-
Advances in RNA secondary structure prediction and RNA modifications: Methods, data, and applications.
Shu Yang, Nhat Truong Pham, Ziyang Li, Jae Young Baik, Joseph Lee, Tianhua Zhai, Weicheng Yu, Bojian Hou, Tianqi Shang, Weiqing He, Duy Duong-Tran, Mayur Naik, Li Shen.
Jan 2025.
-
Dolphin: A Programmable Framework for Scalable Neurosymbolic Learning.
Aaditya Naik, Jason Liu, Claire Wang, Saikat Dutta, Mayur Naik, Eric Wong.
October 2024.
-
LLM-Assisted Static Analysis for Detecting Security Vulnerabilities.
Ziyang Li, Saikat Dutta, Mayur Naik.
May 2024.
-
LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision.
Jiani Huang, Ziyang Li, Mayur Naik, Ser Nam Lim.
May 2024.
-
Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities.
Avishree Khare*, Saikat Dutta*, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, Mayur Naik.
ICST 2025.
-
Data-Efficient Learning with Neural Programs.
Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev Alur, Mayur Naik, Eric Wong.
NeurIPS 2024.
-
Crowd-sourced machine learning prediction of Long COVID using data from the National COVID Cohort Collaborative.
Timothy Bergquist et al..
eBioMedicine 2024.
NIH L3C Honorable Mention Award.
-
TYGR: Type Inference on Stripped Binaries using Graph Neural Networks.
Ziyang Li*, Chang Zhu*, Anton Xue, Ati Priya Bajaj, William Gibbs, Yibo Liu, Rajeev Alur, Tiffany Bao, Hanjun Dai, Adam Doupé, Mayur Naik, Yan Shoshitaishvili, Ruoyu Wang, Aravind Machiry.
USENIX Security 2024.
-
Towards Compositionality in Concept Learning.
Adam Stein, Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong.
ICML 2024.
-
DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation.
Yinjun Wu*, Mayank Keoliya*, Kan Chen, Neelay Velingker, Ziyang Li, Emily Getzen, Qi Long, Mayur Naik, Ravi Parikh, Eric Wong.
ICML 2024.
Spotlight Paper.
-
TorchQL: A Programming Framework for Integrity Constraints in Machine Learning.
Aaditya Naik, Adam Stein, Yinjun Wu, Mayur Naik, Eric Wong.
OOPSLA 2024.
-
Relational Programming with Foundation Models.
Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Rajeev Alur, Mayur Naik.
AAAI 2024.
-
Relational Query Synthesis ⋈ Decision Tree Learning.
Aaditya Naik, Aalok Thakkar, Adam Stein, Rajeev Alur, Mayur Naik.
VLDB 2024.
-
Mobius: Synthesizing Relational Queries with Recursive and Invented Predicates.
Aalok Thakkar, Nathaniel Sands, George Petrou, Rajeev Alur, Mayur Naik, Mukund Raghothaman.
OOPSLA 2023.
-
Improved Logical Reasoning of Language Models via Differentiable Symbolic Programming.
Hanlin Zhang*, Jiani Huang*, Ziyang Li, Mayur Naik, Eric Xing.
Findings of ACL 2023.
-
Do Machine Learning Models Learn Statistical Rules Inferred from Data?.
Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong.
ICML 2023.
-
Scallop: A Language for Neurosymbolic Programming.
Ziyang Li*, Jiani Huang*, Mayur Naik.
PLDI 2023.
[code] [artifact].
-
Learning to Select Pivotal Samples for Meta Re-weighting.
Yinjun Wu, Adam Stein, Jacob Gardner, Mayur Naik.
AAAI 2023.
Oral Presentation.
-
Synthesizing Formal Network Specifications from Input-Output Examples.
Haoxian Chen, Chenyuan Wu, Andrew Zhao, Mukund Raghothaman, Mayur Naik, Boon Thau Loo.
IEEE/ACM ToN 2022.
-
DeepMerge: Learning to Merge Programs.
Elizabeth Dinella, Todd Mytkowicz, Alexey Svyatkovskiy, Christian Bird, Mayur Naik, Shuvendu Lahiri.
IEEE TSE 2022 and FSE 2022 (Journal-First Track).
-
CodeTrek: Flexible Modeling of Code using an Extensible Relational Representation.
Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang, Hanjun Dai, Petros Maniatis, Mayur Naik.
ICLR 2022.
-
PacJam: Securing Dependencies Continuously via Package-Oriented Debloating.
Pardis Pashakhanloo, Aravind Machiry, Hyonyoung Choi, Anthony Canino, Kihong Heo, Insup Lee, Mayur Naik.
Asia CCS 2022.
-
Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning.
Jiani Huang*, Ziyang Li*, Binghong Chen, Karan Samel, Mayur Naik, Le Song, Xujie Si.
NeurIPS 2021.
-
Sporq: An Interactive Environment for Exploring Code Using Query-by-Example.
Aaditya Naik, Jonathan Mendelson, Nate Sands, Yuepeng Wang, Mayur Naik, Mukund Raghothaman.
UIST 2021.
-
Example-Guided Synthesis of Relational Queries.
Aalok Thakkar, Aaditya Naik, Nate Sands, Rajeev Alur, Mayur Naik, Mukund Raghothaman.
PLDI 2021.
-
Arbitrar: User-Guided API Misuse Detection.
Ziyang Li, Aravind Machiry, Binghong Chen, Ke Wang, Mayur Naik, Le Song.
S&P 2021.
-
GenSynth: Synthesizing Datalog Programs without Language Bias.
Jonathan Mendelson, Aaditya Naik, Mukund Raghothaman, Mayur Naik.
AAAI 2021.
-
Generating Programmatic Referring Expressions via Program Synthesis.
Jiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, Mayur Naik.
ICML 2020.
-
Code2Inv: A Deep Learning Framework for Program Verification.
Xujie Si*, Aaditya Naik*, Hanjun Dai, Mayur Naik, Le Song.
CAV 2020.
-
Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs.
Elizabeth Dinella*, Hanjun Dai*, Ziyang Li, Mayur Naik, Le Song, Ke Wang.
ICLR 2020.
Spotlight Paper.
-
Provenance-Guided Synthesis of Datalog Programs.
Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, Bernhard Scholz.
POPL 2020.
-
Synthesizing Datalog Programs using Numerical Relaxation.
Xujie Si*, Mukund Raghothaman*, Kihong Heo, Mayur Naik.
IJCAI 2019.
-
Continuously Reasoning about Programs using Differential Bayesian Inference.
Kihong Heo*, Mukund Raghothaman*, Xujie Si, Mayur Naik.
PLDI 2019.
Distinguished Paper Award.
-
Learning Neurosymbolic Generative Models via Program Synthesis.
Halley Young, Osbert Bastani, Mayur Naik.
ICML 2019.
-
Learning a Meta-Solver for Syntax-Guided Program Synthesis.
Xujie Si*, Yuan Yang*, Hanjun Dai, Mayur Naik, Le Song.
ICLR 2019.
-
Learning Loop Invariants for Program Verification.
Xujie Si*, Hanjun Dai*, Mukund Raghothaman, Mayur Naik, Le Song.
NeurIPS 2018.
Spotlight Paper.
-
Syntax-Guided Synthesis of Datalog Programs.
Xujie Si*, Woosuk Lee*, Richard Zhang, Aws Albarghouthi, Paris Koutris, Mayur Naik.
FSE 2018.
-
Effective Program Debloating via Reinforcement Learning.
Kihong Heo*, Woosuk Lee*, Pardis Pashakhanloo, Mayur Naik.
CCS 2018.
-
User-Guided Program Reasoning Using Bayesian Inference.
Mukund Raghothaman*, Sulekha Kulkarni*, Kihong Heo, Mayur Naik.
PLDI 2018.
-
Accelerating Search-Based Program Synthesis Using Learned Probabilistic Models.
Woosuk Lee, Kihong Heo, Rajeev Alur, Mayur Naik.
PLDI 2018.
-
Effective Interactive Resolution of Static Analysis Alarms.
Xin Zhang, Radu Grigore, Xujie Si, Mayur Naik.
OOPSLA 2017.
-
Constraint-Based Synthesis of Datalog Programs.
Aws Albarghouthi, Paraschos Koutris, Mayur Naik, Calvin Smith.
CP 2017.
-
Accelerating Program Analyses by Cross-Program Training.
Sulekha Kulkarni, Ravi Mangal, Xin Zhang, Mayur Naik.
OOPSLA 2016.
-
On Incremental Core-Guided MaxSAT Solving.
Xujie Si, Xin Zhang, Vasco Manquinho, Mikolas Janota, Alexey Ignatiev, Mayur Naik.
CP 2016.
-
APISan: Sanitizing API Usages through Semantic Cross-checking.
Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, Mayur Naik.
USENIX Security 2016.
-
Scaling Relational Inference Using Proofs and Refutations.
Ravi Mangal, Xin Zhang, Aditya Kamath, Aditya Nori, Mayur Naik.
AAAI 2016.
-
Query-Guided Maximum Satisfiability.
Xin Zhang, Ravi Mangal, Aditya Nori, Mayur Naik.
POPL 2016.
-
Mantis: Efficient Predictions of Execution Time, Energy Usage, Memory Usage and Network Usage on Smart Mobile Devices.
Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun Yang, Byung-Gon Chun, Ling Huang, Petros Maniatis, Mayur Naik, Yunheung Paek.
IEEE TMC 2015.
-
Volt: A Lazy Grounding Framework for Solving Very Large MaxSAT Instances.
Ravi Mangal, Xin Zhang, Aditya Nori, Mayur Naik.
SAT 2015.
-
A User-Guided Approach to Program Analysis.
Ravi Mangal, Xin Zhang, Aditya Nori, Mayur Naik.
FSE 2015.
Distinguished Paper Award.
-
FlexJava: Language Support for Safe and Modular Approximate Programming.
Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, William Harris.
FSE 2015.
-
Modularity in Lattices: A Case Study on the Correspondence between Top-Down and Bottom-Up Analysis.
Ghila Castelnuovo, Mayur Naik, Noam Rinetzky, Mooly Sagiv, Hongseok Yang.
SAS 2015.
-
COSMOS: Computation Offloading as a Service for Mobile Devices.
Cong Shi, Karim Habak, Pranesh Pandurangan, Mostafa Ammar, Mayur Naik, Ellen Zegura.
MobiHoc 2014.
-
On Abstraction Refinement for Program Analyses in Datalog.
Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, Hongseok Yang.
PLDI 2014.
Distinguished Paper Award.
-
Hybrid Top-Down and Bottom-Up Interprocedural Analysis.
Xin Zhang, Ravi Mangal, Mayur Naik, Hongseok Yang.
PLDI 2014.
-
A Correspondence between Two Approaches to Interprocedural Analysis in the Presence of Join.
Ravi Mangal, Mayur Naik, Hongseok Yang.
ESOP 2014.
Best Paper Award Nominee.
-
Dynodroid: An Input Generation System for Android Apps.
Aravind Machiry, Rohan Tahiliani, Mayur Naik.
FSE 2013.
Test-of-Time Paper Award and Distinguished Artifact Award.
-
Mantis: Automatic Performance Prediction for Smartphone Applications.
Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun Yang, Byung-Gon Chun, Ling Huang, Petros Maniatis, Mayur Naik, Yunheung Paek.
USENIX ATC 2013.
-
Finding Optimum Abstractions in Parametric Dataflow Analysis.
Xin Zhang, Mayur Naik, Hongseok Yang.
PLDI 2013.
-
Automated Concolic Testing of Smartphone Apps.
Saswat Anand, Mayur Naik, Hongseok Yang, Mary Jean Harrold.
FSE 2012.
Test-of-Time Paper Award.
-
Abstractions from Tests.
Mayur Naik, Hongseok Yang, Ghila Castelnuovo, Mooly Sagiv.
POPL 2012.
-
Yada: Straightforward Parallel Programming.
David Gay, Joel Galenson, Mayur Naik, Kathy Yelick.
Parallel Computing, Elsevier, 2011.
-
Scaling Abstraction Refinement via Pruning.
Percy Liang and Mayur Naik.
PLDI 2011.
-
CloneCloud: Elastic Execution between Mobile Device and Cloud.
Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, Ashwin Patti.
EuroSys 2011.
-
Learning Minimal Abstractions.
Percy Liang, Omer Tripp, Mayur Naik.
POPL 2011.
-
Predicting Execution Time of Computer Programs Using Sparse Polynomial Regression.
Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, Mayur Naik.
NIPS 2010.
-
An Effective Dynamic Analysis for Detecting Generalized Deadlocks.
Pallavi Joshi, Mayur Naik, Koushik Sen, David Gay.
FSE 2010.
-
A Dynamic Evaluation of the Precision of Static Heap Abstractions.
Percy Liang, Omer Tripp, Mayur Naik, Mooly Sagiv.
OOPSLA 2010.
-
CalFuzzer: An Extensible Active Testing Framework for Concurrent Programs.
Pallavi Joshi, Mayur Naik, Chang-Seo Park, Koushik Sen.
CAV 2009.
-
Lightweight Annotations for Controlling Sharing in Concurrent Data Structures.
Zachary Anderson, David Gay, Mayur Naik.
PLDI 2009.
-
A Randomized Dynamic Program Analysis Technique for Detecting Real Deadlocks.
Pallavi Joshi, Chang-Seo Park, Koushik Sen, Mayur Naik.
PLDI 2009.
-
Effective Static Deadlock Detection.
Mayur Naik, Chang-Seo Park, Koushik Sen, David Gay.
ICSE 2009.
Distinguished Paper Award.
-
A Type System Equivalent to a Model Checker.
Mayur Naik and Jens Palsberg.
ACM TOPLAS 2008.
-
Conditional Must Not Aliasing for Static Race Detection.
Mayur Naik and Alex Aiken.
POPL 2007.
-
Effective Static Race Detection for Java.
Mayur Naik, Alex Aiken, John Whaley.
PLDI 2006.
-
Statistical Debugging: Simultaneous Isolation of Multiple Bugs.
Alice Zheng, Michael Jordan, Ben Liblit, Mayur Naik, Alex Aiken.
ICML 2006.
-
Scalable Statistical Bug Isolation.
Ben Liblit, Mayur Naik, Alice Zheng, Alex Aiken, Michael Jordan.
PLDI 2005.
-
A Type System Equivalent to a Model Checker.
Mayur Naik and Jens Palsberg.
ESOP 2005.
-
Compiling with Code-Size Constraints.
Mayur Naik and Jens Palsberg.
ACM TECS 2004.
-
From Symptom to Cause: Localizing Errors in Counterexample Traces.
Thomas Ball, Mayur Naik, Sriram Rajamani.
POPL 2003.
-
Compiling with Code-Size Constraints.
Mayur Naik and Jens Palsberg.
LCTES 2002.