
Near-optimal Size Linear Sketches for
Hypergraph Cut Sparsifiers

Sanjeev Khanna
SEAS

University of Pennsylvania
Philadelphia, USA

sanjeev@cis.upenn.edu

Aaron (Louie) Putterman
SEAS

Harvard University
Cambridge, USA

aputterman@g.harvard.edu

Madhu Sudan
SEAS

Harvard University
Cambridge, USA

madhu@cs.harvard.edu

Abstract—A (1±ϵ)-sparsifier of a hypergraph G(V,E) is
a (weighted) subgraph that preserves the value of every cut
to within a (1±ϵ)-factor. It is known that every hypergraph
with n vertices admits a (1 ± ϵ)-sparsifier with Õ(n/ϵ2)
hyperedges. In this work, we explore the task of building
such a sparsifier by using only linear measurements (a
linear sketch) over the hyperedges of G, and provide nearly-
matching upper and lower bounds for this task.

Specifically, we show that there is a randomized linear
sketch of size Õ(nr log(m)/ϵ2) bits which with high prob-
ability contains sufficient information to recover a (1± ϵ)
cut-sparsifier with Õ(n/ϵ2) hyperedges for any hypergraph
with at most m edges each of which has arity bounded by
r. This immediately gives a dynamic streaming algorithm
for hypergraph cut sparsification with an identical space
complexity, improving on the previous best known bound
of Õ(nr2 log4(m)/ϵ2) bits of space (Guha, McGregor, and
Tench, PODS 2015). We complement our algorithmic result
above with a nearly-matching lower bound. We show that
for every ϵ ∈ (0, 1), one needs Ω(nr log(m/n)/ log(n))
bits to construct a (1 ± ϵ)-sparsifier via linear sketching,
thus showing that our linear sketch achieves an optimal
dependence on both r and log(m).

The starting point for our improved algorithm is
importance sampling of hyperedges based on the new
notion of k-cut strength introduced in the recent work
of Quanrud (SODA 2024). The natural algorithm based
on this concept leads to logm levels of sampling where
errors can potentially accumulate, and this accounts for
the polylog(m) losses in the sketch size of the natural
algorithm. We develop a more intricate analysis of the
accumulation in error to show most levels do not contribute
to the error and actual loss is only polylog(n). Combining
with careful preprocessing (and analysis) this enables us
to get rid of all extraneous logm factors in the sketch
size, but the quadratic dependence on r remains. This
dependence originates from use of correlated ℓ0-samplers
to recover a large number of low-strength edges in a
hypergraph simultaneously by looking at neighborhoods
of individual vertices. In graphs, this leads to discovery
of Ω(n) edges in a single shot, whereas in hypergraphs,

S.K. is supported in part by NSF awards CCF-1934876, CCF-
2008305, and CCF-2402284. A.P. is supported in part by the Simons
Investigator Awards of Madhu Sudan and Salil Vadhan, NSF Award
CCF 2152413 and a Hudson River Trading PhD Research Scholarship.
M.S. is supported in part by a Simons Investigator Award and NSF
Award CCF 2152413.

this may potentially only reveal O(n/r) new edges, thus
requiring Ω(r) rounds of recovery. To remedy this we
introduce a new technique of random fingerprinting of
hyperedges which effectively eliminates the correlations
created by large arity hyperedges, and leads to a scheme
for recovering hyperedges of low strength with an optimal
dependence on r. Putting all these ingredients together
yields our linear sketching algorithm. Our lower bound
is established by a reduction from the universal relation
problem in the one-way communication setting.

Index Terms—sparsification, hypergraphs, streaming,
linear sketching

I. INTRODUCTION

In this paper we study the task of building cut sparsi-
fiers for hypergraphs in the linear sketching model and
derive nearly matching bounds on the size of the sketch
as a function of key hypergraph parameters.

For any ϵ ∈ (0, 1), given a hypergraph H = (V,E)
where every hyperedge (sometimes simply referred to as
an edge) e ∈ E is a subset of V , a (1± ϵ)-sparsifier of
H is a re-weighted subhypergraph which preserves the
weight of every cut to a (1 ± ϵ) multiplicative factor.
The goal in hypergraph sparsification is to construct,
or to prove the existence of, a small sparsifier (where
the size of the sparsifier is measured by the number
of hyperedges) for a given hypergraph. In this work
we study the space required to build such a sparsifier
in the linear sketching model, where the sparsifier has
to be reconstructed from a linear “measurement” of the
input.1 We study the space required as a function of three
key parameters: n, the number of vertices in H; m, the
number of edges in H and r the arity (size) of largest
hyperedge in H . It is known that the space required by
the smallest linear sketch depends only polynomially on
the parameters n, r and logm, and in this work we get
the exact polynomial that governs the space required, up
to polylogarithmic factors in n. We review some of the
past work before stating our results in greater detail.

1Here, a hypergraph on n vertices is viewed as a vector in {0, 1}2n

and a linear measurement of size s is obtained by mutliplying a
(possibly random) s× 2n matrix with this vector.

1669

2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/24/$31.00 ©2024 IEEE
DOI 10.1109/FOCS61266.2024.00105

20
24

 IE
EE

 6
5t

h
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

79
-8

-3
31

5-
16

74
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FO
CS

61
26

6.
20

24
.0

01
05

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

We start with an abbreviated history of the notion
of sparsification. Cut-preserving sparsification of graphs
has been a fundamental tool in algorithm design ever
since its conception in the seminal works of Karger
[17] and Benczúr and Karger [5]. Subsequent work
generalized this in many different directions, for in-
stance, to spectral sparsification [4], [25], to cut and
spectral sparsification in hypergraphs [3], [7], [11]–
[14], [20], [21], [24], to sparsification of linear codes
(which capture graph cuts as a special case) [19], and to
sparsifiying quotients of submodular functions [23], in
each case achieving sparsifiers of essentially the optimal
size of Õ(n), with n being the number of vertices in the
graph or hypergraph, the dimension of the linear code,
and the maximum value of the submodular function,
respectively.

The above mentioned works primarily focus on the
standard model of computing where the algorithm has
unrestricted access to the input. Our interest in this paper
is in hypergraph sparsification via linear sketches of
small size. Linear sketching algorithms immediately lend
themselves to several models of computation including
the dynamic streaming model (allowing for insertions
and deletions of (hyper)edges) and the massively paral-
lel computation (MPC) model [18], where unrestricted
access to the entire input is not readily available. On
the other hand, the restrictive nature of linear sketching
algorithms also makes it more challenging to obtain
such sketches with a small space footprint, for complex
problems. In the context of graph algorithms, the power
of linear sketching was first illustrated in the work of
Ahn, Guha, and McGregor [1], [2] who showed that
for any ϵ ∈ (0, 1), a linear sketch of size Õ(n/ϵ2)
suffices to recover with high probability a (1 ± ϵ)-(cut-
)sparsifier of any graph. This led to a sequence of works
studying the capabilities of linear sketching (and, as a
consequence, dynamic streaming) for creating sparsifiers
of graphs. For instance, the work of Kapralov et. al. [15]
showed that a linear sketch using Õ(n/ϵ2) bits suffices
for creating (1 ± ϵ)-spectral sparsifiers of graphs, and
the work of Chen, Khanna, and Li [6] studied cut and
spectral sparsification for weighted graphs in the turnstile
stream model using linear sketches. Guha, McGregor
and Tench [10] initiated the study of hypergraph cut-
sparsification with linear sketches and showed that in this
case a complexity of Õ(nr2 log4(m)/ϵ2) bits suffices to
recover a (1± ϵ) cut-sparsifier.2

2The work of [10] focuses on the case when hypergraphs are of
constant arity, and show that in this case a linear sketch of size
Õ(n/ϵ2) suffices (i.e. when r = O(1),m = nO(1)). If one uses
their algorithm for general hypergraphs, the sketch size becomes
Õ(nr2 log4(m)/ϵ2) bits.

A. Our Results

In this work we present a linear sketching frame-
work for creating hypergraph cut-sparsifiers that achieves
nearly-optimal size.

Theorem I.1. For any ϵ ∈ (0, 1), there is a randomized
linear sketch of size Õ(nr log(m)/ϵ2) bits that given
any n-vertex unweighted hypergraph H with at most m
edges of arity bounded by r, allows recovery of a (1±ϵ)-
sparsifier of H with high probability.3

Thus while our result maintains the optimal depen-
dence on n and ϵ as in [10], we improve the dependence
on r and logm where each of these parameters could be
as large as n. Indeed for the extremal choice of r = Θ(n)
and m = 2Θ(n), our result improves the space required
from Õ(n7/ϵ2) to Õ(n3/ϵ2). We also show tightness of
our bound (up to poly log n factors) for all ranges of n,
r and m, as we elaborate later.

Remark I.1. In fact, our result is actually slightly
stronger than stated above. The sparsifiers we recover
are the so-called k-cut sparsifiers, meaning that for
any k ∈ [2, . . . n], and any partition of the vertex set
into V1, . . . Vk, the weight of cut hyperedges (that is,
hyperedges that are not completely contained in any
single Vi) is preserved to within a (1 ± ϵ) factor. See
Remark IV.3 for an elaboration.

Our sketching algorithm is obtained by putting to-
gether two ingredients. The first is the framework of k-
cut strengths in hypergraphs developed by Quanrud [23]
originally used for fast k-cut sparsification algorithms
for static hypergraphs.

Instead, we adopt, extend and then ultimately imple-
ment this framework using a linear sketch. In this frame-
work, we perform a careful analysis of the degradation
of error in our sparsification procedure, and subsequently
add a pre-processing phase to our linear sketch which
identifies “extremely” well-connected components, to-
gether saving a factor of log3(m) over the work of [10].
Our final ingredient is to introduce our technique of ran-
dom fingerprinting, which we use to save an additional
factor of r over a naive implementation, leading to the
stated theorem.

We now briefly explain our ideas regarding finger-
printing for obtaining an improved dependence on r.
In order to use the k-cut characterizations of hyperedge
strengths [23], an essential step is to be able to recover
all of the hyperedges of low strength as these must
be preserved exactly (the sampling rate needed for a
hyperedge is inversely proportional to its strength). The
standard approach towards recovering important edges

3Note that the Õ(·) is hiding only logarithmic factors in ·, i.e.,
factors of log(n), log(r), log(1/ϵ), and log log(m).

1670

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

initializes ℓ0-samplers with correlated randomness de-
fined for various components of the graph, and then uses
these samplers to recover random hyperedges incident
to these components. Unfortunately, when using k-cut
characterizations of strength, there can be many large
arity hyperedges with low enough strength that they
must all be exactly recovered. One consequence of the
large arity is that each hyperedge may be incident on
multiple components, and thus when using correlated
ℓ0-samplers to recover incident hyperedges, multiple
components may output the same hyperedge. Thus in a
single round which may consume Ω(n) ℓ0-samplers, one
might only recover Õ(nr) distinct hyperedges. Recovery
of all relevant hyperedges may thus require Ω̃(nr) ℓ0-
samplers overall, leading to a quadratic dependence on
r in sketch size as in the previous work (the second
factor of r comes from the space to store each ℓ0-
sampler for hyperedges of arity r). To overcome this,
we introduce a new technique of random fingerprinting
of hyperedges. For each hyperedge, we independently
sample a random subset of its vertices to induce a
“fingerprint” of the hyperedge, and now run the recovery
procedure on this fingerprinted hypergraph. Because the
arities of hyperedges are smaller in this fingerprinted
hypergraph, we show that we have largely broken the
correlation between samplers, yet surprisingly, these fin-
gerprinted hypergraphs still maintain sufficient informa-
tion to recover all low-strength hyperedges of the original
hypergraph using only O(polylog(n)) ℓ0-samplers per
vertex. In other words, using only Õ(n) ℓ0-samplers
total, we can recover all low strength hyperedges, just
as in the graph case.

Our techniques for removing the super-linear depen-
dence on log(m) are similarly involved, though we
defer their discussion to the detailed technical overview
Section II.

As an aside, note that by using the standard ge-
ometric grouping idea, our linear sketch can also be
extended to weighted hypergraphs with integer hy-
peredge weights between 1 and W using space of
Õ(nr log(m) logW/ϵ3) bits (see, for instance, [15] on
how this is done in prior work). We focus here on the
unweighted case.

In general, even for static instances of hypergraphs of
arity r, the bit complexity of a sparsifier is Ω̃(nr) [13].
So, ignoring the log(m) term, our linear sketch has an
essentially optimal dependence on n, r. One might then
conjecture that, in fact, there should be no dependence
on log(m) in the sketch size, particularly as our result
already shaves off a factor of log3(m) from previously
known bounds. However, we complement the preceding
theorem with a general lower bound, showing that our
size bound (including the dependence on log(m)) is in
fact nearly-tight.

Theorem I.2. For any ϵ ∈ (0, 1), any randomized linear
sketch that can be used to recover a (1 ± ϵ)-sparsifier
with probability at least 1 − 1/poly(n) on n-vertex
unweighted hypergraphs with at most m hyperedges of
arity bounded by r requires Ω(nr log(m/n)/ log(n))
bits of space.

This lower bound follows from a reduction from a
variant of the universal-relation problem in the one-way
communication setting between Alice and Bob. To do
this, we first show that for our variant of universal-
relation, Alice must send at least Ω(nr log(m/n)) bits
to solve the problem. Then, we show that for any
instance of this problem, there exists an encoding into
a family of “bipartite” hypergraphs, such that if Alice
sends only O(log(n)) independent hypergraph sparsifi-
cation sketches, Bob can with high probability solve the
original problem. Thus, we can immediately conclude
the above bound.

Next, we highlight some easy corollaries of our linear
sketching result. As mentioned above, we can use this
linear sketching algorithm to create a general dynamic
streaming algorithm for hypergraphs that tolerates both
insertions and deletions of hyperedges.

Corollary I.3. For any ϵ ∈ (0, 1), there is
a (randomized) dynamic streaming algorithm using
Õ(nr log(m)/ϵ2) bits of space that, for any sequence
of insertions / deletions of hyperedges in an n-vertex
unweighted hypergraph H with at most m edges of arity
bounded by r, allows recovery of a (1± ϵ)-sparsifier of
H with high probability.

The improves upon the best previous space bound
of Õ(nr2 log4(m)/ϵ2) for hypergraph sparsification in
dynamic streams [10]. It also improves upon the best
previous space bound of Õ(nr log4(m)/ϵ2) for the
simpler insertion-only model [7]. Note that although
their algorithm achieves an optimal space dependence
on n and r, it is strictly tailored for insertion-only
streams and cannot be extended to handle deletions. In
particular, in the setting of dense hypergraphs of large
arity, namely, when m = 2Ω(n), and r = Ω(n), our
sketch requires Õ(n3/ϵ2) bits, while the sketches in [10]
and [7] guarantee only Õ(n7/ϵ2) and Õ(n6/ϵ2) bits,
respectively.

Likewise, our linear sketching scheme can also be
used to obtain efficient algorithms for computing hy-
pergraph sparsifiers in the massively parallel compu-
tation (MPC) model [18]. Roughly speaking, in this
model, the input data (in our case the hyperedges of
a hypergraph) are split across, say k, machines. Each
machine has bounded memory (in our case bounded
by Õ(nr log(m)/ϵ2)) and the computation is split into
rounds, where between rounds machines are allowed

1671

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

to send their local data to other machines, and within
rounds, are allowed to perform an arbitrary amount
of computation on their data, with the goal of even-
tually outputting a sparsifier for the hypergraph. The
total communication that any machine is allowed in a
single round is bounded by the size of the machine’s
memory. Our linear sketch for hypergraph sparsification
lends itself to a natural MPC algorithm for hypergraph
sparsification, with significant improvements over the
canonical algorithm.

Corollary I.4. For any ϵ ∈ (0, 1), there is a ran-
domized MPC algorithm using machines with mem-
ory Õ(nr log(m)/ϵ2) bits that given any n-vertex un-
weighted hypergraph H with at most m edges of arity
bounded by r arbitrarily partitioned across the ma-
chines, allows recovery of a (1± ϵ)-sparsifier of H with
high probability in max(2, ⌈logn(m)⌉) rounds.

For comparison, the canonical approach to building
MPC algorithms for sparsifying hypergraphs without
linear sketches involves each machine mi sparsifying
its own induced hypergraph, and then recursively com-
bining these hypergraphs in a tree-like manner, in each
iteration pairing up two active machines, merging their
hypergraphs, and then sparsifying this merged hyper-
graph. Thus, in each iteration, the number of active
machines decreases by a factor of 2. This approach
(which is also used to create sparsifiers for insertion-only
streams [7]) unfortunately loses in two key parameter
regimes. First, the number of rounds required by such
a procedure will be Ω(log(m/n)), as the number of
active machines decreases by a factor of 2 in each
round. Further, the memory required by each machine
will be Ω(nr log(m) log2(m/n)/ϵ2), as the deterioration
of the error parameter scales with the depth of the
recursive process, which will be log(m/n), and setting
ϵ′ = ϵ/ log(m/n) requires more memory.

As an example, when m = poly(n), our MPC pro-
tocol runs in a constant number of rounds (independent
of the number of vertices), while the canonical MPC al-
gorithm for sparsification will require Ω(log(n)) rounds.
Further, we will be getting this reduction in rounds in
conjunction with a smaller memory footprint.

B. Conclusion

Extending near-linear size graph sparsifiers to near-
linear size hypergraph sparsifiers has proved to be a
challenging task. The work of [20] shows that if one
is willing to pay a factor of r in the sparsifier size, then
simple extensions of ordinary graph sparsification suffice
but this leads to quadratic-size sparsifiers when r is large.
Eventually, linear-size hypergraph sparsifiers were ob-
tained but these constructions utilize unrestricted access
to the input hypergraph to implement more complex

non-uniform sampling schemes than used in the case
of graph sparsification (for instance, sampling based on
balanced weight assignments of [7], [13], and sampling
based on k-cut strengths in [23]). We thus view it as
somewhat surprising that despite the complexity of these
approaches, linear measurements of space complexity
almost matching that of optimal hypergraph sparsifiers
still suffice to recover a hypergraph sparsifier. In other
words, our results show that there is effectively no
space overhead incurred in going from the classical
setting of creating a near-linear size sparsifier of a static
hypergraph to the linear sketching setting that entertains
dynamic insertion/deletion updates to the underlying
hypergraph.

C. Organization

In Section II, we provide a more in-depth discussion
of our results on linear sketching. In Section III, we pro-
vide background on k-cuts in hypergraphs, recap results
from [23], derive new properties of k-cut strengths, and
summarize known constructions in linear sketching. In
Section IV, we introduce a linear sketch for creating
sparsifiers conditioned on the existence of a “recovery”
sketch, which is then constructed in Section V via
our fingerprinting techniques. Section VI proves the
reduction from the universal relation problem to lower-
bound the size of any linear sketch for hypergraph spar-
sification. Finally, Section VII and Section VIII prove
our results in the streaming setting and MPC setting,
respectively.

II. DETAILED TECHNICAL OVERVIEW

A. Graph Sparsification and Hypergraph Sparsification
via k-cuts

A key ingredient underlying the seminal graph spar-
sification works of Karger [17] and Benczúr and Karger
[5], which most other sparsification algorithms have an
analog for, is the following “cut-counting” bound for
graphs:

Theorem II.1. [17] For any t ∈ Z+, any graph G on
n vertices with minimum cut c, has at most n2t cuts of
size at most t · c.

An easy consequence of the cut counting bound above
is that in any graph with minimum cut size c, if one
samples edges at rate p = O(log(n)/(ϵ2c)) (and re-
scales the weight of each sampled edge to be 1/p),
then the weight of every cut is preserved to within a
factor of (1± ϵ) with high probability. To establish this
assertion for cuts of size roughly t · c, we can simply
use a union bound over all of them since there are
at most n2t such cuts. While this uniform sampling
scheme suffices to effectively sparsify graphs with a
large minimum cut size, additional ideas are needed to

1672

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

sparsify graphs with small cuts. To this end, Benczúr
and Karger [5] introduced the notion of “strength” of
an edge that determines its importance in preserving cut
sizes. This yields non-uniform edge sampling rates and
they used this to show that every graph admits a (1±ϵ)-
sparsifiers with Õ(n/ϵ2) edges. The proof of this result
once again relies on a more careful application of the cut
counting bound above. Subsequently, Ahn, Guha, and
McGregor [1] showed that a variant of Benczúr-Karger
graph sparsification can in fact be implemented using
a linear sketch of size Õ(n/ϵ2) that contains enough
information to recover a (1 ± ϵ)-sparsifier with high
probability.

Early works generalizing graph cut sparsifiers to hy-
pergraph cut-sparsifiers quickly discovered that the cut
counting bound that serves as the foundation of graph
sparsification algorithms is far from being true in the
case of hypergraphs. Indeed, the work of Kogan and
Krauthgamer [20] observes that in hypergraphs of arity
r, there can be as many as 2Ω(r) cuts of size within a
constant factor of the minimum cut, and more generally,
they show that the number of cuts of size ≤ t · c can
be as large as nΩ(t) · 2Ω(r) (for c the minimum cut).
This blow-up in the number of small cuts in turn implies
that hyperedges need to be sampled at a rate that is
Ω(r) times higher if one wishes to directly apply the
Benczúr and Karger [5] graph sparsification approach to
hypergraphs. As a consequence, creating sparsifiers with
this approach requires Ω(nr) hyperedges and therefore
Ω(nr2) bits of space (as each hyperedge can have Ω(r)
description complexity). Thus, this adaptation of graph
linear sketches to hypergraphs (as in [10]) inherently
requires a quadratic dependence on r.

To overcome the obstacle posed by the exponen-
tially larger cut counting bound, we instead build on
a new approach to hypergraph sparsification developed
by Quanrud [23]. Instead of focusing just on the 2-cuts
in hypergraphs, [23] generalizes this notion to k-cuts
in hypergraphs where 2 ≤ k ≤ n, with the benefit of
now getting a direct analog of the cut-counting bound in
graphs.

Definition II.2. For any k ∈ [2..n], a k-cut in a
hypergraph is defined by a k-partition of the vertices,
say, V1, . . . Vk. The un-normalized size of a k-cut in
an unweighted hypergraph is the number of hyperedges
that are not completely contained in any single Vi (we
refer to these as the crossing hyperedges), denoted by
E[V1, . . . Vk].

The normalized size of a k-cut in a hypergraph is its
un-normalized size divided by k − 1. We will often use
Φ(H) to denote the minimum normalized k-cut, defined

formally as follows:

Φ(H) = min
k∈[2..n]

min
V1,∪···∪Vk=V

|E[V1, . . . Vk]|
k − 1

.

Note that when we generically refer to a k-cut, this
refers any choice of k ∈ [2..n]. That is, we are not
restricting ourselves to a single choice of k, but instead
allowing ourselves to range over any partition of the
vertex set into any number of parts.

The work of [23] established the following result
regarding normalized and un-normalized k-cuts:

Theorem II.3. [23] Let H be a hypergraph, with
associated minimum normalized k-cut size Φ(H). Then
for any t ∈ Z+, and k ∈ [2..n], there are at most nO(t)

un-normalized k-cuts of size ≤ t ·Φ(H).

A direct consequence of the above is that in order
to preserve all k-cuts (again, simultaneously for every
k ∈ [2, . . . n]) in a hypergraph H to a factor (1 ± ϵ), it
suffices to sample each hyperedge at rate p ≥ C log(n)

ϵ2Φ(H) ,
and re-weight each sampled hyperedge by 1/p.

Similar to Benczúr and Karger’s [5] approach for
creating Õ(n/ϵ2) size graph sparsifiers, Quanrud [23]
next uses this notion to define k-cut strengths for each
hyperedge. To do this, fix a minimum normalized k-cut,
and let V1, V2, ..., Vk be the corresponding partition of
the vertices. For any hyperedge crossing this minimum
normalized k-cut, we define its strength to be Φ(H).
Then, the strengths for hyperedges completely contained
within the components V1, . . . Vk are determined recur-
sively (within their respective induced subgraphs) using
the same scheme. This allows Quanrud [23] to calculate
sampling rates of hyperedges, which when sampled,
approximately preserve the size of every k-cut (for all
k ∈ [2, n]). Unfortunately, Quanrud’s [23] algorithm
relies on simultanesouly sampling all hyperedges, which
is often unachievable with linear sketches. As such, we
present a natural alternative using an iterative algorithm
for sparsification (building off the frameworks of [1], [5],
[10]), which we present below:

Algorithm 1: SimpleSparsification(H, ϵ)

1 Let H0 = H , let C be a sufficiently large
constant.

2 for i = 0, 1, . . . log(m) do
3 Let Fi be all hyperedges in Hi of strength

≤ 2C log(n)/ϵ2.
4 Store Fi.
5 Let Hi+1 be hyperedges in (Hi − Fi)

sampled at rate 1/2.
6 end
7 return ∪i2i · Fi.

1673

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

The key observation underlying the above algorithm
is that after removing all hyperedges of strength ≤
2C log(n)/ϵ2 from Hi, it must be the case that the
minimum normalized k-cut in the hypergraph Hi−Fi is
at least 2C log(n)/ϵ2 (see Claim III.15). Thus, we can
afford to sample Hi − Fi at rate 1/2 while still being
guaranteed to preserve all cuts to a factor (1 ± ϵ) with
all but polynomially small probability. Note that the only
guarantee from this procedure is that Hi+1 is a (1± ϵ)-
sparsifier to Hi − Fi, and in turn that Hi is a (1 ± ϵ)-
sparsifier to Hi−1−Fi−1. Thus, the final returned result
is naively a (1±O(ϵ log(m)))-sparsifier to H .

However, it remains to show how we can implement
this using a linear sketch. In particular, while downsam-
pling can be done simply with hash functions (as done
in prior work with linear sketching [1]), the primary
difficulty is in finding (and recovering) the hyperedges of
low strength under the new definition of k-cut strength.
One of our key contributions is presenting a linear
sketching algorithm using only ℓ0-samplers that allows
one to recover exactly such a decomposition; we explain
the intuition for the algorithm below.

B. Barriers to Finding Low Strength Hyperedges with
Linear Sketches

First, we recap ℓ0-samplers. Roughly speaking, an ℓ0-
sampler is a linear sketch that takes as input a vector
x ∈ Ru, and returns a uniformly random index in
the non-zero support of the vector. For any vertex v,
if we define an ℓ0-sampler on the hyperedges incident
on v, we can recover a random hyperedge incident
on v. Furthermore, by adding together ℓ0-samplers for
different vertices (when using the same random seed),
they allow us to sample hyperedges that are leaving the
component defined by the union of these vertices. These
ℓ0-samplers are also amenable to linear updates, meaning
that if we know an edge is in the support of the ℓ0-
sampler, we can update the support of the ℓ0-sampler to
remove this edge from the support.

Definition II.4. Consider a turnstile stream S =
s1, . . . st, where each si = (ui,∆i) (ui ∈ [n],∆i ∈
Z), and the aggregate vector x ∈ Ru where xi =∑

j:uj=i ∆i.
Given a target failure probability δ, an ℓ0-sampler for

a non-zero vector x returns ⊥ with probability ≤ δ, and
otherwise returns an element i ∈ [n] with probability
|xi|0
|x|0 .

Fact II.5. We will use the fact that (for any uni-
verse of size u, and support of size ≤ m) there
exists a linear sketch-based δ-ℓ0-sampler using space
O(log(m) log(u) log(1/δ)). Note that u is the length of
the aggregate vector x from the previous definition. m
is an upper bound on |x|0.

For dynamic streams, it is possible that after in-
sertions, the support of the vector x becomes larger
than m, and then subsequently becomes ≤ m (after
some deletions). In this case, the space used by the ℓ0-
sampler is still O(log(m) log(u) log(1/δ)), with the only
difference being that the correctness of the sampler is
only promised when the support is not too large. With
this, we now explain the family of vectors for which we
will create ℓ0-samplers.

Definition II.6. [1], [10] Given an unweighted hyper-
graph G = (V,E), define the n × 2[n] matrix AG with
entries (i, e), where i ∈ [n] and e ⊆ [n] is a hyperedge.
We say that

Ai,e =


1 if i ∈ e, i ̸= maxj∈e j,

−(|e| − 1) if i ∈ e, i = maxj∈e j,

0 else.

Let a1, . . . an be the rows of the matrix A. The support
of ai corresponds with the neighborhood of the ith
vertex.

Lemma II.7. [1], [10] Suppose we have ℓ0-samplers
for the neighborhoods of all vertices in a connected
component Vi, denoted by S(v,R) : v ∈ Vi, and R the
random seed. Then,

∑
v∈Vi
S(v,R) is an ℓ0-sampler for

the hyperedges leaving Vi.

Remark II.1. Suppose we have a linear sketch for
the ℓ0-sampler of the edges leaving some connected
component Vi, denoted by S(Vi, R). Suppose further
that we know there is some edge e leaving Vi (that was
found independently of randomness R used for our ℓ0-
sampler) that we wish to remove from the support of
S(Vi, R). Then, we can simply add a linear vector update
to S(Vi, R) that cancels out the coordinate corresponding
to this edge e, without changing the failure probability
of S(Vi, R).

At the most basic level, prior approaches like [1],
[10] stored roughly r · polylog(n,m)/ϵ2 ℓ0-samplers
for each vertex, where across all vertices, the ith ℓ0-
sampler uses the same randomness. With this, it is then
straightforward to implement an algorithm for finding
disjoint spanning forests of a graph (or hypergraph)
H . In the first iteration, each vertex opens its first
ℓ0-sampler. The (hyper)edges recovered from these ℓ0-
samplers induce some connected components V1, . . . Vk

in H . Now, in the second round, for each connected
component Vi, we add together the ℓ0-samplers using
the second random seed for the corresponding vertices in
Vi, yielding an ℓ0-sampler for the (hyper)edges leaving
Vi. Because the randomness used for the ℓ0-samplers
in the second round is independent of the hyperedges
sampled in the first round, one can show that the failure
probability of the ℓ0-samplers does not change. Further,

1674

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

in each iteration, one can maintain the invariant that
a constant fraction of the connected components are
merged, and thus after O(log(n)) iterations, a spanning
forest of the hypergraph is recovered. After running
this for r · polylog(n,m)/ϵ2 rounds (removing each
recovered spanning forest between rounds), one can
recover r · polylog(n,m)/ϵ2 spanning forests, and one
can show that recovering these hyperedges suffices for
sampling in accordance with the 2-cuts of a graph or a
hypergraph, as the case may be. Unfortunately, storing so
many ℓ0 samplers immediately yields a space complexity
of Ω(nr2/ϵ2) bits (ignoring the log(m)’s), as for each
of n vertices, we store r/ϵ2 ℓ0-samplers, each requiring
Ω(r log(m)) bits of space.

In our case, where the goal is to have only a linear
dependence on r, we must avoid sampling in accordance
with the “2-cut-strengths” of the hypergraph (recall that
even the static sparsifiers created with 2-cut-strength
sampling schemes require Ω(nr2) bits to represent),
and instead recover edges in accordance with the k-cut
strengths of the hypergraph. One might hope that as in
graphs and constant arity hypergraphs, naively storing
polylog(n) ℓ0-samplers per vertex of the hypergraph
suffices for recovering low k-cut strength hyperedges,
as this would then yield a linear dependence on r in the
sketch size. Unfortunately, as we shall see, this is not
the case, and more complicated techniques are required
to ultimately achieve a linear dependence on r.

For instance, let us consider a hypergraph H on n
vertices with

√
n cliques V1, . . . V√

n, along with
√
n

hyperedges that are crossing between V1, . . . V√
n (i.e.

every such hyperedge is of arity
√
n, and has exactly

one vertex in each Vi). In this example, the low strength
(with strength O(1)) hyperedges will be exactly those
crossing between V1, . . . V√

n, and our goal (and indeed
requirement) is to recover these

√
n hyperedges exactly

so that we can afford to sample the remaining hyper-
graph.

Now, if as before, we attempt to use correlated ℓ0-
samplers to recover these crossing hyperedges, we very
quickly run into issues. In this case, for each component
Vi, we add together the corresponding ℓ0-samplers for
the vertices in Vi, yielding a sampler for the hyperedges
leaving Vi. But, because all the ℓ0-samplers across the
vertices use the same randomness, this means that the
ℓ0-samplers for the hyperedges leaving the Vi’s are also
correlated. So, when we recover hyperedges from one
round of ℓ0-samplers all using the same randomness, it
will be the case that the ℓ0-samplers all return the same
hyperedge because they have an identical support. This
is a fundamental issue, as if we wish to recover all

√
n

crossing hyperedges, this will require us to store extra
factor of

√
n ℓ0-samplers (and in general, an extra factor

of r).

Further, using ℓ0-samplers with independent random-
ness will not solve this issue. Indeed, if the ℓ0-samplers
use independent randomness, we cannot add the sam-
plers together to sample from the support of a component
Vi. Instead, we would be restricted to sampling from the
hyperedges leaving each singular vertex, and thus the
vast majority of hyperedges sampled will be the clique
hyperedges within each Vi, not the hyperedges crossing
between Vi’s. Because we do not know the components
V1, . . . V√

n beforehand, this is a fundamental shortcom-
ing, and we cannot use uncorrelated random seeds to
perform the recovery.

Solving this recovery task with only a linear depen-
dence on r (as we will require to get Theorem I.1)
therefore requires a new technique, which we introduce
in the next section.

C. Efficient Recovery using Random Fingerprinting

This leads to one of our key contributions, namely
the technique of random fingerprinting. Roughly speak-
ing, for each hyperedge in the hypergraph H , we in-
dependently, randomly subsample the vertices in this
hyperedge to create a new hypergraph H ′, where each
hyperedge has smaller arity. Now, on this hypergraph
with edges of smaller arity, we can store correlated
ℓ0-samplers, and use them to recover the crossing hy-
peredges. For instance, in the above example of

√
n

cliques with
√
n hyperedges of arity

√
n intersecting

each of these cliques, suppose we “fingerprint” each
hyperedge randomly at rate log(n)√

n
. By this, we mean

for every hyperedge e and each vertex v ∈ e, we
independently, randomly keep v in the hyperedge e with
probability log(n)√

n
(thus after fingerprinting, the expected

new size of e is |e| log(n)√
n

). Under this operation, any
hyperedge crossing between V1, . . . V√

n is now only
crossing between a random subset of Θ(log(n)) of these
components with high probability.

Thus, in this fingerprinted hypergraph we have ef-
fectively broken the correlation between ℓ0-samplers
for different components, even when the samplers are
initialized with the same random seed. Specifically, for
this fingerprinted version of the hypergraph, let us store
correlated ℓ0-samplers across all the vertices. Then, we
can add these samplers together for each component Vi,
to recover ℓ0-samplers for the fingerprinted hyperedges
leaving each component Vi. Because it will be very
unlikely for the same hyperedge to be crossing between
more than Θ(log(n)) of the components V1, . . . V√

n,
at most O(log(n)) samplers can return the same fin-
gerprinted hyperedge. One can then verify that in the
first round of opening samplers, we expect to recovery
Ω(
√
n/ log(n)) of the crossing hyperedges in this exam-

ple, which is a significant improvement.

1675

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

As stated however, the hypergraph we are dealing with
has been heavily idealized. In general hypergraphs, the
crossing hyperedges may be of different arities (i.e. not
all of the same arity

√
n), and further the hyperedges

may be non-uniform with respect to the number of
vertices they have in each of the components they touch
(i.e., in this example each of the crossing hyperedges
had exactly 1 vertex in each component Vi). As a conse-
quence, for any crossing hyperedge, it is not immediately
clear what the fingerprinting rate should be in order to
recover such a hyperedge with high probability.

Intuitively, we address this by fingerprinting at log(n)
different rates, and show that with high probability,
one of these sampling rates will suffice for recovering
the crossing hyperedges. The rest of the analysis is
rather subtle, so we leave the complete description to
Section V.

To argue that this procedure indeed recovers suf-
ficiently many distinct hyperedges, we introduce the
notion of a “unique representative” for any recovered
hyperedge. Simply put, for any hyperedge we recover
when opening ℓ0-samplers, we assign it to a specific
component that it is incident upon. This ensures that even
if a hyperedge is of large arity and therefore incident on
many components, we only count it as a single recovered
hyperedge. With our fingerprinting technique, and this
notion of a unique representative, we are able to prove
the following claim, which turns out to be a key building
block towards recovering low-strength hyperedges:

Claim II.8 (Recovery Procedure). For a parameter ϕ
of our choosing, with only Õ(ϕpolylog(n)) ℓ0-samplers
per vertex (initialized at varying levels of fingerprinting),
for any disjoint partition of components V1, . . . Vk, one
can recover with high probability for each component Vi

either
1) All of the hyperedges leaving Vi.
2) ϕ log(n) hyperedges leaving Vi for which Vi is the

unique representative.

However, this claim on its own is not enough to
recover all low strength hyperedges. In particular, if we
knew which components V1, . . . Vk were “high-strength”
components, we would be able to use the above pro-
cedure to recover the low-strength hyperedges crossing
between these components. However, for an arbitrary hy-
pergraph, these components will not be known a priori.
With this, in the next subsection we show how to use this
procedure to actually compute a strength decomposition
and thus complete our sparsification procedure.

D. Strength Decomposition with Linear Sketches

Recall that in our idealized sparsification algorithm,
our goal will be to recover all hyperedges of strength
≤ 2C log(n)/ϵ2 in a hypergraph H , using only a linear

sketch. Going forward, we will let ϕ = 2C log(n)/ϵ2.
Thus ϕ denotes the cut-off such that we wish to recover
any hyperedge of strength ≤ ϕ in H .

In the previous subsection, we showed how to im-
plement the “recovery” procedure. Given a hypergraph
H and a disjoint partition of components V1, . . . Vk,
we showed that there is a linear sketch which recovers
for each component Vi either (1) all of the hyperedges
leaving the components or (2) recovers ϕ log(n) distinct
hyperedges leaving Vi (here, we use distinct to mean that
no hyperedge appears twice even with respect to different
components). Immediately, this implies that either case
(1) happens for half of the components V1, . . . Vk, or
case (2) happens for half of the components. Our goal
now will be to show that this procedure can be used to
recover all of the hyperedges of low strength.

Because we do not know the strong components a
priori, we create the following natural iterative algo-
rithm: we initially start with n components, with each
vertex in V constituting its own component. In each
iteration, we “open” a linear sketch for the recovery
problem defined above. Naturally, each time we open
this sketch, it yields many hyperedges, either exhausting
(i.e., recovering all of) the incident hyperedges on some
components, or yielding many distinct hyperedges. In
this second case, we will be forced to merge some
components together since they may be connected by
high strength hyperedges. As such, the set of vertices
slowly contracts to give us a set of components. To
analyze this more precisely, let us suppose now then
that in the current iteration, we are analyzing a set of
components V1, . . . Vk.

Intuitively, if we suppose the hyperedges crossing
between these components are of low strength, this
should necessarily mean there are not too many cross-
ing hyperedges. We will then argue that the recovery
procedure is able to recover all of these hyperedges
because we fall into the first case of Claim II.8. However,
it is possible that some of these components may be
much more strongly connected than others. Thus, for
some components, we should not expect to recover all
of their crossing hyperedges, leading to the second case
in Claim II.8. When this occurs, we will show that this
necessarily means some components should be merged
together to create a new component of higher strength.
We will be guaranteed that any hyperedge contained in
this component has strength much larger than ϕ, and thus
we can be sure that we have not missed out on any low
strength hyperedges.

Formally, let us consider the components V1, . . . Vk,
for which we wish to recover the crossing hyperedges
of low strength (initially these components will simply
be each individual vertex). When we run our recovery
procedure with these components V1, . . . Vk, either the

1676

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

majority of components have all their crossing hyper-
edges recovered, or the majority of components recover
ϕ log(n) distinct crossing hyperedges.

Intuitively, in the first case it is easy to see that we are
making progress. If we recover the entire neighborhood
of a majority of the components, then we should be able
to simply repeat the algorithm O(log(n)) times (corre-
spondingly, store O(log(n)) independent copies of the
sketch) before we have recovered the entire hypergraph.
At this point, we can perform any computation we want
on the hypergraph, including calculating the strengths
explicitly.

The second case is more nuanced and is where we
use key properties of the strength of hyperedges. In-
deed, if for a majority of the components, we recover
ϕ log(n) distinct crossing hyperedges incident on this
component, this means that we have recovered at least
k
2ϕ log(n) distinct hyperedges total. We show that for
any k components in a hypergraph, the number of
hyperedges of small strength (< ϕ) crossing between
them is likewise small (bounded by kϕ), and thus in
particular, at least 1/2 of the edges we recover must
have “high” strength. High strength here can be chosen
to mean strength at least 2ϕ, as we require in our
decomposition. By the pigeonhole principle, this means
that at least 1/4 fraction of the components will have
an incident hyperedge of high strength in the recovered
hypergraph. Because the strengths of hyperedges are
only monotonically increasing as one adds hyperedges,
the actual strengths of these hyperedges in H can be only
larger than they are in the recovered hypergraph. Now, if
a hyperedge of high strength is connecting components,
this intuitively means that this group of components
should be combined together into a single component
of high strength. Because at least k/4 components have
a high strength incident hyperedge, when we merge
along these hyperedges, we will decrease the number
of connected components by at least k/8. Essentially,
recovering too many hyperedges (as in the second case)
gives us a certificate of the fact that some of components
we were considering were actually connected together
by high strength edges and can therefore be merged
together.

Thus, in both cases we are making progress: either
we recover the incident hyperedges on many of the
components, and thus reduce the problem to recovering
the incident hyperedges on a much smaller graph, or we
recover many distinct hyperedges which provides proof
that certain components in the graph need to be merged
together as they have much higher strength. Because in
either case the number of connected components under
consideration goes down by a constant fraction, we can
repeat this a logarithmic number of times after which
the algorithm will return a set of high strength connected

components, as well as all hyperedges crossing between
these components. We are guaranteed that every com-
ponent is of high strength, and as a result, it must also
be the case that all low strength edges are crossing, and
thus recovered.

In summary, starting with a hypergraph H , we can
simply run the recovery procedure O(log(n)) times, and
be ensured that we recover the strong components, as
well as all the low-strength hyperedges crossing between
them. Because we perform this only O(log(n)) times,
the total space usage is just that of Õ(nϕ) ℓ0-samplers,
which immediately yields our desired dependence on r
(as each ℓ0-sampler has a linear dependence on r due to
the universe size).

E. Simple Sparsification Using Strength Decomposition

Recall the algorithm presented earlier (Algorithm 1).
Using the linear sketch discussed above for recovering
low-strength hyperedges, we can now implement the
algorithm as a linear sketch. Indeed, for each of the
log(m) levels of sampling, we store a linear sketch for
recovering low-strength hyperedges of the sampled hy-
pergraph (and this yields the log(m) factor in our sketch
size which is unavoidable). In practice, this involves
storing log(m) independent hash functions mapping
E → {0, 1}. A hyperedge e is present in Hi if and only
if it has not already been recovered in some Fj for j < i

and if the hyperedge e satisfies
∏i

j=1 hj(e) = 1. It is
worth highlighting that we use independent randomness
for the linear sketches at each level of sampling the
hypergraph. This ensures that the randomness used in
the ith level is independent of the recovered hyperedges
in F1, . . . Fi−1, and thus we can afford to simply remove
the hyperedges in F1, . . . Fi−1 from the linear sketch
stored for Hi.

As discussed in Section II-A, a naive analysis of the
sparsifier returned by the algorithm guarantees only a
sparsifier with accuracy (1±O(ϵ log(m))). Thus, it will
be necessary to operate with error parameter (ϵ/ log(m))
to ultimately get a (1± ϵ)-sparsifier. This contributes an
extra factor of log2(m) to the size of the linear sketch
that we store. Second, in (most) levels of downsampling,
the size of the hypergraph we are dealing with could
potentially still be mΩ(1). This requires us to use ℓ0-
samplers defined for support sizes as large as mΩ(1),
which costs us an additional log(m) factor.

We discuss our approach to removing these log(m)
factors in the next subsection.

F. Improving the Error Accumulation

First, we show how we can choose our error parameter
to be (ϵ/polylog(n/ϵ)) without changing our algorithm.
This will immediately improve our space complexity
by a factor of log2(m). To see why this holds, let

1677

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

us focus our attention on a single cut in the original
hypergraph H . We will denote this cut by a set of edges
Q ⊆ E, and we understand this to be the set of crossing
hyperedges for some partition. Now, if we look at the
hyperedges inside Q, we can calculate the strengths
of these hyperedges with respect to the hypergraph H .
We will denote by λ(Q) the maximum strength of any
hyperedge in Q, i.e.,

λ(Q) = max
e∈Q

λe.

Note that if a cut Q contains a single hyperedge e
of strength λ(Q), then in fact it must contain many
such hyperedges. This is because any hyperedge e of
strength λ(Q) is part of a component C ⊆ V in the
hypergraph of strength ≥ λ(Q). Because the cut Q is
“cutting” the hyperedge e, it is necessarily the case that
Q is also cutting the component C into two or more
pieces. Now, by definition, any cut in a component of
strength ≥ λ(Q) must be of size at least λ(Q). At the
same time, we know that the number of hyperedges in
H of strength (say) ≤ λ(Q)/n10 is at most λ(Q)/n9

(this fact has been used before with respect to 2-cut
strength, and we show it holds here with respect to k-
cut definitions of strength). Thus, a ≥ 1− 1/n9 fraction
of the cut hyperedges have strength between λ(Q)/n10

and λ(Q). Intuitively, this means that we should be able
to focus only on preserving the weight of these cut
hyperedges of high strength, effectively ignoring those of
lower strength. When we adopt this perspective, we can
then argue that the degradation in error is much better
than the naive inductive analysis may have suggested.

Indeed, for the first log(λ(Q)/n11) levels of down-
sampling (i.e., up until the point where we are sampling
at rate n11

λ(Q)), it will still be the case that with extremely
high probability 1 − 2−poly(n), the total degradation in
error will still be bounded by (1 ± ϵ). This is because
if we look at the induced subgraph of hyperedges with
strength ≥ λ(Q)/n10, we know this contains most of
the mass of the cut Q. Further, because the strength of
this hypergraph is at least λ(Q)/n10, by the cut-counting
bound we can afford to sample at any rate ≥ log(n)n10

λ(Q)ϵ2 ,
while still preserving cuts with high probability.

Beyond this level of downsampling, we lose our guar-
antee on the rate at which our approximation deteriorates
beyond simply the naive factor (1 ± ϵ) per level of
downsampling. However, we can now take advantage
of the fact that (with high probability), there are only
O(log(n)) more levels of downsampling before the cut
Q has been entirely removed (i.e., as the low-strength
hyperedges removed in each iteration). That is to say,
by the time we are sampling at rate 1

λ(Q)n10 , all the
hyperedges from Q will already have been removed.
Thus, there is only a window of size poly(n) (and thus

O(log(n) levels of downsampling) where we must pay
for the degradation in our approximation parameter. Per-
forming this analysis carefully then allows us to remove
the superfluous dependence on log(m) and replace it
with only a dependence on log(n), as we desire. We
present this argument more precisely in Section IV-C.

G. Preprocessing to Bound Hypergraph Sizes

Our final improvement in the space for our hypergraph
linear sketch will be in optimizing the space each ℓ0-
sampler requires. Recall that there are three contributing
factors to the size of an ℓ0-sampler: the universe size (es-
sentially nr, where r is the maximum arity and which we
can’t hope to optimize), the support size (i.e., the number
of hyperedges in the support of each sampler), and
the error parameter (which yields only a multiplicative
log(n)). Because the universe size cannot be optimized,
and the error parameter is already sufficiently small,
naturally our goal will be to decrease the support size
of the samplers. First, let us recall specifically where the
log(m) is coming from: at each level of downsampling,
we will be storing ℓ0-samplers for the neighborhoods of
vertices. In these downsampled hypergraphs, there may
still be as many as mΩ(1) hyperedges, and thus there may
exist some vertices whose degree is also mΩ(1). Even to
recover a single hyperedge then, our ℓ0-samplers must
be initialized to work on a support size up to mΩ(1).

The key insight is that if there are too many hy-
peredges in the hypergraph, then intuitively this means
that there must be some (very) strongly connected
components. If we could somehow find these (very)
strongly connected components before starting to look
for our low-strength hyperedges, then we could show
that in this meta-graph (where we merge each strongly
connected component into a single meta-vertex), the
number of crossing hyperedges is bounded by poly(n).
This would then allow us to use ℓ0-samplers defined for a
smaller support size and thus use only a factor of log(n)
instead of log(m). Further, if we could guarantee that
these components that we merge together are sufficiently
strongly connected, then we can also guarantee that there
are no low-strength hyperedges which have been lost
throughout this procedure, and therefore the recovery
procedure on this meta-hypergraph recovers exactly the
same hyperedges as in the original hypergraph.

Our final contribution is to show that indeed, we can
store a separate linear sketch of the hypergraph which
we can analyze before our sparsification algorithm (a
preprocessing phase), and will reveal to us the (exceed-
ingly) strongly connected components in our hypergraph
in each iteration. We show that with some careful
scheming, the preprocessing linear sketch can be made
to use only space Õ(nr log(m)), and thus (after saving
the final log(m) term in the sparsifier) our entire linear

1678

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

sketch also only requires space Õ(nr log(m)/ϵ2). This
argument is presented in its entirety in Section IV-D.

H. Lower Bound

In addition to our upper bound of Õ(nr log(m)/ϵ2)
bits for our linear sketch, we also present a lower bound
for the size of any sketch which returns a (1 ± ϵ)-cut
sparsifier, even in the regime where ϵ = Ω(1). To do this,
we build a parameterized version of the universal relation
problem, that we refer to as the k-UR≤m

r problem:
1) Alice is given a string xA ∈ {0, 1}2

r

. Bob is given
a string xB ∈ {0, 1}2

r

such that m ≥ |Supp(xA)−
Supp(xB)| ≥ k. Alice sends only a message S(xA)
to Bob (using public randomness).

2) Bob has his own string xB (satisfying the above
promises), and receives Alice’s message S(xA).
Using this (and access to public randomness), he
must return k indices i : (xA)i ̸= (xB)i with
probability 1− 1/r5.

We show that using r/(log(m/k)) instances of k-
UR≤m

r , one can solve the more general problem known
as k-URr, which has a known one-way communication
complexity of Ω(kr2) (established by the work of [16]).
This immediately implies that the one-way communica-
tion complexity of k-UR≤m

r is Ω(kr log(m/k)).
Finally, to conclude our lower bound, we show given

an instance of n/2-UR≤m
r/2 , Alice can construct a spe-

cific type of “bipartite” hypergraph with ≤ m hyper-
edges each of arity ≤ r, such that sending log(n)
independent hypergraph (1±ϵ)-sparsifier linear sketches
(for ϵ < 1), Bob can recover a solution to the same n/2-
UR≤m

r/2 instance with all but polynomially small proba-
bility. Because of our lower bound on the communication
complexity of n/2-UR≤m

r/2 , this immediately implies an
Ω(nr log(m/n)/ log(n)) lower bound on the size of any
linear sketch for hypergraph sparsification. We present
this proof in Section VI.

III. PRELIMINARIES

A. ℓ0-samplers and Vertex Incidence Sketches

First, we introduce the notion of an ℓ0-sampler.

Definition III.1. Consider a turnstile stream S =
s1, . . . st, where each si = (ui,∆i), and the aggregate
vector x ∈ Ru where xi =

∑
j:uj=i ∆i.

Given a target failure probability δ, an ℓ0-sampler for
a non-zero vector x returns ⊥ with probability ≤ δ, and
otherwise returns an element i ∈ [n] with probability
|xi|0
|x|0 .

Fact III.2. [8] We will use the fact that (for any
universe of size u, and support of size m) there ex-
ists a linear sketch-based δ-ℓ0-sampler using space
O(log(m) log(u) log(1/δ)). Note that u is the length of

the aggregate vector x from the previous definition. m
is an upper bound on |x|0.

We present a self-contained proof of the existence of
such ℓ0-samplers in Appendix A.

Going forward, for a vector x and (public) randomness
R, we will let S(x,R) denote an ℓ0-sampler for x using
the randomness R.

Definition III.3. [1], [10] Given an unweighted hyper-
graph G = (V,E), define the n × 2[n] matrix AG with
entries (i, e), where i ∈ [n] and e ⊆ [n]. We say that

Ai,e =


1 if i ∈ e, i ̸= maxj∈e j,

−(|e| − 1) if i ∈ e, i = maxj∈e j,

0 else.

Let a1, . . . an be the rows of the matrix A. The support
of ai corresponds with the neighborhood of the ith
vertex.

Next, we will use the following result regarding
adding together ℓ0-samplers that use shared randomness.
This property of ℓ0-samplers has appeared in many
different papers [1], [6], [10].

Lemma III.4. Suppose we have ℓ0-samplers for the
neighborhoods of all vertices in a connected component
Vi, denoted by S(av, R) : v ∈ Vi, and that these
samplers share their randomness. Then,

∑
v∈Vi
S(av, R)

is an ℓ0-sampler for the hyperedges leaving Vi.

Remark III.1. Suppose we have a linear sketch for
the ℓ0-sampler of the edges leaving some connected
component Vi, denoted by S(Vi). Suppose further that
we know there is some edge e leaving Vi that we wish to
remove from the support of S(Vi). Then, we can simply
add a linear vector update to S(Vi) that cancels out the
coordinate corresponding to this edge e.

Given a linear sketch of a hypergraph H , and some
set of hyperedges S in H , we will often use H − S to
denote the result of updating the linear sketch to remove
these hyperedges.

Finally, we use the following probabilistic bound
which underlies many sparsification algorithms:

Claim III.5. ([9]) Let X1, . . . Xℓ be random variables
such that Xi takes on value 1/pi with probability pi, and
is 0 otherwise. Also, suppose that mini pi ≥ p. Then,
with probability at least 1− 2e−0.38ϵ2ℓp,∑

i

Xi ∈ (1± ϵ)ℓ.

B. Strength in Hypergraphs

In this section, we introduce some definitions of k-cut
strength, and show that it behaves intuitively, with many
convenient closure properties. These properties will be

1679

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

used frequently in the rest of the paper as we create
sketches for recovering low-strength hyperedges.

First, we recall the definition of strength that we use
[23].

Definition III.6. For a hypergraph H = (V,E), the
minimum normalized k-cut is defined to be

min
k∈[n]

min
V1∪V2∪···∪Vk=V

|E[V1, . . . Vk]|
k − 1

.

|E[V1, . . . Vk]| refers to the number of edges which cross
between (any subset) of V1, . . . Vk. This is a general-
ization of the notion of a 2-cut in a graph, which is
traditionally used to create cut sparsifiers in ordinary
graphs. Further, note that V1, . . . Vk form a partition of
V . As mentioned in the introduction, we will often use
the following to denote the minimum normalized k-cut:

Φ(H) = min
k∈[n]

min
V1,∪···∪Vk=V

|E[V1, . . . Vk]|
k − 1

.

We also refer later to un-normalized k-cuts, which is
simply |E[V1, . . . Vk]|, for some partition V1, . . . Vk of
V .

Now, to define strength, we iteratively use the notion
of the minimum k-cut.

Definition III.7. Given a hypergraph H = (V,E),
let Φ(H) be the value of the minimum normalized
k-cut, and let V1, . . . Vk be the components achieving
this minimum. For every edge e ∈ E[V1, . . . Vk], we
say that λe = Φ(H). Now, note that every remaining
edge is contained entirely in one of V1, . . . Vk. For these
remaining edges, we define their strength to be the
strength inside of their respective component.

Remark III.2. Note that the strengths assigned via the
preceding definition are non-decreasing. Indeed if the
minimum normalized k-cut has value ϕ and splits a
graph into components V1, . . . Vk, it must be the case that
the minimum normalized k-cuts in each H[Vi] are ≥ ϕ,
as otherwise one could create an even smaller original
normalized k-cut by further splitting the component Vi.

We will also refer to the strength of a component.

Definition III.8. For a subset of vertices S ⊆ V , we say
that the strength of S in H is λS = mine∈H[S] λe. That
is, when we look at the induced subgraph from looking
at S, λS is the minimum strength of any edge in this
induced subgraph.

Definition III.9. For a hypergraph H and partition
V1, . . . Vk of the vertex set, let H/(V1, . . . Vk) denote
the hypergraph obtained by contracting all vertices in
each Vi to a single vertex. For a hyperedge e ∈ H , we
say that the corresponding version of e ∈ H/(V1, . . . Vk)

(denoted by e/(V1, . . . Vk)) is incident on a super-vertex
corresponding to Vi if there exists v ∈ Vi such that v ∈ e.

We will take advantage of the following fact when
working with these “contracted” versions of hyper-
graphs:

Claim III.10. Let H be a hypergraph, and let V1, . . . Vk

be a set of connected components of strength > κ. Then,
the hyperedges of strength ≤ κ in H are exactly those
hyperedges of strength ≤ κ in H/(V1, . . . Vk).

Proof. It is clear to see that if a hyperedge e ∈ H is
completely contained in some component Vi, then e will
correspond to a self-loop in the graph H/(V1, . . . Vk).
Thus, the crossing edges in EH [V1, . . . Vk] will make up
the entirety of H/(V1, . . . Vk) up to self-loops.

Now, we claim that for any edge e ∈ EH [V1, . . . Vk],
the strength of e ∈ H is ≤ κ if and only if the strength
of e/(V1, . . . Vk) ∈ H/(V1, . . . Vk) is ≤ κ. Further, if the
strength of e/(V1, . . . Vk) ∈ H/(V1, . . . Vk) is ≤ κ, then
the strength is exactly equal to the strength of e ∈ H .
It follows then that this yields an algorithm for finding
all of the edge of strength ≤ κ in H . We simply look
at the contracted graph H/(V1, . . . Vk), find all edges
e/(V1, . . . Vk) of strength ≤ κ, and we will know the
corresponding strength in H . Note that by definition,
any self-loop edge in H has strength > κ because the
components Vi have strength > κ.

We will first show that the minimum normalized
k-cut in H obtains the same value as the minimum
normalized k-cut in H/(V1, . . . Vk). Indeed, consider
the minimum normalized k-cut in H and suppose it
has value ϕ < κ and components V ′

1 , . . . V
′
k′ . Because

the components V1, . . . Vk each have strength κ, it
must be the case that the partition V ′

1 , . . . V
′
k′ does

not split any component Vi, as otherwise this would
mean some edge e ∈ Vi is assigned strength ϕ < κ
which is a contradiction. Thus, the partition V ′

1 , . . . V
′
k′

also forms a valid partition of V1, . . . , Vk in the sense
that each Vi is contained in exactly one V ′

j . Thus,
we can interpret V ′

1 , . . . V
′
k′ to be a partition of the

contracted super vertices in the canonical manner.
We write this as V ′

1/(V1, . . . Vk), . . . V
′
k′/(V1, . . . Vk).

Next, the crossing edges EH [V ′
1 , . . . V

′
k′] will be

in exact correspondence with the crossing edges
EH/(V1,...Vk)[V

′
1/(V1, . . . Vk), . . . V

′
k′/(V1, . . . Vk)]

because an edge which is crossing from
V ′
i , V

′
j is only crossing if it also crosses

between V ′
i /(V1, . . . Vk), V

′
j /(V1, . . . Vk).

Thus, the cut corresponding to
EH/(V1,...Vk)[V

′
1/(V1, . . . Vk), . . . V

′
k′/(V1, . . . Vk)]

will have normalized value ϕ in H/(V1, . . . Vk). Further,
for any minimum normalized cut in H/(V1, . . . Vk), the
corresponding partition of V1, . . . Vk that it makes will

1680

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

also be a valid k-partition of H . Thus, we have shown
that the minimum normalized k-cut in H/(V1, . . . Vk)
is both ≥ and ≤ the minimum normalized k-cut of H .

As pointed out in the above paragraph, as
long as the value of the minimum normalized k-
cut is ≤ κ, the edges involved in any minimum
normalized k-cut in H/(V1, . . . Vk) are in an exact
bijection with H . Thus, the strength for edges in
EH/(V1,...Vk)[V

′
1/(V1, . . . Vk), . . . V

′
k′/(V1, . . . Vk)] will

be exactly the same as EH [V1, . . . Vk], and can be
calculated directly from H/(V1, . . . Vk). We can then
inductively apply this to the components V ′

1 , . . . V
′
k′ that

result from removing the crossing edges. This means
that as long as the strength of the hypergraph we are
operating on is ≤ κ, we will correctly assign strength
values to the hyperedges involved in the minimum
normalized k-cut. This means that all hyperedges
with strength ≤ κ will have their strengths correctly
calculated, as we desire.

Note that the claim follows because calculating
strengths in H/(V1, . . . Vk) can be done exactly. This
uses the fact that self-loops do not play a role in cut-
sizes, so our lack of knowledge of the edges in each Vi

does not impact our calculations.

There is also the following equivalence between the
strengths of hyperedges and induced subgraphs:

Claim III.11. For a hypergraph H = (V,E) and a
hyperedge e ∈ E,

λe ≤ max
e⊆S⊆V

Φ(H[S]).

Proof. This follows because when we calculate the
strength decomposition, we iteratively find the minimum
k-cut of induced subgraphs. The first time that e is a
“crossing edge”, i.e., not completely contained in one
component is when e has its strength assigned. This
means that the strength of e is ultimately assigned
to be the value of the minimum normalized k-cut of
some induced subgraph that contains e. In the above
proposition, we consider the maximum over such induced
subgraphs.

Claim III.12. For a hypergraph H = (V,E) and a
hyperedge e ∈ E,

λe ≥ max
e⊆S⊆V

Φ(H[S]).

Proof. We will show that λe ≥ maxe⊆S⊆V Φ(H[S]). To
do this, let Ŝ denote the optimizing subset for the above
expression. Let us suppose for the sake of contradiction
that λe < Φ(H[Ŝ]) = ϕ. There are three cases:

1) One case is that in the strength calculation, when
λe was assigned, e was a crossing edge for some

partition of an induced subgraph H[S], for Ŝ ⊂ S.
If this is the case, we want to argue that there
is in fact a smaller normalized k-cut that one can
create in H[S] for which e is not a crossing edge.
Indeed, let the optimal min k-cut be given by
the partition V1, . . . Vk. Note that by assumption,
e ∈ E[V1, . . . Vk] and γ = |E[V1,...Vk]|

k′−1 < ϕ.
Now, because e is a crossing edge, it must be
the case that the partition V1, . . . Vk splits Ŝ (as
e ⊆ Ŝ would otherwise not be a crossing edge).
Now, we claim that this means that V1, . . . Vk is
actually not the minimal normalized k-cut. Indeed,
consider W1 = {i : Vi ∩ Ŝ ̸= ∅} which is the
set of connected components which intersect Ŝ.
WLOG, let us assume there are ℓ such components
and that they are the first ℓ in our list (note that
ℓ < k as otherwise there would be more than
γ(k − 1) edges being cut). Now, consider the
new partition defined with the connected compo-
nents W =

⋃
i∈[ℓ] Vi, Vℓ+1, . . . Vk. In words, we

are simply merging all the connected components
which split Ŝ, and leaving the other connected
components un-touched. Let us calculate the new
value of this cut: we will have k− ℓ+1 connected
components, and the number of crossing edges will
be |E[W,Vℓ+1, . . . Vk]| ≤ |E[V1, . . . Vk]|−ϕ(ℓ−1)
because we have removed all the edges in Ŝ that
were cut in this partition. Thus, the value of this
normalized k-cut will be

≤ |E[V1, . . . Vk]| − ϕ(ℓ− 1)

k − ℓ

=
γ(k − 1)− ϕ(ℓ− 1)

k − ℓ

<
γ(k − ℓ)

k − ℓ
< γ,

which is thus smaller than the original k-cut defined
by V1, . . . Vk and yields a contradiction.

2) Another case is that in the strength calculation,
when λe was assigned, e was a crossing edge for
some partition of an induced subgraph H[S] for
e ⊆ S ⊂ Ŝ. This means that at some point in
the strength calculation, there was a partition into
components V1, . . . Vk such that Ŝ was split into
different parts. Further, note that by Remark III.2
it must be the case that the minimum normalized
k-cut defined by V1, . . . Vk must be ≤ λe < ϕ
because e has not yet had its strength assigned.
However, now we can again invoke the logic from
the previous point. This means that Ŝ was split
into different parts by the partition V1, . . . Vk, which
achieves value < ϕ, despite the fact that every k-
cut of Ŝ is of size ≥ ϕ. Thus, we can merge all
the parts of the partition that separate Ŝ to get a

1681

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

k-cut of smaller size. This will contradict the fact
that V1, . . . Vk was the minimum k-cut.

3) The final case is that λe is assigned when e is a
crossing edge of the induced subgraph H[Ŝ]. Then,
the strength will be exactly the minimum k-cut of
H[Ŝ], as we desire.

Thus, we have shown that in every case, it must be that
λe ≥ Φ = ϕ.

Corollary III.13. For a hypergraph H = (V,E) and a
hyperedge e ∈ E,

λe = max
e⊆S⊆V

Φ(H[S]).

A simple consequence of the above is that adding
more hyperedges to a graph can only increase (or keep
the same) the strengths of existing hyperedges, a fact
that we will use throughout the paper.

We now prove some basic facts about this strength
decomposition.

Claim III.14. In an unweighted hypergraph with n
vertices, the number of hyperedges with λe ≤ w is at
most (n− 1) · w.

Proof. Suppose the claim is true by induction for hyper-
graphs with n′ < n vertices. We will show it is true for
hypergraphs on n vertices. The base case follows trivially
when n = 1. Indeed, consider a hypergraph H with
n vertices, and consider the minimum k-cut in H with
value ϕ′ that splits H into k′ components. If ϕ′ ≤ w,
this means that we will get (k′ − 1) · ϕ′ ≤ (k′ − 1) · w
hyperedges assigned strength λe ≤ w, before split-
ting H into k′ connected components. Now, by induc-
tion, the maximum number of hyperedges with strength
≤ w contained in these k′ connected components is
≤

∑
Vi∈{V1,...Vk′}(|Vi| − 1) · w ≤ (n − k′) · w. Adding

together the hyperedges crossing the cuts, we get that
the total number of potential hyperedges with strength
≤ w is at most (n− k′) · w + (k′ − 1) · w = (n− 1)w,
as we desire.

Claim III.15. Let H be an unweighted hypergraph on
n vertices, and let λ ∈ R. Let E<λ = {e ∈ E : λe < λ}
be all hyperedges of strength < λ in H . Then, in the
hypergraph H−E<λ, every hyperedge has strength ≥ λ.

Proof. It suffices to show that if a hyperedge e has
strength ≥ λ in H , then the same hyperedge has strength
≥ λ in H − E<λ.

So, consider any such hyperedge e ∈ H . Recall from
Corollary III.13 that we can characterize its strength in
H with

λe = max
e⊆S⊆V

Φ(H[S]).

In particular, since e has strength ≥ λ in H , there must
exist an S ⊆ V for which e ⊆ S and Φ(H[S]) ≥ λ.

However, this means that for every other hyperedge e′ ∈
H such that e′ ⊆ S, it must be the case that

λe′ = max
e′⊆S′⊆V

Φ(H[S′]) ≥ Φ(H[S]) ≥ λ.

So, every hyperedge contained in H[S] has strength ≥
λ and therefore every hyperedge in H[S] remains in the
graph H−E<λ, as none of them are in the set E<λ. So,
the induced sub-hypergraphs H[S] and (H−E<λ)[S] are
the same. This means that the strength of the hyperedge
e is still at least λ in H − E<λ because the strength of
e in H − E<λ (denoted by γe) satisfies

γe = max
e⊆S′′⊆V

Φ((H − E<λ)[S
′′]) ≥ Φ((H − E<λ)[S])

= Φ(H[S]) ≥ λ.

Remark III.3. An immediate consequence of
Claim III.15 is that if one removes all hyperedges
of strength < λ, the resulting hypergraph has a
minimum normalized k-cut of size ≥ λ. If this were not
the case, then there would exist hyperedges of strength
< λ, which contradicts the above.

Claim III.16. If a set of connected components
V1, . . . Vr in H = (V,E) all have strength ≥ λ and are
connected by a hyperedge whose strength in the overall
graph is ≥ λ, it follows that the connected component⋃

i∈[r] Vi has strength ≥ λ as well.

Proof. Suppose for the sake of contradiction that S =⋃
i∈[r] Vi has strength < λ. This implies that there is

a hyperedge e in H[S] whose strength is < λ in H .
Now, let us consider the procedure by which strength is
assigned. We start by finding the minimum normalized
k-cut value Φ in H , assign all edges participating in
the k-cut strength Φ, and recurse on the connected
components left once we remove all these edges that
crossed the cut. This procedure thus yields strengths of
increasing amounts (see Remark III.2). Thus, in order
for an edge in H[S] to be assigned strength < λ, it
must have been the case that e was a crossing edge
in some minimum k-cut of an induced subgraph and
that the value of this k-cut was < λ. Note that because
the assigned strengths increase, this means that the
component S is split apart in some k-cut of value < λ;
the cut which splits e also splits S, but is certainly
possible that S is split apart earlier too, but this again
means the k-cut splitting S must have had value < λ by
Remark III.2.

To summarize, this means that there was some set S ⊆
A ⊆ V such that the minimum k-cut in H[A] attained
value < λ, and that the components in this minimum
k-cut split S apart. Let us denote the components in this
minimum k-cut by V ′

1 , . . . V
′
k′ . In particular, it must have

1682

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

been the case that S∩V ′
i ̸= S, i.e., that S must have been

split into separate components, as otherwise S would not
have separated by this cut. Now, however, we run into a
contradiction. Note that since S is split into separate non-
empty components, it must either be the case that some
Vi is split by V ′

1 , . . . V
′
k′ , or that some of the components

V1, . . . , Vr are separated from one another by V ′
1 , . . . V

′
k′ .

We make this more formal below:
1) Suppose that for some i ∈ [r], it is the case

that ∀j ∈ [k′], Vi ∩ V ′
j ̸= Vi. This means that

the partition V ′
1 , . . . V

′
k′ splits one of our original

connected components into at least 2 separate non-
empty pieces. We denote these pieces by Vi ∩ V ′

j

for j ∈ [k′]. Now, because Vi is connected, this
implies that there is an edge in Vi which crosses
between at least two of these pieces (as they form
a partition). This however is a contradiction, as this
would imply that this edge is in E[V ′

1 , . . . V
′
k′], and

therefore would have been assigned strength < λ.
But, we are told all edges in H[Vi] have strength
≥ λ.

2) Suppose that it is not the case that ∃i ∈ [r] :
∀j ∈ [k′], Vi ∩ V ′

j ̸= Vi. This implies that it is
not the individual Vi which are split by the partition
V ′
1 , . . . V

′
k′ , but rather that the split happens between

some of the Vi. However, by our hypothesis, we
assume that V1, . . . Vr are connected by an edge ê of
strength ≥ λ. Thus, in this case ê ∈ E[V ′

1 , . . . V
′
k′],

which again yields a contradiction, as this would
imply that ê would have been assigned a strength
< λ.

Thus, in either case we reach a contradiction. So, it must
be the case that the component S has strength ≥ λ.

Corollary III.17. Suppose two connected components
V1, V2 both have strength > λ and share a common
vertex. Then, V1 ∪ V2 has strength > λ as well.

Proof. Let the common vertex be u, and consider an
edge in V1 which neighbors on u (guaranteed to exist
because V1 is connected). This edge will have strength
> λ, because V1 has strength > λ. But, because u ∈ V2,
this means that V1 and V2 are connected by an edge of
strength > λ, so we can invoke the preceding claim.

Next, we mention some facts that have been previ-
ously proved about these values λe.

Claim III.18. [23] If one samples each edge e of a
hypergraph H = (V,E) at rate pe ≥ C log(n)

λeϵ2
for n ≥

|V |, and with corresponding weight 1/pe, then the size
of all k-cuts in H are preserved to a (1± ϵ)-factor with
probability ≥ 1− (|V | − 1)n−100.

This result relies on the following counting bound
from [23] along with a Chernoff bound.

Theorem III.19. [23] Let H be a hypergraph, then,
the number of un-normalized k-cuts of size ≤ t ·Φ(H)
is at most n2t.

Remark III.4. A consequence of the above theorem is
that if one samples the hyperedges of a hypergraph at
rate nc

ϵ2ϕ , then all cuts are preserved to factor (1±ϵ) with

probability ≥ 1 − 2−nc−o(1)

, simply by taking a union
bound over each cut.

IV. LINEAR SKETCHING SPARSIFIERS

A. Linear Sketching a Strength Decomposition Algo-
rithm and Analysis

In this section, we will present an algorithm which
stores only linear sketches of the neighborhoods of
vertices, yet allows us to decompose a graph H into
connected components of high strength and return all
the edges crossing between these connected components
of high strength.

We will make use of the following notion:

Definition IV.1. For a hypergraph H = (V,E), a set
of components V1, . . . Vk, and a hyperedge e crossing
between components {Vi : i ∈ T} (T ⊆ [k]), we can
arbitrarily assign a component Vj : j ∈ T to be the
unique representative component for e, so long as e
is a crossing hyperedge incident upon Vj , and Vj is the
only component assigned to e.

Throughout this section, we will make use of the
following theorem, which we prove in Section V, and
is one of our main technical contributions:

Theorem IV.2. [Recovery Algorithm] For a hypergraph
H on n vertices and a parameter ϕ, there exists a linear
sketch (parameterized by the edge set H , parameter ϕ)
storing only Õ(ϕpolylog(n)) ℓ0-samplers for suitably
restricted neighborhoods of each vertex, such that given
any disjoint components V1, . . . Vk, with probability 1−
2−Ω(log2(n)) returns a set of edges S such that for each
Vi either:

1) All of the hyperedges incident on Vi.
2) At least ϕ log(n) incident hyperedges to Vi for

which Vi is assigned as the unique representative.
Additionally, for each component Vi, the algorithm indi-
cates whether the component is in case 1 or case 2.

The unique representative assignment in the second
case of the theorem above is to rule out the possi-
bility that multiple components simultaneously recover
the same hyperedge among the ϕ log(n) hyperedges
recovered by each of them. For instance, a large arity
hyperedge may be incident upon all of the components
Vi, yet its recovery is allowed to be claimed by only
a single unique representative component. Thus, the
number of distinct hyperedges recovered must scale with

1683

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

the number of components. Finally, it is not required
for the algorithm to say which component is the unique
representative for each hyperedge, only to guarantee
that among the returned hyperedges, there exists an
assignment of unique representatives satisfying the above
statement.

We call the above sketch a “recovery sketch”, and we
will denote it by Recovery. The proof of such a linear
sketch will be provided in the next section, as it is fairly
involved. Here, we instead show how such a sketch is
powerful, as it yields hypergraph sparsifiers.

1) Finding Strong Components and Crossing Hyper-
edges: Below, we present an algorithm using the re-
covery sketch to perform a strength decomposition of a
hypergraph. Roughly speaking, the intuition is that using
the recovery sketch

1) Either, for a large fraction of the connected com-
ponents the algorithm recovers all of the incident
hyperedges. If this happens, we have objectively
made good progress, as we have recovered a very
non-trivial fraction of the entire graph.

2) Otherwise, a large fraction of the connected compo-
nents have recovered many unique hyperedges. In
particular, just by looking at the recovered hyper-
edges (which is a subset of the actual hypergraph),
we will be able to find many hyperedges of high
strength. Because this is only a subset of the original
hypergraph, we know that the strengths of these
hyperedges can only be larger in the original hyper-
graph. So, we show that we can in fact merge com-
ponents connected by strong hyperedges, reducing
the number of connected components remaining in
the graph.

In either case, the algorithm is making progress by
decreasing the number of connected components that
we still have to consider. So, we start with a set of
components just being each of the individual vertices
in the hypergraph, and recovery incident hyperedges
via the recovery sketch. Some components may recover
many incident hyperedges and thus be merged into other
components, while others may simply recover their entire
neighborhood, after which we consider them exhausted.

We present an algorithm implementing the above
logic:

Claim IV.3. After 8 log(n) iterations in Algorithm 2, the
set of active components, {V (8 log(n))

j } is empty.

Proof. Consider an iteration i of the algorithm in which
we start with Ki connected components V1, . . . VKi

under consideration in the graph. There are two cases:
1) Suppose the sampling procedure has recovered all

incident hyperedges on at least Ki/2 of the con-
nected components. This means that it has found
all incident edges on at least Ki/2 of the connected

Algorithm 2: StrengthDecompositionRecovery(G,ϕ).

1 Initialize the active connected components to be
V

(1)
1 , . . . V

(1)
n to be 1, 2, . . . , n (one for each

vertex).
2 Let K1 = n denote the current number of active

connected components.
3 S = ∅ (the set of hyperedges recovered so far),

T = ∅ (the final set of components).
4 for i ∈ [8 log(n)] do
5 Initialize V/(V

(i)
1 , . . . V

(i)
Ki

) to be the vertex
set, (i.e, contract the corresponding
components to super-vertices).

6 Si ←Recovery(G−
S, ϕ log(n), (V

(i)
1 , . . . V

(i)
Ki

)).
7 if less than Ki/2 of the components V

(i)
j

have recovered all incident hyperedges then
8 The recovery has returned

≥ Ki · ϕ log2(n)/2 edges incident on
V

(i)
1 , . . . V

(i)
Ki

.
9 Calculate the strengths of the recovered

hyperedges Si on the vertex set
V/(V

(i)
1 , . . . V

(i)
Ki

). Merge any
components that are connected by a
hyperedge of strength > 2ϕ log(n) in
this meta-graph to create the
components V

(i+1)
j .

10 end
11 else
12 Set S ← S ∪ Si.
13 For any component V (i)

j which has
recovered all incident hyperedges,
remove V

(i)
j from the remaining active

components, and add V
(i)
j to the set T .

14 end
15 Let Ki+1 denote the number of remaining

connected components, and let V (i+1)
j for

j ∈ [Ki+1] represent the remaining
connected components.

16 end
17 return S, T .

components, so the algorithm removes these con-
nected components from future iterations. In this
case, the number of connected components goes
down by a factor of 1/2, i.e. Ki+1 ≤ Ki/2.

2) Suppose that the sampling procedure has not ex-
hausted the incident hyperedges on at least Ki/2
component. Thus, for at least Ki/2 of the connected
components, the Recovery procedure has recovered
≥ ϕ log2(n) hyperedges for which they are the

1684

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

unique representative. In particular, this means that
the sampling returns at least Kiϕ log2(n)/2 dis-
tinct hyperedges. Now, note that the number of
hyperedges of strength < 2ϕ log(n) can be at most
2Kiϕ log(n) by Claim III.14. This means there
must be at least Kiϕ log2(n)/2 − 2Kiϕ log(n) ≥
Kiϕ log2(n)/4 hyperedges of strength at least
2ϕ log(n) just in the subhypergraph on the con-
tracted super-vertices V

(i)
1 , . . . V

(i)
Ki

with these sam-
pled edges. For this subhypergraph, we can ex-
actly compute the strengths of the hyperedges (see
[23] for instance) and find those hyperedges with
strength at least 2ϕ log(n). Now, by Claim III.10,
it follows that hyperedges we find of strength ≥
2ϕ log(n) are exactly those of strength ≥ 2ϕ log(n)
in the unconctracted hypergraph. Thus, in the orig-
inal hypergraph (which contains only more hyper-
edges), their strengths can only be larger, and thus
will still be ≥ 2ϕ log(n).
Further, because each of these ≥ Ki/2 con-
nected components are the unique representative
for ϕ log2(n) hyperedges, this means that by the
PHP, at least ⌈Kiϕ log2(n)/4

ϕ log2(n)
⌉ ≥ Ki/4 connected

components have incident hyperedges with strength
at least ϕ log(n) for which they are the unique
representative. In particular, we can then merge the
connected components that this hyperedge crosses
between, as we are guaranteed that they are all
contained in a component of strength 2ϕ log(n)
(this follows from Claim III.16). Note that each of
the Ki/4 connected components with a neighboring
edge of strength ϕ log(n) participates in a union, so
the number of connected components decreases by
at least Ki/4

2 = Ki/8.
Note that in either case, the number of remaining con-
nected components decreases by at least a factor of 1/8.
Starting with n connected components and repeating this
8 log(n) times then exhausts the entire graph. Hence,
every connected component is removed after at most
8 log(n) iterations.

Claim IV.4. In Algorithm 2, whenever a connected
component V

(i)
j is removed from consideration, it is

either combined with another component to form a
component of strength at least ϕ log(n), or all of its
incident hyperedges have been exhausted.

Proof. This follows by definition. Either a connected
component is merged into a different connected com-
ponent, or a connected component has all of its incident
edges recovered, and is therefore removed.

Claim IV.5. Any connected component considered dur-
ing Algorithm 2 is a singleton vertex or has strength at
least ϕ log(n).

Proof. Suppose a connected component is not a single-
ton vertex. Then, it follows that the connected compo-
nent is the result of merging other connected compo-
nents (possibly vertices). Let us suppose by induction
that every connected component has strength at least
ϕ log(n). Then, to get our new connected component,
we merge connected components that share an edge with
strength ≥ ϕ log(n). It suffices to show then that if
a set of connected components shares a hyperedge of
strength ϕ log(n), and each connected component also
has strength ϕ log(n), then the union of these connected
components has strength ϕ log(n). This follows exactly
from Claim III.16.

Claim IV.6. Algorithm 2 returns a set of connected
components, each either a singleton vertex or of strength
≥ ϕ log(n), as well as all of the hyperedges crossing
between these connected components.

Proof. This follows from Claim IV.5 and Claim IV.4.
Indeed, the list of components we return includes only
those components which were removed during an iter-
ation of Algorithm 2. A component is removed only
when all of its incident edges are recovered. The strength
follows because every component that appears in the
above algorithm has strength ϕ log(n).

Remark IV.1. Note that as a consequence of the above
algorithm, we are able to find the minimum normal-
ized k-cut in the graph if it is of size ≤ ϕ log(n).
This is because any minimum normalized k-cut of size
≤ ϕ log(n) will not cut any component of strength
≥ ϕ log(n), and thus the cut is entirely defined in the
edges crossing between the components returned by the
above algorithm.

More formally, we have the following:

Claim IV.7. Let H be a hypergraph, and let V1, . . . Vk be
a set of connected components of strength > κ. Suppose
we know all of the hyperedges in EH [V1, . . . Vk], then
we can correctly identify exactly all hyperedges in H of
strength ≤ κ.

Proof. This follows from Claim III.10. If we know
all of the crossing hyperedges EH [V1, . . . Vk], we can
construct the contracted hypergraph H/(V1, . . . Vk). We
know that in this hypergraph, the edges of strength ≤ κ
are exactly those of strength ≤ κ in the original hyper-
graph H . Thus, we can simply find these corresponding
hyperedges in H/(V1, . . . Vk).

2) More Exact Strength Decomposition: This sug-
gests the following algorithm, where κ < ϕ log(n):

Claim IV.8. If κ < ϕ log(n) and there is a normalized
k-cut of size ≤ κ in G, ConditionalEdgeRecovery returns
all hyperedges of strength ≤ κ.

1685

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: ConditionalEdgeRecovery(G,ϕ, κ)

1 Recover V1, . . . Vp of strength ≥ ϕ log(n) as well
as all crossing hyperedges between these
components by running
StrengthDecompositionRecovery(G,ϕ).

2 Let S denote all hyperedges of strength ≤ κ in
H/(V1, . . . Vp).

3 return S

Proof. The correctness follows from Claim IV.7. Be-
cause the strengths of V1, . . . Vp are all at least ϕ log(n),
one can find the exact edge strengths in H/(V1, . . . Vp)
for any edge of strength ≤ ϕ log(n). We are then simply
returning these hyperedges.

3) Space Analysis:

Claim IV.9. Algorithm 2 can be implemented as a linear
sketch using only Õ(nrϕ log(m) log(1/δ)) bits, where
δ is the failure probability per ℓ0-sampler, r is the
maximum arity of H , and m is the number of hyperedges
in H .

Proof. The only space used by the linear sketch is in
the ℓ0-samplers that are used in the recovery sketch. By
assumption, we are storing Õ(ϕpolylog(n)) ℓ0-samplers
per vertex (and there are n vertices). We can observe
that the universe size of these ℓ0-samplers is bounded by
n2r = 22r log(n), and we can bound the support size of
these ℓ0-samplers by m (the total number of hyperedges
in the hypergraph). It follows then that the total space
required to store the ℓ0-samplers is

≤ Õ(nϕpolylog(n) · log(m) · (2r log(n)) · log(1/δ))

= Õ(nrϕ log(m) log(1/δ)).

B. Sparsification

Now, we use the strength decomopsition algorithm as
a building block in our sparsification algorithm.

1) Idealized Algorithm: Our algorithm will attempt
to implement the following sparsification algorithm in a
linear sketch. We present a simple idealized sparsifica-
tion procedure corresponding to [5], [17] (and used in
many subsequent works, for instance [10]).

A simple way (as in [10]) to analyze this algorithm is
presented below:

Claim IV.10. If H has m edges, the above algorithm
returns a (1±O(ϵ log(m)))-sparsifier for H with prob-
ability 1− 1/poly(n).

Proof. Consider any iteration i and the corresponding
hypergraph in that iteration Hi. We claim that with high

Algorithm 4: IdealSparsify(H, ϵ,m))

1 Initialize H−1 = H,F−1 = ∅.
2 for i = 0, 1, . . . log(m) do
3 Let Fi contain all edges of strength

≤ 100C log(n)/ϵ2 in Hi−1.
4 Store 2i · Fi.
5 Let Hi be the result of downsampling

Hi−1 − Fi at rate 1/2.
6 end

probability, Fi ∪ 2 ·Hi+1 is a (1± ϵ)-sparsifier for Hi.
To see this, note that Hi = Fi + (Hi − Fi). Now, the
strength of every hyperedge in (Hi − Fi) is at least
100C log(n)/ϵ2 (see Claim III.15), so it follows that
sampling at rate 1/2 (and reweighing by a factor 2)
will preserve every cut in (Hi − Fi) to a factor (1± ϵ)
with probability 1 − n−100. Thus, since Hi+1 is this
downsampled graph, it follows that Fi ∪ 2 · Hi+1 is a
(1± ϵ)-sparsifier for Hi with probability 1− n−100.

Now, we claim inductively that the hypergraph under
consideration after j iterations is a (1 ± 2ϵj)-sparsifier
for H . The base case is easy to see, as the preceding
paragraph proves the case when j = 1. Let us suppose
the claim holds by induction up to the jth iteration. Then,
it follows that F0∪2F1∪· · ·∪2jFj∪Hj+1 is a (1±2ϵj)-
sparsifier for H . Now, by the preceding paragraph, it
follows that 2Fj+1∪Hj+2 is a (1±ϵ)-sparsifier for Hj+1

with high probability. Thus, F0∪2F1∪· · ·∪2j+1Fj+1∪
Hj+2 is at least as good as a (1± ϵ)-sparsifier to F0 ∪
2F1∪· · ·∪2jFj ∪Hj+1, and thus by composition, must
be a (1± 2ϵ(j + 1))-sparsifier for H .

Next, we must argue that the algorithm itself ter-
minates within log(m) iterations. This follows because
after log(m) iterations, the original hypergraph is being
downsampled at rate 1/m, so there will be O(log(n))
surviving hyperedges with probability 1−1/poly(n), and
these will be recovered exactly as the edges of low
strength. Next, we know that log(m) ≤ n, so we can take
a union bound over the at most n levels of sparsification.
Each level of sparsification returns a (1 ± ϵ)-sparsifier
with probability 1 − n−100, so in total, the probability
of getting a sparsifier is at least 1 − n−99 − 1/poly(n),
as we desire.

Remark IV.2. Although the argument in Claim IV.10 is
only stated for preserving 2-cuts, note that Fi∪2·Hi+1 is
actually a k-cut-sparsifier for Hi by the reasoning from
Claim III.18. That is, every hyperedge in Hi − Fi has
k-cut strength at least 2C log(n)/ϵ2, and thus we can
afford to sample at rate 1/2 while preserving the weight
of all k-cuts (simultaneously for every value of k ∈ [n])
to a factor (1± ϵ).

1686

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

2) Linear Sketch Implementation: Next, we will show
how to implement the above algorithm more carefully
in a linear sketching framework. Consider the following
algorithm which takes as input a hypergraph H , an
approximation parameter ϵ, the number of edges in H ,
denoted by m, as well as (uniformly random) filter
functions f1, . . . flog(m), fi : 2[n] → {0, 1}:

Algorithm 5: LinearSketchSparsify
(H, ϵ,m, (f1, f2, . . . flog(m)))

1 Initialize H−1 = H,F−1 = ∅.
2 for i = 0, 1, . . . log(m) do
3 Let Hi contain all edges e from Hi−1 − Fi−1

such that
∏i

j=1 fj(e) = 1.
4 Fi ← ConditionalEdgeRecovery(Hi, ϕ, κ),

with ϕ = C log(n)/ϵ2, and κ = 100ϕ.
5 Store 2i · Fi.
6 end

There are a few key claims that we will show about
the above algorithm.

Claim IV.11. The above algorithm returns a (1 ±
O(ϵ log(m)))-sparsifier for H with probability 1 −
1/poly(n).

Proof. This follows by the exact same proof as
Claim IV.10. Indeed, consider the execution in the ith
step of the algorithm. By Claim IV.8, it must be the
case that all edges of strength ≤ 100C log(n)/ϵ2 are re-
moved from Hi and stored in Fi. Then, with probability
1−1/poly(n), downsampling Hi−Fi at rate 1/2 to get
Hi+1 will yield Hi+1 which is a (1 ± ϵ)-sparsifier for
Hi − Fi, and thus Fi ∪ 2 · Hi+1 is a (1 ± ϵ)-sparsifier
for Hi with the same probability.

It follows then that if we inductively repeat this,
we will get a (1 ± O(ϵ log(m)))-sparsifier for H with
probability 1− 1/poly(n).

Claim IV.12. The above algorithm can be implemented
with a linear sketch of size Õ(nr log4(m)/ϵ2) to get a
(1± ϵ)-sparsifier for H .

Proof. The only space we use for the linear sketch
is in storing independent copies of the sketch re-
quired for ConditionalEdgeRecovery. We do this for
O(log(m)) different levels (before H is empty), and
at each level we invoke ConditionalEdgeRecovery with
ϕ = O(log(n)/(ϵ/ log(m))2). By Claim IV.9, each
sketch will require Õ(nr log3(m) log(1/δ)/ϵ2) bits, and
thus over the log(m) possible levels, the total space is
Õ(nr log4(m) log(1/δ)/ϵ2).

Because there are Õ(n log(m)/ϵ2) ℓ0-samplers, it
suffices to choose δ = ϵ2/poly(n). For this choice of

δ then, it follows that the total space requirement is
Õ(nr log4(m)/ϵ2).

Note that because our sketch is linear, the operation
of removing Fi−1 from Hi−1 is allowed, as this simply
corresponds with updating the support of ℓ0 samplers.
In particular, we only ever update later rounds of ℓ0
sampling which are initialized with independent random
seeds.

C. Cut-Perspective for Getting Rid of O(log2(m)) Terms

In this section, we will re-analzye the above algorithm
to show that we can get rid of an extra log2(m) factor.
At the core of this analysis is showing that it suffices to
set our error parameter to be ϵ/polylog(n) as opposed
to ϵ/ log(m). We do this by carefully analyzing the rate
at which the accuracy of each cut deteriorates as we
continue to downsample the hypergraph.

We next present some definitions for the above algo-
rithm.

Definition IV.13. Consider any k-cut of the hypergraph
H . We denote this cut by Q (i.e. denoting the set of
edges in the cut). Let λ(Q) be the maximum strength
(in H) of any hyperedge which is in Q.

Definition IV.14. Let H be a hypergraph and Q be a cut
in H , and let Hi be a version of H which results from
running our linear sketching algorithm for i iterations.
We say that the cutoff for Q is λ(Q)/n8. With this we
have some definitions:

1) We say that Q is inactive in Hi if 2i ≤
ϵ5λ(Q)/n24.

2) We say that Q is active in Hi if λ(Q) ·n10 ≥ 2i ≥
ϵ5λ(Q)/n24.

3) We say that Q is exhausted in Hi if λ(Q)·n10 < 2i.

Definition IV.15. We let Q≤κ denote the edges in Q
that have strength ≤ κ in H , and likewise Q≥κ denotes
the edges in Q of strength ≥ κ in H .

Definition IV.16. Let Ei ⊆ E denote the set of edges
which survive i rounds of downsampling from filter
functions.

Intuitively, if 2i is below the cutoff, we are going to
argue that the majority of Q has had its weight preserved
in the sparsification routine so far. While 2i is slightly
above the cutoff, we will show that this is where the
sparsification of the majority of Q is happening, and
that indeed, most of the cut is preserved to the right
size. Finally, when 2i is far too large, we will argue that
all of the edges from the cut have already been removed.
We will use the following claim in a key way:

Claim IV.17. Let H be a hypergraph. With probability
1−n8, for all edges e, e will not be in Hi for 2i ≥ n10·λe

(where λe denotes the strength of e).

1687

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Proof. Note that there can only be n different strengths
in H , as each strength corresponds with some k-partition
which increases the number of connected components.
So, fix one of these n strength values λ. We then
know that there can be at most (n − 1)λ hyperedges
of strength ≤ λ. Thus, the probability that a single
one of these hyperedges survives at the given sampling
rate is ≤ 1/(n10 · λe). Taking the union bound over all
hyperedges, we know that no hyperedges of strength λe

survive with probability ≥ 1− (n−1)λe

n10·λe
≥ 1−n9. Finally,

we can take a union bound over all n possible strength
values to conclude that with probability 1 − n8 any
hyperedge e is not in from Hi when 2i ≥ n10 · λe.

Claim IV.18. Let H be a hypergraph, and let Q be
some cut of H corresponding to the hyperedges crossing
between components V1, . . . Vk. Let i be the first iteration
in which Q is active when running Algorithm 5. Then,

1) Let Q≥ϵλ(Q)/n20 be the hyperedges in Q with
strength at least ϵλ(Q)/n20 in H . It follows that
by the ith iteration, 2i · |Hi ∩ Q≥ϵλ(Q)/n20 | ∈
(1± ϵ)|H ∩Q≥ϵλ(Q)/n20 |.

2) |Q| ≥ |Q≥ϵλ(Q)/n20 | ≥ λ(Q).
3) In the resulting sparsifier for H , the total contribu-

tion to Q from hyperedges of strength ≤ ϵλ(Q)/n20

is ≤ ϵλ(Q)/n3 with probability 1− 2−Ω(n3)

4) In the resulting sparsifier for H , the weight of
edges crossing cut Q is preserved to a factor
(1±ϵ/n3)(1±ϵ)log(n24+10/ϵ5) with high probability.

5) By setting ϵ∗ = ϵ
log2(n/ϵ)

, and creating a sparsifier
for H by calling Algorithm 5 with error parameter
ϵ∗, every cut Q is preserved to a factor (1±ϵ) with
probability 1− n−8.

Proof. 1) First, consider the hypergraph H∗ which
contains only those hyperedges of H with strength
at least ϵλ(Q)/n20. It follows that if one subsam-
ples H∗ at any rate p ≥ n24

2ϵ5λ(Q) to get H∗′
, all

cuts in H∗ will be preserved (after reweighting) to
a factor (1 ± ϵ) with probability 1 − 2−Ω(n4) (this
follows from Claim III.18).
In particular, this means that every non-empty
normalized k-cut in H∗′

will be of size at least
(1− ϵ) ·n4/ϵ2 with probability 1−2−Ω(n4). Taking
a union bound over all n possible rates of down-
sampling to get H∗′

, it follows that in successive
iterations leading up to Q becoming active, no
hyperedges from H∗ will ever be removed in the
strength decomposition (since their strength remains
above (1 − ϵ) · n4/ϵ2), and that at every step, we
maintain a (1 ± ϵ)-approximation to the size of Q
in H∗.

2) Note that by definition, Q cuts a component of
strength λ(Q). It therefore follows that if we restrict
our attention to only the hyperedges of strength

≥ λ(Q), Q must have at least λ(Q) crossing
hyperedges among these.

3) First, from the previous item, we know that the only
hyperedges which will be stored prior to the ith
iteration are those that correspond to hyperedges in
H of strength ≤ ϵλ(Q)/n20.
Next, we know that the number of hyperedges
with strength ≤ ϵλ(Q)/n20 = W is at most
n · ϵλ(Q)/n20 ≤ ϵλ(Q)/n19 = nW . We call
these edges the low strength edges. Now, we can
upperbound the total contribution from these low
strength hyperedges in the sparsifier by considering
the filter functions fi. We know that a given hyper-
edge survives a single downsampling iteration with
probability 1/2, at which point the hyperedge is
given weight at most 2. Thus, after i levels of down-
sampling, it is still the case that the expected weight
of remaining edges is nW . We also know that by
the time we are sampling edges at rate 1/(Wn10),
all the edges will have been removed with high
probability. Now, because each hyperedge can only
be stored once (after which it is removed from
future sketches), we can get a crude upper bound
for the total weight contributed by these edges by
summing the total weight of the surviving edges
after each level of downsampling. To summarize,

total contribution of low strength edges

≤
log(Wn10)∑

j=1

2j · |Q≤W ∩ Fj | ≤
log(Wn10)∑

j=1

2j · |Q≤W ∩ Ej |

Next, note that |Q≤W ∩Ej | is simply distributed as
a Binomial(nW, 2−j) variable. Thus, we note that

Pr[2j · Binomial(nW, 2−j) ≥ ϵλ(Q)/n4]

= Pr[Binomial(nW, 2−j) ≥ ϵλ(Q)

n4 · 2j
]

= Pr[Binomial(nW, 2−j) ≥ W · n20

n4 · 2j
]

= Pr[Binomial(nW,
1

2j
) ≥ W · n16

2j
]

≤ Pr[Binomial(nW,
1

Wn10
) ≥ W · n20

n4Wn10
]

= Pr[Binomial(nW,
1

Wn10
) ≥ n6].

The inequality follows from the fact
that Pr[Binomial(ℓ, p1) ≥ K · p1] ≤
Pr[Binomial(ℓ, p2) ≥ K · p2] whenever
K ≥ ℓ, p1 ≥ p2. To see why this is true,
this is equivalent to

Pr[Binomial(ℓ, p1) ≥ (K/ℓ)(ℓp1)]

1688

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

≤ Pr[Binomial(ℓ, p2) ≥ (K/ℓ)(ℓp2)].

Then, it follows that

Pr[Binomial(nW,
1

Wn10
) ≥ n6]

≤ Pr[Binomial(nW,
n3

W
) ≥ n6],

which is bounded by 2−Ω(n3) by a Chernoff Bound.
Thus, it follows that with probability 1− 2−Ω(n3),
the total contribution from low strength edges is at
most n · ϵλ(Q)/n4 ≤ ϵλ(Q)/n3.

4) Let us denote the sparsifier we obtain by Ĥ . Further,
let us denote the accuracy parameter we obtain for
Q≥ϵλ(Q)/n20 by ϵ′.
First we will show that with high proba-
bility |EĤ [V1, . . . Vk]| ≥ (1 − ϵ′) · (1 −
ϵ/n19)|EH [V1, . . . Vk]| = (1 − ϵ) · (1 − ϵ/n19)|Q|.
Indeed, we know that in H , the total contribution
to |Q| from |Q≤ϵλ(Q)/n20 | was ≤ n · ϵλ(Q)/n20 =
ϵλ(Q)/n19 by the previous part. Because |Q| ≥
λ(Q), it follows that the edges of low strength con-
tribute at most a ϵ/n19 fraction of the hyperedges
to |Q|. Thus, if we get a (1± ϵ′) approximation to
the cut-sizes of Q≥λ(Q)/n20 , this will be at least a
(1− ϵ′) · (1− ϵ/n19) factor approximation to Q.
Next, we will show that with high
probability |EĤ [V1, . . . Vk]| ≤ (1 + ϵ′)(1 +
ϵ/n3)|EH [V1, . . . Vk]| = (1+ϵ′)(1+ϵ/n3)|Q|. This
follows because we get a (1± ϵ′) approximation to
Q≥λ(Q)/n20 , and the remaining low strength edges
contribute a factor of at most ϵ|Q|/n3 with high
probability. Thus, we get an upper bound on our
approximation factor of (1 + ϵ′)(1 + ϵ/n3).
Finally, the exact factor of ϵ′ that we achieve is
the level of approximation that we achieve for
Q≥λ(Q)/n20 . Note that in Hi, Q≥λ(Q)/n20 has all
cuts preserved to a factor (1 ± ϵ). Then for each
iteration in which Hi is active, we lose a factor
of (1± ϵ) in the approximation. Thus, because Hi

is active for log(n24+10/ϵ5) iterations, we get an
approximation factor of (1± ϵ)log(n

34/ϵ5).
5) It follows that if we run the above algorithm

with ϵ∗ = ϵ
log2(n/ϵ)

, then the approximation factor
we achieve for any cut Q is (1 ± ϵ/n3) · (1 ±

ϵ
log2(n/ϵ)

)log(n
34 log2(n/ϵ)/ϵ). Because log2(n/ϵ) ≥

2 log(n34 log2(n/ϵ)/ϵ), we can bound this second
term by (1 ± ϵ/2). Likewise, the first term (1 ±
ϵ∗/n3) will have error bounded by (1 ± ϵ/2), and
thus the total error in preserving the cut Q is
≤ (1± ϵ).
Next, we will analyze the probability with which
this will hold. We define some “bad” events in the
execution of Algorithm 5. Note that some of these

bad events are global in the sense that the bad event
is defined without mention of a specific cut. Some
of the bad events are local, meaning they depend
on a specific cut. In the local case is where we will
have to ensure that the probabilities are sufficiently
low so as to survive a union bound. First, we define
the global bad events:

a) B1 is the event that Claim IV.17 fails to happen.
b) B2 is the event that in the execution of Al-

gorithm 5, there is some iteration j in which
Fj ∪ 2 · Hj+1 is not a (1 ± ϵ)-cut sparsifier for
Hj .

Next, we define the local bad events for a cut Q:
a) B3 is the event that 2i · |Hi∩Q≥λ(Q)/n20 | /∈ (1±

ϵ)|H ∩Q≥λ(Q)/n20 |, where i is the first iteration
in which Q is active.

b) B4 is the event that in the resulting sparsifier
for H , the total contribution to Q from hyper-
edges of strength ≤ λ(Q)/n20 stored in the first
log(Wn10) iterations is > λ(Q)/n3.

Now, by our previous logic, if none of these happen
for any cut Q, we will have our desired result.
So, it suffices to bound the probability that any of
these happen. We know that Pr[B1] ≤ n8 from
Claim IV.17. Next, for B2, we know that in each
iteration Fj ∪ 2 ·Hj+1 is not a (1± ϵ) sparsifier for
Hj with probability at most n−10. Because there are
at most n levels of downsampling, the total failure
probability here is at most Pr[B2] ≤ n−9.
Next, for our local events, we know that we must
take a union bound over at most nn choices of Q.
For any such choice, it is the case that Pr[B3] ≤
2−Ω(n4), by the first item in this claim. Taking the
union bound over all nn choices of Q, we get that
Pr[B3 occurs for any Q] ≤ 2−Ω(n3). Likewise for
a given Q, B4 occurs with probability ≤ 2−Ω(n3),
so Pr[B4 occurs for any Q] ≤ 2−Ω(n2).
Thus, the total probability of any bad event hap-
pening is ≤ n8 +n−9 +2−Ω(n3) +2−Ω(n2) ≤ n−8,
so with high probability, our algorithm sparsifies all
cuts to factor (1± ϵ).

Lemma IV.19. There exists a linear sketching algorithm
that with high probability returns a (1 ± ϵ) sparsifier
for a hypergraph H of maximum arity r using only
Õ(nr log2(m)/ϵ2) bits of space.

Proof. The correctness follows from Algorithm 5 called
with error parameter ϵ/ log2(n/ϵ). The only sketch
we store is for ConditionalEdgeRecovery at each
level of downsampling. We do this for O(log(m))
different levels (before H is empty), and at each
level, we use ConditionalEdgeRecovery with ϕ =

1689

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

O(log(n)/(ϵ/ log2(n/ϵ))2). By Claim IV.9, each sketch
will require Õ(nr log(m) log(1/δ)/ϵ2) bits, and thus
over the log(m) possible levels, the total space is
Õ(nr log2(m) log(1/δ)/ϵ2).

Because there are Õ(n log(m)/ϵ2) ℓ0-samplers, it
suffices to choose δ = ϵ2/poly(n). For this choice of
δ then, it follows that the total space requirement is
Õ(nr log2(m)/ϵ2).

D. Getting Rid of the Final O(log(m)) via Preprocess-
ing

Our goal in this section will be to get rid of an
additional O(log(m)) term. Roughly speaking, this extra
factor of log(m) comes from the fact that the ℓ0-
samplers must be defined for a support size as large
as m. Here, we will show that with a preprocessing
step, we can reduce the number of hyperedges under
consideration in every level of downsampling to be
bounded by poly(n). This then allows us to store ℓ0-
samplers of size Õ(r log(n)) instead of potentially as
large as Õ(r log(m)).

1) Idealized Algorithm: To get this reduction, we will
consider the following idealized algorithm:

Algorithm 6: SparsifyWithStrongComponents
(H, ϵ,m, (f1, f2, . . . flog(m)), (V

(i)
1 , . . . V

(i)
pi)

log(m)
i=0)

1 Initialize H−1 = H,F−1 = ∅.
2 for i = 0, 1, . . . log(m) do
3 Let Hi contain all edges e from Hi−1 − Fi−1

such that
∏i

j=1 fj(e) = 1.
4 Fi ← ConditionalEdgeRecovery
5 (Hi/(V

(i)
1 , . . . V

(i)
pi), ϕ, κ), with

ϕ = C log(n)/ϵ2, and κ = 100ϕ.
6 Store 2i · Fi.
7 end
8 return all stored hyperedges.

Claim IV.20. Algorithm 6 behaves exactly the same
as Algorithm 5 if for each i ∈ [log(m)], V (i)

1 , . . . V
(i)
pi

is a partition of V such that each V
(i)
ℓ is of strength

≥ n10/ϵ2 in Hi, and each hyperedge of strength
≥ n100/ϵ2 in Hi is completely contained in some V

(i)
ℓ .

Proof. It suffices to prove that the edges Fi that are
recovered are the same. This follows exactly from
Claim IV.7. Indeed, because the components V

(i)
ℓ are of

strength ≥ n10/ϵ2, the hyperedges in Hi/(V
(i)
1 , . . . V

(i)
pi)

of strength ≤ C log(n)/ϵ2 are exactly the same as the
hyperedges in Hi of strength ≤ C log(n)/ϵ2. Thus,
recovering these edges in the contracted version of Hi is
the same as recovering these edges in the original version
of Hi.

Claim IV.21. In Algorithm 6, if for each i ∈ [log(m)],
V

(i)
1 , . . . V

(i)
pi is a partition of V such that each V

(i)
ℓ

is of strength ≥ n10/ϵ2 in Hi, and each hyperedge of
strength ≥ n100/ϵ2 in Hi is completely contained in
some V

(i)
ℓ , then we can implement each ℓ0-sampler for

ConditionalEdgeRecovery with support size poly(n/ϵ)
instead of m.

Proof. In the ith level of downsampling, we
run ConditionalEdgeRecovery on the hypergraph
Hi/(V

(i)
1 , . . . V

(i)
pi). We are told that every hyperedge

of strength ≥ n100/ϵ2 in Hi is completely contained in
some V

(i)
ℓ , so it follows that in the contracted graph

Hi/(V
(i)
1 , . . . V

(i)
pi), each such edge has been contracted

away (to a self-loop). Thus, the only crossing edges in
Hi/(V

(i)
1 , . . . V

(i)
pi) will be a subset of those edges of

strength ≤ n100/ϵ2 in Hi. Now, by Claim III.14, there
can be at most n101/ϵ2 such edges, so it follows that
Hi/(V

(i)
1 , . . . V

(i)
pi) has ≤ n101/ϵ2 edges.

So, we know that each ℓ0-sampler using correlated
randomness in the sketch for ConditionalEdgeRecovery
only requires a support of size poly(n/ϵ). This is because
these ℓ0-samplers will always be added together to create
a component that has at most n101/ϵ2 crossing hyper-
edges incident upon it. Further, in Theorem IV.2 each
ℓ0-sampler is assumed to be defined on a subset of the
support, so in particular, the upper-bound of poly(n/ϵ)
remains.

2) Strong Component Recovery With Smaller
Sketches: As we showed in the previous section, if we
can create a method which identifies these “exceedingly
strong” components before running our sparsification
routine, then we can afford to save a factor of log(m) in
the size of the ℓ0 samplers that we use. Unfortunately,
we cannot afford to use the “Recovery” algorithm we
defined before, as this is exactly the algorithm we are
trying to optimize.

Instead, we use an algorithm which iteratively samples
the hypergraph H , and at each level of sampling, only
stores enough ℓ0-samplers to check the connectivity of
the sampled hypergraph. We show that (1) this connec-
tivity sketch suffices for identifying strong components,
and (2) if we open the sketches in reverse (starting with
the version of the hypergraph that has undergone the
most levels of sampling), we can actually implement that
sketch with only Õ(nr log(m)) bits.

To this end, consider the following algorithm:

Claim IV.22. With probability 1 − 2−Ω(n3), for every
k-cut Q, and for every i, it must be the case that if
|Q ∩ H̃i| ≥ n5, then |Q ∩ H̃i+1| ≥ 1.

Proof. This follows from a Chernoff bound.

1690

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 7: RecoverStrongComponents(H)

1 Let H̃i be H̃i−1 downsampled at rate 1/2,
starting with H̃0 = H .

2 Let the initial starting vertex set be [n], so
Ṽ

(log(m)+1)
i = i, plog(m)+1 = n.

3 for i = log(m), . . . , 1, 0 do
4 Let Ṽ (i)

1 , . . . Ṽ
(i)
pi be the connected

components in H̃i/(Ṽ
(i+1)
1 , . . . Ṽ

(i+1)
pi).

5 end
6 return (Ṽ

(i)
1 , . . . Ṽ

(i)
pi)

log(m)+20 log(n)
i=0

Claim IV.23. With probability 1 − 2−Ω(n3), for every
i ∈ [log(m)] the degree of every (super)-vertex in
H̃i/(Ṽ

(i+1)
1 , . . . Ṽ

(i+1)
pi) is bounded by poly(n).

Proof. The algorithm works from the bottom up. Clearly,
in H̃log(m), there will be fewer than n5 hyperedges sur-
viving total with probability 1− 2−Ω(n3) (by Chernoff),
and thus with high probability every (super)-vertex will
have degree bounded by n5.

Now, consider the ith iteration of the above process.
Because in H̃i−1 we merge together all vertices that
are connected, it follows that the number of hyperedges
in the contracted graph is 0. Now, it must be the case
that the surviving hyperedges in this contracted graph
corresponds with some k-cut Q in the original graph.
Thus, by the previous claim, we know that (with high
probability) because |Q ∩ H̃i| = 0, it must be that
|Q ∩ H̃i−1| ≤ n5. Thus, we get that the number of
surviving hyperedges in the up-sampled version of the
graph is bounded by poly(n).

Claim IV.24. Let H̃j , Hj be independently downsam-
pled hypergraphs where Hi is Hi−1 downsampled at rate
1/2 and H0 = H (and the same respectively for H̃i).
Let Ṽ (i)

1 , . . . Ṽ
(i)
pi denote the connected components re-

covered by Algorithm 7. Then, with probability 1−3n−8,
it must be the case that

1) Any connected component of strength ≥ n100/ϵ2 in
Hj will remain connected in H̃j+log(n20/ϵ2).

2) Any connected component in H̃j+log(n20/ϵ2) will
have strength at least n10/2ϵ2 in Hj .

Proof. First, let us invoke Claim IV.17 twice for both the
sequences of downsampling defined by H̃i and Hi. This
states that with probability 1 − n−8, all edges e ∈ H
will be removed from Hi when 2i ≥ λe · n10 (and the
same respectively for H̃).

Now, let us show the first point, let C ⊆ V de-
note some component in Hj of strength ≥ n100/ϵ2.
This means with probability at least 1 − 2−Ω(n10), C
will have strength (1/2) · n50/ϵ2 · 2j in the graph

Hj+50 log(n). In particular, this will mean that the compo-
nent C will still be connected in Hj+log(n50/ϵ2). Because
2j+log(n50/ϵ2) = 2j ·n50/ϵ2, this means that all edges of
strength ≤ 2j · n40/ϵ2 in H have been removed from
Hj+log(n50/ϵ2). Thus, because the component C is still
connected in Hj+log(n50/ϵ2), this means that C must be
connected by hyperedges of strength ≥ 2j ·n40/ϵ2 in H ,
and therefore have strength ≥ 2j · n40/ϵ2 in H . Thus,
with probability 1 − 2−Ω(n10), when we downsample
by 2j · n20/ϵ2 in H̃0, C will continue to have strength
≥ (1/2)n20/ϵ2, and therefore C constitute a connected
and be merged together in H̃j+log(n20/ϵ2). Therefore, the
constituent vertices of C will be combined together into
a single component Ṽ j+log(n20/ϵ2)

ℓ .
Again because Claim IV.17 holds, this means that

all edges with strength ≤ n10 · 2j/ϵ2 will be re-
moved in H̃j+log(n20/ϵ2). Thus any connected compo-
nent V

j+log(n20/ϵ2)
ℓ that forms in H̃j+log(n20/ϵ2) must

have strength ≥ n10 ·2j/ϵ2 in the original H . Now, when
we downsample to get Hj (at rate 1/2j), it follows that
with probability 1−2−Ω(n9), Ṽ j+log(n20/ϵ2)

ℓ has strength
≥ (1/2)2jn10/(ϵ22j) = (1/2)n10/ϵ2 in Hj .

Now, to see our probability bound, note that we must
only invoke Claim IV.17 twice globally after which it
holds for every edge strength. Then, for each possible
component that we can see, we can take a union bound
over the probability of any of the above bad events. There
are at most nn components, and n rounds of sampling,
for a total of nn+1 possible components seen. The prob-
ability of failure for any given component is bounded by
2 ·2−Ω(n10)+2−Ω(n9) and thus remains overwhelmingly
small after the union bound. In total then, the failure
probability can be bounded by 1− 3n−8.

3) Complete Algorithm: We now present the complete
algorithm for sparsification:

Algorithm 8: StrengthRecoverySparsification
(H, ϵ,m, (f1, f2, . . . flog(m)))

1 Let ϵ∗ = ϵ
log2(n/ϵ)

.

2 Let (Ṽ (i)
1 , . . . Ṽ

(i)
pi)

log(m)+log(n20/(ϵ∗)
2)

i=0 =
3 RecoverStrongComponents(H).
4 For i = 0, . . . log(m), let

V
(i)
ℓ = Ṽ

(i+log(n20/(ϵ∗)
2))

ℓ .
5 return SparsifyWithStrongComponents
6 (H, (ϵ∗),m, (f1, f2, . . . flog(m)), (V

(i)
1 , . . . V

(i)
pi)

log(m)
i=0)

Claim IV.25. Algorithm 8 returns a (1 ± ϵ)-sparsifier
for H with probability 1− 4n−8.

Proof. This follows from Claim IV.20 and Claim IV.24.
Indeed, Algorithm 6, behaves the same as Algorithm 5

1691

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

under the condition that the components under consid-
eration in the ith iteration are of strength ≥ n10/ϵ2,
and contain all edges of strength ≥ n100/ϵ2 in Hi. By
Claim IV.24, we know that this holds with probability
1− 3n−8 for the components returned by Algorithm 7.
Thus, with probability 1 − n−7, the above algorithm
returns results from the same distribution as Algorithm 5,
which we know returns a (1± ϵ)-sparsifier with proba-
bility 1 − n−8. Thus, with probability ≥ 1 − 4n−8, the
above algorithm returns a (1± ϵ)-sparsifier for H .

Claim IV.26. Algorithm 8 can be implemented with a
linear sketch of size Õ(nr log(m)/ϵ2).

Proof. First, we consider Algorithm 7. By Claim IV.23,
each ℓ0-sampler must only be defined on a support
of size poly(n). In each level of downsampling, we
only require ℓ0-samplers sufficient for computing the
connectivity structure of the hypergraph. From [10],
this can be done by storing log(n) ℓ0-samplers per
vertex (with correlated randomness). Combined over the
log(m) levels of downsampling and n vertices, this
means we must store Õ(n log(m)) ℓ0-samplers total,
using Õ(nr log(m)) bits (where we have used that the
support size is bounded by poly(n) to avoid an extra
factor of log(m) in the representation size of each ℓ0-
sampler).

Next, we consider Algorithm 6. By Claim IV.21, it
suffices to use ℓ0-samplers defined on a support of size
poly(n/ϵ) and so each sketch for ConditionalEdgeRe-
covery requires only Õ(nr log(1/δ)/ϵ2) bits. Taking the
union of the log(m) sketches of ConditionalEdgeRecov-
ery, and setting δ = ϵ2

poly(n) , we then get our desired
bound.

Theorem IV.27. There exists a linear sketch for ar-
bitrary hypergraphs on n vertices and ≤ m hyper-
edges, with arity ≤ r which recovers a (1 ± ϵ) hyper-
graph sparsifier with probability 1 − 4n−8, using only
Õ(nr log(m)/ϵ2) space.

Proof. This follows from Claim IV.25 and Claim IV.26.

Remark IV.3. Since our sparsification procedure pre-
serves k-cuts (see Remark IV.2) and our error accumu-
lation analysis is already done with respect to any k-cut
of the hypergraph H (see Claim IV.18), it follows that the
linear sketch from Theorem IV.27 recovers a sparsifier
that preserves the weight of every k-cut to within a
(1± ϵ)-factor simultaneously for every k ∈ [2..n].

V. FINGERPRINTING APPROACH TO THEOREM IV.2

In this section, we will detail a “fingerprinting” ap-
proach towards proving Theorem IV.2. As we will see,
this fingerprinting allows us to implement the “recovery”

step before computing our hypergraph decomposition.
As mentioned before, the goal of this recovery step is to
construct a linear sketch with only a near-linear number
of ℓ0-samplers such that given a list of connected com-
ponents V1, . . . Vk, we can recover for each component
Vi either:

1) All of the crossing hyperedges incident on Vi.
2) At least ϕ log(n) distinct hyperedges for which Vi

is the unique representative (see Definition IV.1).
We call this task the “recovery problem”. As we saw

in the preceding section, this is sufficient for computing a
strength decomposition of the hypergraph, and ultimately
calculating sampling rates, and thus constructing our
sparsifiers. As discussed in the introduction, performing
this recovery step is non-trivial, as large-arity hyperedges
can correlate the ℓ0-samplers for different components,
and thus the task of recovering unique representatives for
components is not as simple as just opening that number
of ℓ0-samplers. Thus, one of our key contributions is to
introduce the notion of, and then analyze, fingerprinting
of hyperedges.

Definition V.1. For a hypergraph H = (V,E), and a
hyperedge e ∈ E, we say that a random fingerprint
of e at rate p is the result of independently keeping
each vertex in e with probability p. We denote this
fingerprinted version of e by ê. We refer to the vertices
in ê as the “fingerprinted vertices” of e.

Note that this operation can be implemented in a
linear sketch. For each hyperedge, we can randomly
sample its representatives and correspondingly update
the ℓ0-samplers to use only the encoding of fingerprinted
hyperedge ê (using Definition III.3).

A. Conditional Algorithm

In this section, we will present a linear sketching
algorithm that solves the general hyperedge recovery
problem conditioned on the existence of a specific linear
sketch. We then show that such a linear sketch exists in
the following subsection. This linear sketch uses two new
definitions, which we describe below:

Definition V.2. We say that a hyperedge e touches a
component Vi, if e ∩ Vi ̸= ∅, and e ∩ (V − Vi) ̸= ∅.

Definition V.3. We say that a hyperedge e places q
vertices in a component Vi if e ∩ Vi = q.

We call this the “RestrictedRecovery” task:

Lemma V.4 (RestrictedRecovery). Consider a hyper-
graph H , and any partition into components V1, . . . Vk.
Suppose further that we are guaranteed there is a subset
of the components, denoted {Vi}i∈T , for T ⊆ [k],
where we are guaranteed that all the hyperedges in-
cident on {Vi}i∈T are either touching O(log2(nϕ))

1692

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

of the {Vi}i∈T , or placing at most O(log2(nϕ))
vertices in each of the {Vi}i∈T . Then, there exists
an algorithm / linear-sketch RestrictedRecovery using
only Õ(ϕpolylog(n)) ℓ0-samplers for suitably restricted
neighborhoods of each vertex, which returns a set of
hyperedges S such that for each Vi ∈ {Vi}i∈T , either

1) S contains all incident hyperedges on Vi.
2) S contains Ω(ϕ log(n)) hyperedges for which Vi is

the unique representative.

Now, we will show that this RestrictedRecovery sketch
lends itself towards a sketch solving the more general re-
covery problem of Theorem IV.2. The intuition is that we
create a sequence of hypergraphs that are fingerprinted in
a “nested” manner. I.e., the ℓth hypergraph is the result
of fingerprinting the (ℓ − 1)st hypergraph at rate 1/2.
Then, we show that if we work from the final hypergraph
backwards (i.e., in the direction of less fingerprinting),
the hypergraphs will inductively satisfy the necessary
conditions for the RestrictedRecovery algorithm.

Algorithm 9: Recovery(H,ϕ, (V1, . . . Vk))

1 Initialize the components under consideration to
be {Vi}i∈Tlog(n)

, where Tlog(n) = [k].
2 Let H0 = H (no fingerprinting) and for

ℓ = 0, 1, . . . log(n), let H(ℓ) be the result of
fingerprinting H(ℓ−1) at rate 1/2.

3 Let S = ∅ be the set of hyperedges recovered so
far.

4 for ℓ = log(n), . . . 1, 0 do
5 Ŝ = RestrictedRecovery(H(ℓ) −

S, ϕ, (V1, . . . Vk)).
6 S ← S ∪ Ŝ.
7 (For analysis, let {Vi}i∈Tℓ−1

be the subset of
{Vi}i∈Tℓ

for which case 1 of Lemma V.4
occurs.)

8 end
9 return S

Note that we do not assume that the linear sketch from
Lemma V.4 needs to know which components are in the
set T . It is simply given a guarantee that there is some
such set T for which the conditions hold, as this is purely
a tool we use in analysis.

First, we prove some facts about the fingerprinting
procedure. We will let eℓ denote the corresponding fin-
gerprinted version of the hyperedge e in the hypergraph
Hℓ. Note that it may be the case that eℓ is empty or a
singleton.

Claim V.5. Suppose the number of crossing hyperedges
e ∈ E[V1, . . . Vk] is at most poly(nϕ). Then, with
probability 1 − 2−Ω(log2(nϕ)), for any such hyperedge
e, and any component Vi on which e is incident, if ℓ′ is

the level of fingerprinting at which eℓ
′ ∩Vi = ∅, at level

ℓ′ − 1, |eℓ′−1 ∩ Vi| ≤ log2(nϕ).

Proof. Suppose for the sake of contradiction that |eℓ′−1∩
Vi| > log2(nϕ). Note that for each vertex in eℓ

′−1,
we keep it with probability 1/2 in the next level of
fingerprinting. Thus, the probability that none of them
survive for the next iteration is bounded by 2− log2(nϕ).
Taking the union bound over all poly(nϕ) hyperedges,
and log(n) levels of fingerprinting, we conclude that the
probability of ever going from > log2(nϕ) vertices of
eℓ

′−1 in Vi to 0 is bounded by 2−Ω(log2(nϕ)).

Claim V.6. Suppose the number of crossing hyperedges
e ∈ E[V1, . . . Vk] is at most poly(nϕ). Then, with
probability 1 − 2−Ω(log2(nϕ)), for any hyperedge e ∈
E[V1, . . . Vk], if we let ℓ′ be the level of fingerprinting
at which |{i : Vi ∩ eℓ

′ ̸= ∅}| ≤ 1, then |{i : Vi ∩ eℓ
′−1 ̸=

∅}| ≤ log2(nϕ).

Proof. Suppose for the sake of contradiction that |{i :
Vi ∩ eℓ

′−1 ̸= ∅}| > log2(nϕ). Note that for each vertex
in eℓ

′−1, we keep it with probability 1/2 in the next
level of fingerprinting, and therefore each component
Vi should (independently) remain incident to eℓ

′
with

probability ≥ 1/2. Thus, the probability that all but 1
of these components should no longer be incident after
sampling is bounded by 2−Ω(log2(nϕ)), and after taking
a union bound over all ≤ n components, and poly(nϕ)
hyperedges, we conclude the bound with probability
2−Ω(log2(nϕ)).

Claim V.7. In the inner loop of Algorithm 9, the com-
ponents {Vi}i∈Tℓ−1

in the hypergraph Hℓ−1 − S satisfy
the guarantees of Lemma V.4, that is, each hyperedge
incident on any component in {Vi}i∈Tℓ−1

is either cross-
ing between O(log2(nϕ)) of the components, or places
at most O(log2(nϕ)) vertices in each such component
(with probability 1− 2−Ω(log2(nϕ))).

Proof. First, let us consider the base case, when ℓ =
log(n). In this case, we are fingerprinting the hypergraph
H at rate 1/n. Because there are only n vertices in
the hypergraph with probability 1 − 2−Ω(log2(nϕ)), it
follows that every hyperedge will have at most log2(nϕ)
vertices surviving the fingerprinting process. Necessarily
then, for every component, hyperedges are both placing
≤ log2(nϕ) vertices in each component, and crossing
between ≤ log2(nϕ) components.

Now, let us suppose that claim holds by induction
down to ℓ, and we will show it necessarily must hold
for ℓ− 1. If it holds by induction down to level ℓ, then
for each component Vi : i ∈ Tℓ, we either recover
Ω(ϕ log(n)) hyperedges for which Vi is the unique
representative, or recover all of the hyperedges incident
on Vi in Hℓ. If we are in the first case, we remove

1693

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Vi from Tℓ−1, and therefore it is not relevant to the
inductive hypothesis.

So instead, let us consider components in the second
case, i.e. the components Vi : i ∈ Tℓ−1. Note that for
these components, at the ℓth level of sampling, every
crossing incident hyperedge to these components was
recovered. Now, let us consider the hyperedges which
are crossing between Vi : i ∈ Tℓ−1 in the unfinger-
printed hypergraph. There are two ways in which such
a hyperedge e can stop being a crossing hyperedge after
ℓ levels of fingerprinting.

The first way is that all of the hyperedges vertices in
Vi : i ∈ Tℓ−1 have been removed (i.e. were not sampled)
in the hypergraph H(ℓ). That is, ∀i ∈ Tℓ−1, |eℓ∩Vi| = 0|.
For any such hyperedge, by Claim V.5, in the ℓ−1st level
of fingerprinting, every component V ℓ−1

i on which it is
incident will have at most log2(nϕ) vertices.

The second way for a hyperedge to no longer be cross-
ing is if exactly 1 component (out of the components
Vi : i ∈ Tℓ−1) which has a non-zero number of vertices
in the hyperedge, and all other Vi : i ∈ [k] have an empty
intersection. I.e., there is some component Vi : i ∈ Tℓ−1

for which T ∩ eℓ ̸= ∅, yet no other component in the
entire hypergraph has a non-zero number of surviving
vertices in the hyperedge (if any other component had a
non-zero intersection, then the hyperedge would still be
crossing in H(ℓ)). For any such hyperedge, by Claim V.6,
it must be the case that in level ℓ − 1 of sampling, the
hyperedge crosses between ≤ log2(nϕ) components.

Thus, in either case, the components Vi : i ∈ Tℓ−1

in the hypergraph Hℓ−1 − S satisfy the guarantees of
Lemma V.4.

Lemma V.8. For each component Vi : i ∈ [k], Algo-
rithm 9 returns either

1) Ω(ϕ log(n)) hyperedges for which Vi is the unique
representative.

2) All incident hyperedges on Vi.

Proof. By Claim V.7, we know that at every iteration
of the inner loop, the components Vi : i ∈ Tℓ satisfy
the conditions of Algorithm 9. Thus, for each such
component, we either recover all of the neighboring
hyperedges, or sufficiently many hyperedges for which
it is the representative.

Now, consider any of the original components Vi :
i ∈ [k]. If for some value of ℓ Vi is no longer one
of the components V i : i ∈ Tℓ, then this means in
some iteration, we recovered Ω(ϕ log(n))) hyperedges
for which Vi is the unique representative, and therefore
satisfies the first condition above. Otherwise, if we never
recover Ω(ϕ log(n))) hyperedges for which Vi is the
unique representative, this must mean that in every
iteration (including when ℓ = 0), we recovered all
incident hyperedges on Vi. In particular, when ℓ = 0,

we are doing no fingerprinting at all, so this means we
must have recovered each of the original hyperedges
incident on Vi in the hypergraph H , yielding the above
theorem.

Proof of Theorem IV.2. By Lemma V.8, Algorithm 9
is an algorithm satisfying the conditions of Theo-
rem IV.2. Further, the total space required by the
sketch is O(log(n)) independent copies of the linear
sketch used by Lemma V.4, which by assumption uses
only O(ϕpolylog(n)) ℓ0-samplers for suitably restricted
neighborhoods of each vertex. This yields the claim.

As an aside, note also that Lemma V.8 guarantees
only Ω(ϕ log(n)) recovered hyperedges, in order to get
exactly ϕ log(n), we can simply store a constant number
of independent copies of the skech.

Now, it remains to prove Lemma V.4.

B. Proof of Lemma V.4 with Random Fingerprinting

In this section, we will present a linear sketch /
algorithm and analysis that achieves Lemma V.4. We
will assume simply that we are given a hypergraph
H and connected components V1, . . . Vk, and that there
exists some subset of these components which we are
interested in (for analysis). We denote this subset of
components that we are interested in by Vi : i ∈ T .
Our assumption tells us that for these components of
interest, any hyperedge placing mass on these compo-
nents is either (a) touching at most log2(nϕ) of these
components, or (b), placing at most log2(nϕ) vertices
in each component. We call hyperedges in case (a)
Type I hyperedges, and hyperedges in case (b) Type
II hyperedges.

With this, we will introduce some terminology which
will be essential in our analysis.

Definition V.9. For a component Vi in the hypergraph
H , we say deg(Vi) = |{e ∈ H : e ∩ Vi ̸= ∅}|.

Definition V.10. For a range of degrees [d, 2d], we
let Vi : i ∈ T (d) denote the corresponding subset of
Vi : i ∈ T with degree in that range, and for which we
have not yet recovered Ω(log(n)) hyperedges for which
they are the unique representative. Note that these are
continuously re-defined with respect to the hypergraph
H , as when we recover hyperedges and remove them
from H , the degree will necessarily decrease.

Definition V.11. For a parameter j ∈ N, we say that
E

(d)
j consists of hyperedges crossing between [j, 2j] of

the components Vi : i ∈ T (d).

Definition V.12. We say that D(d) =∑
e∈E[V1,...Vk]

|{i ∈ T (d) : Vi ∩ e ̸= ∅}|, and

likewise, D(d)
j =

∑
e∈E

(d)
j
|{i ∈ T (d) : Ti ∩ e ̸= ∅}|.

1694

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

By definition, it follows that D(d) =
∑log(n)

log(j)=0 D
(d)
j .

Additionally, note that D(d) =
∑

i∈T (d) deg(Vi), as we
are counting each hyperedge with multiplicity of the
number of components Vi : i ∈ T (d) that it touches.

Remark V.1. For any d, there exists a value of j ∈
{1, 2, 4, . . . n/2} for which D

(d)
j ≥ D(d)/ log(n) ≥

d|T (d)|
log(n) . This follows from the PHP and the relation to

total degree. As a consequence, for this value of j, there
must be at least |T (d)|

4 log(n) components Vi : i ∈ T (d), each

of which is incident upon d
4 log(n) hyperedges from E

(d)
j .

As stated above, we know there must exist some value
of d for which components of degree [d, 2d] constitute
an Ω(1/ log(n)) fraction of the total degree. For this
value of d, we also know there must be some value of j
for which an Ω(1/ log(n)) fraction of the hyperedges
are crossing between [j, 2j] of these components of
degree [d, 2d]. Using this, we will show that there is
in fact an explicit, good rate for fingerprinting which
will ensure that we make progress when opening our
ℓ0-samplers. Intuitively, by our assumption, we know
that hyperedges can only be type I hyperedges or type
II hyperedges (before fingerprinting). If a hyperedge
is a type I hyperedge, then the analysis is very easy.
Any such hyperedge is crossing between O(log2(nϕ))
components, meaning we can essentially think of such
a hyperedge as having arity bounded by O(log2(nϕ)).
In general, such small arity hypergraphs are not too
different than graphs, and just by storing an extra factor
of O(log2(nϕ)) ℓ0-samplers, we will be able to perform
the recovery step. The more nuanced analysis happens
for type II hyperedges. Here, we use the fact that if a type
II hyperedge is crossing between [j, 2j] components,
then the right fingerprinting rate is roughly 1

j . We show
that indeed, if we fingerprint (polylog(n) times) at this
rate, then indeed we will recover sufficiently many such
hyperedges with high probability.

We make this formal below:

Claim V.13. Let H be a hypergraph with a decomposi-
tion into components V1, . . . Vk. Suppose that Vi : i ∈ T
is a subset of these components satisfying the conditions
of Lemma V.4. For any choice of d, let Vi : i ∈ T (d) be
defined as in Definition V.10. If we repeatedly fingerprint
H at rate log2(nϕ)

j for j as defined in Remark V.1, and
open ℓ0-samplers for each V1, . . . Vk ϕ log10(nϕ) times
(after each round of opening samplers, removing the
hyperedges that were recovered from future samplers),
then with probability 1− 2−Ω(log2(nϕ)) either

1) D(d) decreases by a factor of (1−1/(212 log5(n))).
2) At least a 1/8 log(n) fraction of the components

Vi : i ∈ T (d) will have recovered Ω(ϕ log(n))

hyperedges for which they are the unique represen-
tative.

3) At least a 1/8 log(n) fraction of the components Vi :
i ∈ T (d) will have recovered a 1/8 log(n) fraction
of all their incident hyperedges.

Proof. First, by Remark V.1, there must exist a value of
j for which D

(d)
j ≥ D(d)/ log(n).

As a consequence, this condition means that there
must exist ≥ |T (d)|

4 log(n) components Vi : i ∈ T (d) each
of which is touching at least d

4 log(n) hyperedges from

E
(d)
j . We denote this subset of T (d) by T̃ (d).
Now, we remark that if j ≤ log2(nϕ), we do not

need to perform any fingerprinting. This is because there
would exist ≥ |T (d)|

4 log(n) components, each of which is
receiving ≥ 1/(4 log(n)) fraction of its degree from
edges in E

(d)
j . For this value of j, each such hyperedge

is touching at most 2 log2(nϕ) of the components Vi :
i ∈ T̃ (d). Thus, after opening ϕ log10(nϕ) (correlated)
ℓ0-samplers for each component, there are two cases:

1) For a component Vi, i ∈ T̃ (d) all the ℓ0-samplers
returned incident hyperedges (i.e., the fingerprinted
hypergraph always has incident hyperedges on Vi).
Then the process has recovered ϕ log10(nϕ) dis-
tinct hyperedges incident on Vi. Because each ℓ0-
sampler is receiving uniformly random samples
from the neighborhood of Vi, this means we receive
a random sample of ϕ log10(nϕ) of the incident
hyperedges on Vi. Further, since we know that
a ≥ 1/(4 log(n)) fraction of the incident hyper-
edges on Vi touch at most 2 log2(nϕ) components,
this means that in expectation we recover at least
ϕ log9(nϕ)/4 hyperedges which are incident on at
most 2 log2(nϕ) components. With probability >
1−2−ϕ log2(n) then, we recover at least ϕ log8(nϕ)
hyperedges which are touching at most 2 log2(nϕ)
components. For each, we simply choose one of
the incident components Vi at random to be the
unique representative for the hyperedge. Thus, with
probability > 1 − 2−ϕ log2(nϕ), we will recover at
least ϕ log(n) hyperedges for which Vi is the unique
representative.

2) For a component Vi, i ∈ T̃ (d), not all the ℓ0-
samplers returned incident hyperedges. This must
mean we have recovered the entire neighborhood
of Vi, as we have not done any fingerprinting.

Thus, we may assume that j > log2(nϕ).
Now, let us fingerprint hyperedges at rate log2(nϕ)

j . We
consider two distinct cases:

1) The first case is when d log2(nϕ)
j ≤ 1/2. Note

that as an immediate consequence, because each
component Vi : i ∈ T̃ (d) has degree ≤ 2d, the
number of Type II hyperedges (those placing mass

1695

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

≤ log2(nϕ) on each component) is bounded by
log2(nϕ) with probability 1 − 2−Ω(ϕ log2(n)). This
is because there can be at most d log2(nϕ) vertices
from Type II hyperedges in each Vi for i ∈ T̃ (d),
and thus when fingerprinting at rate log2(nϕ)/j,
the expected number of vertices (and thus an upper
bound on the number of hyperedges) in the finger-
printed hyperedges is bounded by log2(nϕ)/2.
Next, we break the components into two parts.
Let Vi : i ∈ T̃ (d,≥ϕ log4(nϕ)) denote the subset
of Vi : i ∈ T̃ (d) for which there are more than
ϕ log4(nϕ) Type I hyperedges that remain incident
in expectation when sampling at rate log2(nϕ)

j , and
let Vi : i ∈ T̃ (d,<ϕ log4(nϕ)) denote the sub-
set of components for which there are less than
ϕ log4(nϕ) Type I hyperedges that remain incident
in expectation when sampling at rate log2(nϕ)

j . There
are two cases here:

a) The components Vi : i ∈ T̃ (d,≥ϕ log4(nϕ)) make
up at least half of the components Vi : i ∈ T̃ (d).
If this is the case, note that for each component
Vi : i ∈ T̃ (d,≥ϕ log4(nϕ)), in each round of
fingerprinting, there are ≥ ϕ log4(nϕ)/2 Type I
hyperedges that are incident on Vi with proba-
bility ≥ 1 − 2−Ω(ϕ log4(n) (by assumption, the
expectation is this large).
Because there are at most log2(nϕ)/2 Type II
hyperedges with probability ≥ 1− 2−Ω(log2(nϕ),
this means in the first ϕ log4(nϕ)/2 rounds of
opening ℓ0-samplers, with probability ≥ 1 −
2−Ω(log2(nϕ)), we will see Ω(ϕ log4(nϕ)) Type
I hyperedges that are incident on Vi as long as
the number of type I hyperedges incident has
not decreased below log2(nϕ) (in this case, we
simply move component Vi to T̃ (d,<ϕ log4(nϕ))).
Otherwise, by choosing unique representatives
for each such hyperedge at random, we will find
≥ ϕ log(n) hyperedges for which Vi is the unique
representative. If this happens, then for a ≥
1/(8 log(n)) fraction of our original components,
we have recovered Ω(ϕ log(n)) hyperedges for
which they are the unique representative, placing
us in condition 2.

b) The components Vi : i ∈ T̃ (d,<ϕ log4(nϕ)) make
up at least half of the components Vi : i ∈
T̃ (d). Note that because we are assuming more
than half of the Vi : i ∈ T̃ (d) satisfy this
condition, this means there must be ≥ |T (d)|

8 log(n)

such components, each of which has ≥ d
4 log(n)

hyperedges from E
(d)
j . In particular, these com-

ponents capture at least a 1
32 log2(n)

fraction of

the degree of D
(d)
j . Thus, at least 1

128 log2(n)

of the edges in E
(d)
j must have ≥ 1

64 log2(n)
fraction of their degree coming from components
Vi : i ∈ T̃ (d,<ϕ log4(nϕ)). We denote this subset
of E(d)

j by E
(d,<ϕ log4(nϕ))
j .

Now, consider any hyperedge e ∈
E

(d,<ϕ log4(nϕ))
j . We want to analyze the

probability that e is recovered in one round
of fingerprinting. To do this, first we note that
any hyperedge in E

(d,<ϕ log4(nϕ))
j must be a

Type II hyperedge (one that places < log2(nϕ)
vertices in each component Vi : i ∈ T̃ (d),
as j > log2(nϕ)). After fingerprinting at
rate log2(nϕ)/j, any such hyperedge is still
crossing between at least 2 components
Vi : i ∈ T̃ (d,<ϕ log4(nϕ)) with probability
1− 2−Ω(log2(nϕ)) by a Chernoff bound.
Next, we observe that for each
e ∈ E

(d,≤ϕ log4(nϕ))
j , it places vertices

in ≥ j
64 log2(n)

of the components

Vi : i ∈ T̃ (d,<ϕ log4(n)). Thus, when we
fingerprint at rate log2(nϕ)/j, the probability
that some component Vi : i ∈ T̃ (d,<ϕ log4(nϕ))

is still incident to e is Ω(1). But, the total
degree of Vi : i ∈ T̃ (d,<ϕ log4(nϕ)) is bounded by
ϕ log4(nϕ)+log2(nϕ) (the total number of Type I
and Type II hyperedges that can be incident) with
probability 1 − 2−Ω(log2(nϕ)). So, in each round
of fingerprinting, e has a ≥ Ω(1/ϕ log4(nϕ))
chance of being recovered. After repeating this
ϕ log10(nϕ) times, we are guaranteed that with
probability 1− 2−Ω(log2(nϕ)), at least 1/2 of the
edges in E

(d,<ϕ log4(nϕ))
j have been recovered.

This captures a ≥ 1
212 log5(n)

fraction of D(d),
and therefore we end up satisfying condition 1
of the claim we are proving.

2) Next, we consider the case when d log2(nϕ)
j > 1/2.

Note that as a consequence, in each component
Vi : i ∈ T (d), after fingerprinting we expect at
least 1/8 log(n) Type II hyperedges to be incident,
as each component Vi : i ∈ T̃ (d) has at least
d/4 log(n) edges from E

(d)
j incident. As before, we

again have two cases for each component Vi : i ∈
T̃ (d).

a) A > 1/ log2(nϕ) fraction of ℓ0-samplers returned
incident hyperedges. This means we recov-
ered > ϕ log8(nϕ) incident hyperedges. Either
ϕ log8(nϕ)/2 of them must be Type I hyperedges
(in which case we are able to choose unique rep-
resentatives at random, yielding Ω(ϕ log(n)) hy-
peredges for which this component is the unique
representative), or ϕ log8(nϕ)/2 of them must be
Type II hyperedges. We know that among type

1696

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

II hyperedges, in expectation a ≥ 1/8 log(n)

fraction of them are in E
(d)
j . Thus, we recover

Ω(ϕ log7(nϕ)) edges from E
(d)
j with probability

1−2−Ω(ϕ log7(n)). After fingerprinting, each such
edge is crossing between O(log4(nϕ)) compo-
nents, and we can simply choose a unique rep-
resentative at random among these. Thus, for the
component Vi, we recover Ω(ϕ log(n)) hyper-
edges for which it is the unique representative.

b) A < 1/ log2(nϕ) fraction of ℓ0-samplers returned
incident hyperedges. Initially, just from E

(d)
j ,

we would have expected that with probability
> 1/8 log(n) fraction the first ℓ0-sampler would
return an incident hyperedge. We claim that in
order for a < 1/ log2(nϕ) fraction of ℓ0-samplers
to return incident hyperedges, by the end of the
ϕ log10(nϕ) ℓ0-samplers, we must have recov-
ered at least half of the edges in E

(d)
j incident

on Vi. Indeed, suppose not. Then, by the final
iteration, we still expect 1/16 log(nϕ) hyper-
edges to be incident after each round of finger-
printing. Because a hyperedge surviving finger-
printing is simply a Bernoulli random variable,
this means that with probability Ω(1/ log(nϕ))
we expect at least one hyperedge to survive
fingerprinting. But, the probability that we would
then only see < ϕ log8(nϕ) hyperedges sam-
pled out of ϕ log10(nϕ) rounds is bounded by
1−2−Ω(ϕ log9(nϕ)). Thus, with high probability, it
is the case that we have recovered at least half of
the edges in E

(d)
j incident on Vi. Consequently,

because E
(d)
j contributed an Ω(1/ log(n)) frac-

tion of the degree for Vi, we have recovered at
least an Ω(1/ log(n)) of the incident hyperedges
on Vi, placing us in case 3.

Note now that either half of the Vi fall in case a or
in case b. Either way, this constitutes a 1/8 log(n)
fraction of the original components Vi : i ∈ T (d)

satisfying either Condition 2 or 3 of the stated
claim. This concludes the proof.

Unfortunately, we do not know a priori what the best
sampling rate is (i.e., the rate calcualted in the previous
claim). So, instead we simply range over all choices of
sampling rates, and are guaranteed that for some choice
of this sampling rate, we will have recovered sufficiently
many hyperedges.

With this, we now present a building block of the
algorithm we will analyze.

Remark V.2. Note that Algorithm 10 tries fingerprinting
at all possible rates p. In particular, a subset of the
fingerprinting it does is at the optimal rate log2(nϕ)/j

Algorithm 10: IterativeRecovery

1 Let V1, . . . Vk be the set of components.
2 Initialize S to be the set of hyperedges recovered

so far.
3 for i ∈ [ϕ log10(nϕ)] do
4 for p ∈ {1, 1/2, 1/4, . . . 1/n} do
5 Fingerprint each hyperedge at rate p.
6 Remove the hyperedges in S from each

of the relevant ℓ0-samplers with this
fingerprinting scheme.

7 for each Vi do
8 Add together the ℓ0-samplers (with

correlated randomness) for the
vertices in Vi.

9 Open the ℓ0-sampler and add the
corresponding edge to S (if not
already there).

10 end
11 end
12 end

(or within a factor of 2). Thus, the hyperedges recovered
by Algorithm 10 are a superset of the hyperedges needed
to argue the claim in Claim V.13.

Now, we repeat this algorithm many times as a sub-
routine to get our final algorithm.

Algorithm 11: IterativeRecovery

1 Let V1, . . . Vk be the set of components.
2 Initialize S to be the set of hyperedges recovered

so far.
3 for i ∈ [220ϕ log16(nϕ)] do
4 for p ∈ {1, 1/2, 1/4, . . . 1/n} do
5 Fingerprint each hyperedge at rate p.
6 Remove the hyperedges in S from each

of the relevant ℓ0-samplers with this
fingerprinting scheme. for each Vi do

7 Add together the ℓ0-samplers (with
correlated randomness) for the
vertices in Vi.

8 Open the ℓ0-sampler and add the
corresponding edge to S (if not
already there).

9 end
10 end
11 end

Corollary V.14. If one runs Algorithm 11 on a hyper-
graph H with components V1, . . . Vk, and some subset
of the components Vi : i ∈ T satisfying the conditions

1697

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

of Lemma V.4, then with probability 1 − 2−Ω(log2(nϕ)),
for any component Vi : i ∈ T we either recover

1) Ω(ϕ log(n)) crossing hyperedges for which Vi is the
unique representative.

2) All of the hyperedges incident upon Vi.

Proof. Let us start by considering the largest remaining
value of d as well as the components Vi : i ∈ T (d). To
start, this is bounded by d = n100ϕ (the largest value of
d that we will ever encounter by Claim IV.24). We then
run the Algorithm 10 212 log5(nϕ) times. Note that after
each time we run Algorithm 10, the components Vi : i ∈
T (d) are re-defined, as some components may now have
degree below d. We denote the subset of T (d) the remains
in the pth iteration by T (d,p) for p ∈ [214 log5(nϕ)].

At this point, we will be guaranteed that either case
1, 2, or 3 of Claim V.13 has occurred 212 log5(nϕ)
times. Thus, either D(d) has gone to 0, or for the
remaining components Vi : i ∈ T (d,212 log5(nϕ)) either
Vi has recovered at least 1/2 of its incident edges
(meaning that now it will be paired into the next group
of components with degree d/2), or Vi has recovered at
least Ω(ϕ log(n)) distinct crossing hyperedges for which
it is the unique representative. For any components in
the last case, we simply remove these components from
consideration, as they have recovered sufficiently many
hyperedges. In the first two cases, the degrees of the
components must have decreased, and therefore will be
lumped in with the remaining lower-degree components.

Note then, that after repeating this for 100 log(nϕ)
rounds, the degree of the components under considera-
tion must have gone down to 0. Thus, the components
under consideration must have had all of their hyper-
edges recovered, whereas the components removed from
consideration must have at least log(n) hyperedges for
which they are the unique representative.

The probability bound follows from the fact that we
run the algorithm Algorithm 10 polylog(nϕ) times, and
each round has a failure probability of 2−Ω(log2(nϕ)). Our
stated claim thus follows immediately.

Therefore, Algorithm 11 is a constructive algorithm
which achieves the needs of Lemma V.4.

Further, we can implement Algorithm 11 using only
nϕpolylog(nϕ) ℓ0-samplers.

Claim V.15. Algorithm 11 requires storing only
Õ(ϕpolylog(nϕ)) ℓ0-samplers per vertex, each initial-
ized for a suitably restricted subset of the neighborhood.

Proof. For ϕpolylog(nϕ) iterations, Algorithm 11 sam-
ples from the neighborhood of each component Vi (after
fingerprinting). For each iteration, this requires only
storing correlated ℓ0-samplers for each vertex in the
fingerprinted version of the hypergraph. In order to
sample according to a specific component Vi, we must

only add together the corresponding samplers for each
vertex in Vi. Thus, because there are only ϕpolylog(nϕ)
iterations, this can be done using only Õ(ϕpolylog(nϕ))
ℓ0-samplers per vertex.

Proof of Lemma V.4. Algorithm 11 is an algorithm sat-
isfying the conditions of Lemma V.4. The correctness
follows by Corollary V.14, and the space bound follows
from Claim V.15.

This concludes the section, as in this subsection we
proved Lemma V.4, and in the previous subsection,
showed that Lemma V.4 can be used to prove Theo-
rem IV.2.

VI. LOWER BOUNDS ON LINEAR SKETCHES FOR
HYPERGRAPH SPARSIFIERS

A. Preliminaries

In this section we will show that in fact, any linear
sketch for an arbitrary hypergraph H on ≤ m edges, and
arity ≤ r which can be used to recover a (1±ϵ) sparsifier
for H (with high probability) must use Ω̃(nr log(m))
bits. To do this, we will consider a modification of the
following well-known one-way communication problem
with public randomness known as the universal relation
problem:

1) Alice is given a vector xA ∈ {0, 1}2
r

, and must
send a possibly randomized encoding of xA to Bob.

2) Bob is given a vector xB ∈ {0, 1}2r with the
promise that Supp(xB) ⊂ Supp(xA), and must
return an index i such that (xA)i ̸= (xB)i with
probability 1− 1/poly(r).

The work of [16] defined a variant of the above
problem which has strong lower bounds, and will be
of interest to us.

We denote this variant by k-URr, and define it
formally below:

1) Alice is given a string xA ∈ {0, 1}2
r

. Bob is given
a string xB ∈ {0, 1}2

r

such that |Supp(xA) −
Supp(xB)| ≥ k. Alice sends only a message S(xA)
to Bob (using public randomness).

2) Bob has his own string xB with the promise
that Supp(xB) ⊂ Supp(xA), and receives Alice’s
message S(xA). Using this (and access to public
randomness), he must return k indices i : (xA)i ̸=
(xB)i with probability 1− 1/r5.

The following is known from [16]:

Theorem VI.1. [16] The one-way communication com-
plexity of k-URn (with public randomness) is Ω(kr2).

However, this still does not suffice for us, as ideally we
should have a bound on the support size (to mimic the
bound on the number of hyperedges in the hypergraph).

1698

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

So, we make use of the following communication prob-
lem building on top of k-URr, which we denote by
k-UR≤m

r :
1) Alice is given a string xA ∈ {0, 1}2

r

. Bob is given
a string xB ∈ {0, 1}2

r

such that m ≥ |Supp(xA)−
Supp(xB)| ≥ k. Alice sends only a message S(xA)
to Bob (using public randomness).

2) Bob has his own string xB with the promise
that Supp(xB) ⊂ Supp(xA), and receives Alice’s
message S(xA). Using this (and access to public
randomness), he must return k indices i : (xA)i ̸=
(xB)i with probability 1− 1/r5.

We will show the following:

Theorem VI.2. The one-way communication complexity
of k-UR≤m

r (when m ≥ max(2k, log5(r))) with failure
probability 1− 1/(2r6) is Ω(kr log(m/k)).

Proof. To prove this, we will show that with
O(r/ log(m/k)) simultaneous instances of k-UR≤m

r

one can solve k-URr. It follows then that Al-
ice’s message for each instance of UR≤m

r requires
Ω(kr log(m/k)) bits, as otherwise this would yield a
contradiction to the complexity of k-URr.

So, let Alice be given an instance of k-URr, with
her vector xA. Then, Alice makes the following set
of Θ(r/ log(m/k)) instances of k-UR≤m

r : for i =
1, . . . 2r/ log(m/k), let h(i) be a uniformly random,
independent hash function (from the shared randomness)
such that ∀k ∈ [2r], h(i)(k) = 1 with probability
1/
√
m/k (and is 0 otherwise). Let P (i) ⊆ [2r] be

defined as P (i) = {ℓ ∈ [2r] :
∏i−1

j=1 h
(j)(ℓ) = 1}. Let

(xA)|P (i) refer to the the vector in {0, 1}2r , which is
obtained by setting to 0 all the corresponding entries of
(xA) that are at indices not in P (i). Now, let S≤m be
the encoding function that Alice uses for instances of k-
UR≤m

r . Alice sends the encodings S≤m((xA)|P (i)) for
each i to Bob as well as |Supp(xA)| to Bob.

Now, we will show how Bob can use this to recover
a solution to the original instance of k-URr with high
probability. Using the shared randomness, Bob makes
(xB)|P (i) in an analogous manner to Alice (using the
same hash functions) and also calculates |Supp(xA)| −
|Supp(xB)| (which we are promised is at least k by
the hypothesis of the k-URr instance). If |Supp(xA)|−
|Supp(xB)| ≤ m, it follows that Bob can simply
use the full vectors (xB)|P (1) and S≤m((xA)|P (1)) to
recover k indices which is in Supp(xA) − Supp(xB),
as this will then satisfy the requirement of being
an instance of k-UR≤m

r . Otherwise, let W denote
|Supp(xA)| − |Supp(xB)|. At the ith level of down-
sampling, |Supp(((xA)|P (i)))| − |Supp((xB)|P (i))| is

distributed as Binomial
(
W, 1√

m/k
i

)
. It follows that

there must exist an i such that k ≤ k · (m/k)1/4 ≤

E[Binomial
(
W, 1√

mi

)
] ≤ k · (m/k)3/4 ≤ m. Thus, by

a Chernoff bound, for this value of i, there will be at
least k, and at most m indices in Supp(((xA)|P (i))) −
Supp((xB)|P (i)) with probability 1− 2−m1/4

, and thus
the corresponding instance of k-UR≤m

r must return k
valid indices in Supp(((xA)|P (i))) − Supp((xB)|P (i))
(which are thus also a valid indices in Supp(xA) −
Supp(xB)). Under the condition that m ≥ log5(r), the
success probability is then ≥ 1 − 1/(2r6) − 1/(r5) =
1− r−6, as we desire.

Note that the entire size of the sketches used is
Θ(r/ log(m/k)) messages for UR≤m

r , and a single
message of size ≤ 2r for the size of |Supp(xA)|.
In total then, the size of Alice’s message is ≤
2r + Θ(r/ log(m/k)) · |k-UR≤m

r |. It follows that |k-
UR≤m

r | ≥ Ω(kr log(m/k)), as otherwise this leads to
a contradiction with the fact that the problem k-URr

(with failure probability 1− 1/r6) requires messages of
size Ω(kr2).

B. Lower Bound

Now, we are ready to relate the above problem to
the problem of creating general hypergraph sparsifiers.
In particular, we will show that with O(log(n)), linear
sketches of hypergraph sparsifiers on a specific family
of hypergraphs (and ϵ < 1), we can solve the above
communication problem. Using the lower bound for the
communication problem for k = n/2, this then gives us
a lower bound on the size of valid linear sketches for
hypergraph sparsifiers.

Theorem VI.3. The linear sketching complexity of (1±
ϵ) hypergraph sparsification (for ϵ constant) on n ver-
tices with ≤ m hyperedges, maximum arity r and success
probability at least 1−1/n7 is Ω(nr log(m/n)/ log(n)).

Proof. We prove this by giving a one-way public ran-
domness communication protocol using linear sketches
of hypergraph sparsifiers that solves (n/2)-UR≤m

r/2 . In-
deed, consider an instance I = (xA, xB) of (n/2)-
UR≤m

r/2 . We claim that with 100 log(n) linear sketches
of hypergraph sparsifiers (each hypergraph with ≤ m
hyperedges), Alice can send a single message consisting
of these linear sketches to Bob, after which he can re-
cover n/2 indices such that (xA)i ̸= (xB)i. We construct
the hypergraphs as follows: for j = 1, . . . 100 log(n), let
Pj = (S1, . . . Sn/2) be a (random) partition of [2r/2] into
n/2 equal sized parts. For each integer in [2r/2], let us
bijectively associate it with a subset of [r/2]. When we
refer to a set T ⊆ [r/2], we will both refer to the subset
itself, as well as the corresponding integer in [2r/2]. Now,
Alice creates the hypergraph Hj on the vertex set L∪R,
where |L| = |R| = n/2. For each left vertex v ∈ [n/2],
and for each index T ∈ Sv such that (xA)T = 1, Alice
adds the hyperedge (v, T) to the hypergraph (where v

1699

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

is understood to be in L, and T is understood to be
⊆ R - this is a hyperedge of arity ≤ r/2 + 1). Now,
Alice creates a linear hypergraph sparsifier sketch for
each hypergraph Hj

A (using different randomness for
each one). We denote these sketches by S(Hj

A), and
sends these to Bob.

Bob receives S(Hj
A) for j = 1, . . . 100 log(n), and

wants to recover n/2 indices solving the original (n/2)-
UR≤m

r/2 instance. To do this, Bob uses the shared
randomness to create the same partitions Pj as Alice.
Likewise, he uses the shared randomness as well as his
own string xB to create his own hypergraphs Hj

B , as well
as the linear hypergraph sparsifier sketches S(Hj

B). Now,
by linearity (and using the fact these are instantiated with
shared randomness), Bob can subtract his sketches from
Alice’s to get sketches for S(Hj

A −Hj
B).

Now, let us consider the case when j = 1. Bob will
open the sketch S(Hj

A − Hj
B) and recover a sparsifier

for Hj
A−Hj

B with probability 1− 1/n10. We will make
use of the following claim:

Claim VI.4. Let xA, xB ∈ {0, 1}2r such that
Supp(xA) ⊆ Supp(xB), and let k = |Supp(xB) −
Supp(xA)|. Then, in a random partition of [2r] into n
buckets, ≥ 0.01 · (min(k, n)) buckets will have an index
i : (xA)i ̸= (xB)i with probability 1− n−20.

Proof. Note that if k > n, we can simply focus our
attention on the first n indices i such that (xB)i ̸= (xA)i.
Thus, we may assume that k ≤ n. Now, let us calculate
the probability that ≤ 0.01k buckets have an index i :
(xA)i ̸= (xB)i. We will view the random partitioning as
a process where in ℓth step, the ℓth index in Supp(xB)−
Supp(xA) is randomly assigned a bucket in [n]. We want
to bound the probability that k indices are all assigned to
the same 0.1k buckets. In order for this to happen, it must
be the case that for at least 0.99k of the indices, they
are assigned to one of the buckets already populated by
the previous indices. Because the indices are contained
in ≤ 0.01k buckets, the probability that this happens
for any given index is at most 0.01k

n . Because this must
happen for 0.99k indices, we get the bound

Pr[≤ 0.01k buckets s.t. contain i : (xA)i ̸= (xB)i]

≤ 2k ·
(
0.01k

n

)0.99k

.

Note that if k ≤ 100, the probability of not having a
single bucket contain an index i : (xA)i ̸= (xB)i is
zero, we can instead focus on the case k ≥ 100. In this
case, we can bound the above probability with

2k ·
(
0.01k

n

)0.99k

≤ 2−4k · (k/n)0.99k.

Now, we split the above into two cases: if k ≤
√
n or if

k ≥
√
n.

1) If k ≤
√
n, then we can upper bound the proba-

bility of error by the second term: (k/n)0.99k ≤
n−1/2(0.99k). Because k ≥ 100, we can bound the
probability of our bad event by n−99/2 ≤ n−20.

2) If k ≥
√
n, then the first term gives us an error

bound of 2−4
√
n ≤ n−20.

Thus, in either case we get that

Pr[≤ 0.01k buckets s.t. contain i : (xA)i ̸= (xB)i]

≤ n−20,

as we desire.

By the previous claim, it follows that with probability
1 − n−20, in the first iteration, the partition P1 created
at least k/100 buckets Sℓ such that ∃i ∈ Sℓ : (xA)i ̸=
(xB)i, where k = |Supp(xB) − Supp(xA)|. By con-
struction of our hypergraph H1

A−H1
B , it follows that for

these choices of ℓ, the left vertex ℓ ∈ L must have an
incident hyperedge. Because opening the sketch recovers
a sparsifier for H1

A − H1
B , the sketch must recover an

incident hyperedge to ℓ, as otherwise the reported cut
size for the set {ℓ} would be 0 (and thus not a (1 ± ϵ)
approximation to the true, positive size). Now, this means
that Bob can recover k/100 indices i for which the
original (xA)i ̸= (xB)i. Because k ≥ n/2 originally,
this means that we have recovered at least n/200 such
indices.

Now, because Bob recovers linear sketches of Hj
A −

Hj
B , he can update the sketches for j ≥ 2 to remove the

hyperedges that he recovered in the first round. Thus,
Bob must only recover ≤ n

2 (1 − 1/100) more indices
before he has solved the instance. Inductively, we claim
that after the first j rounds of recovery Bob must recover
≤ n

2 (1−1/100)j more indices. We have already proved
the base case. The inductive step follows because in
the jth iteration, we let k denote the min(n, remaining
number of indices such that (xA)i ̸= (xB)i that we have
not yet recovered). Note that k ≥ the number of indices
that Bob must recover before solving the communication
problem. This is because if k = n, then n ≥ n/2 and
n/2 is an upper bound on the number of indices which
must be recovered. In the other case, by our promise that
the original xA, xB disagreed in at least n/2 locations,
we are always guaranteed that if we have recovered ℓ
indices, k ≥ (n/2− ℓ).

By the same logic as above, Bob is able to recover
≥ k/100 of these indices in the jth round. Thus, the
remaining number of indices which Bob must recover is
≤ n

2 (1− 1/100)j−1 · (1− 1/100) = n
2 (1− 1/100)j .

It follows that after j = 100 log(n) iterations of this,
Bob must only recover ≤ n

2 e
− log(n) < 1 more indices,

thus meaning he has solved the instance.

1700

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Note that the total error probability in this proce-
dure is bounded by the probability that any partition
fails to create enough buckets with at least 1 index,
and the probability the linear sketch fails to return a
sparsifier. In total, we can bound this probability by
100 log(n) · (n−20 + 4n−8) ≤ n−7.

Thus, we have shown that by sending 100 log(n)
hypergraph sparsifier linear sketches (on ≤ m edges),
Alice can send a message solving the n/2-UR≤m

r/2

communication problem with probability 1− 1/n7. We
know that any such message must be of length ≥
Ω(nr log(m/n)), so this means that there must exist
hypergraph sparsifier linear sketch instances that require
length Ω(nr log(m/n)/ log(n)).

VII. STREAMING ALGORITHM

From the previous sections, we have shown that there
is a linear sketch (we’ll denote this by SHypergraph(H,R)

(using public randomness R)) of size Õ(nr log(m)/ϵ2)
which returns a (1 ± ϵ)-sparsifier for a hypergraph H
with high probability. It remains now to show how we
can use this to create a streaming algorithm. Naively,
we can arbitrarily choose the public randomness for
the linear sketch, and then start with a linear sketch
of the empty hypergraph, SHypergraph(∅, R). Now, as the
streaming algorithm is running, we simply update this
sketch with the corresponding hyperedge that has just
been seen. I.e., if a hyperedge e is being inserted,
we update our sketch by adding SHypergraph(e,R). The
algorithm looks like the following:

Algorithm 12: DynamicHypergraphSparsification(ei, ui)

1 Choose random bits R.
2 Initialize SHypergraph = SHypergraph(∅, R).
3 for i = 1, . . . do
4 SHypergraph ← SHypergraph+ui ·SHypergraph(ei, R).
5 end
6 return SHypergraph

The one subtlety is that often the convention with
streaming algorithms is that any read-many random bits
must count towards the space bound. The problem is
that in our setting of hypergraphs, we are operating with
uniformly random hash functions from 2[n] → {0, 1},
and thus each hash function naively requires 2n random
bits. So, while our linear sketch itself is only taking
Õ(nr log(m)) bits of space, to actually store the random
bits leads to a possible exponential blow-up in size.
To combat this, we simply use a variant of Newman’s
Theorem [22] which generally allows us to replace any
protocol using small space and public randomness, with
a private randomness protocol using slightly more space.

We prove this variant with a few key claims below:

Claim VII.1. For the linear sketching hypergraph spar-
sifier, there exists a set S of 210n random seeds such that
for an arbitrary hypergraph H , with probability 1−1/n6

over a random choice R of seed from S, the linear sketch
using R returns a sparsifier for H .

Proof. This follows from the probabilistic method. Let
S be a random set of 210n random seeds. We know that
for a fixed hypergraph H , any random seed chosen at
random yields a linear sketch that can be recovered to
create a sparsifier for H with probability ≥ 1 − n−7.
Equivalently, we may say that any random seed R for
our linear sketch is “bad” with probability 1/n7. Now,
we want to bound the probability that if we sample 210n

such random seeds, that more than a 1/n6 fraction of
these random seeds are bad for H . Let X1, . . . X210n be
random variables such that Xi is 1 if the ith random seed
is bad for H . We want to bound Pr[(

∑
i Xi)/2

10n ≥
1/n6]. We do this using a simple Chernoff bound:

Pr[(
210n∑
i=1

Xi)/2
10n ≥ 1/n6]

≤ Pr[(
∑
i

Xi)/2
10n ≥ 2/n7]

≤ 2−210n/poly(n) < 2−22n .

Now, note that there are only 22
n

possible hypergraphs
on n vertices. Thus, we can take a union bound over all
possible hypergraphs, and conclude that for a random
set S of 22

10n

random seeds, with very high probability,
for an arbitrary hypergraph H , using a random choice
of seed from S for our linear sketch will create a
hypergraph sparsifier for H with probability ≥ 1−1/n6.
Now, because a randomly constructed set S satisfies
this property with high probability, it follows that such
a set S must exist, and we can conclude our desired
claim.

So, we can then create our streaming algorithm as
follows. The algorithm is non-uniformly provided with
such a set S before execution. Now, it suffices to simply
store a uniformly random index to a seed R in S.
Because |S| = 210n, storing such an index requires only
O(n) random bits. For an arbitrary hypergraph H , with
high probability over the random seed chosen from S,
the algorithm returns a sparsifier for H . This algorithm,
as well as a formal statement of the Theorem, is provided
below:

Theorem VII.2. For an arbitrary dynamic stream of
hyperedges (ei, ui) on n vertices, with the final hyper-
graph having ≤ m hyperedges, and an error parameter

1701

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 13: DynamicHypergraphSparsifica-
tion
((ei, ui))

1 Choose a random seed R from the set S, storing
only the index of R in S.

2 Initialize SHypergraph = SHypergraph(∅, R).
3 for i = 1, . . . do
4 SHypergraph ← SHypergraph+ui ·SHypergraph(ei, R).
5 end
6 return SHypergraph

ϵ, Line 13 uses space Õ(nr log(m)/ϵ2), and with proba-
bility ≥ 1−1/n6 returns a (1±ϵ) hypergraph sparsifier
for the hypergraph H resulting from the stream.

Proof. The space follows from Theorem IV.27. Between
successive hyperedges, the algorithm stores only the
index of the random seed in S (using space O(n)),
as well as the linear sketch of the hypergraph (using
space Õ(nr log(m)/ϵ2)). The correctness follows by
Claim VII.1. Indeed, for any fixed hypergraph H , with
probability 1 − 1/n6 over choice of random seed from
S, our linear sketch returns a (1 ± ϵ)-sparsifier for H .
Because our sketch is linear, it does not matter the order
in which the hyperedges in the stream arrive, and rather,
it only depends on the final resulting hypergraph induced
by the insertions and deletions. Thus, we conclude the
above theorem.

VIII. MPC ALGORITHM

In this section, we detail how to use our linear
sketches for hypergraph sparsification to create an MPC
algorithm for sparsifying hypergraphs. Recall that in
the MPC model, the input data is split evenly across
machines, each which has a bounded memory. In this
section, we will assume each machine is given memory
Õ(nr log(m)), that hyperedges have arity bounded by r,
and that the m hyperedges are split evenly across ma-
chines, resulting in each machine having n hyperedges,
and therefore a total of k = m

n machines. We denote
these machines by m1, . . .mk.

At a high level, our MPC protocol will take advantage
of the fact that the linear sketches for hypergraph spar-
sification are actually vertex-incidence sketches. That is,
each vertex stores a sketch of its immediate neighbor-
hood. In the first round, each machine creates the linear
sketches for the hypergraph induced by the subset of
hyperedges that were allocated to this machine. Because
these sketches are really vertex-incidence sketches, the
machines then coordinate to send their sketches for the
first vertex (say v1) to a subset of the machines, and
likewise for v2, v3, and so on. We then recursively
combine these sketches for individual vertices, until

finally in the penultimate iteration, we have the complete
sketch for each vertex vi stored in its own machine. In
the final iteration, these machines coordinate and send
these sketches to a single coordinator, which then has the
entire linear sketch of the hypergraph H , and is able to
compute a sparsifier. This will yield the following result:

Corollary VIII.1. There exists an MPC protocol which
for any hypergraph H on n vertices, m hyperedges, and
with arity ≤ r, uses only max(2, ⌈logn(m)⌉) rounds of
computation, with machines whose memory is bounded
by Õ(nr log(m)/ϵ2), and returns a (1±ϵ) cut-sparsifier
to H .

For comparison, the canonical approach to building
MPC algorithms for sparsifying hypergraphs without
linear sketches involves each machine mi sparsifying
its own induced hypergraph, and then recursively com-
bining these hypergraphs in a tree-like manner, in each
iteration pairing up two active machines, merging their
hypergraphs, and then sparsifying this merged hyper-
graph. Thus, in each iteration, the number of active
machines decreases by a factor of 2. This approach
(which is also used to create sparsifiers for insertion-only
streams [7]) unfortunately loses in two key parameter
regimes. First, the number of rounds required by such
a procedure will be Ω(log(m/n)), as the number of
active machines decreases by a factor of 2 in each
round. Further, the memory required by each machine
will be Ω(nr log(m) log2(m/n)/ϵ2), as the deterioration
of the error parameter scales with the depth of the
recursive process, which will be log(m/n), and setting
ϵ′ = ϵ/ log(m/n) requires more memory.

As an example, when m = poly(n), our MPC
protocol is able to run in a constant number of rounds
(independent of the number of vertices), whereas the
canonical MPC algorithm for sparsification will require
Ω(log(n)) rounds. Additionally, we will be getting this
in conjunction with a smaller memory footprint.

Note that the above algorithm is intended for cases
when k ≥ n (in particular, m ≥ n2). Many times, it
may be the case that k < n, in which case we have
a separate procedure. We first present the algorithm for
the case when k ≥ n, which takes in a set of machines
m1, . . .mk, each with some subset Sj of the hyperedges
of the hypergraph H:

First, we prove that this procedure does not exceed
the memory capacity of any machine.

Claim VIII.2. In every round, each machine uses at
most Õ(nr log(m)/ϵ2) bits of memory.

Proof. First, observe that in the first round, when the
machines compute the hypergraph sparsifier for their
subset of the edges, this creates Õ(polylog(n)/ϵ2) ℓ0-
samplers for each vertex, each of which requires space

1702

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 14: MPC((mj , Sj)
k
j=1)

1 For each machine mj , compute the hypergraph
sparsification linear sketch S(Sj , R), where R
is a random seed shared across machines. Let
Si(Sj , R) denote the corresponding part of the
sketch for vertex j.

2 for j ∈ [k] do
3 for i ∈ [n] do
4 mj sends Si(Sj , R) to

m(j mod (k/n))+(k/n)·(i−1).
5 K

(1)
i = {(k/n) · (i−1)+1, . . . (k/n) · (i)}

(machines containing sketches for vertex
i).

6 end
7 mj sums together the sketches it received

(denote this S(1,j)).
8 end
9 for ℓ ∈ [2, ⌈logn(m)⌉] do

10 for i ∈ [n] do
11 for j ∈ [K

(ℓ−1)
i] do

12 Send mj’s sketch to
m(j mod (k/nℓ))+(k/nℓ)·(i−1).

13 end
14 K

(ℓ)
i = {(k/nℓ)·(i−1)+1, . . . (k/nℓ)·(i)}.

for j ∈ [K
(ℓ)
i] do

15 mj sums together the sketches it
received (denote this S(ℓ,j)).

16 end
17 end
18 end
19 In the final round, m1, . . .mn each send their

sketch to m1, which now computes the
hypergraph sparsifier.

20 m1 returns the hypergraph sparsifier.

at most Õ(r log(m)polylog(n)). Now, by induction,
in each subsequent round, the protocol creates groups
of n machines, each containing Õ(polylog(n)/ϵ2) ℓ0-
samplers for a single vertex vi, and sends all of these
ℓ0-samplers to a single machine. The total space required
to receive these samplers (sketches) is bounded by n ·
Õ(r log(m)polylog(n)/ϵ2) = Õ(nr log(m)/ϵ2). Now,
because these are linear sketches, the protocol simply
adds together these sketches, yielding a sketch of size
Õ(r log(m)polylog(n)/ϵ2) because this is still simply a
set of Õ(polylog(n)/ϵ2) ℓ0-samplers. Thus, inductively,
the space required never exceeds Õ(nr log(m)/ϵ2) bits.

In the final round, n machines, each with
Õ(r log(m)polylog(n)/ϵ2) bits, sends their memory to
m1, which now has the complete linear sketch required
for hypergraph sparsification, and is able to sparsify the

hypergraph H .

Claim VIII.3. The number of rounds required for the
above procedure is ⌈logn(m)⌉.

Proof. Note that in each round, K
(ℓ)
i is bounded in

size by (k/nℓ) by construction. Thus, after logn(k) =
logn(m/n) ≤ ⌈logn(m)⌉− 1 rounds, we have that each
K

(ℓ)
i is of size 1. In the final round, each machine

sends their sketches to m1, which is able to compute
the sparsifier and return the result. This yields the desired
claim.

Claim VIII.4. In the final round of the MPC protocol,
m1 has a valid hypergraph sparsification sketch for H .

Proof. This follows because in each round, the ℓ0-
samplers for each vertex are added together. In the
final round, m1 receives ℓ0-samplers for each vertex
defined over the entire hypergraph H (because they have
been added together using the hyperedges given to each
machine).

Corollary VIII.5. Algorithm 14 is a valid MPC protocol
for creating hypergraph sparsifiers with each machine
using Õ(nr log(m)/ϵ2) bits of memory, and computing
for a total of ⌈logn(m)⌉ rounds.

Proof. This follows from Claim VIII.2, Claim VIII.3,
and Claim VIII.4.

Note that the algorithm presented above is intended for
instances where k ≥ n. When k < n, instead of creating
multiple machines responsible for the sketches for a sin-
gle vertex, we create a single machine which is responsi-
ble for many vertices. Let us suppose that n/k is an inte-
ger for simplicity. Then, the first machine m1 is respon-
sible for creating the sketches for vertices v1, . . . vn/k,
and more generally, machine mj is responsible for the
sketches for vertices v(n/k)·(j−1)+1, . . . v(n/k)·j . The first
round is spent agglomerating these sketches, and in the
final round, these machines send their vertex sketches to
a single coordinator who then returns a sparsifier. We
present this algorithm below:

Note that the correctness of the above algorithm
follows from the same reasoning as for the original
MPC algorithm. Further, by construction, there are only
two rounds of communication, once for separating the
vertex sketches, and once for recombining them in the
coordinator’s memory. Thus, it remains to bound the
memory usage of each machine.

Claim VIII.6. Each machine in Algorithm 15 uses
Õ(nr log(m)/ϵ2) bits of memory.

Proof. Suppose for simplicity that k evenly divides n.
Note that by assumption, we are also assuming that the
total number of hyperedges in the hypergraph is bounded

1703

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 15: SmallMPC((mj , Sj)
k
j=1)

1 For each machine mj , compute the hypergraph
sparsification linear sketch S(Sj , R), where R
is a random seed shared across machines. Let
Si(Sj , R) denote the corresponding part of the
sketch for vertex j.

2 for j ∈ [k] do
3 for i ∈ [n] do
4 mj sends Si(Sj , R) to m⌈ jk

n ⌉.
5 end
6 For each vertex

i ∈ [(n/k)(j − 1) + 1, (n/k)j], mj sums
together the vertex sketch it receives.
Denote these sketches by S(i,j).

7 end
8 for j ∈ [k] do
9 for i ∈ [(n/k)(j − 1) + 1, (n/k)j] do

10 mj sends S(i,j) to m1.
11 end
12 end
13 m1 computes the hypergraph sparsifier using the

received sketches.

by kn. In the first round, each machine receives from
k different machines, the ℓ0-samplers corresponding
to n

k different vertices. From each machine, the total
size of the ℓ0-samplers stored per vertex is bounded
by Õ(r log(m)polylog(n)/ϵ2). Thus, the total memory
required to store the communicated bits is

≤ k·n
k
·Õ(r log(m)polylog(n)/ϵ2) = Õ(nr log(m)/ϵ2).

Next, each machine is able to add together the
corresponding ℓ0-samplers for each vertex, thus
reducing the total space usage to again only
Õ(r log(m)polylog(n)/ϵ2) bits per vertex. Thus,
in the second round, when m1 receives from each of
the k machines the ℓ0-samplers corresponding with n/k
vertices, this is again bounded by Õ(nr log(m)/ϵ2)
bits, and m1 is able to compute the sparsifier in its
local memory.

Corollary VIII.7. There exists an MPC protocol which
for any hypergraph H on n vertices, m hyperedges, and
with arity ≤ r, uses only max(2, ⌈logn(m)⌉) rounds of
computation, with machines whose memory is bounded
by Õ(nr log(m)/ϵ2), and returns a (1±ϵ) cut-sparsifier
to H .

REFERENCES

[1] AHN, K. J., GUHA, S., AND MCGREGOR, A. Analyzing graph
structure via linear measurements. In Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012 (2012), Y. Ra-
bani, Ed., SIAM, pp. 459–467.

[2] AHN, K. J., GUHA, S., AND MCGREGOR, A. Graph sketches:
sparsification, spanners, and subgraphs. In Proceedings of the
31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-
24, 2012 (2012), M. Benedikt, M. Krötzsch, and M. Lenzerini,
Eds., ACM, pp. 5–14.

[3] BANSAL, N., SVENSSON, O., AND TREVISAN, L. New notions
and constructions of sparsification for graphs and hypergraphs.
In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-
12, 2019 (2019), D. Zuckerman, Ed., IEEE Computer Society,
pp. 910–928.

[4] BATSON, J. D., SPIELMAN, D. A., AND SRIVASTAVA, N. Twice-
ramanujan sparsifiers. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009 (2009), M. Mitzenmacher, Ed.,
ACM, pp. 255–262.

[5] BENCZÚR, A. A., AND KARGER, D. R. Approximating s-t
minimum cuts in Õ(n2) time. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996 (1996), G. L.
Miller, Ed., ACM, pp. 47–55.

[6] CHEN, Y., KHANNA, S., AND LI, H. On weighted graph spar-
sification by linear sketching. In 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 - November 3, 2022 (2022), IEEE, pp. 474–485.

[7] CHEN, Y., KHANNA, S., AND NAGDA, A. Near-linear size
hypergraph cut sparsifiers. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020 (2020), S. Irani, Ed., IEEE, pp. 61–
72.

[8] CORMODE, G., AND FIRMANI, D. A unifying framework for
l0-sampling algorithms. Distributed Parallel Databases 32, 3
(2014), 315–335.

[9] FUNG, W. S., HARIHARAN, R., HARVEY, N. J., AND PANI-
GRAHI, D. A general framework for graph sparsification. In
Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing (New York, NY, USA, 2011), STOC ’11,
Association for Computing Machinery, p. 71–80.

[10] GUHA, S., MCGREGOR, A., AND TENCH, D. Vertex and hy-
peredge connectivity in dynamic graph streams. In Proceedings
of the 34th ACM Symposium on Principles of Database Systems,
PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4,
2015 (2015), T. Milo and D. Calvanese, Eds., ACM, pp. 241–247.

[11] JAMBULAPATI, A., LEE, J. R., LIU, Y. P., AND SIDFORD, A.
Sparsifying sums of norms. CoRR abs/2305.09049 (2023).

[12] JAMBULAPATI, A., LIU, Y. P., AND SIDFORD, A. Chaining,
group leverage score overestimates, and fast spectral hypergraph
sparsification. In Proceedings of the 55th Annual ACM Sympo-
sium on Theory of Computing, STOC 2023, Orlando, FL, USA,
June 20-23, 2023 (2023), B. Saha and R. A. Servedio, Eds.,
ACM, pp. 196–206.

[13] KAPRALOV, M., KRAUTHGAMER, R., TARDOS, J., AND
YOSHIDA, Y. Spectral hypergraph sparsifiers of nearly linear
size. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-
10, 2022 (2021), IEEE, pp. 1159–1170.

[14] KAPRALOV, M., KRAUTHGAMER, R., TARDOS, J., AND
YOSHIDA, Y. Towards tight bounds for spectral sparsification
of hypergraphs. In STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021 (2021), S. Khuller and V. V. Williams, Eds., ACM,
pp. 598–611.

[15] KAPRALOV, M., LEE, Y. T., MUSCO, C., MUSCO, C., AND
SIDFORD, A. Single pass spectral sparsification in dynamic
streams. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014 (2014), IEEE Computer Society, pp. 561–570.

[16] KAPRALOV, M., NELSON, J., PACHOCKI, J., WANG, Z.,
WOODRUFF, D. P., AND YAHYAZADEH, M. Optimal lower
bounds for universal relation, and for samplers and finding

1704

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

duplicates in streams. In 58th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017 (2017), C. Umans, Ed., IEEE Computer
Society, pp. 475–486.

[17] KARGER, D. R. Global min-cuts in rnc, and other ramifications
of a simple min-cut algorithm. In Proceedings of the Fourth
Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
25-27 January 1993, Austin, Texas, USA (1993), V. Ramachan-
dran, Ed., ACM/SIAM, pp. 21–30.

[18] KARLOFF, H. J., SURI, S., AND VASSILVITSKII, S. A model
of computation for mapreduce. In Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010 (2010),
M. Charikar, Ed., SIAM, pp. 938–948.

[19] KHANNA, S., PUTTERMAN, A., AND SUDAN, M. Code sparsi-
fication and its applications. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA) (2024),
SIAM, pp. 5145–5168.

[20] KOGAN, D., AND KRAUTHGAMER, R. Sketching cuts in graphs
and hypergraphs. In Proceedings of the 2015 Conference on In-
novations in Theoretical Computer Science, ITCS 2015, Rehovot,
Israel, January 11-13, 2015 (2015), T. Roughgarden, Ed., ACM,
pp. 367–376.

[21] LEE, J. R. Spectral hypergraph sparsification via chaining. In
Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023
(2023), B. Saha and R. A. Servedio, Eds., ACM, pp. 207–218.

[22] NEWMAN, I., AND SZEGEDY, M. Public vs. private coin flips
in one round communication games (extended abstract). In
Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May
22-24, 1996 (1996), G. L. Miller, Ed., ACM, pp. 561–570.

[23] QUANRUD, K. Quotient sparsification for submodular functions.
SIAM, 2024, pp. 5209–5248.

[24] SOMA, T., AND YOSHIDA, Y. Spectral sparsification of hy-
pergraphs. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019 (2019), T. M. Chan, Ed.,
SIAM, pp. 2570–2581.

[25] SPIELMAN, D. A., AND TENG, S. Spectral sparsification of
graphs. SIAM J. Comput. 40, 4 (2011), 981–1025.

APPENDIX

We adopt the construction presented in Cormode and
Firmani [8]. To do this, we re-present their method for
perfect 1-sparse recovery. In this setting, we are given a
vector x ∈ Zu (and let us suppose that |xi| ≤ poly(u)),
and our goal is to either

1) Return x exactly if there is at most one non-zero
index in x.

2) Return ⊥ with probability 1−1/uc, if there is more
than 1 non-zero index in x.

To do this, we first choose a prime p which is
sufficiently large. For now, we choose p to be in the
interval [uc+1, 2uc+1]. Next, we choose a random integer
z ∈ Zp, and store the following quantities:

1) α =
∑

i xi · i.
2) ϕ =

∑
i xi.

3) τ =
∑

i xi · zi mod p.

Claim A.1. [8] If x is 1-sparse, then τ = ϕ · zα/ϕ
mod p. If x is not 1-sparse, then with probability ≥ 1−
u/p ≥ 1−1/uc over the random choice of z, τ ̸= ϕ·zα/ϕ
mod p.

Corollary A.2. There exists a linear sketch of a vector
x using O(c log(u)) bits of space, which can recover x
exactly if x is 1-sparse, and otherwise reports that x is
not 1-sparse with probability ≥ 1− 1/uc.

Proof. First, we can see that the information we store
(α, ϕ, τ) are linear in the vector x, thus the sketch itself
is linear.

Second, by Claim A.1, we can test if τ = ϕ · zα/ϕ
mod p to see whether or not our vector x is truly 1-
sparse (with high probability). If indeed x is one-sparse,
then one can find the index i for which xi ̸= 0 by
dividing α by ϕ. One can then also recover the value
at the index which will be exactly ϕ.

The space required for the linear sketch follows from
the fact that the prime p requires O(c log(u)) bits to
represent. Storing α requires at most u · poly(u) bits of
space (because we are assuming each entry xi is bounded
in magnitude by poly(u)). Likewise ϕ is bounded by
poly(u), and τ is bounded by p. Thus storing each
of these quantities requires at most O(c log(u)) bits of
space.

Going forward, we will denote this linear sketch for
1-sparse recovery by S1S.

Now, we can use this method for 1-sparse recovery to
create a linear sketch for ℓ0 sampling of a vector x ∈ Zu,
where each entry is bounded by poly(u). We will also
parameterize this vector x by an upper bound in terms
of its support m.

Theorem A.3. For a vector x ∈ Zu, with each
entry bounded in magnitude by poly(u), there ex-
ists a linear sketch of size O(log(m) log(1/δ) log(u) ·
max(1, logu(1/δ))) which:

1) If the size of the support of x is ≤ m, returns a
uniformly random index i, and the corresponding
value xi, such that xi ̸= 0 with probability 1− δ.

2) If the size of the support of x is > m, either
a) Returns a uniformly random index i : xi ̸= 0, as

well as xi,
b) Outputs ⊥,
with probability 1− δ.

Proof. First, we create log(m) uniformly random hash
functions from [u] → {0, 1}. We denote these hash
functions by h1, . . . hlog(m). Now, we create log(m)+ 1
versions of the vector x, where x(j) contains only the
indices i :

∏
p≤j hp(i) = 1, and sets all other entries to

be 0. For each of these vectors x(j), 0 ≤ j ≤ log(m),
we store a sketch S1S(x

(j)).
Now, it follows that if x has ≤ m non-zero entries

(i.e. support size bounded by m), then with constant
probability, there will exist a j ∈ [log(m)] such that
x(j) has only one non-zero entry.

1705

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

Thus, if we store O(log(1/δ)) (independent) versions
of this sketch, we will be ensured that with probability
1 − δ, there will exist one version of this sketch with
a downsampled vector x(j) such that x(j) has only one
non-zero entry. For this vector, by Corollary A.2, we will
exactly recover both the index i, and the value xi.

Now, we must also show that we do not recover
any incorrect indices in this case. This again follows
from Corollary A.2. There are at most log(m) log(1/δ)
copies of S1S that are stored, and for each, the error
probability is bounded by 1/uc. By a union bound,
it follows that the total error probability is bounded
by log(m) log(1/δ)

uc ≤ log(u) log(1/δ)
uc ≤ log(1/δ)

uc−1 . Setting
c = O(max(1, logu(δ))), we can then also bound this
failure probability by δ. Note that this also takes care of
the second case, as here we are again only bounding the
probability that we fail to correctly identify the vector
as being 1-sparse.

The space required by this sketch is thus
O(log(m) log(1/δ) log(u) · max(1, logu(1/δ))), as
we store log(m) log(1/δ) copies of S1S, where we set
c = O(max(1, logu(δ)).

A. Sparse Recovery with Overflow Detection

As one of the building blocks of ℓ0-samplers, we want
a linear sketch that satisfies the following conditions:
Find a linear map L : {−U,−U+1, . . . U−1, U}n → Rk

such that if x is s-sparse, it can be recovered from
L(x), and if x is not s-sparse, then we say “DENSE”
with probability at least 1 − δ. Here, we are using
n to represent the universe size (as opposed to our
convention of u so far) in accordance with the coding
theory standards.

To do this, we create the following sketch: take any
prime p > max(2U + 1, n/δ), as well as codes C1 ∈
[n,m, 2s + 1]p and C2 ∈ [N,n, (1 − δ)N]p. Note that
[n, k, d]q codes linearly map messages in Fk

q to codeword
in Fn

q and have distance d between codewords.

Given C1, there is a parity check matrix defining a
linear function H : Fn

q → Fn−m
q such that every s-sparse

vector x can be recovered from H(x). Our random
function L is obtained by taking i ∈ [N] uniformly, and
letting L(x) = (H(x), C2(x)i). We denote this by SSR

(sparse-recovery).

Claim A.4. For a vector x ∈ {−U,−U + 1, . . . U −
1, U}n, if x is s-sparse, one can recover x exactly from
SSR(x). If x is not s-sparse, one can identify this with
probability 1− δ.

Proof. We implement the following recovery-with-
detection paradigm: let us use H(x) to recover a candi-
date y ∈ Fn

p . If y is s-sparse, in {−U,−U + 1, . . . U −
1, U}n, and satisfies C2(y)i = C2(x)i, then we output
y. Otherwise, if any of these do not happen, we output
“DENSE”.

To see why the above procedure works, note that if
x is s-sparse, then y will equal x (by virtue of the
syndrome decoding via H), and satisfy all of the tests.
Thus, the interesting case is when x is not s-sparse, yet
the recovered vector y is s-sparse. Then, x ̸= y, so C2(x)
and C2(y) will differ in at least 1 − δ coordinates. So,
with probability 1−δ over the choice of i, we will output
“DENSE”.

Claim A.5. For s-sparse vectors, we can implement the
above with a sketch of size O(s log(max(U, n/δ))).

Proof. We implement the above with two Reed-Solomon
codes. We set C1 to be a Reed-Solomon code with m =
n − (2s + 1), and let C2 have N = n/δ. The size of
our message is then (2s + 1) log(p) bits for H(x), and
log(p) bits for C2(x)i. The amount of randomness used
is simply log(N) = log(n/δ).

Typically, we set U = poly(n), leading to a linear
sketch that uses O(s log(n/δ)) bits of space.

1706

Authorized licensed use limited to: University of Pennsylvania. Downloaded on January 20,2025 at 00:05:45 UTC from IEEE Xplore. Restrictions apply.

