
Improved Bounds for Fully Dynamic Matching via

Ordered Ruzsa-Szemerédi Graphs

Sepehr Assadi∗ Sanjeev Khanna† Peter Kiss‡

Abstract

In a very recent breakthrough, Behnezhad and Ghafari [FOCS’24] developed a novel fully
dynamic randomized algorithm for maintaining a (1− ε)-approximation of maximum matching
with amortized update time potentially much better than the trivial O(n) update time. The
runtime of the BG algorithm is parameterized via the following graph theoretical concept:

• For any n, define ORS(n)—standing for Ordered Ruzsa-Szemerédi Graph—to be the largest
number of edge-disjoint matchings M1, . . . ,Mt of size Θ(n) in an n-vertex graph such that
for every i ∈ [t], Mi is an induced matching in the subgraph Mi ∪Mi+1 ∪ . . . ∪Mt.

Then, for any fixed ε > 0, the BG algorithm runs in

O

(√
n1+O(ε) · ORS(n)

)
amortized update time with high probability, even against an adaptive adversary. ORS(n) is a
close variant of a more well-known quantity regarding Ruzsa-Szemerédi graphs (which require
every matching to be induced regardless of the ordering). It is currently only known that
no(1) ⩽ ORS(n) ⩽ n1−o(1), and closing this gap appears to be a notoriously challenging problem.

If it turns out that ORS(n) = no(1), namely, the current lower bounds are close to being
optimal, then, this algorithm achieves an update time of n1/2+o(1) for (1− ε)-approximation of
fully dynamic matching, making progress on a major open question in the area.

Our Result: In this work, we further strengthen the result of Behnezhad and Ghafari and
push it to limit to obtain a randomized algorithm with amortized update time of

no(1) · ORS(n)

with high probability, even against an adaptive adversary. In the limit, i.e., if current lower
bounds for ORS(n) = no(1) are almost optimal, our algorithm achieves an no(1) update time
for (1− ε)-approximation of maximum matching, almost fully resolving this fundamental ques-
tion. In its current stage also, this fully reduces the algorithmic problem of designing dynamic
matching algorithms to a purely combinatorial problem of upper bounding ORS(n) with no
algorithmic considerations.

∗(sepehr@assadi.info) Cheriton School of Computer Science, University of Waterloo. Supported in part by a Sloan
Research Fellowship, an NSERC Discovery Grant, a University of Waterloo startup grant, and a Faculty of Math
Research Chair grant.

†(sanjeev@cis.upenn.edu) Department of Computer and Information Science, University of Pennsylvania. Research
supported in part by NSF awards CCF-1934876, CCF-2008305, and CCF-2402284.

‡(peter.kiss@warwick.ac.uk) University of Vienna. The author completed parts of this project at the University
of Warwick.

i

ar
X

iv
:2

40
6.

13
57

3v
2

 [
cs

.D
S]

 1
8

O
ct

 2
02

4

Contents

1 Introduction 1

1.1 Our Contribution . 2

1.2 Our Algorithm at a High Level . 2

2 Preliminaries 4

2.1 Basic Notation and Representation of Graphs . 4

2.2 Tools from Prior Work . 4

2.3 An Auxiliary Lemma on ORS Graphs . 5

3 An Opportunistic Sublinear-Time Algorithm for Matching 6

4 A Key Intermediate Dynamic Problem 9

4.1 Base Case . 9

4.2 The Recursive Step . 13

5 A Fully Dynamic Algorithm for Maximum Matching 18

5.1 Removing the Assumption on the Prior Knowledge of ORS 19

Acknowledgement 20

ii

1 Introduction

We study the problem of maintaining an approximate maximum matching in a fully dynamic
graph. In this problem, we have a graph G = (V,E) that undergoes insertion and deletion of
edges by an adversary and our goal is to maintain (edges of) an approximate maximum matching
of G after each update. This is one of the most central problems in the dynamic graph literature;
see [OR10,GP13,BS15,BS16,Sol16,BGS18,BK22,Beh23,BKSW23,ABKL23,BKS23,Liu24,BG24]
and references therein.

In a very recent breakthrough, [BG24] developed an algorithm that for any fixed ε > 0, maintains
(edges of) a (1 − ε)-approximate maximum matching in a fully dynamic graph with potentially
much better than Oε(n) update time. Specifically, the runtime of the algorithm of [BG24] is
parameterized based on the density of a certain family of extremal graphs which are (quite) closely
related to Ruzsa-Szemerédi (RS) graphs [RS78] (see [AMS12,FHS17] for more context on RS graphs,
and [GKK12,ABKL23,AS23] and references therein for their applications to dynamic graph and
other sublinear algorithms). [BG24] defined the following family of closely related graphs.

Definition 1.1 (Ordered Ruzsa-Szemerédi (ORS) Graphs [BG24]). A graph G = (V,E) is called
an (r, t)-ORS graph if its edges can be partitioned into an ordered set of t matchings M1, . . . ,Mt

each of size r, such that for every i ∈ [t], the matching Mi is an induced matching in the subgraph
of G on Mi ∪Mi+1 ∪ . . . ∪Mt.

We define ORS(n, r) as the largest choice of t such that an n-vertex (r, t)-ORS graph exist.

Unfortunately, exactly as in RS graphs, density of ORS graphs is quite poorly understood at
this point. Currently, for any constant δ ∈ (0, 1/4), it is only known that

nΩδ(1/ log logn) ⩽
[FLN+02,GKK12]

ORS(n, δn) ⩽
[BG24]

n

log(poly(1/δ)) (n)
, (1)

where log(k)(n) is the k-iterated logarithm function, i.e.,

log(k) (n) := log log · · · log︸ ︷︷ ︸
k

(n).

This is quite similar to the situation for RS graphs (modulo a slightly better dependence in
RS graphs on the parameter δ in the upper bound due to [Fox11] (see also [FHS17]), namely,
logO(log (1/δ))(n) instead in the denominator).

The result of [BG24] is a randomized algorithm that given any fixed ε > 0 with high probability
maintains a (1−ε)-approximation of maximummatching in a fully dynamic graph with an amortized
update time of

O
(√

n1+ε · ORS(n,Θε(n))
)
.

Thus, if it happens to be the case that ORS graphs cannot be dense, i.e., ORS(n,Θε(n)) = n1−Ω(1),
this algorithm achieves an update time of n1−Ω(1) for this problem, making progress on a major
open question in the dynamic matching literature [GP13, BS16, BK22, BKS23, BG24]. Moreover,
in the limit, namely, if the current lower bounds of Eq (1) on ORS are almost optimal, then, this
algorithm achieves an update time of n1/2+o(1); currently, the best algorithm known with such an
update time due to [BS16] can only achieve a 2/3-approximation.

1

1.1 Our Contribution

We build on the approach of [BG24] and push it to its limit to obtain the following result.

Result 1. There is an algorithm that for any fixed ε > 0 maintains a (1 − ε)-approximate
maximum matching of any fully dynamic graph with amortized update time of

O
(
no(1) · ORS(n,Θε(n))

)
.a

The algorithm is randomized and its guarantees hold with high probability against an adaptive
adversary. The algorithm does not assume a prior knowledge of the value of ORS(n,Θε(n)) to
achieve its guarantee.

aMore specifically, for any β0 ∈ (0, 1), there is a β1 ∈ (0, 1) such that this runtime is O(nβ0 ·ORS(n, β1 ·f(ε)·n))
for some fixed function f independent of β0, β1.

In the limit, if ORS graphs cannot be much denser than the lower bounds in Eq (1), Result 1
achieves an no(1) amortized update time, almost fully settling the question of (1−ε)-approximation
of fully dynamic matching. Beside the conditional upper bound of [BG24] (which would be an
n1/2+o(1) update time algorithm under this hypothesis), it is also known unconditionally how to
obtain an update time of n/2Θ(

√
logn) · poly(1/ε) on bipartite graphs [Liu24] (and presumably

a similar runtime with O(1/ε)O(1/ε)-dependence instead on general graphs using the reduction
of [McG05]; see Proposition 2.2). Moreover, [BKS23], building on [Beh23,BKSW23], designed an
algorithm that for any fixed ε > 0, obtains an update time of m1/2−Ωε(1) for the easier problem of
maintaining the size of the maximum matching (but not its edges).

Result 1 also suggests that almost any interesting lower bound for this problem (even under
computational hardness assumptions) should effectively rule out existence of even mildly dense
ORS graphs, which will constitute a big breakthrough given the close connection of these graphs
to RS graphs (or alternatively, explicitly condition on the assumption that ORS graphs are dense;
similar assumptions for RS graphs have been used to prove lower bounds for (1− ε)-approximation
of the maximum matching problem in other settings, e.g., in the streaming model [AS23]).

It is worth noting here that existing conditional lower bounds in [HKNS15] rule out n1−Ω(1)

update time algorithms for computing an exact maximum matching, and more recently in [Liu24],
for even a (1−ε)-approximation but only when ε = n−Ω(1). On the other hand, our focus in Result 1
is on the regime when ε ∈ (0, 1) is fixed and independent of n (which is often the main regime
of interest in the context of sublinear algorithms). Indeed, the RS graph constructions of [RS78]
(see also [AMS12]) imply that ORS(n, δn) = Ω(n) for δ ⩽ 2−Θ(

√
logn). This implies that for small

enough ε, it is already known that Result 1 cannot achieve any non-trivial guarantee.

1.2 Our Algorithm at a High Level

By the existing boosting frameworks for matchings (see Proposition 2.2), obtaining an εn additive
approximation reduces to the following problem: given a fully dynamic graph G = (V,E), every
Θε(n) updates we receive Oε(1) queries of the form U ⊆ V and must return an O(1)-approximate
maximum matching in the induced subgraph G[U] (see Problem 1). An additive εn approxima-
tion to matching can also be turned into a multiplicative one, using another standard technique
(see Proposition 2.4). Both these parts are by-now standard; see, e.g. [Kis22, Beh23, BKSW23,
BKS23,ABR24,Liu24,BG24]. The main part then is to solve Problem 1.

2

The approach of [BG24]. The solution of [BG24] for Problem 1 can be summarized as follows.
The algorithm processes the updates in batches. In each batch, G0 will be the current graph at
the start of the batch and the new updates are inserted into a new graph G1. There will also be
a graph G2 which is created by moving certain edges from G0 (will be described later). Given a
query U , the algorithm tries to find a large matching in (G1 ∪G2)[U] and if it succeeds, it returns
that one and moves on. This step is done using the greedy matching algorithm taking time linear
in the size of G1 ∪G2. But, if (G1 ∪G2)[U] does not have a large matching, the algorithm needs to
search for a one in G0[U]. This is done via a novel sublinear time “opportunistic” algorithm: the
algorithm takes O(n2+ε/d) time with high probability where d is the average degree of the graph
G0[V (M)]; i.e., if the matching M is “far from” being induced, then it can be found much faster
than when it is close to being induced. The edges in this matching are then moved from G0 to G2.

The runtime analysis of this algorithm is as follows. Suppose each batch consists of s updates.
Since Oε(1) queries are called every Θε(n) updates, the algorithm needs to handle Oε(s/n) queries
in a batch. Moreover, both graphs G1 and G2 can only have Oε(s) edges: the first one since there
are s updates in a batch and the second because each of the Oε(s/n) queries may insert a matching
inside G2. Thus, the entire time spent in this batch for running the greedy algorithm on G1∪G2 is
Oε(s

2/n) time. The runtime on G0 however is calculated differently using a global argument. Using
the fact that G0 only undergoes deletions during a batch, [BG24] come up with an elegant analysis
that shows that if the algorithm is spending a “lot of time” in finding “near induced” matchings
in G0, then, one can find a “dense” ORS graph in G0 – this allows for bounding the entire time
the algorithm is spending on G0 during this batch by O(n2+ε · ORS(n,Θε(n))) time. This implies
that by taking s ≈ n3/2 ·ORS(n,Θε(n))

1/2, the amortized update time of the algorithm will become
Oε(s/n) (over s updates) which is Oε(

√
n1+ε · ORS(n,Θε(n))) time.

Our approach. In the algorithm of [BG24], if the size of batch grows then so do the number
of edges in the graph G1 ∪ G2, and hence the cost of finding a greedy matching in (G1 ∪ G2)[U].
However, the ORS-density based upper bound of the total running time of calls to the opportunistic
algorithm remains unchanged with larger batches. Our main goal is to accelerate the step of
finding matchings in G1 ∪ G2 to allow for larger batches to amortize over the running cost of the
opportunistic algorithm. To do this, observe that G1 and G2 are both dynamic graphs undergoing
a small number of updates per each update to the underlying graph. This suggests that instead of
statically finding matchings in G1∪G2 we may dynamically maintain them via an efficient dynamic
matching algorithm.

We develop a recursive variant of the algorithm of [BG24]. The first main ingredient is a
sublinear time algorithm that given a graph G = (V,E) with m edges and a query U ⊆ V , finds
a large matching M in G in O(m1+ε/d) time where d is the maximum degree of M in G[V (M)].
Thus, this result strengthens the algorithm of [BG24] in both relating it to the density of G (instead
of O(n2) always) and providing a stronger guarantee on the maximum internal degree of M instead
of the average degree. The main step however is how to perform the recursion.

We present a family of algorithms {Ai}i⩾1 with progressively better update times, where A1 is

similar to the algorithm of [BG24] with a key difference of having Oε(
√
(m/n)1+ε · ORS(n,Θε(n)))

update time instead (here, m is a promised upper bound on the number of edges in G). Let us now
consider constructing A2 from A1.

We also process the inputs in batches of size s with G0 being the current graph at the start of
the batch, G1 receiving the updates during the batch, and G2 receiving some removed matchings
from G0 while answering the queries. The main difference is that we are going to run A1 on G1 and
G2 separately instead of the greedy algorithm. These graphs now are going to have Oε(s) edges

3

in total (similar to what argued earlier) and thus the total runtime of processing these graphs is
Oε(s ·

√
(s/n)1+ε · ORS(n,Θε(n)). If we find a large matching for a given query U from either G1

or G2, we will be done, but if not, we need to rely on G0[U]. In this case, we run our new sublinear
time algorithm to find a matching with maximum internal degree d in O(m1+ε/d) time. A similar
argument as in [BG24] (in fact considerably simpler given our stronger maximum degree guarantee)
allows us to bound the total runtime of this step with Oε(m

1+ε ·ORS(n,Θε(n))) time. Optimizing
for the choice of s then leads to an Oε((m/n)1/3+ε · ORS(n,Θε(n))

2/3) amortized update time.

Continuing like this for A3,A4, · · · , while explicitly accounting for the loss in parameters (es-
pecially size of induced matchings in ORS graphs), gives us our final algorithm.

2 Preliminaries

2.1 Basic Notation and Representation of Graphs

For a graph G = (V,E), we use n := |V | and m := |E|. For a vertex v ∈ V , we use N(v) to denote
the neighbors of v and deg(v) := |N(v)| to denote its degree. For a subset U ⊆ V , G[U] denotes
the induced subgraph of G on U . We use µ(G) to denote the maximum matching size in G.

Since we will be designing sublinear-time algorithms for a dynamically changing graph, we
briefly describe how the graphs will be represented to support various operations, namely, insertion
and deletion of edges, neighbor queries, and pair queries, each in O(1) expected time. For each
vertex u ∈ V , we maintain a dynamic array Au, a dynamic hash table hu, and the current degree
deg (u) of u. Here, dynamic refers to the property that at all times, the size of Au is Θ(deg (u)).

When an edge (u, v) is inserted, we increment deg (u) by 1, set Au[deg (u)] = v, and insert v in
the hash table hu, storing along with it it the value deg (u), namely, the location of the vertex v in
the array Au. This takes O(1) expected time.

When an edge (u, v) is deleted, let w be the vertex at Au[deg (u)]. We decrement deg (u) by 1.
If w = v, we simply delete v from the hash table hu. Otherwise, let j be the location of the vertex
v in Au which can be recovered using hu(v). We set Au[j] = w, delete both v and w from hu, and
reinsert w in hu associating j to be its new location in Au. This takes O(1) expected time.

Finally, given any integer i ∈ [deg (u)], the task of outputting the i-th neighbor of u is done by
simply returning the vertex stored in Au[i]. This also allows for sampling a random neighbor of u.

2.2 Tools from Prior Work

We start by recalling the following standard fact about the greedy algorithm for approximating
maximum matchings.

Fact 2.1. Let G = (V,E). The greedy algorithm that starts with M = ∅, iterates over edges of G
in any arbitrary order, and add an edge to M if both its endpoints are currently unmatched, returns
a matching M of size |M | ⩾ 1/2 · µ(G) in O(n+m) time.

Boosting frameworks for approximate matching. We use standard boosting frameworks
for obtaining a (1 − ε)-approximation to matching, using a “weak” approximation algorithm that
only returns an O(1)-approximation. The original version of this framework is due to [McG05] and
was de-randomized in [Tir18]; for bipartite graphs, more efficient reductions are known in [AG11,
ALT21]. These results were tailored to additive approximation and dynamic graphs in [BKS23].

Proposition 2.2 ([McG05,AG11,Tir18,ALT21,BKS23]). Let γ, ε ∈ (0, 1) be parameters. There
exist functions f(γ, ε) and g(γ, ε) such that the following holds. Let Aweak be an algorithm that given

4

an n-vertex graph G = (V,E) and any set U ⊆ V of vertices with µ(G[U]) ⩾ f(γ, ε) · n, returns a
matching of size at least γ · f(γ, ε) · n in G[U]. Then, there is a algorithm that given G = (V,E)
makes g(γ, ε) calls to Aweak on adaptively chosen subsets of vertices, spending O(f(γ, ε) · n) time
preparing each subset, and returns a matching of size µ(G)− ε · n in G.

For bipartite graphs, f(γ, ε) = poly(ε) and g(γ, ε) = poly(1/(γ · ε)) by [AG11,ALT21], while
for general graphs, both f(γ, ε)−1, g(γ, ε) = (1/(γ · ε))O(1/(γ·ε)) = Oγ,ε(1) by [McG05,Tir18].

Sublinear-time estimation of maximum matching size. We also rely on the sublinear-time
algorithm of [Beh21] for matching size estimation.

Proposition 2.3 ([Beh21]). There is a randomized algorithm Asublinear that for any n-vertex graph
G = (V,E) and a parameter ε ∈ (0, 1), makes Õ(n · poly(1/ε)) queries to the adjacency matrix of
G and with high probability outputs an estimate µ̃(G) such that

1

2
· µ(G)− ε · n ⩽ µ̃(G) ⩽ µ(G).

Vertex sparsification. Finally, we use vertex sparsification approaches of [AKLY16, AKL16,
CCE+16] as implemented by [Kis22] for dynamic graphs. These sparsification approaches reduce
the number of vertices to O(µ(G)/ε) via vertex contraction while preserving a (1− ε)-approximate
maximum matching in the graph. This allows one to turn additive approximation to matching into
a multiplicative one, with minor overhead (see, e.g. [BG24], for an example of how this is used).

Proposition 2.4 ([AKLY16,AKL16,CCE+16,Kis22]). Suppose Aadditive is an algorithm that given
a parameter ε > 0 can process a fully dynamic n-vertex graph G = (V,E) and maintains a matching
of size at least µ(G)−ε ·n in T (n, ε) amortized update time. Then, there is a randomized algorithm
that can with high probability maintain a (1− ε)-approximation to maximum matching in n-vertex
fully dynamic graphs in O(T (n,Θ(ε2)) · poly(log (n)/ε)) amortized update time.

2.3 An Auxiliary Lemma on ORS Graphs

For a matching M in a graph G, we define the maximum internal degree ∆in(M) of M , as the
maximum degree of the induced subgraph G[V (M)]. This way, ∆in(M) = 1 iff M is an induced
matching, and in general, smaller the value ∆in(M), the “closer” M is to an induced matching.

The following lemma is a simplification of a similar result in [BG24, Lemma 14] (which even
works for average internal degree instead of maximum degree), using a simple variant of the rounding
approach of [GKK12] for RS graphs.

Lemma 2.5. Let G = (V,E) be any graph and M := (M1, . . . ,Mρ) be an ordered set of matchings
in G, each of size ℓ, such that for every i ∈ [ρ], ∆in(Mi) in the subgraph of G on edges Mi∪Mi+1∪
. . . ∪Mρ is some given di ⩾ 1. Then, for every η ∈ (0, 1/100),

ρ∑
i=1

1

di
⩽

34 log n

η
· ORS(n, (1− η) · ℓ).

Proof. For any integer d ∈ {1, 2, 4, . . . , n}, define M(d) := {Mi ∈ M | d ⩽ di < 2di} . Moreover, let

d∗ := argmax
d

∑
Mi∈M(d)

1/di.

5

Since M(1),M(2), · · · partition M, we have that

|M(d∗)| = d∗ ·
∑

Mi∈M(d∗)

1

d∗
⩾ d∗ ·

∑
Mi∈M(d)

1

di
⩾

d∗

log n
·

ρ∑
i=1

1

di
. (2)

We now show that a random subset of M(d∗) indeed forms an ORS graph with induced match-
ings of size (1− η) · ℓ which will be enough to conclude the proof.

Pick M∗ = (M1, . . . ,Mρ′) ⊆ M(d∗) wherein each matching of M(d∗) is chosen with probability

p :=
η

20d∗

independently (with the sampled matchings ordered in the same manner as they were in M). Fix
any matching Mi in M∗. For any vertex v matched by Mi, define deg∗i (v) as the degree of v in the
subgraph Mi+1, . . . ,Mρ′ ∈ M∗ (notice that this excludes degree of v in Mi itself). We have,

E [deg∗i (v)] =
∑

j>i∈M(d∗)
v has an edge in Mj

Pr (Mj is chosen in M∗) ⩽ 2d∗ · η

20d∗
=

η

10
,

where in the inequality uses the fact that degree of all vertices in M(d∗) in the suffix matchings is
at most 2d∗ in the entire M (and thus among M(d∗) for sure).

We now say that v is bad for Mi iff deg∗i (v) ⩾ 1. By the above calculation and a Markov bound,
the probability that v is bad for Mi is at most η/10. This means that the expected number of bad
vertices for Mi is at most 2ℓ · η/10 = ℓ · η/5.

We further say that the matching Mi itself is bad if it has at least η · ℓ bad vertices. Another
application of Markov bound implies that the probability Mi is bad is at most 1/5. This means
that in expectation, at least 4/5 of the sampled matchings in M∗ are not bad.

By the probabilistic method (and since the size of M∗ is concentrated), there exist a set of
3/5 · p · |M(d∗)| matchings in M∗ none of which are bad. For each of these matchings, remove all
their bad vertices which reduces their size to (1 − η) · ℓ in the worst case and arbitrarily remove
more edges such that all of them have size (1− η) · ℓ exactly. By definition, the resulting graph is
now an (r, t)-ORS graph with parameters

r = (1− η) · ℓ, and t =
3

5
· η

20d∗
· |M(d∗)| .

By definition, we have t ⩽ ORS(n, (1− η) · ℓ) which implies that

|M(d∗)| ⩽ 34d∗

η
· ORS(n, (1− η) · ℓ).

Plugging in this bound in Eq (2) concludes the proof.

3 An Opportunistic Sublinear-Time Algorithm for Matching

In this section, we provide one of the key subroutines used by our dynamic algorithm. This
subroutine takes as input a “base” static graph G and a set U with the promise that G[U] is of size
Ω(n), and outputs a matching of size Ω(n) in G[U]. While the worst-case runtime of this algorithm
is (almost) linear in the number of edges of the base graph, it can be much better if the maximum
internal degree of the matching it outputs is large.

6

Lemma 3.1. There is an algorithm (Algorithm 1) that given an n-vertex graph G = (V,E) with
m edges, parameters γ, δ ∈ (0, 1/6), and vertices U ⊆ V with µ(G[U]) ⩾ δn, with high probability
returns a matching M in G[U] with size at least γ · δn in O(m · n3γ · log (n)/∆in(M)) time.

We note that the worst-case bound of Ω(m) in Lemma 3.1 is necessary due to a lower bound
of [ACK19] (as opposed to Proposition 2.3 for size estimation); however, in the hard instances of
that lower bound, one necessarily needs to find a large matching with maximum internal degree
O(1), which means, one cannot benefit from the extra power of this lemma (as expected).

This result is inspired by [BG24, Lemma 9] and generalizes and strengthens it. Algorithm
of [BG24] finds a matching of size γ · δn in O(n2+O(γ)/d) time (thus, does not benefit from the
number of edges of G) and moreover d is the average degree of G[V (M)] instead of our stronger
guarantee on maximum degree. To obtain our result, we use an argument similar in spirit to that
of “residual sparsity guarantee” of the greedy algorithm used for maximal independent set and
maximal matching problems, e.g., in [ACG+15,Kon18,AOSS19].

The algorithm in Lemma 3.1 works by sampling the edges of G with geometrically increasing
probabilities and only consider edges of G that are sampled and belong to G[U]. It then attempts to
find a “large” matching in this sampled graph using the greedy algorithm; if it succeeds, it returns
this matching only, otherwise, it will remove vertices of this matching and continues to the next
sampling phase. Formally, the algorithm is as follows.

Algorithm 1 (The algorithm of Lemma 3.1).

Input: A graph G(V,E), a set U ⊆ V , s.t. µ(G[U]) ⩾ δn, and γ, δ ∈ (0, 1/6).
Output: A matching M in G[U] of size at least γ · δn.

• Let X1 = U . For i = 1 to Γ := 1/(3γ) iterations:

1. Let the sampling probability be pi := n(3γ)·i/n. For every vertex v ∈ Xi, pick a set
Ni(v) ⊆ N(v) by sampling each neighbor of v in G independently with probability pi.

2. Start with Mi = ∅. Iterate over vertices of Xi in a fixed order, and for each v ∈ Xi, if
both v and some w in Ni(v)∩Xi are unmatched by Mi, then add the edge (v, w) to Mi.

3. If |Mi| ⩾ γ · δn, return Mi and terminate. Otherwise, let Xi+1 = Xi \ V (Mi), and
continue to the next sampling step.

We start by arguing that the algorithm always returns a matching in one of its iterations.

Claim 3.2. Algorithm 1 always returns a matching Mi of size at least γ · δn in some i ∈ [Γ].

Proof. Suppose the algorithm has not terminated until the beginning of the last iteration. This
means that for all i < Γ, we have, |Mi| < γ · δn. Thus, the total number of vertices from U that
are removed until reaching XΓ is

Γ−1∑
i=1

|V (Mi)| < Γ · 2 · (γ · δn) = 2δn/3,

given Γ = 1/(3γ). Given that G[U] has a matching of size at least δn by the theorem statement,
there is still a matching of size at least δn−2δn/3 = δn/3 inside G[XΓ] (after removing the vertices
counted above). But, in iteration i = Γ, every edge is sampled with probability n3γ·1/(3γ)/n = 1

7

and thus Ni(v) is the entire neighborhood of v in G[XΓ]. Hence, the greedy algorithm necessarily
finds a matching of size at least δn/6 > γ · δn in this case (since γ < 1/6). Thus the algorithm
terminates in this last iteration and outputs MΓ as the answer.

The next step is to bound the runtime of the algorithm based on the iteration it terminates in.

Claim 3.3. With high probability, for every i ∈ [Γ], if Algorithm 1 returns the matching Mi and
terminates in this iteration, then its runtime is O(m · pi).

Proof. Firstly, with high probability, the runtime of the algorithm in each iteration j ∈ [Γ] is
O(m ·pj). This is because with high probability, the number of edges in Gj is O(m ·pj) by a simple
application of Chernoff bound, and the edges can be sampled in this much time using standard
ideas instead of explicitly going over each edge and sampling them1. Running the greedy matching
algorithm also take another O(m · pj) time now. Finally, since pj ’s form a geometric series (as
pj+1 = n3γ · pj), we have

∑i
j=1 pj = O(pi) which concludes the proof.

We now bound ∆in(Mi) for the matching Mi returned by the algorithm. Instead of bounding
the maximum internal degree of the matching itself, we simply bound the maximum degree of the
subgraph G[Xi] where the matching Mi is chosen from.

Claim 3.4. With high probability, for every i ∈ [Γ], max-degree of G[Xi] is O(n3γ · log (n)/pi).

Proof. The claim trivially holds for i = 1 since p1 = n3γ/n and G[X1] can only have maximum
degree n < n log (n) = n3γ log (n)/p1. We focus on the i > 1 case in the following.

Fix any vertex v in G[Xi−1]. Consider the step wherein v is being processed by the greedy
algorithm. First, suppose that the degree of v to vertices in Xi−1 \ V (Mi−1) at this point is
at most 100 ln (n)/pi−1. In this case, even if v remains unmatched, its degree in G[Xi] will be
O(log (n)/pi−1) = O(n3γ · log (n)/pi) as desired.

On the other hand, consider the case where degree of v to vertices of Xi−1 \V (Mi−1) is at least
100 ln (n)/pi−1 when we start processing v. Then, the probability that none of these neighbors are
sampled in Ni(v) is at most

(1− pi−1)
100 log (n)/pi−1 ⩽ e−100 lnn = n−100;

thus, with high probability, at least one of these vertices is sampled in Ni(v). Conditioned on this
event, v will surely get matched (if it was not already matched) by the greedy algorithm. Taking
a union bound over all vertices now ensures that with high probability, every vertex in Xi−1 that
remains unmatched by Mi−1 has degree O(n3γ · log (n)/pi) to other unmatched vertices in Xi−1,
and hence in the graph G[Xi]. This concludes the proof.

We are now ready to conclude the proof of Lemma 3.1.

Proof of Lemma 3.1. By Claim 3.2, we know Algorithm 1 terminates in some iteration i ∈ [Γ] and
returns a matching Mi of size at least γ · δn by the termination condition. By Claim 3.3, this takes
O(m · pi) time with high probability.

Finally, since V (Mi) is a subset of Xi, we obtain that ∆in(Mi) is at most the maximum degree
of G[Xi] which itself is at most O(n3γ · log (n)/pi) with high probability by Claim 3.4. Thus, the
runtime of the algorithm is O(m · n3γ · log (n)/∆in(Mi)) with high probability as desired.

1For each vertex v, first sample a number kv from the binomial distribution of deg(v) and pi (using its closed-form
formula); then, sample kv neighbors of v uniformly at random from N(v).

8

4 A Key Intermediate Dynamic Problem

In order to prove our main result, we focus on solving the following intermediate problem. Similar
versions of this problem also appear in recent work including [BKS23,Liu24,BG24].

Problem 1. The problem is parameterized by integers n,m, q ⩾ 1 and reals γ, δ, α ∈ (0, 1).
We have a fully dynamic n-vertex graph G = (V,E) that starts empty, i.e., has E = ∅, and
throughout, never has more than m edges, nor receives more than poly(n) updates in total.

Updates: The updates to G happen in chunks C1, C2, . . ., each consisting of exactly α · n
edge insertions or deletions in G.

Queries: After each chunk, there will be at most q queries, coming one at a time and in
an adaptive manner (based on the answer to all prior queries including the ones in this chunk).
Each query is a set U ⊆ V of vertices with the promise that µ(G[U]) ⩾ δn; the algorithm should
respond with a matching of size at least γ · δn from µ(G[U]).

For ease of reference, we list the parameters of this problem and their definitions:

n : number of vertices in the graph;

m : maximum number of edges at any point present in the graph;

q : number of adaptive queries made after each chunk;

γ : approximation ratio of the returned matching for each query;

δ : a lower bound on the fraction of vertices matched in the subgraph of G for the query;

α : a parameter for determining the size of each chunk as a function of n.

For technical reasons, we allow additional updates, called empty updates to also appear in
the chunks but these “updates” do not change any edge of the graph, although will be counted
toward the number of updates in their chunksa.

aThis is used for simplifying the exposition when solving this problem recursively; these empty updates will
still be counted when computing amortized runtime of these recursive algorithms.

We will design a family of recursive algorithms for solving Problem 1 in this section, starting
with the base case, which also acts as a good warm-up for the key ideas of the algorithm.

4.1 Base Case

The proof of the following lemma follows a similar approach as used in [BG24] albeit with several
modifications to take into account the dependence on the (overall) sparsity of the input graph
and to match the requirements of Problem 1. This lemma effectively gives an algorithm with
≈

√
(m/n · ORS(n,Θ(n))) update time for solving Problem 1.

Lemma 4.1. There is an algorithm (Algorithm 2) for Problem 1 that with high probability takes

O
(
q ·

√
m · n6γ · ORS(n, γ · δn/2)

α · n

)
,

amortized time over the updates to maintain the answer to all given queries in each chunk. The
algorithm works as long as γ < 1/12 and α ⩾ γ · δ.

9

The algorithm in Lemma 4.1 processes the chunks in batches. Each batch B processes t chunks
of updates to G for some t to be fixed later (t is going to be ≈

√
(m/n · ORS(n,Θ(n)))). Whenever

a batch starts, the algorithm maintains threes graphs (see also Figure 1 for an illustration):

• Gold which starts as the graph G at the beginning of the batch; no further insertions will be
added to Gold during the processing of this batch and if an edge already in Gold is deleted in
an update, the algorithm removes the edge from Gold (i.e., Gold is a decremental graph);

• Gbatch which starts as an empty graph and receives all subsequent insertion of edges to G
during the updates of this batch and will be updated based on their deletions also;

• Gmatch which starts as an empty graph and is updated by the algorithm by moving certain
matchings from Gold to Gmatch instead. Once an edge is moved to Gmatch, if it gets deleted,
the algorithm deletes the edge from Gmatch (and subsequent insertions are processed in Gbatch;
in other words, insertions to Gmatch only come from moving edges from Gold to Gmatch).

Given a query U ⊆ V , the algorithm starts by examining the edges of Gbatch to see if it can
already find a large matching in Gbatch[U]. This is done by running the greedy matching algorithm
(in Fact 2.1) over the edges of Gbatch[U] to obtain a matching Mbatch. If Mbatch is large enough,
it will be returned as the answer to the query. Otherwise, the algorithm runs the greedy matching
algorithm on Gmatch[U] to obtain a matching Mmatch. Again, if this matching is large enough, it will
be returned as the answer to the query. Finally, if neither of these cases happen, then the algorithm
runs Algorithm 1 on Gold with the subgraph U to obtain a matching Mold; we can guarantee this
matching is large enough given G[U] is promised to have a large matching. The algorithm then
moves all edges of Mold from Gold to Gmatch and returns Mold as the answer to the query.

A formal specification of the algorithm is as follows.

Algorithm 2 (Algorithm of Lemma 4.1).

• Process the updates in batches B of t chunks C1, . . . , Ct and for each batch:

1. Let Gold = G, Gbatch = ∅, and Gmatch = ∅ (on vertices V). Maintain these graphs as
follows for updates in each chunk (these graphs may also be updated based on queries):

(a) For an edge insertion e = (u, v), add the edge to Gbatch.

(b) For an edge deletion e = (u, v), remove the edge e from each of the graphs Gold,
Gbatch, or Gmatch that it belongs to currently.

2. After a chunk is updated, answer each query U ⊆ V as follows:

(a) Go over all edges of Gbatch and run the greedy matching algorithm on Gbatch[U] to
obtain a matching Mbatch. If |Mbatch| ⩾ γ · δn, return Mbatch, otherwise continue.

(b) Go over all edges of Gmatch and run the greedy matching algorithm on Gmatch[U] to
obtain a matching Mmatch. If |Mmatch| ⩾ γ ·δn, return Mmatch, otherwise continue.

(c) Run Algorithm 1 on Gold, the set U , and parameter 2γ with the guarantee that
µ(Gold[U]) ⩾ δn/2 (which we establish in Claim 4.2) to obtain a matching Mold.
Move Mold from Gold to Gmatch and return Mold.

We start by establishing the correctness of Algorithm 2.

Claim 4.2. With high probability, the answer to each query U in Algorithm 2 is a valid answer
according to Problem 1.

10

Figure 1: An illustration of the three graphs Gold, Gbatch, Gmatch in Algorithm 2, their role, and how they
are being processed. Notice that Gold is a decremental graph, while Gbatch, Gmatch are fully dynamic. The
analysis of the algorithm forms an ORS from the edges of the matchings M1,M2, . . . , moved from Gold to
Gmatch – this ORS is a subgraph of the static graph G at the beginning of the batch and does not contain
any edges inserted in this batch.

Proof. Notice that Gold, Gbatch, Gmatch at any point partition the current graph G. If either of
Mbatch or Mmatch is of size at least γ · δn, the output is correct. Otherwise, by the guarantee of the
greedy algorithm, we know that both µ(Gbatch[U]), µ(Gmatch[U]) are at most 2γ · δn. Thus,

µ(Gold[U]) ⩾ µ(G[U])− µ(Gbatch[U])− µ(Gmatch[U]) ⩾ δn− 4γ · δn ⩾ δn/2,

by the choice of γ < 1/12. This implies that the requirement of Lemma 3.1 for Gold[U] is satisfied
(including having 2γ < 1/6) and thus, its output, with high probability, is of size 2γ · δn/2 = γ · δn.
Thus, the returned matching in this case is also of the proper size, concluding the proof.

The main part is to analyze the running time of Algorithm 2. The following claim is the key to
relating the runtime of this algorithm to the density of ORS graphs.

Claim 4.3. Let M1,M2, . . . ,Mρ be the matchings computed from Gold in Line (2c) of Algorithm 2
and added to Gmatch at the time of their computation (i.e., here, we ignore the deletions that have
happened subsequently, namely, some edges of Mi might have been deleted from Gold when we are
inserting Mi+1, but we still keep those edges in the definition of Mi). These matchings are edge-
disjoint and for every i ∈ [ρ], maximum degree of Mi among the matchings Mi, . . . ,Mρ is at most
∆in(Mi) in the graph Gold at the time Mi was computed.

Proof. The edge-disjoint part follows from the fact that each Mi is chosen from Gold and at that
point, edges of M1, . . . ,Mi−1 are already removed from Gold (and cannot be inserted back to Gold).

Fix any i ∈ [ρ] and matching Mi. Since Gold is a decremental graph, all edges in Mi+1, . . . ,Mρ

belong to Gold at the time of computation of Mi. Thus, these edges will be counted toward ∆in(Mi)
in Gold at the time of computation ofMi. As such, the maximum degree ofMi among the matchings
Mi, . . . ,Mρ is at most ∆in(Mi) as desired.

11

We can now bound the runtime of the algorithm.

Claim 4.4. With high probability, when running Algorithm 2 on a single batch of t chunks:

1. the total time spent for maintaining the graphs and bookkeeping is O(t · q · α · n) time;

2. the total time spent computing Mbatch in Line (2a) is O(t · q · t · α · n) time;

3. the total time spent computing Mmatch in Line (2b) is O(t · q · t · q · α · n) time;

4. the total time spent computing Mold in Line (2c) is O(m ·n6γ · log2(n) ·ORS(n, γ · δn/2)) time.

Proof. There are t chunks in a batch, each involving αn updates and q queries. Processing the
updates can be done in O(1) expected time for each update by maintaining the three graphs
Gold, Gbatch, Gmatch as explained in Section 2.1. Thus, with high probability, these steps take
O(t · q ·α ·n) time in total. Finally, given α ⩾ γ · δ in Lemma 4.1, moving each choice of Mold from
Gold to Gmatch takes O(α · n) time per each query (at most), and thus O(t · q · α · n) in total.

For computing Mbatch for each query, the algorithm iterates over edges of Gbatch and takes
linear time in the size of the entire Gbatch to run the greedy matching algorithm (on Gbatch[U]).
Given that Gbatch can only have ⩽ t · α · n edges at any point (before a new batch is restarted),
the runtime for each query is O(t · α · n) time. Given there are t · q queries in total, this part takes
O(t · q · t · α · n) time.

Similarly, computing Mmatch for each query is done by iterating over all edges of Gmatch and
taking linear time on those. The edges in Gmatch come from inserting a matching of size γ ·δn ⩽ αn
(by the assumption in the statement of Lemma 4.1) after a query (possibly) and since there are
most t · q queries, there can be at most O(t · q · α · n) edges in Gmatch. Thus, similar (but not
identical) to the previous case, this step takes O(t · q · t · q · α · n) time (this is a factor q larger).

We now get to the main part of bounding the runtime of computing Mold. Let M1,M2, . . . ,Mρ

be the matchings computed as Mold throughout this entire batch. For each i ∈ [ρ], let ∆in(Mi)
denote the maximum degree of Mi in Gold at the time Mi was computed; additionally, let di denote
the maximum degree of Mi among the matchings Mi, . . . ,Mρ. By Claim 4.3, we have ∆in(Mi) ⩾ di.
Moreover, by Lemma 3.1, the runtime for computing Mi in Algorithm 1 with high probability is
O(m · n6γ · log (n)/∆in(Mi)). Putting these together with Claim 4.3 in Lemma 2.5 (for parameter
η = 1/2, and since size of each matching is γ · δn by Claim 4.3), we have that the total time spent
computing M1, . . . ,Mρ is

ρ∑
i=1

O(m · n6γ · log (n) · 1

∆in(Mi)
) ⩽ O(m · n6γ · log(n)) ·

ρ∑
i=1

1

di

⩽ O(m · n6γ · log2(n) · ORS(n, γ · δn/2)).

This concludes the proof.

Proof of Lemma 4.1. The correctness of the algorithm follows from Claim 4.2 and a union bound
over poly(n) intermediate graphs created in Problem 1 (by the assumption on number of updates).

Furthermore, the amortized runtime per each of t ·α ·n updates during a batch, by Claim 4.4 is

O(t · q2) +O(
1

t · α · n
·m · n6γ · log2(n) · ORS(n, γ · δn/2)).

12

We can now balance these terms by setting

t :=

(
m · n6γ · ORS(n, γ · δn/2)

α · n · q2

)1/2

,

which leads to the desired update time of

O(q) ·
(
m · n6γ · ORS(n, γ · δn/2)

α · n

)1/2

.

Note however that it is possible the entire number of updates to Problem 1 is less than t, namely,
the algorithm does not receive even one full batch of updates. In that case, we cannot amortize
the runtime as above given the fewer number of updates.

Nevertheless, since by the definition of Problem 1, the graph starts as an empty graph, in this
case both Gold = ∅ and Gmatch = ∅ for the single batch processed by the algorithm. Thus, the
entire runtime of the algorithm will be based on the first two items of Claim 4.4 and thus is still
upper bounded as above.

4.2 The Recursive Step

We now design a family of recursive algorithms {A}∞k=1 with progressively better update times
for Problem 1 using Algorithm 2 as the base case of this family (i.e., A1). Roughly speaking, the

algorithm Ak in this family achieves an update time ≈ (m/n)1/(k+1) · ORS(n,Θk(n))
1−1/(k+1).

Lemma 4.5. There exists an absolute constant c ⩾ 1 such that the following holds. For any k ⩾ 1,
there is an algorithm Ak(n,m, q, γ, δ, α) (Algorithm 3) for Problem 1 that with high probability takes

O
(
(2q)k−1 ·

(m
n

)1/k+1
· ORS(n, γ · δn/2)1−1/(k+1) · n6γ · (log (n)/δ)c

)
,

amortized time over the updates to maintain the answer to all given queries. The algorithm works
as long as γ < (1/12)k and α ⩾ γ · δ.

We prove Lemma 4.5 by induction. The base case is handled by Lemma 4.1 for A1. Now,
suppose the lemma is true for some k ⩾ 1 and we prove it for k + 1. The algorithm Ak+1 follows
the same approach of Algorithm 2 in processing the graph in batches of t chunks of size αk+1 ·nk+1

for some t to be determined later (it is going to be ≈ (m/n)k+1/(k+2) · ORS(n,Θ(n))1/(k+2)). In
each batch, the algorithm also partitions the graph into three subgraphs Gold, Gbatch, Gmatch with
very similar definitions as in the past. The main difference however is that both graphs Gbatch

and Gmatch are now handled by running algorithm Ak over them (instead of the greedy approach
of Algorithm 2).

We first specify the parameters used for running Ak on Gbatch and Gmatch:

nk := n mk := t · q · α · n qk := q

γk := 12 · γ δk := δ/12 αk := α. (3)

We will run Ak(nk,mk, qk, γk, δk, αk) on Gbatch and Gmatch. By the assumption in Lemma 4.5,
we have γ < (1/12)k+1 and thus γk = 12 · γ < (1/12)k; hence we satisfy the condition for invoking
the induction hypothesis of Ak. Similarly, we have α = αk and γk · δk = γ · δ and so αk ⩾ γk · δk
also holds. Finally, at the beginning of each batch, Gbatch, Gmatch are both empty graphs and thus

13

satisfy the promise of Problem 1. As such, we can indeed apply the induction hypothesis to Ak in
the following (the only remaining part we need to explicitly account for is to make sure that for
each query U , we are guaranteed that µ(Gbatch[U]) is at least δk · n, before calling Ak on Gbatch

to be consistent with the definition of Problem 1 (similarly for Gmatch); we use Proposition 2.3 for
ensuring this guarantee).

The following algorithm follows the same strategy of Algorithm 2 modulo applying Ak to Gbatch

and Gmatch instead of running the greedy algorithm over them (see also Figure 2).

Algorithm 3 (Algorithm Ak+1(n,m, q, γ, δ, α) of Lemma 4.5).

• Process the updates in batches B of t chunks C1, . . . , Ct and for each batch:

1. Let Gold = G, Gbatch = ∅, and Gmatch = ∅ (on vertices V). Start two copies of
Ak(nk,mk, qk, γk, δk, αk) onGbatch andGmatch separately with the parameters in Eq (3).

Maintain these graphs as follows for updates in each chunk (these graphs may also be
updated based on queries):

(a) For an edge insertion e = (u, v), add the edge to Gbatch.

(b) For an edge deletion e = (u, v), remove the edge e from any of the graphs Gold,
Gbatch, or Gmatch that it belongs to currently.

2. After a chunk is updated, answer each query U ⊆ V as follows:

(a) Run Proposition 2.3 on Gbatch[U] with parameter ε = (δk/2) to obtain an estimate
µ̃ := µ̃(Gbatch[U]) of µ(Gbatch[U]). If µ̃ ⩾ δk · n, pass the query U to Ak on Gbatch

and return its output matching Mbatch as the answer; otherwise, continue.

(b) Run Proposition 2.3 on Gmatch[U] with parameter ε = (δk/2) to obtain an estimate
µ̃ := µ̃(Gmatch[U]) of µ(Gmatch[U]). If µ̃ ⩾ δk ·n, pass the query U to Ak on Gmatch

and return its output matching Mmatch as the answer; otherwise, continue.

(c) Run Algorithm 1 on Gold, the set U , and parameter 2γ with the guarantee that
µ(Gold[U]) ⩾ δn/2 (which we establish in Claim 4.7) to obtain a matching Mold.
Remove Mold from Gold and insert it into Gmatch.

A remark about the updates in Algorithm 3 is in order. Firstly, when processing an arriving
chunk, to update Gbatch or Gmatch, we create two separate chunks of size αk · nk based on these
updates for Ak on Gbatch and Gmatch separately (appending them with empty updates if needed,
to have length exactly αk ·nk). We then pass these chunks to each algorithm as their updates. The
updates to Gold are done directly. Moreover, in Line (2c), we insert Mold of size γ · δn ⩽ αk ·nk (by
the guarantee of Lemma 4.5 and choice of parameters in Eq (3)) as a single chunk (possibly with
empty updates) to Ak running on Gmatch (there will be no queries after these chunks for Ak).

We first ensure that the subroutine calls in Algorithm 3 are all valid.

Claim 4.6. With high probability, when running Algorithm 3 on a single batch of t chunks:

1. Gbatch starts empty, at any point it has at most mk edges, and in total it receives t chunks of
size αk · nk each; moreover, each query U to Ak on Gbatch satisfies µ(Gbatch[U]) ⩾ δk · n;

2. Gmatch starts empty, at any point it has at most mk edges, and in total it receives at most t·(q+1)
chunks of size αk ·nk; moreover, each query U to Ak on Gmatch satisfies µ(Gmatch[U]) ⩾ δk ·n;

3. Gold, Gbatch, Gmatch at any point partition the edges of G.

14

Figure 2: An illustration of the three graphs Gold, Gbatch, Gmatch in Algorithm 3 for Ak+1, their role,
and how they are being processed. Notice that Gold is a decremental graph, while Gbatch, Gmatch are fully
dynamic. The main difference with Algorithm 2 is that Gbatch and Gmatch are now being handled recursively
with Ak (steps (a) and (b) also now involve running Proposition 2.3 to check if applying Ak is valid). This
algorithm also form an ORS from the edges of the matchings M1,M2, . . . , moved from Gold to Gmatch.

Proof. We prove each part as follows:

1. At the beginning of the batch, we have Gbatch = ∅ and for each chunk as input to Algorithm 3,
Ak also receives a chunk of size αk ·nk = α ·n as an update (possibly with empty updates; recall
that Gbatch only processes insertions in the batch and deletions of the edges inserted during the
batch). Since there are t chunks in each batch of Algorithm 3, there will be at most t ·α ·n edge
insertions to Gbatch which is equal to mk/q ⩽ mk by Eq (3). Moreover, running Proposition 2.3
with high probability, returns µ̃(Gbatch[U]) ⩽ µ(Gbatch[U]) and thus when Algorithm 3 decides
to query Ak on Gbatch, we have µ(Gbatch[U]) ⩾ δk · n.

2. At the beginning of the batch Gbatch = ∅ and for each chunk as input to Algorithm 3, Ak also
receives a chunk of size αk ·nk = α ·n as an update, which can only include deletions and empty
updates. Moreover, each time the algorithm reaches Line (2c), it will be inserting edges of a
matching Mold as updates in chunks of size αk · nk. Given that Mold is of size γ · δn ⩽ αn (by
the technical assumption on γ, δ, α in Problem 1), this translates into having one more chunk
here as well. Thus, for each chunk and each of its q queries, we may insert another chunk of
size αk ·n into Gmatch, implying that the total number of inserted chunks is t ·(q+1). Moreover,
running Proposition 2.3 with high probability, returns µ̃(Gmatch[U]) ⩽ µ(Gmatch[U]) and thus
when Algorithm 3 decides to query Ak on Gmatch, we have µ(Gmatch[U]) ⩾ δk · n.

3. This step simply follows from the above (on validity of updating edges of Gbatch and Gmatch)
and since we only remove an edge from Gold if it is deleted or if it is moved to Gmatch.

We can now establish the correctness of Algorithm 3.

Claim 4.7. With high probability, the answer to each query U in Algorithm 3 is a valid answer
according to Problem 1.

15

Proof. Claim 4.6 ensures that each query to recursive calls on Ak on Gbatch and Gmatch returns a
valid answer (given all promises required by Problem 1 and the induction hypothesis of Lemma 4.5
for running this algorithm are satisfied). Thus, it remains to consider the case when Algorithm 3
reaches Line (2c) to answer the query U .

Recall that we have the assumption µ(G[U]) ⩾ δn. At the same time, each call to Proposition 2.3
in Lines (2a) and (2b) guarantees that, respectively,

µ̃(Gbatch[U]) ⩾
1

2
· µ(Gbatch[U])− 1

2
· δk · n,

µ̃(Gmatch[U]) ⩾
1

2
· µ(Gmatch[U])− 1

2
· δk · n.

Thus, if the algorithm has reached Line (2c), we know that

µ(Gbatch[U]) ⩽ 2µ̃(Gbatch[U]) + δk · n ⩽ 3 · δk · n,
µ(Gmatch[U]) ⩽ 2µ̃(Gmatch[U]) + δk · n ⩽ 3 · δk · n.

We further have that Gold, Gbatch, Gmatch at any point partition G by Claim 4.6. Thus,

µ(Gold[U]) ⩾ µ(G[U])− µ(Gbatch[U])− µ(Gmatch[U]) ⩾ δn− 6 · δkn ⩾ δn/2,

by the choice of δk = δ/12 in Eq (3). This implies that Gold[U] satisfies the guarantee of Lemma 3.1
for Algorithm 1 with parameters (δ/2) and (2γ). As such, this algorithm, with high probability,
returns a matching Mold of size γ · δn from Gold[U], concluding the proof.

The following claim is a direct analogue of Claim 4.3. Its proof is verbatim as before and hence
is omitted here.

Claim 4.8. Let M1,M2, . . . ,Mρ be the matchings computed from Gold in Line (2c) of Algorithm 3
and added to Gmatch at the time of their computation (i.e., here, we ignore the deletions that have
happened subsequently, namely, some edges of Mi might have been deleted from Gold when we are
inserting Mi+1, but we still keep those edges in the definition of Mi). These matchings are edge-
disjoint and for every i ∈ [ρ], maximum degree of Mi among the matchings Mi, . . . ,Mρ is at most
∆in(Mi) in the graph Gold at the time Mi was computed.

The last part is then to bound the runtime of the algorithm.

Claim 4.9. With high probability, when running Algorithm 3 on a single batch of t chunks:

1. the total time spent for maintaining the graphs and bookkeeping is

O(t · α · n);

2. the total time spent for running Proposition 2.3 in Lines (2a) and (2b) is

O(t · q · n · poly(log (n)/δ));

3. the total time spent computing Mbatch in Line (2a) is

O
(
t · α · n · (2q)k−1 ·

(
t · q · α

)1/(k+1)
· ORS(n, γ · δn/2)1−1/(k+1) · n6γ · log2(n)

)
;

16

4. the total time spent computing Mmatch in Line (2b) is at most

O
(
t · (q + 1) · α · n · (2q)k−1

(
t · q · α

)1/(k+1)
· ORS(n, γ · δn/2)1−1/(k+1) · n6γ · log2(n)

)
;

5. the total time spent computing Mold in Line (2c) is at most

O
(
m · ORS(n, γ · δn/2) · n6γ · log2(n)

)
.

Proof. The proof just follows the same argument as in Claim 4.4.

Specifically, the first part follows immediately, and the second part is by Proposition 2.3. For
parts three and four, plugging the choice of mk = t ·q ·α ·n when applying the induction hypothesis
of Lemma 4.5 for Ak on Gbatch and Gmatch, implies the bounds.

Finally, the last part holds by Claim 4.8 and Lemma 2.5 exactly as in Claim 4.4 as here also,
each matching Mold is of size γ ·δn and is chosen from Gold which is a decremental graph throughout
the batch.

Proof of Lemma 4.5. The correctness of the algorithm follows from Claim 4.7 and a union bound
over poly(n) intermediate graphs created in Problem 1 (by the assumption on number of updates).

Furthermore, the runtime per each of t · α · n updates during a batch, by Claim 4.9, is at most

O(t · α · n)
+O(t · q · n · poly(log (n)/δ))

+O
(
t · α · n · (2q)k−1 ·

(
t · q · α

)1/(k+1)
· ORS(n, γ · δn/2)1−1/(k+1) · n6γ · log2(n)

)
+O

(
t · (q + 1) · α · n · (2q)k−1

(
t · q · α

)1/(k+1)
· ORS(n, γ · δn/2)1−1/(k+1) · n6γ · log2(n)

)
+O

(
m · ORS(n, γ · δn/2) · n6γ · log2(n)

)
= O

(
t · (2q) · α · n · (2q)k−1

(
t · (2q) · α

)1/(k+1)
· ORS(n, γ · δn/2)1−1/(k+1) · n6γ · (log(n)/δ)c

)
+O

(
m · ORS(n, γ · δn/2) · n6γ · (log(n)/δ)c

)
,

where in the equality, we used several loose upper bounds (to simplify the subsequent calculations)
and use c as the absolute constant which is equal to the exponent of the poly-term in Proposition 2.3
(we also take c > 2 to subsume the log2(n) term of prior equations).

We can now balance these terms by setting

t :=
(m
n

)k+1/(k+2)
· ORS(n, γ · δn/2)1/(k+2) · 1

(2q)
(k−1)·(k+1)+(k+2)

k+2 · α
,

which leads to the amortized update time of

O
(
m · ORS(n, γ · δn/2) · n6γ · (log(n)/δ)c · 1

t · α · n

)
= O

((m
n

)1/(k+2)
· ORS(n, γ · δn/2)1−1/(k+2) · (2q)k · n6γ · (log(n)/δ)c

)
,

where we used (k − 1) · (k + 1) + (k + 2) = k2 + k + 1 ⩽ k · (k + 2) for k ⩾ 1.

17

Similar to the proof of Lemma 4.1, we should also handle the case wherein the total number of
chunks given to the algorithm does not even reach a single batch. As before, in this case, given the
promise that the graph G starts empty, the only graph that is non-empty will be Gbatch, and thus
the amortized runtime of the algorithm is the same as Ak on Gbatch (with the given parameters,
in particular mk = t · q · α · n). Thus, the amortized runtime of Algorithm 3 will be at most
(by Claim 4.9 for bookkeeping, running Proposition 2.32and running Ak on Gbatch),

O
(
(2q)k−1 ·

(
t · q · α

)1/(k+1)
· ORS(n, γ · δn/2)1−1/(k+1) · n6γ · (log(n)/δ)c

)
= O

((m
n

)1/(k+2)
· ORS(n, γ · δn/2)1−1/(k+2) · (2q)k−1 · n6γ · (log(n)/δ)c

)
,

by the choice of t (using the same exact calculation and the above step).

This proves the induction step of Lemma 4.5 and concludes the proof.

5 A Fully Dynamic Algorithm for Maximum Matching

The following theorem, which is the main contribution of our work, formalizes Result 1.

Theorem 1. Let ε ∈ (0, 1/100) be a given parameter and k ⩾ 1 be any integer. Let γ = (1/20)k

and f(γ, ε/4) and g(γ, ε/4) be as defined in Proposition 2.2.

There exists an algorithm for maintaining a (1− ε)-approximation to maximum matching in a
fully dynamic n-vertex graph that starts empty with amortized update time of

O
(
n1/k+1 · ORS(n ,

1

15k
· f(γ,Θ(ε)2) · n)1−1/(k+1) · n15/(20)k

)
.

The guarantees of this algorithm hold with high probability even against an adaptive adversary.

Proof of Theorem 1. The proof is a combination of the standard tools listed in Section 2.2 to reduce
the problem to Problem 1 and then applying Lemma 4.5 for solving this problem.

We start by obtaining an algorithm for an additive ε · n approximation to maximum matching.
Define the following parameters for solving Problem 1 via the algorithm Ak(nk,mk, qk, γk, δk, αk):

nk := n mk :=

(
n

2

)
qk := g(γ, ε/4)

γk := (1/15)k δk := f(γ, ε/4) αk := ε2. (4)

Suppose we have computed a (ε/4) · n additive approximate matching at some time. Then, for
the next αk · n = ε2 · n this remains at least a (ε/2) · n approximation (even if all updates delete
edges of this matching). At this point, we should recompute another (ε/4) ·n additive approximate
matching. By Proposition 2.2, at this point, we need to answer qk := g(γ, ε/4) queries U ⊆ V
with µ(G[U]) ⩾ δkn = f(γ, ε/4) · n and returning a matching of size µ(G[U]) ⩾ γk · δk · n satisfies
the requirement of answering the queries in Proposition 2.2. However, we do need to ensure that
µ(G[U]) ⩾ δk ·n which can be done by running Proposition 2.3 first. At this point, the problem we
need to solve to implement Proposition 2.2 is exactly Problem 1 with the parameters of Eq (4).

2In fact, for the first batch, we do not even need to run Proposition 2.3, given that we know µ(G[U]) ⩾ δn (by
the promise of Problem 1 and since we know Gold = Gmatch = ∅. We ignore this extra optimization step since it does
not affect the overall runtime of the algorithm.

18

Running Ak for solving Problem 1 by Lemma 4.5 is going to have an amortized update time of

O
(
(2qk)

k−1 ·
(
mk

nk

)1/k+1

· ORS(nk, γk · δk · n/2)1−1/(k+1) · n6γk · (log (n)/δk)c
)

= O
(
n1/k+1 · ORS(n ,

1

20k
· f(γ, ε/4) · n)1−1/(k+1) · n10/(20)k

)
,

with high probability; here, we used that (2g(γ, ε/4))k−1 · n6/(20)k · (log (n)/δk)c = O(n10/(20)k)
given the values f(γ, ε), g(γ, ε), δk = Ok,ε(1). Also, the runtime of O(n · poly(log (n)/δk)) for
running Proposition 2.3 amortized over the ε2 · n updates is asymptotically upper bounded by the
above and can be neglected. All in all, this implies an algorithm with amortized update time of

O
(
n1/k+1 · ORS(n ,

1

20k
· f(γ, ε/4) · n)1−1/(k+1) · n10/(20)k

)
,

for maintaining an additive εn approximate matching in a dynamic graph, with high probability.

Finally, we apply Proposition 2.4 to turn this into a multiplicative (1− ε)-approximation guar-
antee. This effectively requires re-parameterizing ε with Θ(ε2) in the above bounds (and bounding

n10/(20)k · poly(log (n)/ε) = O(n15/(20)k) by the range of parameters). This implies an algorithm
with amortized update time promised in the theorem statement for maintaining a (multiplicative)
(1− ε)-approximation to maximum matching in a fully dynamic graph, with high probability.

We shall remark that in the arguments above—in particular, to satisfy the guarantee promised
in Problem 1—we need to assume that the total number of updates is poly(n) to be able to apply
union bound in conjunction with our high probability guarantees. This however can be easily fixed
using a standard trick3 as we explain next.

After every, say, n10 updates to the underlying graph G, we entirely terminate the current run
of the algorithm and erase all the data structures. Then, we start a new run of the algorithm
on an initially empty graph H and insert the current edges in G to this new graph H using at
most O(n2) insertions. After this step, the graph H becomes the same as G and we continue with
processing the upcoming updates the current data structures we have. This does not change the
asymptotic runtime of the algorithm, but now ensures that even if the algorithm needs to process
super-polynomial number of updates, after each update, with high probability, the output is correct
and the amortized runtime of the algorithm is as desired4. This concludes the proof.

5.1 Removing the Assumption on the Prior Knowledge of ORS

In the description of our algorithms throughout this paper, we assumed that the algorithm is aware
of the value of ORS(n, c · n) (for a proper choice of c in the algorithm) to find the right balancing
point for size of batches. However, as we explain next, this knowledge is actually not necessary,
which is a desirable feature given our current state of (lack of) understanding of ORS(n, c · n).

We again focus on the case of polynomially many updates. The algorithm starts with guessing
that ORS(n, c · n) is some β = nΩ(1/ log logn) (the current best lower bound in Eq (1)), runs the
algorithm of Theorem 1 with β as the value of ORS, and continues as long as the runtime does not
exceed the bounds dictated by the current guess β. Now suppose during some run of the algorithm,

3In fact, it appears that many of existing dynamic matching algorithms make this assumption implicitly, e.g.,
in [BKS23,Liu24,BG24], although some are also more explicit about this, e.g. [BK22].

4We shall emphasize that this does not mean on such a long sequence, the guarantees are satisfied throughout (as
we simply cannot do a union bound over so many events). However, even an adaptive adversary cannot make sure
that a fixed update returns a wrong answer or take longer than guaranteed except with negligible probability.

19

the runtime exceeds the current update time bound. Then there are two possibilities: either the
high probability event of Theorem 1 has failed or the guess β of ORS(n, c ·n) falls shorts of the true
value. The first case happens with a negligible probability which we can ignore so let us focus on
the second case.

The guarantees given in Lemma 4.5 hold for each fixed batch of updates (in other words, we
amortize the runtime over a single batch and not beyond that). Suppose we have a batch with longer
than expected runtime. We consider all the matchings moved from Gold to Gmatch throughout this
batch and apply Lemma 2.5 to them in an algorithmic fashion—which takes linear time in the size
of the graph—to explicitly construct an ORS graph. If we succeed in creating an ORS graph with
strictly more matchings than the current estimate β, we terminate the current algorithm, increase
the value of β by a factor of 4, and restart the process from the beginning of the last batch. Since
for any k ⩾ 1, the target runtime of the algorithm Ak is proportional to ORS(n, c n)η for some
η ⩾ 1/2, running the algorithm again with β increased by a factor of 4, results in a geometrically
increasing sequence of runtimes. This makes the final runtime only a constant factor larger than if
the algorithm had been run with the correct value of ORS(n, c ·n) from the very beginning. We also
note that the value of β only monotonically increases over the execution of the algorithm because
at every occurrence, we recover a certificate of a new lower bound on the value of ORS(n, c · n). So
the revision of parameter β occurs only O(log n) times over the entire execution of the algorithm.

In summary, we are able to recover the bounds of Theorem 1 without a prior knowledge of the
value of ORS(n, c · n) as also advertised in Result 1.

Acknowledgement

We would like to thank Soheil Behnezhad and Alma Ghafari for helpful discussions on their results
in [BG24], and Aaron Bernstein, Sayan Bhattacharya, and Thatchaphol Saranurak for their shared
discussions and insights on this problem.

Part of this work was conducted while the first named author was visiting the Simons Institute
for the Theory of Computing as part of the Sublinear Algorithms program.

20

References

[ABKL23] S. Assadi, S. Behnezhad, S. Khanna, and H. Li. On regularity lemma and barriers in
streaming and dynamic matching. In B. Saha and R. A. Servedio, editors, Proceedings
of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando,
FL, USA, June 20-23, 2023, pages 131–144. ACM, 2023. 1

[ABR24] A. Azarmehr, S. Behnezhad, and M. Roghani. Fully dynamic matching: (2 −
√
2)-

approximation in polylog update time. In D. P. Woodruff, editor, Proceedings of the
2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA,
USA, January 7-10, 2024, pages 3040–3061. SIAM, 2024. 2

[ACG+15] K. J. Ahn, G. Cormode, S. Guha, A. McGregor, and A. Wirth. Correlation clustering
in data streams. In F. R. Bach and D. M. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 2237–2246.
JMLR.org, 2015. 7

[ACK19] S. Assadi, Y. Chen, and S. Khanna. Sublinear algorithms for (∆ + 1) vertex coloring.
In T. M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,
pages 767–786. SIAM, 2019. 7

[AG11] K. J. Ahn and S. Guha. Linear programming in the semi-streaming model with appli-
cation to the maximum matching problem. In L. Aceto, M. Henzinger, and J. Sgall, ed-
itors, Automata, Languages and Programming - 38th International Colloquium, ICALP
2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, volume 6756 of Lecture
Notes in Computer Science, pages 526–538. Springer, 2011. 4, 5

[AKL16] S. Assadi, S. Khanna, and Y. Li. The stochastic matching problem with (very) few
queries. In V. Conitzer, D. Bergemann, and Y. Chen, editors, Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16, Maastricht, The Nether-
lands, July 24-28, 2016, pages 43–60. ACM, 2016. 5

[AKLY16] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev. Maximum matchings in dynamic
graph streams and the simultaneous communication model. In R. Krauthgamer, ed-
itor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364.
SIAM, 2016. 5

[ALT21] S. Assadi, S. C. Liu, and R. E. Tarjan. An auction algorithm for bipartite matching
in streaming and massively parallel computation models. In H. V. Le and V. King,
editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021, pages 165–171. SIAM, 2021. 4, 5

[AMS12] N. Alon, A. Moitra, and B. Sudakov. Nearly complete graphs decomposable into large
induced matchings and their applications. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22,
2012, pages 1079–1090, 2012. 1, 2

21

[AOSS19] S. Assadi, K. Onak, B. Schieber, and S. Solomon. Fully dynamic maximal independent
set with sublinear in n update time. In T. M. Chan, editor, Proceedings of the Thirti-
eth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 1919–1936. SIAM, 2019. 7

[AS23] S. Assadi and J. Sundaresan. Hidden permutations to the rescue: Multi-pass streaming
lower bounds for approximate matchings. In 64th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 909–932. IEEE, 2023. 1, 2

[Beh21] S. Behnezhad. Time-optimal sublinear algorithms for matching and vertex cover. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022, pages 873–884. IEEE, 2021. 5

[Beh23] S. Behnezhad. Dynamic algorithms for maximum matching size. In N. Bansal and
V. Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 129–162. SIAM,
2023. 1, 2

[BG24] S. Behnezhad and A. Ghafari. Fully dynamic matching and Ordered Ruzsa-Szemerédi
graphs. arXiv preprint arXiv:2404.06069. To appear in FOCS 2024, 2024. 1, 2, 3, 4, 5,
7, 9, 19, 20

[BGS18] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(log n)
update time (corrected version). SIAM J. Comput., 47(3):617–650, 2018. 1

[BK22] S. Behnezhad and S. Khanna. New trade-offs for fully dynamic matching via hierarchical
EDCS. In J. S. Naor and N. Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA,
USA, January 9 - 12, 2022, pages 3529–3566. SIAM, 2022. 1, 19

[BKS23] S. Bhattacharya, P. Kiss, and T. Saranurak. Dynamic (1 + ε)-approximate matching
size in truly sublinear update time. In 64th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages
1563–1588. IEEE, 2023. 1, 2, 4, 9, 19

[BKSW23] S. Bhattacharya, P. Kiss, T. Saranurak, and D. Wajc. Dynamic matching with better-
than-2 approximation in polylogarithmic update time. In N. Bansal and V. Nagarajan,
editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023, pages 100–128. SIAM, 2023. 1, 2

[BS15] A. Bernstein and C. Stein. Fully dynamic matching in bipartite graphs. In M. M.
Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors, Automata, Lan-
guages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Com-
puter Science, pages 167–179. Springer, 2015. 1

[BS16] A. Bernstein and C. Stein. Faster fully dynamic matchings with small approximation
ratios. In R. Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 692–711. SIAM, 2016. 1

22

[CCE+16] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, A. McGregor, M. Monemizadeh,
and S. Vorotnikova. Kernelization via sampling with applications to finding matchings
and related problems in dynamic graph streams. In R. Krauthgamer, editor, Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344. SIAM, 2016. 5

[FHS17] J. Fox, H. Huang, and B. Sudakov. On graphs decomposable into induced matchings
of linear sizes. Bulletin of the London Mathematical Society, 49(1):45–57, 2017. 1

[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorod-
nitsky. Monotonicity testing over general poset domains. In Proceedings on 34th An-
nual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec,
Canada, pages 474–483, 2002. 1

[Fox11] J. Fox. A new proof of the graph removal lemma. Annals of Mathematics, pages
561–579, 2011. 1

[GKK12] A. Goel, M. Kapralov, and S. Khanna. On the communication and streaming complexity
of maximum bipartite matching. In Y. Rabani, editor, Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 468–485. SIAM, 2012. 1, 5

[GP13] M. Gupta and R. Peng. Fully dynamic (1+ ε)-approximate matchings. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 548–557. IEEE Computer Society, 2013. 1

[HKNS15] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication con-
jecture. In R. A. Servedio and R. Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 21–30. ACM, 2015. 2

[Kis22] P. Kiss. Deterministic dynamic matching in worst-case update time. In M. Braverman,
editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, Jan-
uary 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 94:1–
94:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. 2, 5

[Kon18] C. Konrad. A simple augmentation method for matchings with applications to stream-
ing algorithms. In I. Potapov, P. G. Spirakis, and J. Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August
27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 74:1–74:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. 7

[Liu24] Y. P. Liu. On approximate fully-dynamic matching and online matrix-vector multipli-
cation. CoRR, abs/2403.02582. To appear in FOCS 2024, 2024. 1, 2, 9, 19

[LMSV11] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for solving
graph problems in mapreduce. In R. Rajaraman and F. M. auf der Heide, editors, SPAA
2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms
and Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011),
pages 85–94. ACM, 2011.

23

[McG05] A. McGregor. Finding graph matchings in data streams. In C. Chekuri, K. Jansen,
J. D. P. Rolim, and L. Trevisan, editors, Approximation, Randomization and Com-
binatorial Optimization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005
and 9th InternationalWorkshop on Randomization and Computation, RANDOM 2005,
Berkeley, CA, USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in
Computer Science, pages 170–181. Springer, 2005. 2, 4, 5

[OR10] K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover.
In L. J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–
464. ACM, 2010. 1

[RS78] I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18:939–945, 1978. 1, 2

[Sol16] S. Solomon. Fully dynamic maximal matching in constant update time. In I. Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages
325–334. IEEE Computer Society, 2016. 1

[Tir18] S. Tirodkar. Deterministic algorithms for maximum matching on general graphs in the
semi-streaming model. In S. Ganguly and P. K. Pandya, editors, 38th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages
39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. 4, 5

24

	1 Introduction
	1.1 Our Contribution
	1.2 Our Algorithm at a High Level

	2 Preliminaries
	2.1 Basic Notation and Representation of Graphs
	2.2 Tools from Prior Work
	2.3 An Auxiliary Lemma on ORS Graphs

	3 An Opportunistic Sublinear-Time Algorithm for Matching
	4 A Key Intermediate Dynamic Problem
	4.1 Base Case
	4.2 The Recursive Step

	5 A Fully Dynamic Algorithm for Maximum Matching
	5.1 Removing the Assumption on the Prior Knowledge of ORS

	Acknowledgement

