃) is a finalizing cut in

graph H ′.

The case where (Aq, Bq) is a type-2 cut is treated similarly, except that now, for every special edge e
of G′ whose endpoints belong to different sets in {Aq, Bq}, we place all inner vertices of P ∗(e) in Ã.

Using the same reasoning as before, all edges of EH′(Ã, B̃) are special edges, and |EH′(Ã, B̃)| ≤ 8|T |
log30 N

holds. Our construction ensures that B̃ = V (Hq)∪J ′q. Using the same argument as above, we conclude

that |B̃ ∩ T | ≤ |Tq|+ |J ′q| ≤ |Tq|+ |EH′(Ã, B̃) ≤ |T | ·
(
1− 7

log4 N

)
. Similarly, |B̃| ≥ |V (H ′)| − Ŵ

32 , and

so cut (Ã, B̃) is finalizing.

Whenever our algorithm computes a strongly well-structured φ-sparse cut (Ai, Bi) in the current
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graph G, we will first compute the corresponding sets Ei, Γi, and Γ̂i of edges, together with the set

Ti of terminals, before applying any changes to graphs G and H. If |Ti| ≥ |T | ·
(
1− 8

log4 N

)
, then

we proceed with updating the graphs G,H and X, as described above. But otherwise, we use the
algorithm from Claim 7.19 in order to compute a finalizing cut (Ã, B̃) in the current graph H, and then
employ the algorithm from Claim 7.8, that either correctly establishes that at least one of the events
E2, E3 has happened (in which case we terminate the phase with a “FAIL”), or computes a strongly

well-structured φ-sparse cut (A∗, B∗) in the current graph G, such that w(A∗), w(B∗) ≥ Ŵ
log30 N

. In

the latter case, we do not process the cut (Ai, Bi), but instead output the cut (A∗, B∗), and update

both graphs G and H accordingly, following which at least Ŵ
log30 N

vertices must be deleted from H,

and the current phase terminates.

Combining All Three Types of Updates

We now complete our description of the algorithm for maintaining the expander X and the embedding
of X \ F into H throughout the phase. We will also maintain another graph X ′. Initially, X ′ = X.
Whenever a type-3 update (Ai, Bi) occurs, we update the graph X ′ as described above, but we will
ignore type-1 and type-2 updates when maintaining X ′. We will sometimes refer to X ′ as the “shadow
expander”, while we refer to X as the “expander”, even though, as the algorithm progresses, it is
possible that both graphs stop being expanders.

In order to maintain the graph X, whenever a type-1 or a type-2 update arrives, we process it exactly
as describe above. Assume now that the ith type-3 update (Ai, Bi) arrives. In this case, we use graph
X ′ in order to compute the set Γ̂i of edges, and the partition (Ti, T i) of the vertices of X

′, as described

above, and we update graph X ′ accordingly. If, as the result, |V (X ′)| falls below |T | ·
(
1− 8

log4 N

)
,

then we invoke the algorithm from Claim 7.19, that computes a finalizing cut (Ã, B̃) in the current
graph H. We then apply the algorithm from Claim 7.8 to the resulting cut. If the algorithm correctly
estabishes that at least one of the events E2, E3 has happened, then we terminate our algorithm and
return “FAIL”. Otherwise, we obtain a strongly well-structured φ-sparse cut (A∗, B∗) in the current

graph G, such that w(A∗), w(B∗) ≥ Ŵ
log30 N

. We output this cut, and update the graphs G and

H accordingly, following which at least Ŵ
log30 N

vertices are deleted from H and the current phase

terminates.

Assume now that |V (X ′)| ≥ |T | ·
(
1− 8

log4 N

)
continues to hold after the current update. We then

update graph X as follows: we delete the edges of Γ̂i, and the vertices of T i from it. This completes
the description of the algorithm for maintaining graph X. It is easy to verify that, at all times,
X ⊆ X ′ holds. Therefore, when the ith type-3 update is processed, immediately after the edges of Γ̂i

are deleted from X, one of the cuts (Ti ∩ V (X), T i ∩ V (X)), (T i ∩ V (X), Ti ∩ V (X)) must be a cut of
sparsity 0 in the resulting graph X.

Let E∗ = F ∪ Ê1 ∪ Ê2 ∪ Ê3. Recall that |F | ≤ α0·|T |
500 , and we have shown that |Ê1| ≤ α0·|T |

5000 (in

Claim 7.16), |Ê2| ≤ α0·|T |
220

, and |Ê3| ≤ α0·|T |
220

(in Observation 7.18). Altogether, we get that |E∗| ≤ α0·|T |
400

holds throughout the phase. We now prove that, throughout the phase, |V (X)| ≥ |T |/2 holds.

Claim 7.20 Throughout the phase, |V (X)| ≥ |T |/2.

Proof: Assume otherwise. Consider the first time τ at which |V (X)| < |T |/2 holds. For convenience,
we denote by X0 the original graph X, which is an α0-expander, with |T | vertices and we denote by
X̃ the graph X \ E∗.

112



We construct the set Y of subsets of vertices of X0, as follows. Initially, Y = ∅. Whenever a type-2
update arrives, with a cut (A,B) of the current graph X, if |A| ≤ |B|, then we add A to Y (recall that
in this case, the vertices of A are deleted from X); otherwise, we add B to Y. Clearly the cardinality
of the set that we just added to Y is bounded by |T |/2. Moreover, since the edges of EX(A,B) belong
to E∗, cut (A,B) has sparsity 0 in X̃.

Assume now that a type-3 update arrives, and let T ′ denote the set of vertices deleted from X in
the current iteration. We then add T ′ to Y. Since we did not terminate the current phase after the

current iteration, |V (X ′)| ≥ |T | ·
(
1− 8

log4 N

)
must currently hold, and so |T ′| ≤ 8|T |

log4 N
≤ |T |

2 must

hold. Moreover, as we have shown, one of the cuts (T ′, V (X) \ T ′) or (V (X) \ T ′, T ′) is a sparsity-0
cut in graph X̃.

Let Y = (Y1, . . . , Yq) be the final collection of vertex subsets obtained after all updates that occured
until time τ have been processed, where the sets are indexed in the order in wich they were added
to Y. We also add the set Yq+1 that contains all vertices that lie in X at time τ to Y. From our
assumption, |X| ≤ |T |/2, and so for all 1 ≤ q′ ≤ q + 1, |Yq′ | ≤ |T |/2.

For all 1 ≤ j ≤ q, let Y ′j = Yj+1 ∪ · · · ∪ Yq. At the time when Yj was added to Y, it defined a cut of

sparsity 0 in graph X̃. In other words, either EX̃(Yj , Y
′
j ) = ∅, or EX̃(Yj , Y

′
j ) = ∅. Let α be such that

maxYj∈Y {|Yj |} = α · |T |. From our discussion so far, α ≤ 1
2 . From Observation 2.4, there is a cut

(A,B) in X̃ with |A|, |B| ≥ |T |/4, and EX̃(A,B) = ∅.

Observe that |EX0(A,B)| ≤ |E∗| ≤ α0·|T |
400 . Since |A|, |B| ≥ |T |

4 , we obtain a cut (A,B) in X0, whose
sparsity is below α0, contradicting the fact that X0 is an α0-expander.

7.5 Second Data Structure: Connecting to the Vertices of X

At the beginning of the phase, we initialize the algorithm for the ConnectToCenters problem from
Theorem 6.7 on the current graph G, with β = V (X), parameters d′ and r remaining unchanged, and
parameter N replaced by N ′ = 8N . We slightly modify the lengths of the special edges: for each
such edge e ∈ Espec, we define the new length ℓ′(e) = max

{
ℓ(e), 2ℓ0(e)

}
. We define, for every vertex

v ∈ V (G), a weight w′(v) to be the length ℓ′(e) of the unique special edge e incident to v, and we
let W ′ =

∑
v∈V (G)w

′(v). Clearly, W ′ ≤ 2Ŵ . As the lengths of special edges in the original graph

G grow, we always set, for every edge e ∈ E(G), the length ℓ′(e) that is used by the algorithm for
the ConnectToCenters problem to ℓ′(e) = max

{
ℓ(e), 2ℓ0(e)

}
, and we also define the weights w′(v) of

vertices v ∈ V (G) with respect to these edge lengths. Clearly, for all e ∈ Espec, ℓ(e) ≤ ℓ′(e) ≤ 2ℓ(e)
and for all v ∈ V (G), w(v) ≤ w′(v) ≤ 2w(v) always hold. We use W ′ to denote the sum of the
initial weights w′(v) for v ∈ V (G), so it does not change over the course of the algorithm. Finally,
the graphs G and the corresponding subdivided graph H ′ that serve as input to the ConnectToCenters
problem must be given in the adjacency-list representation. We can compute both adjacency-list
representations in time O(|V (H ′)|2) ≤ O((W ′)2) ≤ O((W 0)2). We prove that we obtain a valid input
to the ConnectToCenters problem in the following simple claim, whose proof deferred to Section D.5
of Appendix.

Claim 7.21 (G, {ℓ′(e)}e∈E(G) , H
′, N ′, d′, r, β) is a valid input to the ConnectToCenters problem.

As the algorithm progresses, we will ensure that β = V (X) always holds. Since, from Claim 7.20,
|V (X)| ≥ |T |/2 holds throghout the phase, this will ensure that at most half the vertices may be
deleted from the initial set β over the course of the phase. From Observation 7.2,

∑
e∈Espec ℓ∗(e) ≤

2
∑

e∈Espec ℓ0(e) + 2n. Therefore, the total increase in the lengths ℓ′(e) of edges e ∈ E(G) over the
course of the entire algorithm is at most 2n ≤ 8|V (G)|, as required.
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Consider the graph H ′, that is the subdivided graph corresponding to G and the lengths ℓ′(e) of
its edges, and recall that H is the subdivided graph corresponding to G and the lengths ℓ(e) of its
edges. Recall that, for every edge e ∈ E(G), ℓ(e) ≤ ℓ′(e) ≤ 2ℓ(e). Since the lengths of all special
edges are integral powers of 2, for every special edge e ∈ E(G), either ℓ′(e) = ℓ(e) or ℓ′(e) = 2ℓ(e)
holds. Therefore, graph H ′ can be obtained from graph H as follows: for every edge e ∈ Espec with
ℓ′(e) = 2ℓ(e), we subdivide every special edge ê ∈ E(H) that lies on the path P ∗(e) representing e once,
obtaining a path P̂ (ê) with 2 special edges, representing edge ê in H ′. For all edges ê ∈ E(H ′)∩E(H),
we let P̂ (ê) = (ê).

Recall that the algorithm for the ConnectToCenters problem may, at any time, produce Outcome O3,

namely, a weakly well-structured cut (A′, B′) in graph H ′, with |A′| ≥ 511|V (H′)|
512 , |A′∩V (X)| < 2|V (X)|

log3 N ′ ,

and |EH′(A′, B′)| ≤ |V (H′)|
1024d′·log6 N ′ . Consider the cut (A,B) inH with A = A′∩V (H) and B = B′∩V (H).

We claim that (A,B) is a finalizing cut in H, in the following simple observation.

Observation 7.22 Cut (A,B) is a finalizing cut in H.

Proof: Since, at the beginning of the phase, |V (H ′)| = W ′ ≤ 2Ŵ , and over the course of the phase,
the total increase in the lengths ℓ′(e) of edges e ∈ E(G), and hence in |V (H ′)|, is at most 4n ≤ 8Ŵ ,
we get that |V (H ′)| ≤ 10Ŵ holds throughout the phase.

Consider any edge e = (x, y) ∈ EH(A,B). First, we claim that e is a special edge. Indeed, otherwise,
e ∈ EH′(A′, B′) must hold, contradicting the fact that (A′, B′) is a weakly well-structured cut. If
e ∈ E(H ′), then e ∈ EH′(A′, B′) must hold. Otherwise, at least one of the two special edges that lie
on the path P̂ (e) representing e in H ′ belong to EH(A,B). Therefore:

|EH(A,B)| ≤ |EH′(A′, B′)| ≤ |V (H ′)|
1024d′ · log6N ′

≤ 10Ŵ

1024d′ · log6N
≤ |T |

8 log6N
,

since |T | ≥ Ŵ
2d′ , as Event E1 did not happen. Recall that |A′| ≥ 511|V (H′)|

512 , and so:

|B| ≤ |B′| ≤ |V (H ′)|
512

≤ 10Ŵ

512
≤ Ŵ

32
.

Therefore, |A| ≥ |V (H)| − Ŵ
32 must hold. Lastly, |A ∩ V (X)| ≤ |A′ ∩ V (X)| < 2|V (X)|

log3 N ′ < |T |
2 . We

conclude that (A,B) is a finalizing cut in H.

For brevity, whenever the algorithm for the ConnectToCenters on G produces Outcome O3, we say
that it produces a finalizing cut (A,B) in H.

Recall that the algorithm for the ConnectToCenters problem uses a parameter ρ = 212·W ′·log3 N ′

|T | ≤

O
(
Ŵ log3 N
|T |

)
, and that the total increase in the lengths of all edges is denoted by Λ; in our case,

Λ ≤ O(n) holds. Recall also that β′ denotes the set V (X) of vertices at the end of the algorithm. The
running time of the algorithm from Theorem 6.7 for this instance of the ConnectToCenters problem is
then bounded by:
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O
(
c1 · Ŵ · (Ŵ + |T | · ρ+ Λ) · 2c2

√
logN ′ · (logN ′)16c2(r−1)+8c2+26

)
≤ O

(
c1 · (W 0)2 · 2c2

√
logN ′ · (logN ′)16c2(r−1)+8c2+29

)
≤ O

(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30 ·

(
1 +

1

32c2r

)16c2(r−1)+8c2+30
)

≤ O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30

)
.

(we have used Inequalities 17 and 18.)

We denote the data structure for the ConnectToCenters problem that we described above by DSout,
and we denote the set Q =

⋃λ−1
i=1 Qi of paths that it maintains by Qout. If a vertex v lies in layer Uλ,

then we say that v is disconnected in DSout. For each vertex v ∈
⋃λ−1

i=1 Ui, the unique path of Qi that
originates at v is denoted by K(v).

Next, we consider the graph
←−
G , obtained from G by reversing the direction of its edges, and its

corresponding subidivided graph
←−
H . It is easy to verify that

←−
G is a perfect well-structured graph. We

define an instance of the ConnectToCenters problem on graph
←−
G , with the edge lengths {ℓ′(e)}

e∈E(
←−
G)

,

set β of vertices, and parameters N ′, d′ and r defined exactly as before, and then apply the algorithm
for the ConnectToCenters problem from Theorem 6.7 to this instance. We denote the data structure
maintained by this algorithm by DSin. If a vertex v lies in layer Uλ, then we say that v is disconnected
in DSin. In order to avoid confusion, we denote the layers of this data structure by U ′0, . . . , U

′
λ. Recall

that, for all 1 ≤ i < λ, the algorithm maintains a collection Qi = {K(v) | v ∈ U ′i} of paths in graph
←−
H , where for all v ∈ Ui, path K(v) connects v to some vertex of

⋃
i′<i U

′
i′ . By reversing the direction

of edges in this path, we obtain a path K ′(v) in H, that connects some vertex of
⋃

i′<i U
′
i′ to v. We

denote by Q′i = {K ′(v) | v ∈ U ′i}, and by Qin =
⋃λ−1

i=1 Q′i. To avoid confusion, for a vertex v ̸∈ Uλ, we
use K(v) only to denote the path maintained by DSout, that is, K(v) is the unique path originating
from v in Qout, and for v ̸∈ U ′λ, we use K ′(v) to denote the unique path terminating at v in Qin.

If the algorithm for the ConnectToCenters problem in graph
←−
G produces Outcome O3, then, using

the same reasoning as in the proof of Observation 7.22, we obtain a finalizing cut (A,B) in graph
←−
H . It is then immediate to verify that (B,A) is a finalizing cut in graph H. For brevity, whenever

the algorithm for the ConnectToCenters problem in graph
←−
G produces Outcome O3, we say that it

produces a finalizing cut in H.

Assume now that the algorithm for the ConnectToCenters problem in graph
←−
G produces Outcome

O2; that is, it computes a strongly well-structured 1
d′ -sparse cut (A,B) in

←−
G . It is then easy to

see that (B,A) is a strongly well-structured 1
d′ -sparse cut in G. Therefore, if the algorithm for the

ConnectToCenters problem in graph
←−
G produces Outcome O2, we will say that it produces a strongly

well-structured 1
d′ -sparse cut in G.

From our discussion, the total running time of the algorithms that maintain data structures DSin and
DSout, including the time that is needed in order to construct the corresponding two instances of the
ConnectToCenters problem, and including the time that is needed in order to compute a finalizing cut
in H, if any of the two algorithms produce Outcome O3, is bounded by:

O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30

)
.
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7.6 Additional Data Structures

Recall that our algorithm maintains a graph X (that is initially an expander), a subset F of edges
of X (the fake edges), and an embedding Q of X \ F into H. Additionally, it maintains a shadow
expander X ′, which is initially identical to X, but, as the time progresses, we may ignore some of
the updates to graph X and only apply a subset of such updates to X ′. We also maintain a subset
F ′ of edges of X ′, which is initially identical to F , and an embedding Q′ of X ′ \ F ′ into H, which is
initially identical to Q. Throughout the algorithm, X ′ ⊆ X and F ′ ⊆ F hold. Additionally, for every
edge e ∈ E(X ′) \ F , its embedding path Q′(e) ∈ Q′ is identical to the embedding path Q(e) ∈ Q.
As the time progresses, vertices and edges may be deleted from X and from X ′. Whenever an edge
e ∈ F is deleted from X, we delete it from F as well, and similarly, whenever an edge e′ ∈ F ′ is
deleted from X ′, we delete it from F ′ as well. For every edge e ∈ E(X), its embedding path Q(e) ∈ Q
remains unchanged throughout the algorithm, except that, whenever some special edge on path Q(e)
undergoes splitting, we modify the path accordingly. Embedding Q′ of X ′ \ F ′ into H is maintained
similarly.

For every edge e ∈ E(X) \ F , we maintain the length ℓ̂(e) of the embedding path Q(e). We initialize
the value ℓ̂(e) at the beginning of the phase, once the graph X and the embedding Q of X \ F into
H are computed. After that, whenever a special edge of Q(e) undergoes splitting, we increase ℓ̂(e) by
(additive) 2. The time that is required in order to maintain the values ℓ̂(e) for edges e ∈ E(X) \ F
is clearly subsumed by the time required to compute and to maintain the collection Q of paths. In
our description of the remainder of the algorithm below, we will ignore the task of maintaining these
values.

For every edge e ∈ E(H), we also maintain a list S(e) of all edges ê ∈ E(X) \ F , such that e ∈ Q(ê).
The task of maintaining these lists is quite straightforward; we will ignore it when we describe the
remainder of the algorithm below, but we will show how to extend the algorithm in order to maintain
these lists efficiently later.

Throughout, we use a distance parameter d̂ = 230 log Ŵ
α0

. Throughout the phase, we maintain an
arbitrary vertex v ∈ V (X), and two shortest-paths trees τ̂ ′ and τ̂ ′′ rooted at v in graph X \ F , where
the edges in τ̂ ′ are directed away from v, and the edges in τ̂ ′′ are directed towards v. In other words,
for every vertex a ∈ V (X), the unique s-a path in τ̂ ′ is a shortest s-a path in X \F , and the unique a-s
path in τ̂ ′′ is a shortest a-s path in X \F . Note that both trees can be computed in time O(|T |), since
|V (X)| ≤ |T |, and maximum vertex degree in X is O(1). Whenever an edge or a vertex are deleted
from X, we recompute both trees from scratch, selecting a new root vertex v ∈ V (X) if needed. Since
|E(X)| ≤ O(|T |), the trees need to be recomputed at most O(|T |) times, and so the total time spent
over the course of the phase on computing the two trees is bounded by O(|T |2) ≤ O((W 0)2).

7.7 The Remainder of the Algorithm

In this subsection we describe the remainder of the algorithm for a single phase of the algorithm for
the MaintainCluster problem. At the beginning of the phase, we construct the subdivided graph H
corresponding to the initial graph G, and then construct the set T of terminals, as described in Section
7.2. We check whether either of the bad events E1 or E4 happened, and if so, we terminate the phase
and return “FAIL”. We assume from now on that neither of these events happened. The running time
of the algorithm so far is O(|E(H)|) ≤ O((W 0)2).

We execute the algorithm from Lemma 7.11 in order to construct the expander X. If the algorithm
terminates with a “FAIL”, which may only happen with probability at most 1

N7 , then we terminate
the algorithm for the current phase and return “FAIL”. If the algorithm returns a finalizing cut
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in H, then we apply the algorithm from Claim 7.8 to this cut. If the algorithm from Claim 7.8
estabishes that at least one of the events E2, E3 happened, we terminate the phase with a “FAIL”.
Otherwise, we obtain a strongly well-structured φ-sparse cut (A∗, B∗) in the current graph G, such that

w(A∗), w(B∗) ≥ Ŵ
log30 N

. In this case, we output the cut (A∗, B∗). Once this cut is processed, at least

Ŵ
log30 N

vertices are deleted from H, and the current phase terminates. Finally, if the algorithm from

Lemma 7.11 returns a strongly well-structured 1/d′-sparse cut (A,B) in G with w(A), w(B) ≥ Ŵ
(logN)30

,

then as before we output this cut, and, once it is processed, at least Ŵ
log30 N

vertices are deleted from

H, and the current phase terminates. Therefore, we assume from now on that the algorithm from
Lemma 7.11 computed a graph X with V (X) = T , whose maximum vertex degree is at most 24, such

that X is an α0
81 -expander. Recall that we are also given a set F ⊆ E(X) of at most α0·|T |

500 fake edges,
and an embedding Q of X \ F into H. Every path in P∗ has length at most d′′, and the congestion
caused by the paths in P∗ is at most η′′. The running time of the algorithm from Lemma 7.11 is
bounded by:

O
(
c1 · Ŵ 2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+3

)
≤ O

(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+3

)
,

and the running time of the algorithm from Claim 7.8 is O(Ŵ 2) ≤ O((W 0)2).

We also initialize data structures DSin and DSout. Recall that the total time for maintaining both
data structures is bounded by:

O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30

)
.

Recall that the algorithm for the ConnectToCenters problem, that is used to maintain data structures
DSin and DSout may return “FAIL” with probability at most 1

N7 . If any of these two instantiations of
the algorithm terminate with a “FAIL”, we terminate the algorithm for the current phase, and return
“FAIL”.

The running time of the algorithm so far, including the initialization of all data structures, and
maintaining data structures DSin and DSout throughout the phase, is bounded by:

O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30

)
.

Our algorithm employs a cleanup procedure, that we describe below, once at the beginning of the
phase, and once after each query is processed. The purpose of the procedure is to ensure that the
following conditions hold:

C1. The length of every path in Q is bounded by 8d′′;

C2. The depth of each of the trees τ̂ ′, τ̂ ′′ is at most d̂; and

C3. Uλ = ∅ and U ′λ = ∅.

(here, Uλ and U ′λ are the sets of disconnected vertices from data structures DSout and DSin, respec-
tively). Before we describe the cleanup procedure that ensures all these conditions, we describe our
algorithm for responding to queries.
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7.7.1 Responding to Queries

We assume that, at the time when a query (x, y) arrives, Conditions C1–C3 hold. We start by
computing a path P1 in graph H, connecting x to some vertex x′ ∈ V (X), as follows. Since Uλ = ∅
currently holds, there is some layer 0 ≤ i < λ in data structure DSout, with x ∈ Ui. If i = 0, then we
let the path P1 contain a single vertex – vertex x itself. Otherwise, we use the unique path K(x) ∈ Qi

to connect x to some vertex x1 ∈ U<i. Let Ui1 be the layer in which x1 lies, so i1 < i. We say that
K(x) is the first subpath of P1. If x1 ∈ V (X), then we have completed the construction of the path P1.
Otherwise, using a similar process, we connect x1 to some vertex x2 ∈ U<i2 , via the path K(x1), that
becomes the second subpath of P1 and so on. After at most λ− 1 iterations, we are then guaranteed
to reach a vertex x′ ∈ V (X), thereby obtaining a path P1 connecting x to x′. Since the length of
every path in Qout is at most 16d′ log10N ′ (from the relaxed condition L1), while d′ ≤ 2d

(logN)28
and

λ ≤ O(logN), we get that the length of P1 is bounded by:

16d′λ log10N ′ ≤ O

(
d

(logN)17

)
.

Using a similar algorithm, together with data structure DSin, we compute a path P2 in graph H, of

length at most O
(

d
(logN)17

)
, connecting some vertex y′ ∈ V (X) to y. The time required to compute

the paths P1 and P2 is bounded by O(|E(P1)|+ |E(P2)|).

Next, we use the tree τ̂ ′′ to compute a path P ′3 in X \F , connecting x′ to the root v of the tree τ̂ ′′, and
we use the tree τ̂ ′ to compute a path P ′4 in X \ F connecting v to y′. By concatenating both paths,
we obtain a path P ′ in X \ F that connects x′ to y′, whose length is at most 2d̂.

Denote P ′ = (e1, . . . , ez). We compute a path P3 connecting x′ to y′ in graph H by concatenating the
corresponding embedding paths Q(e1), . . . , Q(ez) in Q. Recall that, from Condition C1, the length

of each such path is bounded by 8d′′. Since d̂ = 230 log Ŵ
α0

≤ O(logN) and d′′ = Θ
(
d′ · (logN)16

)
≤

O
(

d
(logN)12

)
, as d′ ≤ 2d

(logN)28
, we get that the length of the resulting path P3 is bounded by:

2d̂ · 8d′′ ≤ O

(
d

(logN)11

)
.

The time required to compute the path P3 is bounded by |E(P3)|. By concatenating the paths P1, P3

and P2, we obtain a path P ′ connecting x to y in H, whose length is bounded by:

O

(
d

(logN)17

)
+O

(
d

(logN)11

)
< d,

since N is sufficiently large. The total time spent on computing path P ′ is O(|E(P ′)|) ≤ O(d). We
then turn P ′ into a simple x-y path of length at most d in graph H, in time O(d). Finally, we convert
P ′ into a simple x-y path in graph G of length at most d in a straightforward way, in time O(d), and
return the path P .

The time to respond to a single query is bounded by O(d) ≤ O(n) ≤ O(W 0), and the time to respond

to all queries in a single phase is bounded by O(W 0 ·∆′) ≤ O
(

W 0·∆
(logN)30

)
(we have used the fact that

∆′ = ∆
log30 N

, and Inequality 15).
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7.7.2 Post-Query Updates

Recall that, after responding to a query, the algorithm receives a subset E′ ⊆ E(P ) of special edges
on the path P that was returned in response to the query, whose lengths need to be doubled. We
can then compute a subset E′′ ⊆ E′ of edges, whose lengths ℓ′(e) that are used by the algorithms
that maintain data structures DSin and DSout need to be doubled, and supply the set E′′ of edges to
these two algorithms, in time O(|E′|). Next, we consider the edges in E′ one by one. For each edge
e ∈ E′, we consider every special edge e′ on the path P ∗(e) representing e in H. We split each such
edge e′ = (x, y), by replacing it with the path (x, x′, y′, y) in H. If any of the endpoints x, y of e′ are
terminal vertices that lie in T , this operation does not affect them. Notice that this operation inserts
two new special edges into graph H: edge e′1 = (x, x′) and edge e′2 = (y, y′). We initialize the lists
S(e′1) = S(e′2) = ∅.

Next, we consider every edge ê ∈ S(e′), one by one. For each such edge ê, we update the embedding
path Q(ê) by splitting the edge e′, and also update the length ℓ̂(e) of the path by increasing it by
(additive) 2. We also insert ê into S(e′1) and S(e′2). If the length ℓ̂(e) of e became greater than 8d′′,
then we flag this edge, to be taken care of by the Cleanup procedure.

In order to bound the time required for post-query updates, let E∗ be the set of all special edges that
ever belonged to graph H over the course of the phase. Since, from Observation 7.2,

∑
e∈Espec ℓ∗(e) ≤

2
∑

e∈Espec ℓ0(e) + 4n ≤ O(W 0), and since, for each edge e ∈ E(G), the number of its child edges
that ever belonged to H over the course of the phase is asymptotically bounded ℓ∗(e), we get that
|E∗| ≤ O(W 0).

Recall that the congestion caused by the embedding Q of X \ F into H is bounded by O((logN)13).
Therefore, for every edge in E∗ we spend O((logN)13) time to process it when it is first inserted into
H. The total time required for all post-query updates is then bounded by:

O(W 0 · (logN)13).

The total running time of the algorithm so far, including responding to queries, but excluding the
Cleanup Procedure, is bounded by:

O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30

)
+O

(
W 0 ·∆
(logN)30

)
.

7.7.3 The Cleanup Procedure

The cleanup procedure is executed once at the beginning of the phase, and then after every query,
once all edge-splittings that follow the query are processed. The purpose of the procedure is to ensure
that Properties C1–C3 are satisfied. As part of the procedure, we will sometimes compute φ-sparse
strongly well-structured cuts in graph G. Whenever this happens, we will call to another procedure,
called ProcessCut′, that will process the resulting cut. We view Procedure ProcessCut′ as part of
the cleanup procedure, and we describe it in the following subsection. We note that, if the cleanup
procedure ever identifies a φ-sparse strongly well-structured cut (A.B) in G, our algorithm does not
immediately output the cut, but rather calls to Procedure ProcessCut′. The procedure may choose to
either output the cut (A,B), after which the vertices of the side of the cut with smaller weight and
the endpoints of the edges in EG(A,B) are deleted from G, and graphs H, X and X ′ are updated
accordingly; or it may instead compute another finalizing cut (A′, B′) in H, and then call to Claim 7.8
to process it. In the latter case the algorithm does not output the initial cut (A,B), but after cut

119



(A′, B′) is processed the phase will terminate. We now turn to describe the cleanup procedure.

The procedure consists of iterations, which are executed as long as at least one of the conditions C1–C3
is violated.

Assume first that Condition C3 is violated. In this case we say that the current iteration is of
type 1. Assume w.l.o.g. that Uλ ̸= ∅; the other case is symmetric. We execute a single itera-
tion of the algorithm for the ConnectToCenters problem that maintains data structure DSout. We
now consider three cases. If the algorithm produced Outcome O1, that is, it obtained a valid
Layered Connectivity Data Structure with Uλ = ∅, then the current iteration terminates. If the al-
gorithm produced a finalizing cut (A′, B′) in the current graph H, then the cut processed like decribed
in Section 7.5, after which the current phase terminates. Recall that the running time for processing
the cut (A′, B′) is included in our analysis of the running time of the algorithm that maintains data
structure DSout. Lastly, if the algorithm for the ConnectToCenters problem produces a a strongly
well-structured 1

d′ -sparse cut (A,B) in G, then we call to Procedure ProcessCut′. The procedure will
either produce a finalizing cut in H, that will subsequently terminate the current phase; or it will
output the cut (A,B), following which, if w(A) ≤ w(B), then the vertices of A, and the endpoints of
the edges in EG(A,B) are deleted from G, while otherwise, the vertices of B, and the endpoints of
the edges in EG(A,B) are deleted from G, and the current iteration terminates. The total running
time of all type-1 iterations of the Cleanup procedure executed over the course of the phase, excluding
the running time of Procedure ProcessCut′, is already included in the running times of the algorithms
that maintain data structures DSin and DSout.

Assume now that Condition C1 is violated. In this case we say that the current iteration is of
type 2. Let ê ∈ E(X) be the edge with ℓ̂(ê) > 8d′′; recall that all such edges were flagged by the
algorithm that performed post-query updates. We then simply delete the edge ê from graph X. We
also recompute the shortest path threes τ̂ ′ and τ̂ ′′ in X \ F that are rooted at the same vertex v, in
time O(|E(X)|) ≤ O(|T |) ≤ O(W 0). The total running time of type-2 iterations over the course of
the whole phase, excluding the time needed for recomputing the trees τ̂ ′ and τ̂ ′′, is asymptotically
bounded by the running time of the algorithm that performs post-query updates after every query.
Since at least one edge is deleted from X in each type-2 iteration, and |E(X)| ≤ O(|T |) ≤ O(W 0), the
total time spent on recomputing the trees τ̂ ′ and τ̂ ′′ in all type-2 iterations of the phase is bounded
by O((W 0)2).

Lastly, assume that Condition C2 is violated. In this case we say that the current iteration is of
type 3. Then we can compute, in time O(1), two vertices a pair a, b ∈ V (X) with distX\F (a, b) > d̂.

Recall that d̂ = 230 log Ŵ
α0

, and the maximum vertex degree in X is bounded by D = 24. We can
now use the algorithm from Observation 2.3 to compute a cut (A,B) in X \ F of sparsity at most

φ′ = 32D log Ŵ

d̂
≤ α0

220
. Let Z ∈ {A,B} be the set of vertices of smaller cardinality, breaking ties

arbitrarily. For every vertex x ∈ Z, we delete x from V (X). We supply the list of all vertices that
are deleted from X to the algorithms for the ConnectToCenters problem that are used to maintain
data structures DSin and DSout. Recall that the running time of the algorithm from Observation 2.3
is bounded by O(D · |V (X)|) ≤ O(Ŵ ) ≤ O(W 0). We also select an arbitrary vertex v ∈ V (X), and
compute shortest-path trees τ̂ ′ and τ̂ ′′ in X \ F rooted at v. Note that both trees can be computed
in time O(|E(X)|) ≤ O(Ŵ ) ≤ O(W 0). Every time a type-3 iteration occurs, at least one vertex is
deleted from X. Therefore, the total time that the algorithm spends on type-3 iterations over the
course of the entire phase is bounded by O((W 0)2).

This completes the algorithm for the Cleanup procedure. From our discussion, the total running time
of the algorithm for the MaintainCluster problem so far, excluding Procedure ProcessCut′, is bounded
by:
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O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30

)
+O

(
W 0 ·∆
(logN)30

)
.

Next, we describe the algorithm for Procedure ProcessCut′.

7.7.4 Procedure ProcessCut′

The input to Procedure ProcessCut′ is a strongly well-structured φ-sparse cut (A,B) in graph G.
Recall that, if our algorithm chooses to output the cut (A,B), then the vertices of the side of the cut
that has smaller weight will be deleted from G, together with the endpoints of the edges in EG(A,B).
After that, graph H will be updated with a corresponding sequence of vertex- and edge-deletions,
and expander graph X, together with the shadow expander X ′ will also be updated, as described in
Section 7.4.2. If we apply all these updates directly, we may discover that too many vertices have
been deleted from graph X ′. In such a case, we could use the algorithm from Claim 7.19, in order to
compute a finalizing cut (Ã, B̃) in graph H. However, (Ã, B̃) is a valid finalizing cut in the original
graph H, to which the updates following the cut (A,B) have not been applied yet. Therefore, our
algorithm will, instead, simulate the updates to graphs G, H and X ′ in order to find out whether the
number of vertices that are deleted from X ′ following these updates is too high. If so, it will apply the
algorithm from Claim 7.19 to compute a finalizing cut (Ã, B̃) in graph H, followed by the algorithm
from Claim 7.8, that either correctly establishes that at least one of the events E2, E3 has happened
(in which the current phase terminates with “FAIL”), or computes a strongly well-structured φ-sparse

cut (A∗, B∗) in the current graph G, such that w(A∗), w(B∗) ≥ Ŵ
log30 N

, which our algorithm then

outputs; in this case, our algorithm does not output the cut (A,B). The vertices of the side of the
cut (A∗, B∗) that has smaller weight are then deleted from G, together with the endpoints of the
edges of EG(A

∗, B∗), and the current phase terminates. If our algorithm establishes that |X ′| remains
sufficiently high even after we update the graphs G, H and X ′ with the cut (A,B), then it will simply
output the cut (A,B), and update the graphs G,H,X ′ and X accordingly.

We now provide a formal description of Procedure ProcessCut′. We assume that our algorithm main-
tains the graph G0, which is the graph G at the beginning of the current phase, and the sequence of
strongly well-structured φ-sparse cuts (A1, B1), . . . , (Aq, Bq) that it has output so far over the course

of the phase. We also assume that it maintains the invariant that |V (X ′)| ≥ |T | ·
(
1− 8

log4 N

)
. This

invariant clearly holds at the beginning of the phase, when V (X ′) = T .

We now assume that Procedure ProcessCut′ is called with a strongly well-structured φ-sparse cut
(A,B) in the current graph G. We assume that so far the algorithm returned q ≥ 0 well-structured
φ-sparse cuts, that we denote by (A1, B1), . . . , (Aq, Bq), in the order in which the algorithm returned
them. We also denote the cut (A,B) by (Aq+1, Bq+1), and let Eq+1 = EG(Aq+1, Bq+1). Let Jq+1 ⊆
Aq+1, J

′
q+1 ⊆ Bq+1 the vertices that serve as endpoints of the edges in Eq+1. As before, if w(Aq+1) ≥

w(Bq+1), then we denote Zq+1 = Aq+1 \ Jq+1, and otherwise we denote Zq+1 = Bq+1 \ J ′q+1. We

also let Zq+1 = V (G) \ Zq+1 contain the remaining vertices of the current graph G. As before, if
Zq+1 = Aq+1 \ Jq+1, then we say that cut (Aq+1, Bq+1) is of type 1, and otherwise we say that it is of
type 2. We also denote by Gq and Hq the graphs G and H, respectively, at the beginning of Procedure
ProcessCut′, and we denote zq+1 = min {w(A), w(B)}.

For every edge e = (x, y) ∈ Eq+1, we compute the set Γ(e) of edges in Hq. Recall that the set Γ(e)
consists of all vertices on the path P ∗(e) that represents e in graph Hq, as well as all regular edges
insident to vertices x and y in Hq. It is easy to verify that |Γ(e)| ≤ |V (Hq)| ≤ O(Ŵ ). Next, we
compute the set Γq+1 =

⋃
e∈Eq+1

Γ(e) of edges in Ĥ. The sets Γ(e) of edges for all e ∈ Eq+1, together
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with the set Γq+1 of edges can be computed in time O(|Eq+1| · Ŵ ) ≤ O(φzq+1 · Ŵ ).

We also compute the partition of the vertices of Hq into sets Z∗q+1 and Z
∗
q+1, as follows. Set Z

∗
q+1

contains all vertices that lie in set Zq+1. Additionally, for every special edge e of G with both endpoints
in Zq+1, set Z

∗
q+1 contains all vertices on path P ∗(e). Similarly, set Z∗q+1 contains all vertices that

lie in set Zq+1, and additionally, for every special edge e of G with both endpoints in Zq+1, set Z
∗
q+1

contains all vertices on path P ∗(e). It is easy to verify that (Z∗q+1, Z
∗
q+1) is a partition of V (Hq+1),

since cut (Aq+1, Bq+1) is strongly well-structured in G. The time required to compute the partition
(Z∗q+1, Z

∗
q+1) of V (Hq+1) is bounded by O(|V (Hq+1)|) ≤ O(Ŵ ).

Next, we compute the set Γ̂q+1 =
⋃

e∈Eq+1
Γ̂(e) of edges in graph X ′ \ F , where for an edge e ∈ Eq+1,

Γ̂(e) =
⋃

e′∈Γ(e) S(e
′). In other words, an edge ê ∈ E(X ′) \ F belongs to the set Γ̂(e) if and only if

its corresponding embedding path Q(ê) contains at least one edge of Γ(e), or, equivalently, edge ê
belongs to set S(e′) of edges for some edge e′ ∈ Γ(e). From Observation 7.17, for every edge e ∈ Eq+1,
|Γ̂(e)| ≤ 2η′′. Therefore, |Γ̂q+1| ≤ 2|Eq+1| · η′′ ≤ 2φ · zq+1 · η′′ ≤ O(φ · zq+1 · (logN)13). Moreover,
given an edge e ∈ Eq+1, set Γ̂(e) can be computed in time O(Ŵ · η′′). Indeed, recall that, from the
proof of Observation 7.17, an edge ê ∈ E(X) \ F may lie in Γ̂(e) in one of the following two cases: (i)
an endpoint of ê lies in T ∩ P ∗(e) – all such edges ê can be identified in time O(|E(P ∗(e))|) ≤ O(Ŵ );
or (ii) if e′ is the first edge on P ∗(e) and ê ∈ S(e′) – since |S(e′)| ≤ η′′, all such edges can be
identified in time O(η′′). Therefore, the time required to compute the set Γ̂q+1 of vertices is bounded
by O(|Eq+1| · Ŵ · η′′) ≤ O(φ · zq+1 · Ŵ · η′′) ≤ O(φ · zq+1 · Ŵ · (logN)13).

We also compute a partition (Tq+1, T q+1) of the vertices of X ′, where Tq+1 = V (X ′) ∩ Z∗q+1 and

T q+1 = V (X ′) ∩ Z
∗
q+1. Notice that the running time of the procedure so far is bounded by:

O
(
φzq+1 · (logN)13 · Ŵ

)
+O(Ŵ ) ≤ O

(
Ŵ · zq+1 · (logN)13

d′

)
+ ≤ O(Ŵ · zq+1),

since d′ ≥ d
(logN)28

, and d ≥ (logN)64 from the definition of the problem.

Next, we consider two cases. The first case happens if |Tq+1| ≥ |T | ·
(
1− 8

log4 N

)
. In this case we

output the cut (Aq+1, Bq+1), and then update our data structures accordingly: we delete the vertices
of Zq+1 from G, and we delete the vertices of Z

∗
q+1 from H. We also delete the edges of Γ̂q+1 and the

vertices of T q+1 from X and from X ′. Finally, we update the algorithms that maintain data structures
DSin and DSout with the vertices that were just deleted from X. In this case, the running time of the
procedure remains at most O(Ŵ · zq+1). Notice that, following this procedure, at least zq+1 vertices
are deleted from H. We charge the running time of the procedure to the vertices that are deleted from
H, where the charge to each vertex is O(Ŵ ).

We now consider the case where |Tq+1| < |T | ·
(
1− 8

log4 N

)
. In this case, we apply the algorithm from

Claim 7.19 to graph G0 and the sequence (A1, B1), . . . , (Aq+1, Bq+1) of cuts in G. Recall that the
running time of the algorithm is O(Ŵ 2), and it returns a finalizing cut (Ã, B̃) in the current graph
H. Next, we apply the algorithm from Claim 7.8 to graph G0, the sequence (A1, B1), . . . , (Aq, Bq)
of cuts in G, and the finalizing cut (Ã, B̃) in the current graph H. Recall that the running time of
the algorithm from Claim 7.8 is O(Ŵ 2). If the algorithm from Claim 7.8 estabishes that at least
one of the events E2, E3 has happened, then we terminate the current phase and return “FAIL”.
Otherwise, we obtain a strongly well-structured φ-sparse cut (A∗, B∗) in the current graph G, such

that w(A∗), w(B∗) ≥ Ŵ
log30 N

. Let Z∗ ∈ {A∗, B∗} be the side of smaller weight; if w(A∗) = w(B∗),

then we let Z∗ = B∗. We delete the vertices of Z∗ from G, together with the endpoints of the edges
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in EG(A
∗, B∗). Every vertex v that was deleted from G is also deleted from H, and for every special

edge e that was deleted from G, all vertices and edges on path P ∗(e) are deleted from H. As the

result, at least Ŵ
log30 N

vertices are deleted from H and the current phase terminates.

Overall, the last execution of Procedure ProcessCut′ in a phase takes time O(Ŵ 2). If q∗ is the total
number of times that the procedure is executed during the phase, then all but the last execution of
the procedure take time at most:

q∗−1∑
q′=1

O(zq′ · Ŵ )) ≤ O((W 0)2).

(Here, we used the fact that, from Observation 7.2, the total number of vertices that ever belonged
to H is bounded by O(W 0).) The total running time of all executions of Procedure ProcessCut′ over
the course of a phase is then bounded by O(Ŵ 2), and the total running time of a single phase of the
algorithm for the MaintainCluster problem remains at most:

O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30

)
+O

(
W 0 ·∆
(logN)30

)
.

7.7.5 Maintaining the Additional Data Structures and the Final Accounting

Additional Data Structures. It remains to show an algorithm that maintains, for every edge
e ∈ E(H), the set S(e) ⊆ E(X) \ F of edges. It is straightforward to augment our algorithm to
maintain this data structure without increasing its asymptotic running time.

Once the algorithm from Lemma 7.11 computes the expander X and the embedding Q of X \ F into
H, we initialize the sets S(e) for all edges e ∈ E(H) in a straightforward way: we start by setting
S(e) = ∅ for all e ∈ E(H). We then consider every edge ê ∈ E(X) \ F one by one. When edge ê
is considered, we process every edge e ∈ E(Q(ê)), and add ê to the corresponding set S(e) of edges.
Whenever some edge ê ∈ E(X) \ F is deleted from X, we similarly process every edge e ∈ E(Q(ê)),
and we delete ê from set S(e). Lastly, when an edge e ∈ E(H) undergoes splitting, and new special
edges e′ and e′′ are inserted into graph H as the result of this split, for every edge ê ∈ S(e), we update
the path Q(ê) with the corresponding edge split, and we insert ê into the lists S(e′) and S(e′′). The
updates to the lists {S(e)}e∈E(H) due to edge splitting were already taken into account in the running
time analysis of the algorithm that processes post-query updates. The additional time that is required
in order to maintain the lists {S(e)}e∈E(H) is asymptotically bounded by the time required to initialize
these lists at the beginning of the phase, which, in turn, is asymptotically bounded by the running
time of the algorithm from Lemma 7.11.

Failure probability and running time analysis. Recall that our algorithm may return “FAIL”
in the following cases: (i) Event E has happened – the probability for that is bounded by 1/16; or
(ii) the algorithm from Lemma 7.11 for constructing the expander X returns “FAIL”: the probability
for that is bounded by 1

N7 ; or (iii) the algorithm for the ConnectToCenters problem, that is used in

order to maintain data structures DSin and DSout returns “FAIL”: this can happen with probability
at most 1

N7 for each of the two instantiations of the algorithm. Therefore, overall, the probability
that the algorithm for a single phase terminates with a “FAIL” is bounded by 1

2 . From our analysis
in Section 7.1, the number of phases in the algorithm is bounded by O

(
(logN)33

)
. Since the running

time of every phase is bounded by:
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O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+30

)
+O

(
W 0 ·∆
(logN)30

)
,

using the fact that c2 is a large enough constant and N is sufficiently large, we get that the total
running time of the algorithm is bounded by:

O
(
c1 · (W 0)2 · 2c2

√
logN · (logN)16c2(r−1)+8c2+63

)
+O

(
W 0 ·∆ · log3N

)
≤ c1 · (W 0)2 · 2c2

√
logN · (logN)16c2r + c1 ·W 0 ·∆ · log4N.

This completes the proof of Theorem 4.12.
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A Proofs Omitted from Section 4

A.1 Proof of Observation 4.4

Consider first any edge e = (u, v) ∈ E(G) with u ∈ A and v ∈ B. We claim that e must be a special
edge. Indeed, assume otherwise, that is, e is a regular edge. Then u ∈ A′ and v ∈ B′ must hold.
Moreover, edge e = (u, v) lies in graph G+, so e ∈ EG+(A′, B′). Since cut (A′, B′) in G+ is weakly
well-structured, this is impossible, a contradiction. We conclude that every edge e ∈ EG(A,B) must
be a special edge, and so cut (A,B) is a weakly well-structured cut in G.

Next, we prove that w(A) ≥ |A
′|
8 ; the proof that w(B) ≥ |B

′|
8 is symmetric. We partition the vertices

of A′ into three subsets. The first subset is A′1 = A. If vertex v ∈ A′ does not lie in A, then there
is some special edge e = (x, y) ∈ E(G), such that v is an inner vertex on path P (e). If any of the
endpoints x, y of e lie in A, then we add vertex v to the second set A′2, and otherwise it is added to
the third set, A′3.

Clearly, w(A) ≥ |A| ≥ |A′1|, and it is easy to verify that w(A) ≥ |A′
2|
2 holds as well, since the weight

of every vertex x in G is equal to the length of the unique special edge e that is incident to x,
which, in turn, is equal to half the number of vertices on the corresponding path P (e). Therefore,

w(A) ≥ |A
′
1|+|A′

2|
4 must hold. Next, we show that |A′3| ≤

|A′|
2 .

Indeed, let Ẽ be the collection of all special edges e = (x, y) in G with x, y ∈ B, such that at least
one inner vertex on the corresponding path P (e) belongs to A′. Clearly, for each such edge e, at least
one edge e′ ∈ P (e) must belong to EG+(A′, B′). Therefore, |Ẽ| ≤ EG+(A′, B′) ≤ φ · |A′|. Since we
have assumed that graph G does not contain edges of length greater than 1

4φ , we get that, for every

edge e ∈ Ẽ, the number of vertices lying on the corresponding path P (e) is at most 1
2φ . Therefore,

|A′3| ≤ 1
2φ · |Ẽ| ≤

|A′|
2 . We conclude that |A′3| ≤

|A′|
2 , and so w(A) ≥ |A

′
1|+|A′

2|
4 ≥ |A

′|
8 . Using a similar

reasoning, we get that w(B) ≥ |B
′|

8 .

Recall that ΦG+(A′, B′) =
|EG+ (A′,B′)|

min{w(A′),w(B′)} =
|EG+ (A′,B′)|
min{|A′|,|B′|} , since the weight of every vertex in G+ is 1.

Consider now any edge e = (u, v) ∈ EG(A,B). Since (A,B) is a well-structured cut in G, e must be a
special edge, and moreover, u ∈ A′, v ∈ B′ must hold. Therefore, at least one edge on the path P (e)
must lie in EG+(A′, B′). We conclude that |EG(A,B)| ≤ |EG+(A′, B′)|. Altogether, we get that:

ΦG(A,B) =
|EG(A,B)|

min {w(A), w(B)}
≤ 8|EG+(A′, B′)|

min {|A′|, |B′|}
= 8ΦG+(A′, B′).

A.2 Proof of Observation 4.5

We start with (A′, B′) = (A,B), and then consider every vertex x ∈ A one by one. If there is a special
edge e = (y, x) ∈ EG(B

′, A′), then if w(A′) ≤ w(B′) currently holds, we move y from B′ to A′, and
otherwise we move x from A′ to B′. Notice that, since graph G is well-structured, if a regular edge
(a, b) lies in G, then a ∈ L and b ∈ R must hold. Additionally, since (y, x) is a special edge, y ∈ R
and x ∈ L must hold. Therefore, the only edge entering x is the special edge (y, x), and all edges
leaving x are regular edges. By moving x from A′ to B′ we therefore cannot introduce any new edges
to EG(A

′, B′), or any new special edges to EG(B
′, A′). Similarly, the only edge leaving y is the special

edge (y, x), and all edges entering y are regular edges. Therefore, by moving y from B′ to A′, we
cannot introduce any new edges to EG(A

′, B′), or any new special edges to EG(B
′, A′).

Once every vertex of A is processed, we obtain the final cut (A′, B′), that is strongly well-structured.
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Note that |EG(A
′, B′)| ≤ |EG(A,B)| ≤ φ

2 · min {w(A), w(B)}. Let z = min {w(A), w(B)}, and let
recall that w(V (G)) = 2

∑
e∈E ℓ(e) = 2W . Notice that z ≤W must hold.

If no vertices were ever removed from A′, then w(A′) = w(A) holds. Otherwise, consider the last time
when a vertex was removed from A′. We denote the removed vertex by v. Then, just before v was
moved from A′ to B′, w(A′) ≥ w(B′) held. Therefore, at the end of the algorithm, w(A′) ≥W−w(v) ≥
W
2 , since the weight w(v) of vertex v is the length of the unique special edge incident to v, which must

be bounded by W
2 . We conclude that, at the end of the algorithm, w(A′) ≥ min

{
w(A), W2

}
≥ w(A)

4

holds. Using similar reasoning, w(B′) ≥ min
{
w(B), W2

}
≥ w(B)

4 . Moreover, min {w(A′), w(B′)} ≥
min

{
w(A), w(B), W2

}
≥ 1

2 min {w(A), w(B)}. Altogether, |EG(A
′, B′)| ≤ φ

2 · min {w(A), w(B)} ≤
φ ·min {w(A′), w(B′)}.

The running time of the above algorithm is O(Vol(A)). If Vol(B) < Vol(A), then we can execute the
same procedure by examining the vertices of B instead of A, in time O(Vol(B)).

B Proofs Omitted from Section 5

B.1 Proof of Observation 5.5

From Invariant I1, graph H[X0] is a perfect well-structured graph. It is immediate to verify that the
lengths ℓ(e) of edges e ∈ E(H) define a proper assignment of lengths to the edges of H[X0]. Recall
that we have denoted by W 0(X) the total weight of all vertices in H[X0] when X is added to X , and,
from Observation 5.3, we are guaranteed that W 0(X) ≤ N ′, where N ′ = max

{
N, 8n · log5 n

}
is the

parameter that we have defined. From the definition of the s-t-SP problem, we also get that 1 ≤ η ≤ ∆
and 1 ≤ ∆ ≤ n − |B0| ≤ N ≤ N ′. From our assumption that N is greater than a sufficiently large
constant, with N > 22

c2 , the same holds for N ′.

Since X is a non-leaf cluster,|X0| > ∆·(logN)128

η must hold. Recall that dX = min
{
|X0|·η

∆ , d
}
. From

Inequality 5, d ≥ 22
√
logN . Therefore, if dX = d, then dX ≥ 22

√
logN ≥ 2

√
logN ′ ≥ (logN ′)64 (from

Inequality 4, and since N ′ ≥ N is large enough). Otherwise:

dX =
|X0| · η

∆
≥ (logN)128 ≥ (logN ′)64,

since logN ′ ≤ 2 logN ≤ log2N from Inequality 3. In either case, dX ≥ (logN ′)64 holds.

Lastly, since dX = min
{
|X0|·η

∆ , d
}
, we get that dX ≤ |X

0|·η
∆ , and so ∆·dX

η ≤ |X0| holds. This establishes
that (H[X0],∆, η, dX , N ′) is a valid input instance for the MaintainCluster problem.

In order to show that this instance is r-restricted, we need to show that r ≤
⌈√

logN ′
⌉
and that

dX ≤ 2r·
√
logN ′

holds. The former follows immediately since, from the definition of the (r + 1)-
restricted s-t-SP problem, r + 1 ≤

⌈√
logN

⌉
≤
⌈√

logN ′
⌉
. The latter also immediately follows since

dX ≤ d, and since d ≤ 2r·
√
logN ≤ 2r·

√
logN ′

from Inequality 5.

B.2 Proof of Observation 5.6

From Invariant I1, graph H[X] is a perfect well-structured graph, so every vertex of X is incident
to exactly one special edge in H[X]. Clearly, both H[Y ′] and H[Z ′] are well-structured graphs. It
remains to show that each of them is a strongly well-structured graph.

126



We start by proving that H[Y ′] is a strongly well-structured graph. It is enough to show that, for
every vertex v ∈ Y ′, if e is the unique special edge that is incident to v in G, then the other endpoint
u of e also lies in Y ′. Indeed, assume otherwise. Since H[X] is a perfect well-structured graph, u ∈ X
must hold. It is impossible that u ∈ J , since in this case u ∈ R, and the unique special edge incident
to u lies in the cut EH(Y,Z). Therefore, u ∈ Z must hold. Since v ̸∈ J , edge e must lie in EH(Z, Y ).
But from the definition of a strongly well-structured cut, e must be a regular edge, a contradiction.

In order to prove that H[Z ′] is a strongly well-structured graph, it is enough to show that, for every
vertex v ∈ Z ′, if e is the unique special edge that is incident to v in G, then the other endpoint u of
e also lies in Z ′. Assume otherwise. As before, since H[X] is a perfect well-structured graph, u ∈ X
must hold. It is impossible that u ∈ J ′, since in this case u ∈ L, and the unique special edge incident
to u lies in the cut EH(Y, Z). Therefore, u ∈ Y must hold. Since v ̸∈ J ′, edge e must lie in EH(Z, Y ).
But from the definition of a strongly well-structured cut, e must be a regular edge, a contradiction.

B.3 Proof of Observation 5.7

Let e = (u, v) be a new right-to-left edge that was added to the AT O as the result of the current
transformation. Assume first that v ∈ J ′. Since J ′ ⊆ L, edge e must be the unique special edge
entering v, and, from the definition of the set J ′ of vertices, e ∈ EH[X](Y,Z) = EH(Y, Z) must hold.
Therefore, u ∈ J must hold. Assume next that v ∈ Z ′. Since edge e is a right-to-left edge, it must be
the case that u ∈ Y ′ ∪ J = Y . However, there can be no edges connecting Y to Z ′ in G[X], from the
definition of the sets J ′ and Z ′ of vertices. Assume now that v ∈ Y ′. Since edge e is a right-to-left
edge, u ∈ J must hold. However, as observed already, J ⊆ R must hold, and for every vertex u ∈ J ,
the only edge that leaves u is the unique special edge incident to u, whose other endpoint is in J ′.
Therefore, it is impossible that u ∈ J and v ∈ Y ′ holds for an edge (u, v). Lastly, we need to consider
the case where v ∈ J . Since (u, v) is a right-to-left edge, it must be the case that u ∈ J . But since
J ⊆ R, it is impossible that an edge of G has both endpoints in J .

B.4 Proof of Observation 5.8

As observed already, graph H[U0] is a perfect well-structured graph. It is immediate to verify that
the initial lengths ℓ(e) of edges e ∈ E(H) define a proper assignment of lengths to the edges of
H[U0]. Moreover, initially, the length of every special edge of G is set to 1. Recall that |U0| >
2(n − |B0|) · (logN)128, and that |U0 \ β| ≤ n − |B0| must hold. Therefore, |β| ≥ 99|U0|

100 holds, as
required. From our assumption that N is greater than a sufficiently large constant, so is N ′.

Recall that we have denoted by W 0(U) the total initial weight of all vertices in H[U0]. It is immediate
to verify that the initial weight of every vertex in H[U0] is 1, and so W 0(U) ≤ n ≤ N ≤ N ′. From the

definition of the s-t-SP problem, we also get that 1 ≤ η ≤ ∆ and 1 ≤ ∆ ≤ n − |B0| ≤ |β|
(logN)128

(the

latter inequality follows since we have established that |β| ≥ 99|U0|
100 and |U0| ≥ 2(n−|B0|) · (logN)128).

Recall that dU = max
{
(logN ′)64,

(
|U0 \B0|+∆

) η

4∆·2
√
logN

}
, so dU ≥ (logN ′)64 holds. Lastly, we

need to establish that ∆·dU
η ≤ |U0 \B0|+∆ · (logN ′)64. Indeed, since

dU = max
{
(logN ′)64,

(
|U0 \B0|+∆

) η

2∆·2
√
logN

}
, we get that:

∆ · dU
η

= max

{
∆ · (logN ′)64

η
,
|U0 \B0|
4 · 2

√
logN

+
∆

4 · 2
√
logN

}
≤ |U0 \B0|+∆ · (logN ′)64.
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In order to show that this instance is r-restricted, we need to show that r ≤
⌈√

logN ′
⌉
and that

dU ≤ 2r·
√
logN ′

holds. The former follows immediately since, from the definition of the (r+1)-restricted
s-t-SP problem, r + 1 ≤

⌈√
logN

⌉
≤
⌈√

logN ′
⌉
. The latter also immediately follows since:

dU = max

{
(logN ′)64,

(
|U0 \B0|+∆

) η

4∆ · 2
√
logN

}
≤ max

{
(logN ′)64,

(n− |B0|) · η
2∆ · 2

√
logN

}
≤ max

{
(logN ′)64, 2d

}
≤ 2r

√
logN ′

,

since d = (n−|B0|)·η
4∆·2

√
logN

and d ≤ 2r·
√
logN−1 ≤ 2r

√
logN ′−1 from Inequality 5.

B.5 Proof of Observation 5.10

Recall that, at the beginning of the algorithm, for every edge e ∈ Espec \ E∗, ℓ(e) = 1, and for
every vertex v ∈ Ũ , w(v) = 1 holds. For every edge e ∈ (Espec \ E∗) ∩ H[U0], if both endpoints
of e lie in U at the end of the algorithm, then we set ℓ̃(e) to be the length of e at the end of the
algorithm, and otherwise we let ℓ̃(e) be the length of e just before its endpoints are deleted from U .
Let E′ ⊆ (Espec \ E∗) ∩H[U0] be the set of all edges e ∈ (Espec \ E∗) ∩H[U0] with ℓ̃(e) > 1. Then∑

v∈Ũ w̃(v) ≤ |Ũ |+ 2
∑

e∈E′ ℓ̃(e).

Let q be the total number of queries to algorithm A′(U), so that q ≤ ∆, and let Q′ = {P1, . . . , Pq} be
the paths returned by Algorithm A′(U) in response to the queries, where the paths are indexed in the
order in which they were returned. For all 1 ≤ i ≤ q, let Ci denote the length of path Pi when it was
added to Q. Clearly, Ci ≤ dU , and

∑q
i=1Ci ≤ q · dU ≤ ∆ · dU .

Consider now some edge e ∈ E′, and recall that ℓ(e) was doubled at least once over the course of
Algorithm A′(U). Let τ be the last time when the length of e was doubled. Then, prior to time τ ,
there were at least η iterations i, during which the path Pi that was added to Q′ contained e, and the

length of e during the corresponding iteration was ℓ̃(e)
2 . In other words, edge e contributes at least

ℓ̃(e)η
2 to

∑q
i=1Ci. Altogether, we get that

∑q
i=1Ci ≥

∑
e∈E′

ℓ̃(e)η
2 . Therefore:

∑
e∈E′

ℓ̃(e) ≤
2
∑q

i=1Ci

η
≤ 2∆ · dU

η
≤ |U0 \B0|+ 2∆ · (logN ′)64,

since dU = max
{
(logN ′)64,

(
|U0 \B0|+∆

) η

4∆·2
√
logN

}
.

Altogether, we get that:

∑
v∈Ũ

w̃(v) ≤ |Ũ |+ 2
∑
e∈E′

ℓ̃(e) ≤ 4|U0 \B0|+ 8∆ · (logN ′)64,

since the set Ũ contains all vertices of U0 \ B0, and additionally all vertices of B0 ∩ U0 that were
deleted from B0 over the course of the algorithm, whose number is bounded by ∆.
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B.6 Proof of Claim 5.11

Consider any cluster X ∈ X̃ ′2. Observe first that at most one child-cluster of X may be its close
descendant. Indeed, assume otherwise, and let X1, X2 be two child-clusters of X that are its close
descendants, and assume that X1 was added to X before X2. Then |X0

1 |, |X0
2 | > |X0|/2 must hold,

and so X0
1 ∩ X0

2 ̸= ∅. But this is impossible since, after cluster X1 was added to X , all vertices of
X0

1 were deleted from X. Recall that, if X1 is a child-cluster of X, and it is a close descendant of
X, then, when X1 was created,

∑
v∈X1

w(v) ≤
∑

v∈X w(v)/2 held, following which the vertices of X0
1

were deleted from X. We start with the following claim that bounds the number of close descendants
of a cluster X, whose initial weights are not much lower than that of X.

Claim B.1 Consider a sequence (X1, X2, . . . , Xz) of distinct clusters in X̃ ′2, such that for all 1 ≤ i < z,
Xi+1 is a child cluster of Xi, clusters X2, . . . , Xz are close descendants of X1, and for all 2 ≤ i ≤ z,
W 0(Xi) ≥W 0(X1)/2. Then z ≤ 16 must hold.

Proof: For all 1 ≤ i ≤ z, let τi be the time when cluster Xi was added to X , and for all 1 < i ≤ r, let
X ′i−1 be the set of all vertices that lied in Xi−1 just before time τi, excluding the vertices of Xi. For
convenience, we also denote by X ′z = Xz. For all 1 ≤ i < z, we denote by Wi be the total weight of
all vertices in set X ′i at time τi+1, and we denote by Wz = W 0(Xz). Note that the sets X ′1, . . . , X

′
z of

vertices are mutually disjoint.

Consider now an index 1 < i ≤ z. Since |X0
i | ≥ |X0

1 |/2 must hold, we get that |X0
i | ≥ |X0

i−1|/2, and
so, from our discussion, at time τi, the total weight of the vertices of Xi was less than or equal to the
total weight of the vertices of X ′i−1. In other words, for all 1 < i ≤ z, Wi−1 ≥ W 0(Xi) ≥ W 0(X1)/2.
From our definitions, Wz = W 0(Xz) ≥W 0(X1)/2 as well. Therefore:

z∑
i=1

Wi ≥
W 0(X1) · z

2
.

In the following observation, we show that
∑z

i=1Wi ≤ 8W 0(X1) must hold, and so z ≤ 16, as required.
The following observation then completes the proof of Claim B.1.

Observation B.2
∑z

i=1Wi ≤ 8W 0(X1).

Proof: Recall that, from our definition, the sets {X ′1, . . . , X ′z} of vertices are mutually disjoint. For
convenience, denote τz+1 = τz, and let Y =

⋃z
i=1X

′
i, so Y ⊆ X0

1 . Recall that, for all 1 ≤ i < z,
Wi denotes the weight of the vertices in X ′i at time τi+1. In order to prove the observation, we will
observe how the weights of the vertices of Y evolve during the time interval (τ1, τz], except that, for
all 1 ≤ i ≤ z, we will “freeze” the weights of the vertices in X ′i at time τi+1, so they are not allowed
to grow anymore.

Specifically, for every vertex v ∈ Y , we denote by w̃(v) the weight of v at time τ1. For all 1 ≤ i ≤ z, for
every vertex v ∈ Xi, we denote by w̃′(v) the weight of v at time τi+1. Clearly,

∑
v∈Y w̃(v) ≤W 0(X1),

and
∑z

i=1Wi =
∑

v∈Y w̃′(v). It now remains to bound
∑

v∈Y (w̃
′(v) − w̃(v)). Let Ẽ′ be the set of all

special edges that lie in E(H[X0
1 ]). For every special edge e ∈ Ẽ′, we denote by ℓ̃(e) the length of e at

time τ1, and recall that W 0(X1) = 2
∑

e∈Ẽ′ ℓ̃(e).

Recall that for each cluster X ∈ X̃ ′2, we have defined a parameter dX = min
{
|X0|·η

∆ , d
}
. Since, for all

1 < i ≤ z, cluster Xi is a descendant of X1, we get that |X0
i | ≤ |X0|, and so dXi ≤ dX1 .
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Consider now the following process. Initially, every vertex v ∈ Y is assigned weight w̃(v), and every
special edge e ∈ Ẽ′ is assigned length ℓ̃(e). Then we obeserve the iterations of the algorithm that
occured during the time interval [τ1, τz) in the order in which they occur. Let j be any such iteration.
Let 1 ≤ i ≤ z be the integer for which iteration j occurs during the time interval [τi, τi+1). We then
consider the cluster Xi, and denote by Pj the path that Algorithm A(Xi) returned in response to a
short-path query during iteration j. Denote by Cj the length of Pj at the time when it was returned,
and recall that Cj ≤ dXi ≤ dX1 must hold. We also denote by Ẽj ⊆ E(Pj) the set of special edges of
H[Xi], whose lengths were doubled as the result of this iteration. For every vertex v ∈ Xi ∩ Y , that
serves as an endpoint of an edge of Ẽj , we double the weight w̃(v). For every edge e ∈ Ẽj , we also
double its length ℓ̃(e).

It is easy to verify that, at the end of this process, the final weight of every vertex v ∈ Y is precisely
w̃′(v). For every special edge e ∈ Ẽ′, let ℓ̃′(e) be the length of e at the end of this process. Then∑

v∈Y w̃′(v) ≤ 2
∑

e∈Ẽ′ ℓ̃′(e). Let r be the total number of iterations of the algorithm that occur during

the time interval [τ1, τz). Consider now any special edge e ∈ Ẽ′. From the definition of our algorithm,
if τ1 ≤ τ < τ ′ ≤ τz are any two times at which the length of e was doubled, then edge e participated
in at least η of the paths of {P1, . . . , Pr} that were returned by the above process during the time
interval [τ, τ ′).

Recall that we have established that
∑

e∈Ẽ′ ℓ̃(e) =
W 0(X1)

2 . Let Ẽ′′ ⊆ Ẽ′ be the set of all edges e for

which ℓ̃′(e) > 2ℓ̃(e). Consider now any such edge e ∈ Ẽ′′. Then the length of e must have been doubled
at least twice during the process that we described above. Let τ < τ ′ be the last two times during
the process when the length of e was doubled. Then, at least η of the paths of {P1, . . . , Pr} that were
returned during the time interval [τ, τ ′) contained e, and for each such path Pj , edge e contributed

at least ℓ̃′(e)/2 to the length of the path. Therefore, every edge e ∈ Ẽ′′ contributes at least ℓ̃′(e)·η
2 to∑r

j=1Cj , and so
∑r

j=1Cj ≥
∑

e∈Ẽ′′
ℓ̃′(e)·η

2 . On the other hand:

r∑
j=1

Cj ≤ r · dX1 ≤ ∆ · dX1 ≤ ∆ ·min

{
|X0

1 | · η
∆

, d

}
≤ |X0

1 | · η ≤W 0(X1) · η.

Altogether, we get that
∑

e∈Ẽ′′ ℓ̃′(e) ≤ 2
η ·
∑r

j=1Cj ≤ 2W 0(X1), and so:

z∑
i=1

Wi =
∑
v∈Y

w̃′(v) ≤ 2
∑
e∈Ẽ′

ℓ̃′(e) ≤ 4
∑
e∈Ẽ′

ℓ̃(e) + 2
∑
e∈Ẽ′′

ℓ̃′(e) ≤ 8W 0(X1).

Recall that, for every cluster X ∈ X̃ ′2,
∆·(logN)128

η ≤ W 0(X) ≤ 8n log5 n holds (see the definition of

leaf clusters (Definition 5.4) and Inequality 6). We now prove that, for all
⌊
log
(
∆·(logN)128

η

)⌋
< j ≤

4 ⌈log n⌉, if X ∈ X̃ ′2 is a cluster with 2j ≤W 0(X) < 2j+1, then X has at most 16j close descendants.

The proof is by induction on j. The base case is when j =
⌊
log
(
∆·(logN)128

η

)⌋
. Recall that, if

W 0(X ′) < ∆·(logN)128

η , then X ′ is a leaf cluster. Therefore, if X ∈ X̃ ′2 is a cluster with 2j ≤W 0(X) <

2j+1, and X ′ ∈ X̃2 is its close descendant, then W 0(X ′) ≥ ∆·(logN)128

η ≥ W 0(X)
2 must hold. For a

cluster X ∈ X̃ ′2 with 2j ≤ W 0(X) < 2j+1, let D(X) ⊆ X̃ ′2 be the collection of the close descendants
of X, and denote |D(X)| = z. Then we can define an ordering (X = X1, X2, . . . , Xz) of the clusters
in D(X), such that, for all 1 ≤ i < z, Xi+1 is a child-cluster of Xi. From Claim B.1, we are then
guaranteed that z ≤ 16.
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For the induction step, assume that the claim holds for some integer j ≥
⌊
log
(
∆·(logN)128

η

)⌋
, and

consider a cluster X ∈ X̃ ′2 with 2j+1 ≤ W 0(X) < 2j+2. Let D(X) ⊆ X̃ ′2 be the set of all close
descendants of X, and denote |D(X)| = z. As before, we can define an ordering (X = X1, X2, . . . , Xz)
of the clusters in D(X), such that, for all 1 ≤ i < r, Xi+1 is a child-cluster of Xi. Let i′ > 1 be the
smallest index with W 0(Xi′) < W 0(X)/2. Then for all 1 ≤ i < i′, W 0(Xi) ≥ W 0(X)/2, and so, from
Claim B.1, i′ ≤ 17. Moreover, clusters Xi′+1, . . . , Xz are close descendants of cluster Xi′ , and so, from
the induction hypothesis, z− i′+1 ≤ 16j. Altogether, we get that z = (z− i′+1)+ i′− 1 ≤ 16(j+1).
Since, for every cluster X ∈ X̃ ′2, W 0(X) ≤ 8n log5 n < 24⌈logn⌉, we get that each such cluster has at
most 64 ⌈log n⌉ close descendants.

C Proofs Omitted from Section 6

C.1 Proof of Claim 6.2

Observe first that, from our definition, graph H ′ is a well-structured graph.

Recall that N ≥ W
32 , while |V (H ′)| ≤ |V (H)| + β ·M ≤ 2W log3N . Since N ′ = 64N log3N , N ′ ≥

|V (H ′)| holds. Since we have assumed that k ≥ 220 · d′ · log6N , we get that 1 ≤ η′ ≤ ∆′, as
required. Since Uλ ⊆ A′, while B′ contains all vertices of U0 and their copies, it is easy to verify that
|A′|, |B′| ≥ k = ∆′. Therefore, for any pair (A′, B′) of disjoint subsets of V (H ′) with Uλ ⊆ A, and
with all vertices of U0 and their copies lying in B′, (H ′, A′, B′,∆′, η′, N ′) defines a valid instance of
the RouteAndCut problem. We now verify that this instance is r-restricted.

In order to do so, it is enough to show that 1 ≤ r ≤
⌈√

logN ′
⌉
and (|V (H′)|−|B′|)·η′

∆′ ≤ 2r·
√
logN ′

holds.
Since 1 ≤ r ≤

√
logN , we get that 1 ≤ r ≤

⌈√
logN ′

⌉
also holds.

Recall that |V (H ′) \B′| ≤ 4λk. Therefore:

(|V (H ′)| − |B′|) · η′

∆′
≤ 4λk · 220 · d′ · log6N

k
≤ d′ · log8N ≤ 2r

√
logN ≤ 2r·

√
logN ′

,

since λ = ⌈log(64N)⌉+ 1 and d′ ≤ 2r
√
logN

log8 N
from the definition of Procedure ReconnectLayer.

C.2 Proof of Observation 6.4

We first prove that |Ỹ | ≤ O(k logN). Recall that set Ỹ may contain all vertices of H ′, except for the
vertices of B′j . It is easy to verify that |B′j | ≥ |Bj | − k, since |R′j | < k. Recall that we have shown

that |V (H ′) \Bj | ≤ O(λ · k) ≤ O(k logN). Therefore, |Ỹ | ≤ |V (H ′) \Bj |+ |Bj \B′j | ≤ O(k logN).

In order to prove the remaining two assertions, we partition the set β of vertices into three subsets.
The first set, β1, contains all vertices x ∈ β that lie in Ỹ ′. The second set, β2, contains all vertices
x ∈ β that lie in Ỹ , such that every copy of x lies in Ỹ as well. The third set, β3, contains all remaining
vertices of β.

Notice that, for every vertex x ∈ β3, some edge that is incident to one of the copies of x must lie in
EH′(Ỹ , Ỹ ′), and so |β3| ≤ |EH′(Ỹ , Ỹ ′)| ≤ k

d′ log6 N
≤ |β|

log4 N
, since |β| ≥ W

d′·log2 N ≥
k

d′·log2 N .

Notice also that, for every vertex x ∈ β2, all M copies of x (including x itself) must serve as endpoints

of the paths in R′j , so |β2| ≤
|R′

j |
M ≤ k·|β|

W log3 N
≤ min

{
k

log3 N
, |β|
log3 N

}
, since M = W ·log3 N

|β| and k, |β| ≤
|V (H)| ≤W .
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Overall, we get that:

|Ỹ ′ ∩ β| = |β1| ≥ |β| − |β2| − |β3| ≥ |β| ·
(
1− 1

log4N
− 1

log3N

)
≥ |β| ·

(
1− 2

log3N

)
.

Additionally,

|Ỹ ′ ∩ β| ≥ |β| − |β2| − |β3| ≥ |β| −
k

log3N
− k

d′ log6N
≥ |β| − 2k

log3N
.

Lastly, since |A′j | ≥ k
64λ ≥

k
29 logN

, as λ = ⌈log(64N)⌉ + 1 ≤ 8 logN , while |β2| ≤ k
log3 N

and |β3| ≤
k

d′ log6 N
, we get that |A′j | ≥ (|β2|+ |β3|) · logN = |Ỹ ∩ β| · logN .

C.3 Proof of Claim 6.12

Let β′1 be the set of vertices that were deleted from β directly, and let β′2 = β′ \ β′1. Since at most one
vertex may be deleted from β directly in every iteration, |β′1| ≤ ∆ must hold.

Let E′ denote the set of all special edges whose lengths have increased over the course of the algorithm.
Consider any such edge e = (u, v) ∈ E′, and let τ be the first time when the length of e was increased.
Then at time τ , neither of the vertices u, v may lie in β. Therefore, either both of these vertices lied
in V (G0) \ β0; or at least one of these vertices lies in β′1 (since, once a vertex is added to β′2, it is
deleted from G). We conclude that |E′| ≤ |V (G0)| − |β0 \ β′1| ≤ n− |β0|+∆. For every edge e ∈ E′,
let ℓ0(e) = 1 be its initial length. Clearly,

∑
e∈E′ ℓ0(e) ≤ n− |β0|+ |β′1| ≤ n− |β0|+∆.

Denote by {P1, . . . , Pq} the set of all paths that the algorithm returned in response to the queries.
For all 1 ≤ i ≤ q, let Ci be the length of path Pi at the time it was returned, so Ci ≤ d, and∑q

i=1Ci ≤ d · q ≤ d ·∆.

Let Ê ⊆ E′ be the set of edges whose length increased more than once. For every edge e ∈ Ê, let
ℓ∗(e) be the final length of the edge e, after its last increase, and let τ ′(e) < τ ′′(e) be the times of
the last two increases in the length of e. Then during the time interval (τ ′(e), τ ′′(e)], at least η paths

that were returned in response to the queries contained e, and edge e contributed at least ℓ∗(e)
2 to

the length Ci of each such path Pi. In other words, every edge e ∈ Ê contributes at least η·ℓ∗(e)
2 to∑q

i=1Ci. Therefore:

q∑
i=1

Ci ≥
η

2

∑
e∈Ê

ℓ∗(e),

and:

∑
e∈Ê

ℓ∗(e) ≤ 2

η
·

q∑
i=1

Ci ≤
2d∆

η
.

Altogether, we get that:
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Λ ≤
∑
e∈E′

2ℓ0(e) +
∑
e∈Ê

ℓ∗(e)

≤ 2n− 2|β0|+ 2∆+
2d∆

η

≤ 4n− 4|β0|+ 3∆ · (logN)64.

(we have used the fact that, from the problem definition, ∆·d
η ≤ |V (G)| − |β0|+∆ · (logN)64). Since,

from the problem definition, ∆ ≤ |β0|
(logN)128

, we get that Λ ≤ 4n− 4|β0|+ 3∆ · (logN)64 ≤ 4n.

Next, we bound |β′2|. Denote β̂ = β0 \ β′1, and recall that |β̂| ≥ |β0| −∆. For every vertex v ∈ V (G0),
let w0(v) = 1 denote the initial weight of v, and let w∗(v) denote the weight of v at the end of the
algorithm (if v ∈ V (G) holds), or just before v is deleted from G (otherwise). We also denote by
W̃ =

∑
v∈V (G0)\β̂ w

∗(v).

Notice that, at the beginning of the algorithm:

∑
v∈V (G0)\β̂

w0(v) = n− |β̂| ≤ n− |β0|+∆.

Since the total increase in all edge lengths is Λ ≤ 4n− 4|β0|+ 5∆ · (logN)64, we get that:

W̃ ≤
∑

v∈V (G0)\β̂

w0(v) + 2Λ ≤ 9n− 9|β0|+ 11∆ · (logN)64.

Consider now any strongly well-structured cut (X,Y ) in G of sparsity ΦG(X,Y ) ≤ (logN)64

d , such that
w(X) ≥ 1.8|β∩X| holds, that the algorithm produces. Let J ′ ⊆ Y denote the set of vertices that serve

as endpoints of the edges of EG(X,Y ), and recall that |J ′| ≤ |EG(X,Y )| ≤ w(X)·(logN)64

d ≤ w(X),

since d ≥ (logN)64 from the problem definition. Note that β̂∩X ⊆ β∩X, and so w(X) ≥ 1.8|β∩X| ≥
1.8|β̂ ∩X| holds. Since the weights of all vertices in β̂ are 1, we get that:

w(X \ β̂) = w(X)− |X ∩ β̂| ≥ w(X)

(
1− 1

1.8

)
≥ 0.44w(X).

The number of vertices that were indirectly deleted due to the cut is bounded by:

|X ∩ β̂|+ |J ′| ≤ 2w(X) ≤ 5w(X \ β̂) ≤ 5
∑

v∈X\β̂

w∗(v).

We assign to every vertex v ∈ X \ β̂ a charge of 5w∗(v) units, so that the total charge to all vertices of
X \ β̂ is greater than the number of vertices that are deleted from β in the current iteration. Notice
that the vertices of X \ β̂ are deleted from G, and so they will never be charged again. We conclude
that:

|β′2| ≤ 5Ŵ ≤ 45n− 45|β0|+ 55∆ · (logN)64.

Altogether, we get that |β′| ≤ |β′1|+ |β′2| ≤ 45n− 45|β0|+ 56∆ · (logN)64.
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C.4 Proof of Corollary 6.13

First, observe that:

∑
v∈V (G)\β

w(v) ≤ |V (G)| − |β|+ 2Λ ≤ |V (G)| − |β|+ 8(n− |β0|) + 10∆(logN)64,

from Claim 6.12. Notice that, if v ∈ V (G) \β, then either v ∈ V (G0) \β0; or v belonged to β, but was
directly removed from β. Since the number of vertices that are directly removed from β is bounded

by ∆, and since, from the problem definition, ∆ ≤ |β0|
(logN)128

, we get that:

∑
v∈V (G)\β

w(v) ≤ 9(n− |β0|) + 11∆(logN)64 ≤ 9(n− |β0|) + |β
0|

1000
.

Lastly, since |β0| ≥ 99n
100 from the problem definition, we get that (n − |β0|) ≤ n

100 ≤
|β0|
99 . Using the

fact that |β| ≥ |β
0|
2 holds throughout the algorithm, we now get that:

∑
v∈V (G)\β

w(v) ≤ 9|β0|
99

+
|β0|
1000

≤ 0.1|β0| ≤ 0.2|β|.

C.5 Proof of Observation 6.14

First, from Corollary 6.13, w(A \ β) ≤
∑

v∈V (G)\β w(v) ≤ 0.2|β|.

On the other hand, w(A \ β) = w(A) − w(A ∩ β) = w(A) − |A ∩ β| ≥ w(A)
(
1− 1

1.8

)
≥ 0.44w(A).

Therefore, w(A) ≤ 2.27w(A \ β) ≤ 0.46|β|. In particular, |β ∩A| ≤ w(A) ≤ 0.46|β|. but then:

w(B) ≥ |B ∩ β| ≥ |β| − |A ∩ β| ≥ 0.54|β| > w(A).

D Proofs Omitted from Section 7

D.1 Proof of Observation 7.2

Let P be the set of all paths that the algorithm returned in response to queries. For every path P ∈ P,
we denote by ℓ′(P ) the length of the path P at the time when it was returned, so ℓ′(P ) ≤ d. Since
|P| ≤ ∆, we get that

∑
P∈P ℓ

′(P ) ≤ d ·∆.

Let E′ ⊆ Espec be the set of all edges e with ℓ∗(e) > 2ℓ0(e). Consider any such edge e ∈ E′, and
denote ℓ∗(e) = 2i. Let τ be the first time when the length of e was set to 2i−1, and let τ ′ be the time
when the length of e was set to 2i. Then, in time interval (τ, τ ′], at least η paths were added to P that

contained e, and, for each such path P , edge e contributed at least 2i−1 = ℓ∗(e)
2 to ℓ′(P ). Therefore:

∑
P∈P

ℓ′(P ) ≥
∑
e∈E′

ℓ∗(e) · η
2

.

Since
∑

P∈P ℓ
′(P ) ≤ d ·∆, we get that

∑
e∈E′ ℓ∗(e) ≤ 2d∆

η . Altogether, we get that:
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∑
e∈Espec

ℓ∗(e) ≤ 2
∑

e∈Espec

ℓ0(e) +
∑
e∈E′

ℓ∗(e) ≤ 2
∑

e∈Espec

ℓ0(e) +
2d∆

η
≤ 2

∑
e∈Espec

ℓ0(e) + 2n,

since ∆d
η ≤ n from the problem definition.

D.2 Proof of Claim 7.9

Recall that (A1, B1), . . . , (Aq, Bq) is the sequence of all stronlgy well-structured φ-sparse cuts that
our algorithm produced during the current phase so far, indexed in the order in which the algorithm
produced them. For all 1 ≤ i ≤ q, denote by τi the time when cut (Ai, Bi) was computed, by
Ei = EG(Ai, Bi), and by Ji ⊆ Ai, J

′
i ⊆ Bi the vertices that serve as endpoints of the edges in Ei (with

respect to G(τi) – graph G at time τi). If, at time τi, w(Ai) > w(Bi), then we denote Zi = Ai \ Ji and
Zi = Bi \ J ′i ; otherwise, we denote Zi = Bi \ J ′i and Zi = Ai \ Ji. In the former case, we say that cut
(Ai, Bi) is of type 1, and in the latter case it is of type 2.

We denote by G0 the graph G at the beginning of the phase, and, for all 1 ≤ i ≤ q, we denote by
Gi the graph G that is obtained after cut (Ai, Bi) has been processed. Therefore, for all 1 ≤ i ≤ q,
graph Gi is obtained from graph Gi−1 by deleting the vertices of Zi ∪ Ji ∪ J ′i from it, or, equivalently,
Gi = Gi−1[Zi]. The current graph G is then denoted by Gq, and we denote the current graph H by
Hq. We also let E′ =

⋃q
j=1Ej .

Since the total number of vertices deleted so far from H during the current phase is less than Ŵ
log30 N

,

and since, for all 1 ≤ j ≤ q, |Ej | ≤ φ ·min {w(Aj), w(Bj)}, we conclude that:

|E′| ≤
q∑

j=1

|Ej | ≤
φ · Ŵ
log30N

=
4Ŵ

d′ · log30N
≤ 8|T |

log30N
, (21)

since |T | ≥ Ŵ
2d′ , as Event E1 did not happen.

Our first step is to compute a partition of the vertices of G0 into three subsets, S1, S2, S3, such that
S2 = V (Gq), and the partition has several other useful properties, summarized in the following claim.

Claim D.1 There is a deterministic algorithm, that computes a partition (S1, S2, S3) of the vertices
of G0, such that the following hold:

• S2 = V (Gq);

• if e = (x, y) is an edge of G0 connecting a vertex x ∈ Sj to a vertex y ∈ Si with 1 ≤ j < i ≤ 3,
then e is a special edge, and moreover, e ∈ E′ holds; and

• if e = (x, y) is an edge of G0 connecting a vertex x ∈ Sj to a vertex y ∈ Si with 1 ≤ i < j ≤ 3,
then e is a regular edge.

The running time of the algorithm is O((Ŵ )2).

Proof: We start by constructing a sequence S = (Y1, . . . , Yq+1) of subsets of vertices of G0, over the
course of q iterations. Specifically, for all 1 ≤ i ≤ q, in iteration i we will construct a sequence Si of
i + 1 subsets of vertices of G0. We will also identify a single set S∗i ∈ Si as the distingiushed vertex
set of Si, and we will define a subset J∗i ⊆ S∗i of vertices of S∗i called boundary vertices. We require
that the following properties hold.
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R1. The sets of vertices in Si define a partition of V (G0);

R2. The set J∗i of boundary vertices contains all vertices of S∗i that serve as endpoints of the edges
of
⋃i

i′=1Ei′ and only them;

R3. V (Gi) = S∗i \ J∗i ;

R4. For every boundary vertex v ∈ J∗i , every edge incident to v in G0[S
∗
i ] is a regular edge;

R5. If S, S′ ∈ Si, with S appearing before S′ in the sequence, and e is an edge of G0 connecting a
vertex of S′ to a vertex of S, then e is a regular edge of G0; and

R6. If S, S′ ∈ Si, with S appearing before S′ in the sequence, and e is an edge of G0 connecting a
vertex of S to a vertex of S′, then e ∈

⋃i
i′=1Ei′ .

In the first iteration, we consider the cut (A1, B1), and we let the initial sequence be S1 = (A1, B1).
Notice that every edge connecting a vertex of A1 to a vertex of B1 is an edge of E1, and, since cut
(A1, B1) is strongly well-structured, every edge connecting a vertex of B1 to a vertex of A1 is a regular
edge. This immediately establishes Properties R1, R5 and R6 for S1.

If (A1, B1) is a type-1 cut, that is, w(A1) > w(B1), then we designate A1 as the distinguished set
S∗1 of vertices for S1, and we let J1 be the corresponding set J∗1 of boundary vertices. Alternatively,
if (A1, B1) is a type-2 cut, then we designate B1 as the distinguished set S∗1 of vertices for S1, and
we let J ′1 be the corresponding set J∗1 of boundary vertices. It is immediate to verify that, with this
definition, Properties R2–R4 hold.

Assume now that for some 1 ≤ i < q, we have computed the sequence Si = (S1, S2, . . . , Si+1), for
which Properties R1 – R6 hold. Consider the distinguished set S∗i of Si that we denote for simplicity
by S∗, and its corresponding set J∗ of boundary vertices that we denote by J∗. Recall that, from
Requirement R3, V (Gi) = S∗ \ J∗. Consider now the cut (Ai+1, Bi+1) in Gi. We extend this cut
to a partition (A′, B′) of S∗ as follows. Initially, we set (A′, B′) = (Ai+1, Bi+1). Next, we consider
the boundary vertices v ∈ J∗ one by one. Recall that, from Property R4, only regular edges may be
incident to v in G0[S

∗]. Therefore, if v ∈ L, then it has no incoming edges in G0[S
∗]; in this case

we add it to B′. Similarly, if v ∈ R, then it has no outgoing edges in G0[S
∗]; in this case we add

it to A′. Once all vertices of J∗ are processed, we obtain the partition (A′, B′) of S∗. Notice that
EG0(A

′, B′) = Ei+1, and all edges of EG0(B
′, A′) are regular edges. In order to obtain sequence Si+1,

we replace the set S∗ in Si with the sets A′, B′, in this order. It is immediate to verify that Properties
R1, R5 and R6 continue to hold for Si+1.

If cut (Ai+1, Bi+1) is a type-1 cut, that is, w(Ai+1) > w(Bi+1), then we designate A′ as the distin-
guished set S∗i+1 of vertices for Si+1, and we let Ji+1 ∪ (A′ ∩ J∗) be the corresponding set J∗i+1 of
boundary vertices. Alternatively, if (Ai+1, Bi+1) is a type-2 cut, then we designate B′ as the distin-
guished set S∗i+1 of vertices for Si+1, and we let J ′i+1 ∪ (B′ ∩ J∗) be the corresponding set J∗i+1 of
boundary vertices. It is immediate to verify that, with this definition, Properties R2–R4 continue to
hold. The algorithm consists of q ≤ O(Ŵ ) iterations, and each iteration can be executed in time
O(Ŵ ). Therefore, the running time of the algorithm is O(Ŵ 2).

We are now ready to define the partition (S1, S2, S3) of the vertices of G0. Consider the final sequence
Yq = (Y1, . . . , Yq+1), and assume that its distinguished set is Yj . We denote by J∗ the set of the

boundary vertices of Yj . Initially, we set S1 =
⋃j−1

j′=1 Yj′ , S2 = Yj , and S3 =
⋃q

j′=j+1 Yj′ . Clearly,
(S1, S2, S3) is a partition of V (G0), and, from properties R5 and R6, for every pair 1 ≤ i < i′ ≤ 3 of
indices, for every edge e = (x, y) with x ∈ Si, y ∈ Si′ , e must be a special edge that lies in E′, while
for every edge e′ = (x′, y′) with x′ ∈ Si′ , y

′ ∈ Si, edge e
′ is a regular edge. Additionally, from Property
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R3, S2 = V (Gq) ∪ J∗. In our last step we will move every vertex of J∗ to either S1 or S3, in order to
ensure that S2 = V (Gq) holds.

For convenience, if e = (x, y) is an edge of G0, with x ∈ Si and y ∈ Si′ , then we say that e is a
left-to-right edge if i < i′, and that it is a right-to-left edge if i′ < i. Notice that the statement of the
claim requires that all left-to-right edges are special edges that lie in E′, and all right-to-left edges are
regular edges.

We consider every vertex v ∈ J∗ one by one. Recall that, from Property R4, all edges incident to v in
G0[Yj ] are regular edges. Assume first that v ∈ L. Let e = (u, v) be the unique special edge incident
to v. Then u ∈ S1 must hold, and e is the only edge entering v. We move v from S2 to S3. Notice
that, if e′ is a regular edge incident to v, then e′ = (v, u′) must hold for some vertex u′, and so this
move does not create any new left-to-right edges, while it may only introduce new right-to-left edges
that are regualr edges.

Assume now that v ∈ R. Let e = (v, u) be the unique special edge incident to v. Then we are
guaranteed that u ∈ S3 must hold. Edge e is the only edge that leaves v in G0, and all other edges
incident to v are incoming edges, which must also be regular edges. We move vertex v from S2 to S1.
As before, this move does not introduce any new left-to-right edges, and the only new right-to-left
edges that it may introduce are regular edges that are incident to v.

Once every vertex of J∗ is processed we obtain the partition (S1, S2, S3) with the required properties.
It is easy to verify that the running time of the algorithm is O((Ŵ )2).

Note that our updates to the graph G after each cut (Ai, Bi) ensure that G remains a perfect well-
structured graph throughout the algorithm, so in particular, for every vertex v ∈ S2 = V (Gq), if e
is the unique special edge that is incident to v in G0, then its other endpoint u also lies in S2. The
partition (S1, S2, S3) of the vertices of G0 naturally defines a partition (S̃1, S̃2, S̃3) of the vertices of
H0, as follows. First, for every vertex v ∈ V (G0), if v ∈ Si, for 1 ≤ i ≤ 3, then we add v to S̃i as well.
Next, we consider the special edges of E(G0). Consider any such special edge e = (x, y), and assume
that x ∈ Si and y ∈ Si′ , for indices 1 ≤ i, i′ ≤ 3. If i = i′, then we add all vertices lying on the path
P ∗(e) to set S̃i. Otherwise, from our construction i < i′ must hold, and moreover, from the above
discussion, i = 1 and i′ = 3 must hold. We then add all inner vertices of P ∗(e) to set S̃1. Consider the
resulting partition (S̃1, S̃2, S̃3) of the vertices of V (H0). As before, if e = (x, y) is any edge of H0 with
x ∈ S̃i and y ∈ S̃i′ , then we say that e is a left-to-right edge if i < i′ and we say that it is a right-to-left
edge if i′ < i. Our construction insures that, if e′ is a left-to-right edge of H0 with respect to the
partition (S̃1, S̃2, S̃3), then its parent-edge e is a left-to-right edge of G0 with respect to the partition
(S1, S2, S3). Moreover, if e is a left-to-right edge of G0 with respect to the partition (S1, S2, S3), then
exactly one edge of P ∗(e) is a left-to-right edge of H0 with respect to the partition (S̃1, S̃2, S̃3). We
conclude that the total number of left-to-right edges in H0 with respect to the partition (S̃1, S̃2, S̃3) is

bounded by |E′| ≤ 8|T |
log30 N

. Notice that, since the phase has not terminated so far, the total number

of vertices that were deleted from H0 since the beginning of the phase is at most Ŵ
log30 N

, and so in

particular, |S̃1|+ |S̃3| ≤ Ŵ
log30 N

.

Next, we consider two cases. The first case happens if |S̃2 ∩T | ≤
(
1− 4

log4 N

)
· |T |. In this case, either

|S̃1 ∩ T | ≥ 2|T |
log4 N

, or |S̃3 ∩ T | ≥ 2|T |
log4 N

. Assume first that the former holds. In this case, we return

the cut (S̃, S̃′), where S̃ = S̃1 and S̃′ = S̃2 ∪ S̃3. From our discussion, |EH0(S̃, S̃
′)| ≤ 8|T |

log30 N
≤ |T |

log6 N
.

Since |S̃1| ≤ Ŵ
log30 N

and |S̃1 ∩ T | ≥ 2
log4 N

, we get that S̃′ contains all but at most Ŵ
log30 N

≤ Ŵ
8 vertices

of H0, and at most
(
1− 2

log4 N

)
|T | vertices of T .
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Similarly, if |S̃3 ∩ T | ≥ 2|T |
log4 N

, then we return the cut (S̃, S̃′), where S̃ = S̃1 ∪ S̃2 and S̃′ = S̃3. Using

the same reasoning as before, it is easy to see that S̃ contains all but at most Ŵ
log30 N

≤ Ŵ
8 vertices of

H0, and at most
(
1− 2

log4 N

)
|T | vertices of T .

It now remains to consider the second case, where |S̃2 ∩ T | >
(
1− 4

log4 N

)
· |T |. Intuitively, we would

now like to use the finalizing cut (Ã, B̃) in graph Hq, in order to compute the cut (S̃, S̃′). For example,
we could start with S̃ = S̃1 and S̃′ = S̃3, and then add vertices of Ã to S̃, and vertices of B̃ to S̃′.
The technical issue with this approach is that S̃2 is a subset of vertices of graph H0. Specifically, S̃2

is the set of vertices of the subdivided graph of G0[S2]. Intuitively, we can think of graph Hq as being
obtained from H0[S̃2] by iteratively subdividing some of the special edges. Therefore, not all vertices
of Hq lie in S̃2, and so it is not immediately clear how to use the cut (Ã, B̃) in order to obtain the cut
(S̃, S̃′) in graph H0 with the desired properties. In order to overcome this technical difficulty, we will
slightly modify the cut (Ã, B̃) in Hq. The goal of this modification is to ensure that, for every special
edge e ∈ E(Gq), all inner vertices of P

∗(e) lie on the same side of the cut, and, if both endpoints of e
lie on the same side of the cut, then so do all vertices of P ∗(e). At the same time we need to ensure
that we preserve some of the useful properties of the cut (Ã, B̃): namely, that |EHq(Ã, B̃)| is small,
and that one of the sides of the cut contains many vertices of Hq but relatively few vertices of T .

We provide the algorithm for modifying the cut (Ã, B̃) in the next observation. For simplicity, in the
observation and its proof we denote the graph Hq by H and Gq by G.

Observation D.2 There is a deterministic algorithm, that, given a finalizing cut (Ã, B̃) in graph H,
computes a cut (Ã′, B̃′) in H, such that the following hold:

• for each special edge e = (x, y) of G, either all inner vertices on P ∗(e) lie in Ã′, or all inner
vertices of P ∗(e) lie in B̃′. Moreover, if both endpoints of e lie in Ã′, then so do all vertices of
P ∗(e), and if both endpoitns of e lie in B̃′, then so do all vertices of P ∗(e):

• all edges in EH(Ã′, B̃′) are special edges;

• |EH(Ã′, B̃′)| ≤ |T |
8 log6 N

; and

• one of the sides of the cut Z̃ ∈
{
Ã′, B̃′

}
contains at least |V (H)|− Ŵ

16 vertices of H, and at most

|T | ·
(
1− 6

log4 N

)
vertices of T .

The running time of the algorithm is O(Ŵ 2).

We complete the proof of Observation D.2 below, after we complete the proof of Claim 7.9 using it.
Consider some special edge e ∈ E(Gq). For simplicity, we denote the subdivided path P ∗(e) in the
corresponding graph Hq by P ′(e), while we use P ∗(e) to denote the subdivided path corresponding to
e in H0. Therefore, P

′(e) is obtained from P ∗(e) by iteratively subdividing some of the special edges.

We construct the cut (S̃, S̃′) in graph H0 as follows. We start with S̃ = S̃1 and S̃′ = S̃3. Next, we
consider all vertices v ∈ S2 = V (Gq). For each such vertex, if v ∈ Ã′, then we place v in S̃, and
otherwise, we place it in S̃′. Lastly, we consider every special edge e ∈ E(Gq). If all inner vertices of
P ′(e) lie in Ã′, then we place all inner vertices of P ∗(e) in S̃; otherwise, we place all inner vertices of
P ∗(e) in S̃′.

We now verify that the resulting cut (S̃, S̃) has all required properties. Consider first any edge
e ∈ EH0(S̃, S̃

′). If this edge is incident to a vertex of S̃1 or to a vertex of S̃2, then we are guaranteed
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that e ∈ E′ holds. Otherwise, there is a parent-edge e′ = (x, y) ∈ G0 of e, with x ∈ Ã′, y ∈ B̃′.
In this case, path P ′(e′) contributed exactly one special edge to the set EHq(Ã

′, B̃′) in Hq, and path

P ∗(e′) contributes exactly one special edge to the set EH0(S̃, S̃
′) – the edge e. Therefore, every edge

in EH0(S̃, S̃
′) is a special edge, and:

|EH0(S̃, S̃
′)| ≤ |E′|+ |EH(Ã′, B̃′)| ≤ 8|T |

log30N
+

|T |
8 log6N

≤ |T |
4 log6N

.

Recall that one of the sides of the cut Z̃ ∈
{
Ã′, B̃′

}
contains all but at most Ŵ

16 vertices of Hq, and at

most |T | ·
(
1− 6

log4 N

)
vertices of T .

Assume first that Z̃ = Ã′. Recall that we have established that |S̃3| ≤ Ŵ
log30 N

. Since |B̃′| ≤ Ŵ
16 , we

get that |S̃′| ≤ |S̃3| + |B̃′| ≤ Ŵ
log30 N

+ Ŵ
16 ≤

Ŵ
8 . Additionally, since we have assumed that |S̃2 ∩ T | >(

1− 4
log4 N

)
· |T |, we get that |S̃1∩T | ≤ 4|T |

log4 N
, and so |S̃∩T | ≤ |S̃1∩T |+ |Ã′∩T | ≤

(
1− 2

log4 N

)
· |T |.

Similarly, if Z̃ = B̃′, then |S̃| ≤ |S̃1|+ |Ã′| ≤ Ŵ
log30 N

+ Ŵ
16 ≤

Ŵ
8 . Since we have assumed that |S̃2 ∩T | >(

1− 4
log4 N

)
· |T |, we get that |S̃3∩T | ≤ 4|T |

log4 N
, and so |S̃′∩T | ≤ |S̃3∩T |+ |B̃′∩T | ≤

(
1− 2

log4 N

)
· |T |.

We now analyze the running time of the algorithm. The running times of the algorithms from
Claim D.1 and from Observation D.2 are bounded by O(Ŵ 2). It is easy to verify that the run-
ning time of the remainder of the algorithm is bounded by O(Ŵ 2) as well, so that total running time
of the algorithm is bounded by O(Ŵ 2).

In order to complete the proof of Claim 7.9, it is now enough to prove Observation D.2, which we do
next. In the proof of the observation we refer to graph Hq as H, and to graph Gq as G.

Proof of Observation D.2. We partition the set of all special edges of E(G) into four subsets. The
first set, EA, contains all special edges (x, y) with x, y ∈ Ã. The second set, EB, contains all special
edges (x, y) with x, y ∈ B̃. The third set, EAB contains all special edges (x, y) with x ∈ Ã and y ∈ B̃,
and the fourth set, EBA, contains all special edges (x, y) with x ∈ B̃ and y ∈ Ã. We say that a a
special edge e ∈ E(G) is bad, if some edge of P ∗(e) lies in EH(Ã, B̃). Clearly, the number of bad

special edges is bounded by |EH(Ã, B̃)| ≤ |T |
8 log6 N

. Recall that, since cut (Ã, B̃) is finalizing, one of the

sides of the cut Z ∈
{
Ã, B̃

}
contains at least |V (H)|− Ŵ

32 vertices of H, and at most |T | ·
(
1− 7

log4 N

)
vertices of T .

We start with (Ã′, B̃′) = (Ã, B̃), and then modify the cut (Ã′, B̃′), in two steps. In the first step, we
consider every bad edge e ∈ E(G) in turn. If e ∈ EA ∪ EAB ∪ EBA, then we move all inner vertices
of P ∗(e) to set Ã′. Otherwise, e ∈ EB must hold, and we move all inner vertices of P ∗(e) to B̃′.

Consider the resulting cut (Ã′, B̃′), that is obtained after every bad special edge of G has been pro-

cessed. It is immediate to verify that |EH(Ã′, B̃′)| ≤ |EH(Ã, B̃)| ≤ |T |
8 log6 N

continues to hold. Indeed,

every bad edge e ∈ E(G) contributes at least one edge of P ∗(e) to EH(Ã, B̃), and it contributes at
most one edge of P ∗(e) to EH(Ã′, B̃′). It is immediate to verify that every edge in EH(Ã′, B̃′) is a
special edge, since, for every special edge e of G, the first and the last edge on path P ∗(e) are special
edges of H. Moreover, every edge in EH(Ã′, B̃′) is a special edge that is a child-edge of some bad edge
in EAB.

Recall that the number of bad edges in G is bounded by |EH(Ã, B̃)| ≤ |T |
8 log6 N

. Consider the set

Z ∈
{
Ã, B̃

}
, such that contains at least |V (H)| − Ŵ

32 vertices of H, and at most |T | ·
(
1− 7

log4 N

)
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vertices of T . Since Event E4 did not happen, for every bad edge e ∈ E(G), the correpsonding path
P ∗(e) contains at most 16 logN vertices of T . Therefore, the total number of vertices of T that

our procedure could have added to Z during the first step is bounded by |T |
8 log6 N

· 16 logN ≤ 2|T |
log5 N

.

Therefore, after the transformation, Z contains at most |T | ·
(
1− 6

log4 N

)
vertices of T . Additionally,

since the length of every edge e in G is bounded by d′/2, for every special edge e ∈ E(G), the number
of vertices on path P ∗(e) is bounded by d′. Therefore, the total number of vertices that our algorithm

may have removed from Z is bounded by d′ · |T |
8 log6 N

≤ Ŵ
log6 N

(since |T | ≤ 8Ŵ
d′ , as Event E1 did not

happen). Therefore, after the first step, Z still contains at least |V (H)| − 3Ŵ
64 vertices. To summarize,

after the first step, Z contains at least |V (H)| − 3Ŵ
64 vertices, and at most |T | ·

(
1− 6

log4 N

)
vertices of

T .

Consider any special edge e = (x, y) of G. If x, y ∈ Ã′, and any vertex of P ∗(e) originally lied in B̃′,
then e must have been a bad edge, as some edge on P ∗(e) must have lied in EH(Ã, B̃). Our algorithm
then moved all inner vertices on P ∗(e) to Ã′. Simiarly, if x, y ∈ B̃′, then our algorithm ensures that
all inner vertices on P ∗(e) lie in B̃′. If x ∈ Ã and y ∈ B̃ held, then e must be a bad edge, since some
edge on P ∗(e) must lie in EH(Ã, B̃). Our algorithm moved all inner vertices of P ∗(e) to Ã′. Lastly,
assume that x ∈ B̃′ and y ∈ Ã′ holds. If e is a bad edge, then we have moved all inner vertices of
P ∗(e) to Ã′. It now only remains to take care of the subset E∗ ⊆ EBA of special edges, that contains
every edge e ∈ EBA that is not bad. We take care of these edges in the second step.

Intuitively, in the second step, we consider each edge e ∈ E∗ one by one, and for each such edge, we
move all inner vertices of P ∗(e) to one side of the cut. However, we need to be careful so that we do
not remove too many vertices from the set Z, and that we do not add too many vertices of T to Z.

We define a subset E∗1 ⊆ E∗ of edges to contain every edge e ∈ E∗, such that the path P ∗(e)

contains at least one vertex of T . If |E∗1 | >
⌈

6|T |
log4 N

⌉
, then we discard edges arbitrarily from E∗1 , until

|E∗1 | =
⌈

6|T |
log4 N

⌉
holds.

We now consider two cases. The first case happens when Z = Ã. In this case, for every edge e ∈ E∗1 , we
move all inner vertices on path P ∗(e) to B̃′, and for every edge e ∈ E∗ \E∗1 , we move all inner vertices

on path P ∗(e) to Ã′. Notice that, if |E∗1 | =
6|T |

log4 N
, then this process guarantees that |B̃′ ∩ T | ≥ 6|T |

log4 N

holds at the end of the second step, and so |Ã′ ∩ T | ≤ |T | ·
(
1− 6

log4 N

)
holds. If |E∗1 | <

6|T |
log4 N

, then

we did not add any new terminals to set Ã′ in this step, and so |Ã′ ∩ T | ≤ |T | ·
(
1− 6

log4 N

)
continues

to hold. Since, for every edge e ∈ E∗1 , the number of inner vertices on path P ∗(e) is bounded by d′,
the number of vertices that we have deleted from Ã′ in this step is bounded by:

d′ · |E∗1 | ≤ d′ ·
⌈

6|T |
log4N

⌉
≤ d′ · 100Ŵ

d′ log4N
≤ Ŵ

log3N
.

(We have used the fact that |T | ≤ 8Ŵ
d′ , since Event E1 did not happen). Therefore, after the second

step, Ã′ contains at least |V (H)| − 3Ŵ
64 −

Ŵ
log3 N

≥ |V (H)| − Ŵ
16 vertices.

If Z = B̃, then for every edge e ∈ E∗1 , we move all inner vertices on path P ∗(e) to Ã′, and for every
edge e ∈ E∗ \E∗1 , we move all inner vertices on path P ∗(e) to B̃′. Using the same arguments as before,

we conclude that, after the second step, |B̃′ ∩ T | ≤ |T | ·
(
1− 6

log4 N

)
and |B̃′| ≥ |V (H)| − Ŵ

8 hold.

It is easy to verify that the time required to compute the modified cut (Ã′, B̃′) is bounded by
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O(|E(H)|) ≤ O(Ŵ 2).

D.3 Proof of Observation 7.14

It is enough to prove that inequalities r ≤
⌈√

logN ′
⌉
, 1 ≤ η′ ≤ ∆̂, and (|V (H)|−|B|)·η′

∆̂
≤ 2r

√
logN ′

all
hold.

First, since r ≤
⌈√

logN
⌉
, and N ≤ N ′, it is immediate to verify that r ≤

⌈√
logN ′

⌉
.

Second, since Event E1 did not happen, ∆̂ ≥ |T |4 ≥
Ŵ
8d′ . Since η′ = (logN ′)8, we then get that:

∆̂ ≥ Ŵ

8d′
≥ n

16d′
≥ n · (logN)28

32d
≥ (logN)28

64
≥ η′.

(we have used the fact that Ŵ ≥ |V (G)| ≥ n
2 ; d′ ≤ 2d

(logN)28
; d ≤ n from Inequaltiy 15), and

η′ = (logN ′)8. Therefore, 1 ≤ η′ ≤ ∆̂ holds.

Lastly:

(|V (H)| − |B|) · η′

∆̂
≤ Ŵ · η′

∆̂
≤ 8d′(logN ′)8 ≤ d ≤ 2r·

√
logN ≤ 2r·

√
logN ′

.

D.4 Proof of Claim 7.15

We start by turning the cut (Z,Z ′) into a weakly well-structured one, using the following straightfor-
ward algorithm. Consider every vertex v ∈ Z one by one. If there is a regular edge (v, u) ∈ EH(Z,Z ′),
then we move v to Z ′. Notice that, if a regular edge (v, u) exists, then v ∈ L must hold, so mov-
ing v to Z ′ may introduce at most one new edge into the set EH(Z,Z ′) – the special edge that is
incident to v. At the same time, at least one regular edge is deleted from EH(Z,Z ′), so |EH(Z,Z ′)|
does not increase. At the end of this procedure, cut (Z,Z ′) becomes weakly well-structured, and

|EH(Z,Z ′)| ≤ Ŵ
d′(logN)7

continues to hold. Since |T | ≥ Ŵ
2d′ , as Event E1 did not happen, we get that

|EH(Z,Z ′)| ≤ 2|T |
log7 N

. The number of vertices that were deleted from Z is bounded by the original

number of edges in EH(Z,Z ′), which is bounded by Ŵ
d′(logN)7

≤ 2|T |
log7 N

≤ |T |
8 log6 N

. Therefore, at the end

of this procedure, |Z∩T |, |Z ′∩T | ≥ 7|T |
8 log4 N

holds. Notice that the running time of the algorithm so far

is bounded by O(|E(H)|) ≤ O(Ŵ 2). If either of the sets Z or Z ′ contains at least |V (H)| − Ŵ
32 = 31Ŵ

32
vertices, then cut (Z,Z ′) is a finalizing cut (see Definition 7.7). We then terminate the algorithm and
return this cut.

We assume from now on that |Z|, |Z ′| ≥ Ŵ
32 . Since |EH(Z,Z ′)| ≤ Ŵ

d′(logN)7
≤ 32

d′·(logN)7
·min {|Z|, |Z ′|},

we get that the sparsity of the cut (Z,Z ′) is at most 32
d′·(logN)7

.

Next, we turn the cut (Z,Z ′) into a cut (A′, B′) in G, in a natural way: we let A′ = Z ∩ V (G), and
B′ = Z ′ ∩ V (G). Recall that the length of every edge in G is at most d′

2 . From Observation 4.4,

(A′, B′) is a weakly well-structured cut in G of sparsity at most 256
d′ log7 N

, with w(A′) ≥ Z
8 ≥

Ŵ
256 and

w(B′) ≥ |Z
′|
8 ≥

Ŵ
256 . The time required to compute the cut (A′, B′) in G given the cut (Z,Z ′) in H is

bounded by O(|V (H)|) ≤ O(Ŵ ).
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Recall that for every special edge e ∈ E(G), ℓ(e) ≤ d′

2 ≤
n
16 , while

∑
e∈E(G) ℓ(e) ≥

n
4 . We can now

apply the algorithm from Observation 4.5 to cut (A′, B′), to compute a strongly well-structured cut

(A,B) in G with w(A) ≥ w(A′)
4 ≥ Ŵ

1024 ≥
Ŵ

log30 N
and w(B) ≥ w(B′)

4 ≥ Ŵ
log30 N

, whose sparsity is at most
1024

d′ log7 N
≤ 1

d′ . The running time of the algorithm from Observation 4.5 is O(|E(H)|) ≤ O(Ŵ 2). We

then return the cut (A,B).

From the above discussion, the total running time of the algorithm is O(Ŵ )2.

D.5 Proof of Claim 7.21

Clearly, G is a perfect well-structured graph, and the assignment ℓ′(e) of lengths to its edges e ∈ E(G)
is a proper assignment. The current weight of all vertices in G with respect to the edge lengths ℓ′(·) is
W ′ ≤ 2Ŵ ≤ 24W 0, whileN ≥W 0 holds from the definition of theMaintainCluster problem. Therefore,

N ′ = 8N ≥ 8W 0 ≥ 8n ≥ 8|V (G)|, and N ′ = 8N ≥ 8W 0 ≥ W ′

8 holds, so N ′ ≥ max
{
|V (G)|, W ′

8

}
,

as required. Since N is large enough from the definition of the MaintainCluster problem, so is N ′.

Since Event E1 did not happen, |β| = |V (X)| = |T | ≥ Ŵ
2d′ ≥

W ′

256d′ , as required. Since 1 ≤ r ≤⌈√
logN

⌉
holds from the definition of r-restricted MaintainCluster problem, and N ′ ≥ N , we get that

1 ≤ r ≤
⌈√

logN ′
⌉
. Lastly, we need to verify that d′ ≤ min

{
2r
√

logN′

log8 N ′ , |V (G)|
8

}
holds. Indeed, recall

that d′ ≤ 2d
(logN)28

. Moreover, from Inequality 15, d ≤ n, and from the definition of the r-restricted

MaintainCluster problem, d ≤ 2r·
√
logN . Therefore:

d′ ≤ 2d

(logN)28

≤ min

{
2n

(logN)28
,
2 · 2r·

√
logN

(logN)28

}

≤ min

{
230 · n

(logN ′)28
,
229 · 2r·

√
logN ′

(logN ′)28

}

≤ min

{
|V (G)|

8
,
2r
√
logN ′

log8N ′

}
.

(We have used the fact that, from Inequality 17, logN ′ ≤ 2 logN).
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