
Object-oriented Unified Encrypted Memory Management for
Heterogeneous Memory Architectures
MO SHA∗, Alibaba Cloud, Singapore
YIFAN CAI∗†, University of Pennsylvania, USA
SHENG WANG, Alibaba Cloud, Singapore
LINH THI XUAN PHAN, University of Pennsylvania, USA
FEIFEI LI, Alibaba Cloud, China
KIAN-LEE TAN, National University of Singapore, Singapore

In contemporary database applications, the demand for memory resources is intensively high. To enhance
adaptability to varying resource needs and improve cost e�ciency, the integration of diverse storage tech-
nologies within heterogeneous memory architectures emerges as a promising solution. Despite the potential
advantages, there exists a signi�cant gap in research related to the security of data within these complex
systems. This paper endeavors to �ll this void by exploring the intricacies and challenges of ensuring data
security in object-oriented heterogeneous memory systems. We introduce the concept of Uni�ed Encrypted
Memory (UEM) management, a novel approach that provides uni�ed object references essential for data man-
agement platforms, while simultaneously concealing the complexities of physical scheduling from developers.
At the heart of UEM lies the seamless and e�cient integration of data encryption techniques, which are
designed to ensure data integrity and guarantee the freshness of data upon access. Our research meticulously
examines the security de�ciencies present in existing heterogeneous memory system designs. By advancing
centralized security enforcement strategies, we aim to achieve e�cient object-centric data protection. Through
extensive evaluations conducted across a variety of memory con�gurations and tasks, our �ndings highlight
the e�ectiveness of UEM. The security features of UEM introduce low and acceptable overheads, and UEM
outperforms conventional security measures in terms of speed and space e�ciency.

CCS Concepts: • Security and privacy ! Distributed systems security; • Information systems ! Main
memory engines; • Hardware ! Emerging architectures; External storage.

Additional Key Words and Phrases: Memory Security; Uni�ed Memory Management; Heterogeneous Memory
Architecture; Data Con�dentiality; Data Integrity

ACM Reference Format:
Mo Sha, Yifan Cai, Sheng Wang, Linh Thi Xuan Phan, Feifei Li, and Kian-Lee Tan. 2024. Object-oriented
Uni�ed Encrypted Memory Management for Heterogeneous Memory Architectures. Proc. ACM Manag. Data
2, 3 (SIGMOD), Article 155 (June 2024), 29 pages. https://doi.org/10.1145/3654958

∗Both authors contributed equally to the paper.
†Yifan’s work was partially done during an internship at Alibaba Cloud.

Authors’ Contact Information: Mo Sha, Alibaba Cloud, Singapore, shamo.sm@alibaba-inc.com; Yifan Cai, University of
Pennsylvania, USA, caiyifan@seas.upenn.edu; Sheng Wang, Alibaba Cloud, Singapore, sh.wang@alibaba-inc.com; Linh Thi
Xuan Phan, University of Pennsylvania, USA, linhphan@cis.upenn.edu; Feifei Li, Alibaba Cloud, China, lifeifei@alibaba-
inc.com; Kian-Lee Tan, National University of Singapore, Singapore, tankl@comp.nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/6-ART155
https://doi.org/10.1145/3654958

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

https://doi.org/10.1145/3654958
https://doi.org/10.1145/3654958

155:2 Mo Sha et al.

1 INTRODUCTION
As the volume of data continues to grow, it is no longer cost-e�ective for data management
systems to support memory-intensive workloads e�ciently. Instead, in recent years, a wide range
of heterogeneous memory architectures, designed to suit speci�c scenarios and optimization goals,
have been introduced and widely integrated into the development of data management systems [26,
52, 75, 78, 92]. Such systems integrate a variety of storage modalities to form a large-scale memory
system to support memory access operations during program execution in a transparent manner.
They are manifested in a variety of ways, e.g., remote memory [2, 5, 19, 31, 32], disaggregated
memory [30, 35, 51, 58, 87], and non-volatile memory [46], with each speci�c approach o�ering its
own unique advantages. In general, these systems aim to address the balance between performance
and cost that arises from the distinct physical characteristics of various storage tiers. Moreover,
heterogeneous memory systems enhance �exibility in resource allocation, optimize utilization, and
consequently, mitigate costs.

Shared Memory Pool

User Other Malicious Tenants

Read
Secrets

Tampering

Remote Server

Network

Network Attacker

Corrupt Admin
Sensitive

Data

Fig. 1. An example of shared memory pool expanding a�ack surface in heterogeneous memory architectures.

While there has been extensive research on empowering heterogeneous memory architectures
for data processing [50, 53, 107, 110], the focus has largely been on performance, applicability, fault
tolerance, and availability. Surprisingly, to our knowledge, there is no reported work that looks at
safeguarding the data. In particular, these novel memory architectures introduce additional chal-
lenges in safeguarding data. For instance, consider a shared memory pool built on networks [56], as
depicted in Fig. 1. Data reliability is inherently lower than in traditional schemes due to the presence
of networks and remote servers, which are physically more challenging to control. Attackers or
even corrupt administrators of these facilities can pose a greater threat than before, thus expanding
the attack surface. Moreover, with dynamic resource allocation typical in heterogeneous memory
systems, e.g., clouds or other shared hardware scenarios, multi-tenancy [96] exacerbates threat
complexity and diversi�es attack vectors. Malicious tenants might exploit vulnerabilities [38] and
breach isolation to access or tamper with others’ data. We seek to bridge such a gap in this paper.
Motivation. Prior research studies on traditional memory security fall short in e�ectively address-
ing the challenges associated with developing a data management platform based on heterogeneous
memory architectures. This situation demands a more precise delineation of the domain-speci�c
characteristics of these challenges, thereby emphasizing a robust and clear motivation for investi-
gating innovative and e�ective technical solutions.

First, in heterogeneous memory architectures, consideration of asymmetric security is imperative
due to signi�cant variations in security attributes (e.g., exclusive vs. shared), safeguards (e.g., local
vs. remote), or the intrinsic properties (e.g., volatile vs. non-volatile) of di�erent memory tiers.
This results in the emergence of intricate and unique attack vectors, which are unlike the security
challenges in homogeneous memory environments that generally operate on consistent, uniform
assumptions about benign hypotheses or the capabilities of adversaries. In contrast, the asymmetric
nature of heterogeneous architectures implies that the overall security is only as strong as its weakest

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:3

tier—a compromise in a single tier could jeopardize the robustness of the entire system. Therefore,
it is essential to have a deep understanding and e�ective incorporation of this characteristic to
enhance data security during interactions among tiers with disparate levels of security strength.

Second, e�ectively deploying proactive security solutions is challenging, especially in the context
of methodologies based on speci�c benign conditions. This is because the subordinate memory
tier within a heterogeneous memory framework often lacks the capacity to maintain any security
assumptions. It is di�cult to both reliably ascertain its activation and discern when a failure
occurs. Thus, in these cases, it becomes imperative to consider the most pessimistic hypothesis:
the application operates on a heterogeneous memory tier that is entirely compromised. Under
such conditions, adversaries may have unrestrained and silent access to read or alter the managed
memory data within this layer. This situation necessitates the implementation of robust passive
security strategies, including encryption and veri�cation mechanisms, to safeguard the applications’
memory, even in such critical scenarios.
Third, most of the existing memory security mechanisms are e�cient only with page-based

memory management. While these coarse-grained page-swapping methods [5, 35] simplify memory
allocation and replacement complexities compared to �ne-grained management [24, 25, 71, 81],
they have signi�cant drawbacks for applications with memory access patterns that lack locality
or exhibit global randomness. These drawbacks include notable latency �uctuations and I/O am-
pli�cation [1, 17] upon page misses. Given that the interconnection bandwidth between memory
hierarchies is often the bottleneck in memory-intensive applications [15], this can substantially
impact performance. In these scenarios, �ne-grained object-based schemes can be a complementary
choice, o�ering superior performance [68, 81, 89], especially for a signi�cant portion of typical data
management tasks, such as table joins [11], key-value queries [89], and graph processing [100, 108].
However, achieving robust passive measures for pessimistic scenarios on �ne-grained objects is
not straightforward. This is because most data security techniques operate on larger data blocks to
e�ciently amortize the incurred overhead [37]. For example, to ensure the three primary properties
of data security—con�dentiality, integrity, and freshness—at least three types of metadata are
required with traditional approaches: nonces, digests, and timestamps. Further, the corresponding
algorithms involve initial computation costs unrelated to data block sizes. For �xed and su�ciently
large pages, this may be acceptable. However, if such metadata is at the object level, e.g., a few
bytes in length, the extra space overhead would be several times the e�ective data payload, clearly
contradicting the primary goal of heterogeneous memory systems—spatial e�ciency.
Our proposal. In this paper, we delve into object-oriented heterogeneous memory architectures,
initiating the exploration of their data security challenges. We propose the object-oriented Uni�ed
Encrypted Memory (UEM) management for heterogeneous memory architectures. Speci�cally,
UEM is developed in C++ and exposes uni�ed object references, allowing developers to e�ortlessly
build data management platforms upon heterogeneous memory architectures. They can focus
on data operational logic without becoming entangled in the nuances of memory management.
Interactions between UEM and speci�c memory devices occur via a uni�ed interface, ensuring that
UEM is not tied to any speci�c hardware, exhibiting impressive scalability. As for data security,
when objects are written back to the heterogeneous memory tiers through uni�ed references,
their data is encrypted. Similarly, during reads, UEM checks for data integrity and freshness at
dereference, returning the decrypted original content. This entire security enforcement process
remains transparent to developers. Central to our proposal is the way in which UEM provides
cost-e�ective data security measures rooted in its design philosophy. Instead of viewing objects in
isolation and managing security metadata independently, UEM employs centralized data structures.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:4 Mo Sha et al.

These designs holistically ensure the security properties of all objects, thereby reducing storage
overhead and processing latency more e�ectively than traditional methods.
Novelty.Ourwork identi�es and addresses a critical yet overlooked issue in standard heterogeneous
memory scenarios: the inconsistency in security assurance across memory hierarchies. As memory
paradigms within data management platforms evolve, bridging this security gap becomes crucial.
This paper pioneers e�orts to resolve this discrepancy, proposing a forward-thinking approach to
imposing security attributes at the object level within heterogeneous memory. Traditional solutions
falter at this granularity due to excessive overheads in runtime and storage. To address these
challenges, we introduce an innovative, centralized security strategy for e�ective and lightweight
execution, applicable across standard heterogeneous memory models, irrespective of speci�c
hardware, architectures, or implementations.
The contributions of this paper are summarized as follows.

• We identify a lack of attention to data security in existing work in the �eld of heterogeneous
memory architectures. In response, we propose UEM, a uni�ed object access for developers
working within heterogeneous memory architectures, which ensures that data security attributes
are maintained. To the best of our knowledge, this is the �rst work of its kind.

• To address the challenges of �ne-grained data security, we propose innovative strategies for
object-level data assurance and incorporate them into UEM. These encompass the Aggregated
Veri�cation Set (AVS) and the Dynamic Mask Pool (DMP), which are centralized data structures,
making data security enforcement lightweight in heterogeneous memory architectures.

• To validate UEM’s e�cacy across varied heterogeneous memory environments and typical data
management computational workloads, we conduct an extensive experimental evaluation. Our
experimental setup spans three leading-edge heterogeneous memory architectures: network-
based disaggregated memory, non-volatile memory, and trusted execution environments; and
three distinct workload types: tabular, key-value, and graph.

• The experiments demonstrate that UEM introduces reasonable overhead, ranging from 0.7% to
57.5%, depending on the varying hardware, compared to the state-of-the-art approaches that
do not prioritize data security. Moreover, when evaluated against conventional data security
methods, UEM exhibits exceptional lightweight characteristics, delivering a performance 1.8x -
6.3x faster and signi�cantly reducing additional space consumption.

2 PRELIMINARIES AND RELATED STUDIES
2.1 Heterogeneous Memory Architectures
Heterogeneous memory, crucial in modern high-performance and e�cient computing, integrates
multiple storage types within a single system, tailored for various workloads and requirements.
Disaggregated Memory. In this paradigm [29, 64], computation and storage are decoupled and
connected via a network, allowing remote memory resources to function as local. This architecture
enhances resource sharing and scalability. Essential to its success is robust connectivity, with
Ethernet excelling in cost-e�ectiveness and compatibility, among which the Transmission Control
Protocol [46, 81] (TCP) is a key communication protocol. Techniques such as In�niBand [35, 58],
which is signi�cant for Remote Direct Memory Access [16, 43] (RDMA), and Compute Express
Link [34, 56, 65] (CXL), a new technology with cache coherence, are also integral.
Multi-type Memory Hybrid. This concept combines various memory types, each optimized
for speci�c roles or data types. High Bandwidth Memory [75] (HBM), for instance, o�ers high
bandwidth but poses challenges in manufacturing complexity and scalability [42]. Non-Volatile

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:5

Random-Access Memory [3, 33, 52, 79, 97, 98] (NVRAM), including NAND [44] and 3D XPoint [36],
presents higher capacity but with slower access and shorter lifespans [74]. In a broader context, this
category also includes CPU caches utilizing SRAM [77] and memory page swapping on disks [95].
Dedicated Memory Region. Even in systems with a singular physical storage type, memory
is partitioned into regions, each satisfying speci�c needs like stability, performance, or security.
For example, real-time embedded systems [59] may use dedicated regions for consistent memory
access timing. Trusted Execution Environments [83] (TEE), such as Enclaves [20], Secure World [4],
and their high-level applications [57, 85, 93, 101], epitomize this, safeguarding against software
and hardware attacks and isolating sensitive data processing.
… UEM adopts a uni�ed interface that abstracts interactions with di�erent memory tiers, thus
decoupling from any speci�c physical implementations. To thoroughly validate its generality,
we conduct evaluations in typical scenarios of all three categories of heterogeneous memory
architectures mentioned above, with speci�c experimental settings detailed in Section 6.1.1.
2.2 Memory Security
Modern systems increasingly grapple with memory security, a critical aspect exacerbated by the
multitude of attack vectors, demanding a deeper understanding and enhanced protection.
Attack Vectors. Physical attacks pose a signi�cant threat to memory security, involving direct
control or access to the target system. These include hardware disassembly, storage media theft,
or intercepting communications. In Infrastructure as a Service [62] (IaaS) contexts, hardware
suppliers and system administrators may pose risks due to potential data spying [23] and physical
device access. Multi-tenant hardware sharing scenarios also present vulnerabilities [96], enabling
unauthorizedmemory access. New attack vectors such as Spectre andMeltdown [38] breach security
to access other programs’ memory in such environments. The Rowhammer vulnerability [48]
exploits DRAM charge leakage, �ipping memory bits to manipulate data and inject code. This
can reveal encrypted data’s side information [9], underlining the need for comprehensive security
techniques, especially in insecure memory hierarchies.
Security Attributes and Threats. UEM prioritizes three main aspects of data security: con�den-
tiality, integrity, and freshness. Con�dentiality is crucial to keep information secret and private,
preventing unauthorized access. Memory security threats like Spectre and Meltdown represent
signi�cant risks as they allow attackers to bypass security and access sensitive data such as pass-
words or personal pro�les in memory. Integrity relates to maintaining the data’s consistency
and accuracy during storage, transmission, or processing. Attacks such as Rowhammer, which
can alter memory cell contents and cause data corruption, highlight the importance of integrity.
Freshness ensures that data is current and not superseded by outdated or expired information.
Rollback attacks, aiming to reset the system to a former state to disguise malicious activities as
legitimate, are a direct challenge to ensuring data freshness. These could involve reverting to a
previous login session to gain unauthorized access or compelling the system to repeatedly perform
a previous action to achieve excessive insights.
Security Defense Techniques. Defense strategies against unauthorized memory access can be
broadly categorized into proactive and reactive measures.
(I) Proactive Protection: this involves isolation techniques to prevent illegal memory actions.
Operating systems use memory isolation [6] to block cross-process access, but privilege vulnerabil-
ities remain a concern. Sandboxing methods [90] like NaCl [106], gVisor [60], and VC3 [84] limit
kernel interaction and verify addresses before access. StackGuard [22] and ProPolice [28] counter
stack over�ow attacks, while Safe Linking [41] addresses heap over�ows. Address Space Layout
Randomization [86] and Address Obfuscation [13] further enhance security by confusing attackers.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:6 Mo Sha et al.

(II) Reactive Protection: this includes methods that detect certain unauthorized access incidents.
Techniques like cryptographic algorithms [70] and AEAD are used to encrypt data and authenticate
messages [10], ensuring con�dentiality and integrity. However, memory page veri�cation mecha-
nisms have limited scope and can be circumvented by advanced attacks. Advanced protections like
Merkle trees [94] face di�culties in concurrent environments due to high storage and processing
requirements [8, 55, 109]. Additionally, technologies like TME [47], SGX [20], and TDX [18] provide
enhanced memory security, especially with dedicated hardware.
… UEM prioritizes reactive security measures like encryption and validation to safeguard data
in heterogeneous memory environments, which are inherently less controllable. Given the un-
predictability and strength of potential adversaries, including those with physical device access,
UEM adopts a cautious approach. Proactive measures are less feasible in such varied memory tiers
and are more prone to breaches. UEM conceals the layout of objects in these memory tiers from
potential attackers. It encrypts data upon writing and checks integrity and freshness during reading,
guarding against tampering and rollback attacks. We detail UEM’s threat model in Section 3.1, and
present its innovative security mechanisms that bolster performance in Sections 4.3 and 4.4.

2.3 Object-oriented Memory Management
Traditional page-based data access often leads to I/O ampli�cation, as retrieving a small data
portion requires loading a complete page. To address this ine�ciency, various studies propose
object-oriented memory management techniques such as AIFM [81], FlatFlash [1], and Project
PBerry [17]. These methods, while more complex due to the variability in object sizes, o�er bene�ts
like detailed data lifecycle observation and enhanced Garbage Collection (GC) e�ciency. Techniques
include reference counting [40], generational approaches [76], and dynamic address resolution [103],
enabling �exible data location management and supporting defragmentation. In this context, log-
structured memory management [39, 82, 104], treating memory as a sequential log, has gained
prominence. This approach allows for data duplication and relocation to minimize fragmentation.
It employs incremental GC, e�ciently reclaiming memory and reducing GC-related lags. The
emergence of heterogeneousmemory architectures introduces complexities in coordinatingmultiple
memory tiers. Solutions like Mako [61] address interconnect bandwidth issues by o�oading tasks
to remote memory, and MemLiner [99] optimizes GC and application process coordination, using
a priority-based algorithm to manage memory eviction. Additional research e�orts are directed
towards enhancing prefetch techniques [49, 63] to further re�ne memory management.
… UEM supports memory access by exposing uni�ed references to applications. It employs a
log-structured memory management scheme to achieve object-level allocation, in an encrypted
manner, with only the necessary meta-information to support security properties. The speci�cs of
this implementation are elaborated in Section 4.1.

3 UEM APPROACH
3.1 Threat Model
3.1.1 Targeted Scenarios. Within heterogeneous memory architectures, various memory tiers
are ingeniously interwoven to create a cohesive memory system that facilitates the execution
of applications. However, these architectures inherently possess asymmetry in security among
memory hierarchies. A security weakness in any tier poses a signi�cant threat to the overall system’s
robustness. In this context, we assume that the execution of the application, especially the memory
for loading application processes, is secure, with UEM management processes integrated as part of
the application. Application owners might take necessary measures to ensure this con�dence, such
as deploying the application on physically controllable or non-shared dedicated computing nodes,

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:7

or implementing security barriers like TEEs. Our study focuses on the standard heterogeneous
memory model, thus not assuming any speci�c deployment forms, i.e., discussions on gaining such
trust for particular deployments are beyond this paper’s scope. To demonstrate the adaptability of
our proposal, we evaluate UEM atop three typical deployment instances of heterogeneous memory
aligned with the assumptions of asymmetric security, including TCP-based disaggregated memory,
DRAM-NVRAM hybrid deployment, and TEEs supported by Intel TDX. This is consistent with the
heterogeneous memory categorization investigated in Section 2.1, and a detailed description of
these instances is in Section 6.1.1.

3.1.2 Threat Agents. In the scenario described above, the identities of threat agents targeting
memory security can be diverse and di�cult to pinpoint. This paper assumes that the adversary
is malicious. Firstly, in heterogeneous memory architectures, the primary purpose often includes
resilient resource allocation. This implies non-exclusive, shared resource consumption, enabling co-
tenants to potentially bypass isolation mechanisms or maliciously exploit system vulnerabilities for
unauthorized access. Secondly, the scope of threats may also extend to privileged entities abusing
their elevated access permissions. Complicated infrastructures typically require a substantial
number of specialized operational sta�, making it challenging to fully prevent a few from becoming
corrupt or acting with malicious intent. Thirdly, particularly in the case of platforms exposed to the
public domain, there is a constant threat from unknown external forces that might in�ltrate and
cause disruptions. For example, a hacker who successfully penetrates a routing node can e�ectively
monitor tra�c. Lastly, in extreme situations, threats to memory security can be more fundamental,
such as physical intrusions into devices. This may involve eavesdropping on or hijacking device
interfaces, or even disassembling and stealing memory storage devices. We note that, regarding
data security in runtime memory, attacks can transcend mere data compromise by potentially
altering applications’ execution, such as modifying conditional branch criteria. Executing these
attacks e�ectively demands extensive knowledge of the targeted application.

3.1.3 Countermeasures. As outlined above, when the application interfaces with diverse memory
tiers via UEM, all tiers external to the application’s boundary are deemed untrusted, regardless
of their speci�c forms. Given the complex dynamics and unpredictable nature of threat agents,
it is imperative to consider the most extreme scenarios. Under such pessimistic assumptions, it
is imprudent to rely on any benign presuppositions about the untrusted environment, as we pre-
sume these facilities to be entirely compromised. Furthermore, the threat agents, distinguished
by their diverse origins and varying capabilities, are collectively represented in a uniform, potent
adversary model. That is, the adversaries are capable of fully controlling the untrusted memory
layers, including communication with the application, granting them unfettered and covert access
to and modi�cation of data. In this demanding scenario, UEM aims to provide a resource-e�cient
means to ensure data security, encompassing con�dentiality, integrity, and freshness. For con�-
dentiality, UEM consistently applies robust encryption to data leaving the trusted environment,
preventing adversaries from deciphering any information from the untrusted domain. For integrity
and freshness, UEM detects any tampering with or rollback attempts on the data upon its retrieval.
In the event of unauthorized actions, UEM will issue an urgent exception alert to users. These
countermeasures ensure that even if heterogeneous memory tiers are fully breached, applications
built atop them can still operate stably through UEM, while maintaining memory security.

3.2 Rationales and Key Ideas
The foundational concept of uni�ed memory is to provide developers with a seamless interface
to read and write data in di�erent physical states, allowing for the transparent management
of heterogeneous memory hierarchies within application logic. This necessitates a mediating

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:8 Mo Sha et al.

“interchange station,” which acts as a bridge between the seamless interface and the various physical
layers, managing tasks such as scheduling and transformation.

This paper focuses on object-oriented scenarios, emphasizing �ne-grained memory management.
The “seamless interface” that UEM provides for accessing objects across heterogeneous memory
is a reference, i.e., UemRef. On the application end, ownership and access to data are determined
by holding instances of object references. UemRef is a kind of smart pointer, akin to unique_ptr,
encompassing metadata used by the so-called interchange station (i.e., UEM Manager), to derive a
valid raw address when access is imperative. This process is referred to as “dereferencing.”

Within this framework, the primary challenge lies in the additional costs associated with imple-
menting memory security measures. Speci�cally, in a heterogeneous memory architecture where
data is accessed and modi�ed through UemRef, data remains con�dential and unaltered when sched-
uled across di�erent memory hierarchies. Conventional methods for maintaining con�dentiality
and integrity typically perceive data objects as independent entities. For instance, the prevalent
AEAD method encrypts data, computes a data tag, and appends all relevant metadata to the ci-
phertext. This is useful and e�cient when communication is distributed among numerous parties
without a central trusted entity to manage all required metadata for con�dentiality and integrity, or
when each entity’s size is substantial, so the security mechanisms yield relatively minimal overhead
per data unit. However, if AEAD or similar strategies are directly applied to smaller objects, their
design is not optimal, because of the considerable overhead they add per data unit in terms of both
computation and storage. To mitigate this issue, we recognize the unique nature of UEM in its
associated context, where the managed objects serve as volatile data in runtime memory. Thus,
their decryptability aligns with the persistence of the corresponding process, eliminating the need
to understand its content outside the host process. This insight enables centralized protection of all
data with substantially reduced overhead.
To safeguard the integrity and freshness of data, UEM employs Aggregated Veri�cation Sets

(AVS), a centralized design, to eliminate the need for maintaining individual tags for each object.
The validation of integrity and freshness is not performed with every object access but is asyn-
chronously recorded within AVS upon access. AVS contains one aggregated set for read operations
and another one for write operations. A routine check by a background task veri�es AVS’s correct-
ness. Discrepancies between the sets indicate data tampering, while consistency suggests the data
remains untouched or has not been rolled back. This centralized strategy considerably diminishes
computational and storage complexities, which will be further discussed in Section 4.3.
To ensure con�dentiality, UEM also devises a centralized data structure, called the Dynamic

Mask Pool (DMP) for data encryption. This method avoids the necessity of creating and storing
separate Initialization Vectors (IV) for each object. Similar to the idea of stream ciphers, the
encryption/decryption process involves a simple XOR calculation on the plaintext/ciphertext,
with a bit string, which is fetched from DMP and has the same length as the object. Therefore, the
algorithm stores only a mapping that links each object to its position within the DMP. A more
detailed explanation of this algorithm is provided in Section 4.4.

3.3 Architecture Overview
The architecture of UEM is illustrated in Fig. 2. UEM assumes applications access heterogeneous
memory within a “trusted environment,” depicted in light green in the diagram. In contrast, the
storage hierarchy of heterogeneous memory is considered risky. When an application constructs
an object in heterogeneous memory, it acquires a UEM reference through the UEM Manager’s
allocation interface. The UEM Manager maintains a local memory pool of a predetermined size
and manages resident objects utilizing a log-structured approach. Here, every new object acts as
an entry in an ongoing log, meaning each object gets appended at the end of the log. The log is

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:9

Application
UEM References

UEM Manager

…

Local Memory Pool
(log-structured)

Dereference Allocation

Verification Encryption
DMPAVS

Device Manager

Heterogeneous
Memory Tiers

Trusted
Environment

Risky
Environment

Swap In
Swap Out
Ciphertext
Plaintext

segment out object in

Fig. 2. The overview of UEM architecture.

divided into segments by a consistent size. When the successive appends to the log saturate the
local memory pool, the UEM Manager selects an inactive segment, which does not contain any
objects currently in use, to be evicted to free up space.

The pivotal operation within UEM is the dereference of UEM references. This requires the UEM
Manager to produce a valid raw pointer and ensure it is accessible within its scope. If the object
is still in the local memory pool during this process, its memory address is returned immediately.
Otherwise, the object must be retrieved from the remote location and then re-added to the log,
replicating the initial allocation.

UEM utilizes a uni�ed interface to abstract interactions with memory tiers. Speci�cally, for each
memory tier, there is an instance referred to as the “Device Manager” that concretely implements
speci�c hardware interaction protocols. Upon the eviction of a log segment, its data is registered to
the Data Veri�cation Module to record relevant digests and is subsequently encrypted. Afterward,
it is migrated to a heterogeneous memory tier through the Device Manager. Similarly, when an
object requires retrieval, it is fetched from the remote side by the Device Manager, decrypted by
the Data Encryption Module, integrated into the local memory pool in plaintext, and registered
within the Data Veri�cation Module.

Periodically, the Data Veri�cation Module performs asynchronous checks to ensure alignment
between incoming and outgoing data. Should any inconsistencies arise, a catastrophic exception will
be triggered, notifying the application of tampered memory data. In the absence of such anomalies,
the multifaceted process encompassing heterogeneous memory scheduling, data en/decryption,
and veri�cation remains imperceptible to the application.

4 DESIGN AND IMPLEMENTATION
4.1 Abstractions and Interfaces
UEM is implemented in C++ and manages application data at the granularity of objects. UEM
provides the following interfaces for applications, with an example code snippet in Fig. 3.

4.1.1 Device Manager. To accommodate the diversity in memory hierarchies, UEM separates
the logic of security enforcement and object swapping for varying hardware through an ab-
straction termed DeviceManagerInterface. This abstraction o�ers three pivotal interfaces. allo-
cate_memory can be invoked to allocate a memory block of a speci�ed size on the managed device,

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:10 Mo Sha et al.

1 class DeviceManagerInterface {

2 public:
3 virtual void* allocate_memory(size_t size) = 0;

4 virtual void swap_in(uint64_t addr, size_t len, uint8_t *dest);

5 virtual void swap_out(uint64_t addr, size_t len, uint8_t *data);

6 };

7
8 class UemManager {

9 public:
10 UemManager(DeviceManager* dm, size_t local_size);

11 template <class T> UemRef<T> allocate();

12 };

13
14 void multiply(UemManager &uemm, UemRef<int> &product,

15 UemRef<int> &factor1, UemRef<int> &factor2) {

16 UemScope scope(uemm);

17 int* f1 = factor1.get(scope);

18 int* f2 = factor2.get(scope);

19 int* p = product.get(scope);

20 *p = (*f1) * (*f2);

21 // scope exits due to destruction

22 }

Fig. 3. Code snippet of UEM interfaces.

which is subsequently employed to store the swapped-out data. The Device Manager also extends
interfaces for both data swap_in and swap_out. To accommodate various heterogeneous memory
tiers, users are required to implement these interfaces. It serves as a driver for UEM, ensuring
alignment with the precise speci�cations of the hardware.

4.1.2 Memory Manager. Applications interact with the heterogeneous memory architecture utiliz-
ing UemManager. To allocate memory space, it is mandatory for an application to �rst instantiate a
UemManager instance in C++. Two major arguments are embedded in UemManager’s constructor.
The application, by the device manager implementation dm, determines the device to which the
data will be relocated if local memory reaches its capacity. Application developers are relieved
from the intricacies of divergent programming interfaces for di�erent remote devices, except for
the initial creation of the device manager object with essential con�gurations, e.g., the physical
address of the device. The application also needs to delineate the size of the local memory pool
to properly initialize and manage swapping behaviors. Once UemManager is initiated, applications
can leverage it to allocate memory for varied object types. allocate<T>() serves the purpose of
allocating memory equal to the size of the object type represented by T within the UemManager.
Akin to smart pointers in C++, objects are automatically deallocated when they become obsolete.

4.1.3 Dereferencing and Scope. The dereferencing of the obtained raw address (i.e., a pointer) is
only temporarily valid, as its physical allocation is dynamically managed by UemManager. UEM
utilizes scopes to secure an object in the local memory, ensuring that the background processes
neither evict nor move it within the local memory pool during its active use. To dereference a
UemRef, it must be associated with a UemScope object, and the acquired pointer from the .get()
method is operable solely within the lifespan of UemScope. Departing from this scope requires
re-dereferencing. Failing to do so and using the obsolete pointer could result in unde�ned behaviors.
Such a mechanism is elucidated with a basic example function multiply. This function multiplies
two factors, stored in UemRef factor1 and factor2, and retains the result in product. Initially, a
UemScope is generated and bound with UemRef dereferencing, yielding the object’s pointer in the

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:11

(addr, data1)

(addr, data1)

(addr, data1)

(addr, data1)

(addr, data2)

(addr, data2)

insert(addr,data1) read(addr) update(addr,data2) remove(addr)

Write Set

Read Set

Fig. 4. An example of AVS with operations.

local memory pool. Consequently, the three pointers obtained via this scope binding preserve their
validity throughout their existence, irrespective of their read-write utility, such as in multiplication
calculations, until the encompassed UemScope instance is destructed at the function’s termination.
Though UEM o�ers the choice for programmers to pin desired objects in the local memory to allow
faster access, to prevent any impediment to the scheduling mechanism of UEM, developers should
precisely de�ne the scope to avoid excessive pinning of UEM objects.

4.2 Object Swapping
UemManager employs the concept of log-structured memory [82] (LSM) to optimize the e�cient
utilization of valuable local memory space. LSM subdivides the entire memory space into distinct
segments. When local memory consumption exceeds a predetermined threshold, UemManager
implements a FIFO policy to designate a segment and subsequently relocate objects from that
segment to managed devices. During the dereference procedure, if the pertinent object is located
remotely, UemManager allocates a new local space within LSM and liaises with the device manager
to transition the object—rather than the entire segment—back into the local memory. UemManager
also incorporates prefetching for speci�c data structures characterized by conventional memory
access patterns, such as sequential access in arrays. Before the commencement of the data swapping,
UemManager necessitates synchronization with both the Data Encryption Module and the Data
Veri�cation Module to ensure that data is provided with adequate protection. Subsequently, the
protected data is dispatched to the device manager. Conversely, when an object is being swapped
in, UemManager receives encrypted data from the device manager. This then necessitates further
interactions with the Data Encryption Module and the Data Veri�cation Module prior to the
restoration of the data to the application. This meticulous approach ensures the secure and e�cient
management of memory spaces, enabling seamless transitions between local and remote memories
while maintaining the integrity and con�dentiality of the data. The strategic employment of
prefetching and structured memory organization further enhances the e�ectiveness and operational
seamlessness of UemManager in managing memory spaces and data structures.

4.3 Data Verification Module
UEM enforces write-read consistent memory to ensure the data stored in the untrusted memory
is not tampered with. By de�nition, the memory is write-read consistent if, and only if, for every
read at the address 033A , it returns the data most recently written at the same address 033A .

4.3.1 Design of AVS. The design of AVS (aggregated veri�cation sets) is inspired by Blum et al. [14],
who introduced an e�cient way to verify if the memory is write-read consistent. AVS consists of
two primitives in the local memory—a set of all read operations (the read set, denoted as RS) and a
set of all write operations (the write set, denoted asWS). The observation is straightforward—if the
data is not tampered with, the two sets should be the same. To achieve this property, the following
additional rules should be enforced to ensure that for each write operation, there is exactly one
corresponding read operation, and vice versa: 1 After any read operation, a write operation on the
same address must be performed. 2 Before any data overwrite or update, a virtual read operation
on the same address must be performed.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:12 Mo Sha et al.

Algorithm 1 Data Veri�cation Module
1: currentScanning = -1
2: ⌘WS = ⌘RS = ⌘new

RS
= ⌘new

WS
= 0 # Initialize sets

3: function �������R���(addr, data)
4: if addr > currentScanning then
5: ⌘RS = ⌘RS � PRF(addr, data)
6: ⌘WS = ⌘WS � PRF(addr, data)
7: else
8: ⌘new

RS
= ⌘new

RS
� PRF(addr, data)

9: ⌘new
WS

= ⌘new
WS

� PRF(addr, data)
10: end if
11: end function
12: function �������W����(addr, oldData, newData)
13: if addr > currentScanning then
14: ⌘RS = ⌘RS � PRF(addr, oldData)
15: ⌘WS = ⌘WS � PRF(addr, oldData)
16: else
17: ⌘new

RS
= ⌘new

RS
� PRF(addr, oldData)

18: ⌘new
WS

= ⌘new
WS

� PRF(addr, newData)
19: end if
20: end function
21: function ������������
22: for obj 2 remoteObjects do
23: currentScanning = obj.addr
24: ⌘RS = ⌘RS � PRF(obj.addr, obj.data)
25: ⌘new

WS
= ⌘new

WS
� PRF(obj.addr, obj.data)

26: end for
27: if ⌘RS < ⌘WS then
28: R����("Veri�cation fails!")
29: end if
30: currentScanning = -1
31: ⌘RS = ⌘new

RS

32: ⌘WS = ⌘new
WS

Flush values in new sets to current sets
33: ⌘new

WS
= 0

34: ⌘new
RS

= 0 # Clear new sets
35: end function

Fig. 4 shows an example of how AVS works. Initially, both sets are empty. We �rst insert 30C01
to the address 033A , and insert a tuple (033A ,30C01) into WS. Next, we read the data at 033A ,
and subsequently, insert (033A ,30C01) into RS. According to 1 above, a virtual write operation
is also performed, so that (033A ,30C01) is appended toWS. Next, for an update operation, with
2 above, we �rst read the original data and append (033A ,30C01) to RS, and then append the
updated data (033A ,30C02) to WS. Finally, for a remove operation, we append the corresponding
tuple (033A ,30C02) to RS. In the end, both RS and WS have two (033A ,30C01) tuples and one
(033A ,30C02) tuple, signifying untampered data.

4.3.2 Representation of AVS. Storing all the tuples in the sets, as shown in Fig. 4, is expensive
for large systems. An e�cient way is to store the collision-resistant hashes of the sets, and the

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:13

equivalence of sets can be evaluated by checking the equivalence of the hashes. The hashes of RS
and WS are de�ned as the XOR sum of the Pseudo-Random Functions (PRF) of all set elements:

⌘WS =

(033A ,30C0)2WS
%'� (033A ,30C0)

⌘RS =

(033A ,30C0)2RS
%'� (033A ,30C0)

It has been proven that RS = WS implies ⌘RS = ⌘WS , and ⌘RS = ⌘WS implies RS = WS, with
high probability ? , where 1 � ? is negligible [14]. Algorithm 1 shows the details of the process for
updating the two sets of AVS.

4.3.3 Pauseless Verification Process. In the example shown in Fig. 4, the two sets are consistent only
when the object is removed. Evidently, we do not want to wait until the program �nishes and then
remove all data to perform the veri�cation. Instead, during runtime, we perform a virtual remove
operation (i.e., adding the tuple to RS), check if the two sets are identical, and then perform a
virtual insert operation (i.e., adding the tuple toWS). Concerto [8] further introduces a method for
performing the veri�cation without pausing the application, thereby ensuring that the write-read
consistent memory adds minimal performance overhead to the applications in runtime. When the
veri�cation is in progress, the veri�er records the object’s address that it is currently scanning
(the currentScanning variable in Algorithm 1). When a concurrent read or write request from
the application occurs, it checks whether the object has already been scanned in the current
veri�cation iteration by comparing the address of the object against the cursor (lines 4 and 13). If
so, all updates will be performed on the new sets; otherwise, on the current sets. Upon completion
of the veri�cation process, the data in the new sets will be �ushed to the current sets, and the new
sets will be empty until the next veri�cation process. While the pauseless veri�cation process can
operate in the background without interrupting the application execution, it does not come for
free—memory scanning will incur considerable CPU and I/O resource consumption. To mitigate
this, prior studies such as FastVer [7] have proposed leveraging the hot-cold dichotomy in managed
memory to reduce the scanning scope. Nonetheless, such approaches do not tackle the problem
fundamentally, representing an ongoing research challenge.

4.4 Data Encryption Module
4.4.1 Generation of Masks and Mask O�sets. The Data Encryption Module of UEM uses an ap-
proximation of one-time pad (OTP), which is proven to have perfect secrecy [88]. When an object
needs to be swapped outside the trusted memory, =< masks/pads (=< > 1) for this object with the
same size will be fetched from UEM’s DMP (dynamic mask pool) with the generated mask o�sets.
DMP is a block of secure local memory with a con�gurable size of B , containing random bytes that
are generated during the initialization of any applications running on top of UEM, and the mask
o�set refers to the location of a speci�c mask in DMP. DMP is dynamic because: 1 The mask o�sets
are generated dynamically during swapping and will not be reused. 2 The bit string in the pool is
dynamic in that it is refreshed periodically. During the swapping process for an object with size B ,
the Data Encryption Module �rst generates =< distinct random numbers from 0 to B � 1, which
will serve as the o�sets in DMP. With the o�sets, =< blocks of memory with the same size of the
object will be fetched from DMP as the masks and be used to perform encryption.

4.4.2 Encryption and Decryption. Fig. 5 shows an overview of how the plaintext pt is encrypted to
the ciphertext ct with =< = 3. First, we generate three random o�sets and use them to retrieve
three masks, denoted as<1,<2, and<3, from DMP. Then, we take the plaintext C0 as the input for the
�rst round. For each round, we process the input C8�1 through the Rijndael S-box [80] to introduce
non-linearity, obtaining ((C8�1). Next, an XOR operation is applied to ((C8�1) with the mask<8 .

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:14 Mo Sha et al.

Substitution
& Padding

m1Mask
Generation m2 m3

ti‐1 ⊕Rijndael S‐box

Output

DMP

Ciphertext

Offset Meta||

miS(ti‐1) ti

Plaintext (t0)

i=nmi≠nm

Ciphertext

Fig. 5. An overview of data encryption with =< = 3 masks.

This process continues until 8 = =< , indicating that all =< rounds of substitution and padding are
complete. Finally, the metadata will be appended to the ciphertext before it is written to the remote
device, and will be used to look up the mask o�sets for decryption. The metadata includes the ID
(or address) of the object, and the Data Encryption Module keeps a mapping from all object IDs to
the mask o�sets. In Section 4.5, we explore how we re�ne this design to substantially decrease the
storage usage for mapping data.

4.4.3 Security Enforcement. To ensure the con�dentiality of data, the Data Encryption Module
employs speci�c design strategies as follows.
Multiple masks with secret o�sets. We employ =< > 1 masks to encrypt the data through
multiple rounds. This is done to prevent potential overlap or collision of mask segments in DMP,
which might be exploited by adversaries. Moreover, the mask o�sets in DMP are not written to the
untrusted device, so adversaries will not learn any information about the relative position of the
masks of two objects in DMP. Consequently, even in cases where mask values intersect, adversaries
would remain oblivious to such overlaps. A detailed exploration of the implications of these values
on the security robustness of UEM is presented in Section 5.1.
DMP rotation. UEM employs DMP rotations to prevent long-term mask collisions. Periodically, we
refresh the entire DMP with freshly generated random bytes, and subsequently, data on the remote
device is encrypted using these newmasks. This process is co-designed with the veri�cation process
and achieves slight performance overhead. More details are provided in Section 4.5.
One-o�masks. The masks employed for encrypting an object are single-use and are discarded
once the decryption process is completed. In the event that the same object needs to be transferred
to an untrusted device again, new masks will be generated. This approach ensures that potential
adversaries cannot glean comparative information about di�erent instances of the same object.

4.5 Optimizations
4.5.1 Grouped Mask Management. When a remote object needs to be swapped in, the masks (or
the mask o�sets) are needed for decryption. On the one hand, storing o�sets in untrusted memory
leads to security issues. On the other hand, local storage incurs signi�cant storage overhead on the
limited trusted memory, a typically constrained resource. To reduce this overhead while maintaining
security, we enhance the basic mask o�set generation process described in Section 4.4.1 with the
following upgraded methodology.

The core idea of the new approach is to group multiple objects and store only one mapping for
each group. Meanwhile, we still need to keep the mapping invisible from the untrusted device.
Hence, even if in the rare case two o�sets collide, adversaries learn nothing about it. To achieve this,
we introduce an indirect mapping from objects to an array of mask o�sets. First, for each object, we
allocate a (group_id, group_index) tuple, where group_index refers to the index of the object within
the group. We store this tuple in untrusted memory with the object. In trusted memory, we only
keep a mapping from group_id to the mask o�sets, and compute the o�sets for the objects with the

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:15

Algorithm 2 Group Allocation Process for Objects
1: nextGroup = 0
2: categories = [16, 32, 64, 128, ...]
3: maxContMask = 65536 # The maximum continuous mask size
4: curGroup = dict() # category -> (group ID, group size)
5: function ����
6: for c in categories do
7: curGroup[c].id = -1
8: curGroup[c].size = max(1, maxContMask / c)
9: end for
10: end function
11: function ���S���C�������(size)
12: for c in categories do
13: if size c then
14: return c
15: end if
16: end for
17: end function
18: function ��������T����(size)
19: c = ���S���C�������(size)
20: if curGroup[c].size * c � maxContMask then
21: # Allocate new group id
22: newGroup = nextGroup
23: nextGroup = nextGroup + 1
24: curGroup[c].id = newGroup
25: curGroup[c].size = 1
26: return (newGroup, 0)
27: else
28: # Use existing group
29: groupId = curGroup[c].id
30: groupO�set = curGroup[c].size
31: curGroup[c].size = curGroup[c].size + 1
32: return (groupId, groupO�set)
33: end if
34: end function

same group_id. Algorithm 2 shows how we allocate the (group_id, group_index) tuple for an object.
To reduce the probability of mask collision or overlapping, we set a maximum continuous mask
size for each group, denoted as maxContMask. A group grows until the masks in the group reach
this size limit. By design, objects with similar sizes will fall into the same group. The algorithm
�rst checks which size category the object falls into with the getSizeCategory function. Next, it
checks if there is any available group of this size category that is not full (line 20). If so, the object
gets the group ID of this group with the next available position in this group as its group index.
Otherwise, a new group corresponding to this size category will be created. If the mask o�set for
(group_id, 0) is denoted as : , the corresponding o�set for (group_id, i) is calculated as : + 8 ⇤ 2 ,
where 2 represents the object’s size category.

We note that the grouping mechanism does not compromise security. First, objects are still
encrypted with multiple masks, and a group ID will map to an array that includes all mask o�sets.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:16 Mo Sha et al.

Second, by design, mask o�sets for objects in the same group do not overlap, since the interval
between mask o�sets for objects is equal to the size category, which is not smaller than any object.
Third, the group-based masks are also one-o�—once an object is retrieved and decrypted using
its group_id and group_index, these metadata are no longer used. The retrieved object is treated
as newly allocated in the local memory pool and will be re-attempted for group allocation. Upon
eviction from the local memory pool to the untrusted tier, it is re-encrypted according to its newly
allocated group. That is, consistent with the one-o� mask principle, group allocation for an object
correlates with its eviction from the local memory pool. Re-allocating groups and group indices for
objects may result in “holes” in a group. Compaction is integrated into the DMP rotation process.
Objects will be migrated to new groups if necessary, before they are encrypted with new masks
and written to the remote memory. The mapping from group_id to the mask o�sets will be stored
in the local memory. Compared to the method of retaining mappings for each individual object,
the overhead is much smaller. For instance, for objects with a size of 64 bytes, UEM only has to
store one mapping for every 1024 objects, resulting in an overhead that is merely one-thousandth
compared to a strawman solution.

4.5.2 Space Elimination for Timestamps. Rollback attacks are a well-known technique that can
potentially bypass the integrity veri�cation system. In such attacks, adversaries capture a copy
of the data generated by the system, successfully passing the integrity veri�cation. Subsequently,
adversaries replace the current data with a previously obtained version. Without proper design
considerations, a systemmight remain oblivious to this tampering, as the altered data still possesses a
valid MAC or PRF output. To protect against rollback attacks, conventional systems [7, 8, 67, 72, 109]
typically rely on a timestamp or an equivalent to ensure the freshness of the data. Storing an extra
timestamp for each object is relatively inexpensive in some systems where swapping occurs on
a page level [67, 72, 109], but it leads to signi�cant relative storage overhead for UEM, which
optimizes for objects smaller than pages. Recall that in the Data Encryption Module, all masks for
encryption and decryption are strictly for one-time use. Once the decryption process is completed,
the mask o�set is discarded, and a new mask is employed when the object is swapped out again.
Consequently, even for two pieces of the same ciphertext, since the mask has been changed, they
will be decrypted into a di�erent plaintext, leading to inconsistencies between RS and WS.
Therefore, UEM collaboratively designs the Data Veri�cation Module and the Data Encryption
Module, eliminating the need for a timestamp.

4.5.3 Batch Verification. The veri�cation process can be made more e�cient through batch veri�-
cation. As a reminder, LSM divides the memory space into segments with a default size of 1MB.
During the veri�cation process, instead of processing one remote object at a time, UEM fetches the
entire segment and processes the objects in that segment locally. With batch veri�cation, we reduce
the number of remote memory accesses and improve the performance. We assess the e�cacy of
batch veri�cation in Section 6.2.3.

4.5.4 E�icient DMP Rotation. Recall that during the veri�cation process, we read objects from
remote memory, perform a virtual remove operation (i.e., update RS), check set equivalence, and
then perform a virtual insert operation (i.e., update the new WS). At this stage, if DMP rotation
is con�gured to take place, a new DMP is generated before processing the �rst remote object. The
veri�er reads the remote data, decrypts it with the mask in the old DMP, and appends the information
to RS. Then, it generates the mask o�sets for the same object from the new DMP, encrypts the
data with the new mask, and writes it back to remote memory. The veri�er also updates WS

accordingly. After all the objects are processed, all remote objects will be encrypted with the mask
in the new DMP, and the old DMP will be discarded.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:17

5 SECURITY DISCUSSIONS
5.1 Encryption Strength
The con�dentiality of UEM is achieved by DMP, an approximation of OTP. OTP is proven to have
perfect secrecy, but it requires the key (mask) to be the same length as the plaintext, and the
key must be randomly generated every time and never reused, making OTP overly expensive for
�ne-grained objects. DMP approximates OTP with two important parameters—the size of DMP B and
the number of masks =< . Additionally, the maximum size of the object |>1 9 |, and the number of
objects => , are also considered.
Setup and Notations. Consider a set of objects, O = {>1, · · · ,>=> }. Each object >8 is encrypted
with =< masks, M8 = {<8,1, · · · ,<8,=< }. Let the o�sets of the masks M8 be the keys, denoted by
K8 = {:8,1, · · · ,:8,=< }. De�neK8 (1) as the �rst element inK8 , andK8 (2) as the second element, and
so forth. Consider two objects >8 and > 9 , along with their masks and keys. Let �8, 9,; = K9 (;) �K8 (;),
where 1 ; =< . In the contexts where only two objects >8 and > 9 are considered, we omit 8 and 9
and use �; to represent �8, 9,; . Particularly, we assume that B is much larger than |>1 9 |; otherwise,
the traditional OTP generation for large objects is preferable.
The Adversary’s Advantages. Consider two objects >8 ,> 9 2 O. The adversary gains an advantage
if and only if all �8 (1 8 =<) are equal, and �|>1 9 | < �8 < |>1 9 |. In such a case, a segment of >8
and a segment of > 9 will be encrypted using the exactly same sequence of masks. Consequently,
an attacker might deduce information from this (e.g., if two plaintext messages share the same
segment and are encrypted with the same sequence of masks, then the corresponding ciphertexts
will also share an identical segment). In other scenarios, due to the randomness of the masks and
the non-linear property provided by substitution, no information will be leaked. Drawing a parallel
to the birthday problem [45], the probability that for any two objects, the �nal masks encrypting
them do not overlap is ?=>�>E4A;0? � ⇧82 [1,=>�1] (1�

(2 |>1 9 |+1)8
B · (B�1) ·· · (B�=<+1)) > (1� (2 |>1 9 |+1) (=>�1)

B · (B�1) ·· · (B�=<+1))
=>�1.

Using the limit limG!0 (1�G)1/G = 1/4 , it is further estimated as ?=>�>E4A;0? ' 4
� (2|>1 9 |+1) (=> �1)2
B · (B�1) ·· · (B�=<+1) . Since

B is much larger than =< , we have ?=>�>E4A;0? ' 4
� (2|>1 9 |+1) (=> �1)2

B=< . As a reference, in a scenario where
B = 227, => = 230, =< = 5, and |>1 9 | = 64, the probability of any overlap occurring, based on Taylor
expansion, is approximately 1 � 4�2

�68
< 2�68, which is negligibly small.

Parameter Selection. From the analysis, it is clear that B and =< are crucial in determining the
adversary’s edge against DMP. To enhance security, users may opt for larger values of B and =< ,
though this increases memory usage and encryption delay, respectively. UEM provides interfaces
for users to customize these parameters.

5.2 Verification Reliability
The Data Veri�cation Module (AVS) of UEM employs cryptographic strength and computational
di�culty to thwart adversaries. By incorporating a potent Pseudo-Random Function (PRF) along
with a hash function resistant to collisions, it signi�cantly challenges the feasibility of attacks, thus
ensuring data integrity and freshness.
Write-Read Consistency. The concept of write-read consistent memory, which AVS incorporates,
originates from Blum et al. [14] and has been subsequently adopted by the database sector in systems
such as Concerto [8] and VeriDB [109]. Blum et al. demonstrated that if any data has been tampered
with, the write set and read set must be inconsistent. UEM guarantees write-read consistency by
keeping AVS in the trusted local memory and always updating the sets when interacting with the
remote memory. UEM periodically checks that the read set RS and write set WS correspond to

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:18 Mo Sha et al.

each other, indicating the non-existence of fabricated or stale data. Alterations will cause RS-WS

mismatches, triggering alerts and making sustained undetected attacks virtually impossible.
Continuous Collision Resistance. To avoid storing all elements of the two sets, a collision-
resistant hash function is employed over both sets. The hash functionmust ensure that ifWS < RS,
then ⌘WS < ⌘RS with high probability. Blum et al. [14] prove that given a collision-resistant hash
function � (·) for set elements, the construction of set hash ⌘S =

…
B2S � (B) is also collision-

resistant. With this approach, if the hash function returns : bits, the design of write-read consistent
sets detects errors with a probability ? � 1 � 1/2: . Arasu et al. [8] further show that the hash
function � (·) could be replaced by a pseudorandom function, which is indistinguishable from
random, to improve performance while maintaining the same security properties. UEM assumes
that the employed PRF is both unpredictable and indistinguishable from random, re�ecting a
common choice in the security domain.

5.3 Limitations
First, as mentioned in Section 3.1, applications are responsible for ensuring their own local memory
safety. It is important to note that this assumption of trustworthiness may extend to situations
such as core dumps, where stored memory snapshots are sensitive and susceptible to attacks from
adversaries who might exploit compromised memory tiers. Consequently, users are also responsible
for securely handling dump �les, including their generation, storage, or ensuring that settings like
disabling core dumps are tamper-proof. Second, access patterns raised by UEM are non-oblivious
due to the untrusted nature of interacting with heterogeneous memory. When consecutive objects
are accessed, adversaries may discern the orders, locations, and bit lengths. However, the exposure
of orders is con�ned to the initial access for multiple accesses to a single object, and discerning
between reads or writes is unattainable. If heightened security is desired, one could integrate certain
oblivious memory techniques [91, 102] on top of UEM. Third, the fundamental philosophy of UEM
revolves around tackling encryption and veri�cation using a centralized approach, ensuring optimal
e�ciency in handling �ne-grained, object-level memory access. This implies that managed objects
are exclusively accessible by a singular instance of the UEM manager, and are not conducive to
extension into multi-instance or distributed scenarios, e.g., cross-process communication via shared
memory, or emerging architectures like near-memory computing or Processing-In-Memory (PIM)
con�gurations. Fourth, UEM emphasizes detecting data tampering but does not o�er recovery
solutions. If untrusted heterogeneous storage ceases to operate, it is akin to experiencing a power
outage in terms of application data loss. We note that UEM manages runtime memory, instead
of storage, meaning that the data should inherently be considered volatile. Hence, UEM cannot
prevent Denial-of-Service (DoS) attacks. Lastly, the detection mechanism employed by UEM is
asynchronous, making it unsuitable for applications (e.g., ATM) that cannot tolerate a veri�cation
delay. However, in most cases, adversaries cannot deliberately in�uence the application in the
way they want via tampering since they are unable to create ciphertext that decrypts to be what
they desire. Tampering detection acts more as a deterrence against adversaries and is su�cient
for a wide range of scenarios, as any detection of violations would be a formal proof against
adversaries, leading to a loss of reputation or lawsuits. In fact, this model has also been used in
many studies [7, 8, 109].

6 EVALUATION
6.1 Experimental Setup
6.1.1 Evaluated Heterogeneous Memory Architectures. We evaluateUEM on three distinct platforms
chosen to provide a comprehensive demonstration of the versatility of our design.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:19

Table 1. Hardware Configurations for Each Testbed
CPU Remarks

TCP Intel E5-2640v4 Mellanox ConnectX-4
2 x 10 cores, 2.4 GHz 25 GB NICs

NVM Intel Xeon Gold 6326 Intel Optane Persistent
2 x 32 cores, 2.9 GHz 8 x 128GB DCPMM

TDX Intel Xeon Platinum 8438C TDX 2.0 enabled VM
2 x 48 cores, 2.6 GHz with 16 vCores

• TCP: A network-attached remote memory solution designed to provide applications with seam-
less execution, mimicking the experience of running on a single machine with abundant and
dynamically adjustable memory. However, both its communication links and remote storage
facilities are less controllable compared to local memory, and its centralized and shared nature
ampli�es the intricacy and severity of memory security vulnerabilities.

• NVM: As an emerging form of memory that o�ers greater storage density and lower cost per unit
compared to DRAM, a DRAM-NVM hybrid can e�ectively increase the overall memory capacity
of a single machine. Still, NVM is less secure than DRAM because its non-volatile nature increases
the potential for physical data attacks, such as forced disassembly, theft, and interpretation.

• TDX: Intel Trust Domain Extensions is a cutting-edge TEE solution available in the market.
It can be viewed as a virtualization technology enhancement, ensuring that the entire virtual
machine operates within a hardware-enforced security perimeter. Conversely, if a heterogeneous
memory architecture breaches the VM barriers, external memory cannot bene�t from TEE
hardware protection, rendering it vulnerable to the OS or adversaries who may exploit escalation
vulnerabilities to gain privileges.

6.1.2 Hardware Environment. To assess the three heterogeneous memory architectures discussed
above, we establish three corresponding testbeds, as detailed in Table 1. Speci�cally, for TCP
evaluations, we utilize UEM atop Shenango [73], an adept kernel-bypassing scheduler and network
stack. We deploy it on the xl170 machines from Cloudlab [27] for experiments. For NVM and
TDX assessments, we use self-purchased machines, where UEM is built directly on the Linux kernel
scheduler and network stack. This deviation arises from Shenango’s tailored drivers for speci�c
hardware, which are incompatible with our NVM and TDX machines. We note that for a particular
testbed, the software stack keeps consistent.

6.1.3 Evaluated Workloads. In addition to varying hardware con�gurations, we also evaluate UEM
with three di�erent kinds of workload to demonstrate its generality as follows.
• Graph Processing: Our study utilizes the Wikipedia network of top categories sourced from the
SNAP dataset [54]. This graph encompasses approximately 1.8M nodes and 28.5M edges and is
fully connected. Our evaluation of UEM’s performance focuses on concurrent BFS with variable
sizes of local memory.

• Key-Value Queries: We utilize traces of Twitter’s requests as presented in [105]. Given that
UEM’s design is intended to address the I/O ampli�cation challenges with small objects, we
standardize the key and value sizes to 50 bytes for both workloads. Our choice for the key-value
store system is an in-memory hopscotch hash table implementation. We center our analysis
on two distinct workloads: 1 Cluster 35: Characterized as a read-intensive uniform access
workload, it comprises 96% of GET requests and 4% of SET requests. This workload demonstrates
a uniform access pattern (Zipf factor = 0). 2 Cluster 48: This workload o�ers a more balanced

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:20 Mo Sha et al.

Fig. 6. Storage overhead comparison between UEM & AEAD.

read-write distribution, with 65% of GET requests and 35% of SET requests. Additionally, it
manifests a more skewed access pattern (Zipf factor = 0.8191).

• Relational Tabular Analysis: We incorporate DataFrame [69], an in-memory data analysis
framework mirroring the Pandas [66] interface, on UEM. Our performance tests revolve around
three salient queries from TPC-H [21]: 1 Q1 involves scanning and �ltering the lineitem table
and performing extensive computations. 2 Q6, similar to Q1, also scans and �lters the lineitem
table, culminating in a summation of the values from qualifying rows. 3 Q17 is distinguished by
a join operation between the part and lineitem tables. The merge join, which requires sorting
the join attribute, serves as the joining mechanism. This results in increased computational
demand and requires multiple memory access rounds, especially when compared to Q1 and Q6.

6.1.4 Baselines. To our knowledge, UEM stands as the pioneering e�ort in delving into memory
safety attributes within the realm of object-oriented heterogeneous memory management. As
such, there are currently no direct competitors in this �eld. To evaluate UEM, we �rst involve
AIFM [81] as a baseline, representing the state-of-the-art object-oriented disaggregated memory
framework without considering data security. Furthermore, we implement AEAD-based encryption
and veri�cation upon AIFM, termed AEAD, as a baseline of naïve memory security mechanisms.

6.2 Mircobenchmarks
6.2.1 Storage Overhead. Fig. 6 compares the extra space (in addition to the objects themselves)
occupied in both the local memory and the remote device, among UEM, AEAD, and non-optimized
UEM (disabling grouped mask and timestamp elimination proposed in Sections 4.5.1 and 4.5.2).
The reference line of payload size assumes an average size of 16 bytes per object. In terms of local
memory storage, UEM demands approximately an additional 160 MB for around 4 billion objects.
A signi�cant portion of this space, 128 MB, is allocated to DMP. The remaining space is dedicated
to storing mappings from group IDs to mask o�sets. Notably, the incremental growth of required
extra storage in UEM is gradual with the surge in the number of objects. This slow growth is
attributed to the fact that many objects are categorized into the same group, necessitating the
storage of merely a single mapping for each group. Conversely, the storage overhead of AEAD and
non-optimized UEM is much larger. AEAD and non-optimized UEM have to store timestamps in
both local and remote memory to guarantee data freshness. Further, non-optimized UEM, without
grouping, needs to store the mapping from the object ids to mask o�sets for every object in local
memory. Clearly, the AEAD scheme incurs a storage overhead matching its e�ective data payload
in the local memory. This substantially deviates from the primary objectives of most heterogeneous
memory con�gurations, rendering AEAD-style methods impractical for such scenarios. In terms

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:21

Fig. 7. Performance overhead breakdown of UEM & AEAD.

of remote device storage overhead, UEM’s footprint is merely 8% of that demanded by AEAD.
Speci�cally, UEM only retains the group ID and o�sets, while AEAD requires storage for IVs, MACs,
and timestamps for each object, individually.

6.2.2 Performance Overhead Breakdown. Regarding 64-byte object swapping, we illustrate the
detailed breakdown of performance overhead between various modules of UEM in terms of CPU
cycles, in Fig. 7. We compare the results of UEM (the three-segment bars on the left) against AEAD
(the two-segment bars on the right) as the strawman solution. Overall, UEM outperforms AEAD on
all devices for both swap-in and swap-out operations.
On TCP, data swapping takes the majority of the time, approximately 88.2% for swap-out

operations and 90.2% for swap-in operations. Regarding the modules introduced by UEM, the Data
Veri�cation Module accounts for 8.0% and 7.3% of the time for swap-out and swap-in, respectively.
The primary source of this overhead is the computational process linked with the Poly-1305 [12]
MAC (or PRF). The Data Encryption Module only consumes 2.5% of the cost for swap-in operations.
The cost is slightly higher in swap-out operations, around 3.7%. The additional cost arises from the
group allocation process for objects and the mapping management from object groups to mask
o�sets. AEAD introduces 6.3x overhead compared to UEM on swap-out and 3.3x overhead on
swap-in for its security enforcement. The overhead results from the cryptographic computations
and timestamp management for freshness. Notably, the swapping procedure of AEAD consumes
more cycles than UEM since AEAD needs to swap a larger amount of data.

OnNVM, since the data-swapping process becomes faster than that on TCP, the relative overhead
of security enforcement of bothUEM andAEAD becomes more signi�cant. The time spent onUEM’s
Data Encryption and Veri�cation Modules accounts for 57.5% and 46.5% of the entire swapping
process for swap-out and swap-in, respectively. However, it is still much faster than the strawman
solution. In fact, the advantage of UEM against AEAD is more pronounced when data swapping is
less prominent. AEAD is 171.7% slower than UEM for swap-out and 55% slower for swap-in.

OnTDX, since the data swapping overhead becomesmuch larger, the relative overhead introduced
by UEM becomes negligible. However, it still maintains a noticeable advantage over AEAD since it
swaps a smaller amount of data.

6.2.3 Verification Latency. This subsection assesses the duration required to verify memory in-
tegrity and the e�cacy of the proposed optimizations. Table 2 presents the latency for UEM’s Data
Veri�cation Module when operating on NVM, measured per 1GB data. UEM specializes in exam-
ining objects sourced from potentially compromised, untrusted memory tiers. The latency varies
between 2.59s and 7.48s, contingent on object sizes. Implementing batch veri�cation (Section 4.5.3)
contributes to performance enhancement, yielding a 2% to 14% improvement. Notably, the through-
put for smaller objects is comparatively lower due to the increased number of objects, necessitating
more MAC (or PRF) computations. Further, we explore the synergistic bene�ts of integrating DMP

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:22 Mo Sha et al.

Table 2. Verification Latency for Every 1GB Data
Object Size 16B 32B 64B 128B

Enable Batching (s) 7.36 4.49 3.06 2.27
Disable Batching (s) 7.48 4.99 3.35 2.59

Table 3. DMP Rotation Latency for Every 1GB Data
Object Size 16B 32B 64B 128B

Combined Process (s) 9.06 6.17 4.41 3.74
Separate Processes (s) 11.69 7.50 5.32 4.33

Fig. 8. Performance comparison between UEM and baselines on graph processing workloads.

rotation into the veri�cation process (Section 4.5.4), with �ndings detailed in Table 3. Executed
independently, the dual processes, for each 1GB data, incur a cumulative duration of 11.69s for
16-byte objects and 4.33s for 128-byte objects. However, amalgamating these procedures reduces
the latencies to 9.06s and 3.74s, respectively. This e�ciency gain is attributed to the need for only a
single retrieval of data from remote memory. We note that the operation of the Data Veri�cation
Module is an asynchronous process running in the background, parallel to the application, and
does not block its memory access behaviors.

6.3 Evaluation on Graph Processing
We �rst evaluate UEM on graph processing workloads, which often include a random memory
access pattern. We compare our method with AIFM, the baseline without security enforcement,
and the strawman AEAD approach. Fig. 8 shows the results on di�erent devices with varying

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:23

Fig. 9. Performance comparison between UEM and baselines on key-value queries.

local memory sizes. In most scenarios, the throughput of task processing increases when the local
memory size increases. When the local memory size reaches 100% of the data size, all data can �t
into the local memory, and there will be no di�erences among UEM, AIFM, and AEAD.
On all three devices, UEM introduces a small overhead for both graph loading and BFS. On

TCP, UEM’s overhead is about 70% of what AEAD brings. On NVM, the advantage of UEM against
AEAD becomes larger, because the data swapping process on NVM is faster. This matches the
observations we have in the microbenchmarks. On TDX, since the data swapping process makes up
most of the cost, we do not observe a signi�cant di�erence among the three approaches. In other
words, the overhead introduced by UEM’s security enforcement is negligible. We also con�gure our
experiments with di�erent numbers of threads, and the results show that the observations above
hold regardless of the thread numbers. An intriguing observation speci�c to NVM is that AEAD
occasionally underperforms as the local memory expands. This is due to NVM’s cache-coherence
property, implying that data transfers between DRAM and NVM could bypass the actual movement
between tiers and instead take place within the CPU cache. We discern this phenomenon to be
accentuated when the local memory pool is constrained, during traversal of real-world graphs.
We retain the original results without altering the code to optimize the hit rate for this particular
circumstance, for a consistent comparison.

6.4 Evaluation on Key-Value�eries
Fig. 9 shows the results on key-value queries. We observe that UEM introduces a relatively small
overhead in all the settings. The relative overhead compared to the insecure baseline is up to 21.7%.
UEM also beats AEAD in most scenarios. Similar to the graph processing workloads, the advantage
of UEM over AEAD is higher on NVM, where the data swapping process is faster. Besides, the
relative speedup for UEM over AEAD is higher in Cluster 48 than in Cluster 35. This is because
Cluster 48 involves more set operations, while Cluster 35 has more get operations. As we observe
in microbenchmarks, UEM has a more prominent advantage over AEAD in swap-out than in
swap-in. Regarding performance on TDX, since data swapping is much slower and dominates the
cost, UEM’s security features have a negligible impact on overall performance.

6.5 Evaluation on Relational Tabular Analysis
Fig. 10 shows the performance on TPC-Hworkloads.UEM introduces reasonable overhead compared
to the insecure baseline. The exact overhead depends on the speci�c workload. For computation-
intensive workloads, such as Q17 that involves join operations on large tables, the overhead of

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

155:24 Mo Sha et al.

Fig. 10. Performance comparison between UEM and baselines on relational tabular analysis workloads.

UEM is small, up to 20k rows/s compared to AIFM. Most of the cost comes from the sort operator
that the merge-join requires, and the di�erence in remote memory access does not play a crucial
role in this query. On the contrary, for queries like Q1 and Q6, where table scanning makes up
most of the query plan, the overhead of UEM becomes larger. Compared to AEAD, UEM is superior
in most cases. Overall, UEM excels in handling both random access workloads, including graph
processing, key-value queries, and table joins (Q17), as well as sequential access scenarios, such as
relational tabular analysis with an emphasis on scanning (Q1 and Q6).

7 CONCLUSION
In this paper, we proposeUEM, a novel approach for object-orientedmemorymanagement in diverse
architectures. UEM enhances security via centralized data structures, ensuring slight computational
and storage overhead. Our evaluations show that UEM performs consistently well across various
devices and workloads, with a performance overhead below 20% in most cases compared to a
baseline without considering security. In particular, UEM stands out as a pioneering study to enable
memory security in heterogeneous memory, bridging a notable research gap. We believe that the
slight performance loss is worth the enhanced data security UEM brings.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful comments. This work is supported by
Alibaba Group through the Alibaba Research Intern Program. Yifan and Linh are partially supported
by NSF grants CNS-1955670 and CNS-1750158.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:25

REFERENCES
[1] Ahmed H. M. O. Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong, and

Wen-Mei W. Hwu. 2019. FlatFlash: Exploiting the Byte-Accessibility of SSDs within a Uni�ed Memory-Storage
Hierarchy. In ASPLOS. ACM, 971–985.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Pratap Subrahmanyam, Lalith
Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2017. Remote memory in the age of fast networks.
In SoCC. ACM, 121–127.

[3] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout. 2018. Write-rationing garbage collection
for hybrid memories. In PLDI. ACM, 62–77.

[4] Tiago Alves. 2004. Trustzone: Integrated hardware and software security. Information Quarterly 3 (2004), 18–24.
[5] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Marcos K. Aguilera, Aurojit Panda,

Sylvia Ratnasamy, and Scott Shenker. 2020. Can far memory improve job throughput?. In EuroSys. ACM, 14:1–14:16.
[6] Andrew W. Appel and Kai Li. 1991. Virtual Memory Primitives for User Programs. In ASPLOS. ACM Press, 96–107.
[7] Arvind Arasu, Badrish Chandramouli, Johannes Gehrke, Esha Ghosh, Donald Kossmann, Jonathan Protzenko, Ravi

Ramamurthy, Tahina Ramananandro, Aseem Rastogi, Srinath Setty, et al. 2021. Fastver: Making data integrity a
commodity. In Proceedings of the 2021 International Conference on Management of Data. 89–101.

[8] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan Meng, Vineet Pandey, and Ravi Ramamurthy.
2017. Concerto: A high concurrency key-value store with integrity. In Proceedings of the 2017 ACM International
Conference on Management of Data. 251–266.

[9] Arvind Arasu, Raghav Kaushik, Donald Kossmann, and Ravi Ramamurthy. 2021. Integrity-based Attacks for Encrypted
Databases and Implications. In CIDR. www.cidrdb.org.

[10] Shahram Bakhtiari, Reihaneh Safavi-Naini, Josef Pieprzyk, et al. 1995. Cryptographic hash functions: A survey.
Technical Report. Citeseer.

[11] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. 2015. Rack-Scale In-Memory Join Processing
using RDMA. In SIGMOD Conference. ACM, 1463–1475.

[12] Daniel J Bernstein. 2005. The Poly1305-AES message-authentication code. In International workshop on fast software
encryption. Springer, 32–49.

[13] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. 2003. Address Obfuscation: An E�cient Approach to Combat a
Broad Range of Memory Error Exploits. In USENIX Security Symposium. USENIX Association.

[14] M Blum, W Evans, P Gemmell, S Kannan, and M Naor. 1991. Checking the correctness of memories. In [1991]
Proceedings 32nd Annual Symposium of Foundations of Computer Science. IEEE, 90–99.

[15] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. 1999. Database Architecture Optimized for the New
Bottleneck: Memory Access. In VLDB. Morgan Kaufmann, 54–65.

[16] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng
Teo, and Sheng Wang. 2018. E�cient Distributed Memory Management with RDMA and Caching. Proc. VLDB Endow.
11, 11 (2018), 1604–1617.

[17] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel Gandhi, Onur Mutlu, and Pratap Subrahmanyam.
2019. Project PBerry: FPGA Acceleration for Remote Memory. In HotOS. ACM, 127–135.

[18] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu Gu, Hani Jamjoom, Hubertus Franke,
and James Bottomley. 2023. Intel TDX Demysti�ed: A Top-Down Approach. CoRR abs/2303.15540 (2023).

[19] Douglas Comer and Jim Gri�oen. 1990. A New Design for Distributed Systems: The Remote Memory Model. In
USENIX Summer. USENIX Association, 127–136.

[20] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol. ePrint Arch. (2016), 86.
[21] Transaction Processing Performance Council. 2023. TPC-H. https://www.tpc.org/tpch Accessed: 2023-10-15.
[22] Crispan Cowan. 1998. StackGuard: Automatic Adaptive Detection and Prevention of Bu�er-Over�ow Attacks. In

USENIX Security Symposium. USENIX Association.
[23] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. 2010. Infrastructure as a service security: Challenges and

solutions. In 2010 The 7th International Conference on Informatics and Systems (INFOS). 1–8.
[24] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. FaRM: Fast Remote Memory.

In NSDI. USENIX Association, 401–414.
[25] Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex Shamis, Anirudh

Badam, and Miguel Castro. 2015. No compromises: distributed transactions with consistency, availability, and
performance. In SOSP. ACM, 54–70.

[26] Subramanya Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh Sankaran, Je�
Jackson, and Karsten Schwan. 2016. Data tiering in heterogeneous memory systems. In EuroSys. ACM, 15:1–15:16.

[27] Dmitry Duplyakin, Robert Ricci, AleksanderMaricq, GaryWong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,
David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

https://www.tpc.org/tpch

155:26 Mo Sha et al.

Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Operation of CloudLab. In
Proceedings of the USENIX Annual Technical Conference (ATC). 1–14. https://www.�ux.utah.edu/paper/duplyakin-atc19

[28] Hiroaki Etoh and Kunikazu Yoda. 2000. Protecting from stack-smashing attacks.
[29] Mohammad Ewais and Paul Chow. 2023. Disaggregated Memory in the Datacenter: A Survey. IEEE Access 11 (2023),

20688–20712.
[30] Michael J. Feeley, William E. Morgan, Frédéric H. Pighin, Anna R. Karlin, Henry M. Levy, and Chandramohan A.

Thekkath. 1995. Implementing Global Memory Management in a Workstation Cluster. In SOSP. ACM, 201–212.
[31] Michail Flouris and Evangelos P. Markatos. 1999. The Network RamDisk: Using remote memory on heterogeneous

NOWs. Clust. Comput. 2, 4 (1999), 281–293.
[32] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, João Carreira, Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy,

and Scott Shenker. 2016. Network Requirements for Resource Disaggregation. In OSDI. USENIX Association, 249–264.
[33] Caixin Gong, Chengjin Tian, Zhengheng Wang, Sheng Wang, Xiyu Wang, Qiulei Fu, Wu Qin, Qian Long, Rui Chen,

Jiang Qi, Ruo Wang, Guoyun Zhu, Chenghu Yang, Wei Zhang, and Feifei Li. 2022. Tair-PMem: a Fully Durable
Non-Volatile Memory Database. Proc. VLDB Endow. 15, 12 (2022), 3346–3358.

[34] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022. Direct Access, High-Performance
Memory Disaggregation with DirectCXL. In USENIX Annual Technical Conference. USENIX Association, 287–294.

[35] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G. Shin. 2017. E�cient Memory
Disaggregation with In�niswap. In NSDI. USENIX Association, 649–667.

[36] Jim Handy. 2015. Understanding the intel/micron 3d xpoint memory. Proc. SDC 68 (2015).
[37] Michael Henson and Stephen Taylor. 2013. Memory encryption: A survey of existing techniques. ACM Comput. Surv.

46, 4 (2013), 53:1–53:26.
[38] Mark D. Hill, Jon Masters, Parthasarathy Ranganathan, Paul Turner, and John L. Hennessy. 2019. On the Spectre and

Meltdown Processor Security Vulnerabilities. IEEE Micro 39, 2 (2019), 9–19.
[39] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda. 2017. Log-Structured Non-Volatile Main

Memory. In USENIX Annual Technical Conference. USENIX Association, 703–717.
[40] Paul Hudak. 1986. A Semantic Model of Reference Counting and its Abstraction (Detailed Summary). In LISP and

Functional Programming. ACM, 351–363.
[41] Eyal Itkin. 2020. SAFE-LINKING – ELIMINATING A 20 YEAR-OLD MALLOC() EXPLOIT PRIMITIVE. https:

//research.checkpoint.com/2020/safe-linking-eliminating-a-20-year-old-malloc-exploit-primitive/ Accessed: 2023-
10-15.

[42] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho Jin, and Keith Kim. 2017. Hbm (high
bandwidth memory) dram technology and architecture. In 2017 IEEE International Memory Workshop (IMW). IEEE,
1–4.

[43] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines for High Performance RDMA
Systems. In USENIX Annual Technical Conference. USENIX Association, 437–450.

[44] Sooyong Kang, Sungmin Park, Hoyoung Jung, Hyoki Shim, and Jaehyuk Cha. 2009. Performance Trade-O�s in Using
NVRAMWrite Bu�er for Flash Memory-Based Storage Devices. IEEE Trans. Computers 58, 6 (2009), 744–758.

[45] Jonathan Katz and Yehuda Lindell. 2007. Introduction to modern cryptography: principles and protocols. Chapman and
hall/CRC.

[46] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Konstantinos Sagonas. 2015. Turning
Centralized Coherence and Distributed Critical-Section Execution on their Head: A New Approach for Scalable
Distributed Shared Memory. In HPDC. ACM, 3–14.

[47] Hormuzd Khosravi. 2022. Runtime Encryption of Memory With Intel Total Memory Encryption - Multi-Key. Intel,
White Paper (2022).

[48] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and
Onur Mutlu. 2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance
errors. In ISCA. IEEE Computer Society, 361–372.

[49] Vamsee Reddy Kommareddy, Jagadish Kotra, Clayton Hughes, Simon David Hammond, and Amro Awad. 2020.
PreFAM: Understanding the Impact of Prefetching in Fabric-Attached Memory Architectures. In MEMSYS. ACM,
323–334.

[50] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov, Dejan S. Milojicic, and Gustavo Alonso.
2022. Farview: Disaggregated Memory with Operator O�-loading for Database Engines. In CIDR. www.cidrdb.org.

[51] Samir Koussih, Anurag Acharya, and Sanjeev Setia. 1999. Dodo: A User-level System for Exploiting Idle Memory in
Workstation Clusters. In HPDC. IEEE Computer Society, 301–308.

[52] Robert Lasch, Thomas Legler, Norman May, Bernhard Scheirle, and Kai-Uwe Sattler. 2022. Cost Modelling for Optimal
Data Placement in Heterogeneous Main Memory. Proc. VLDB Endow. 15, 11 (2022), 2867–2880.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

https://www.flux.utah.edu/paper/duplyakin-atc19
https://research.checkpoint.com/2020/safe-linking-eliminating-a-20-year-old-malloc-exploit-primitive/
https://research.checkpoint.com/2020/safe-linking-eliminating-a-20-year-old-malloc-exploit-primitive/

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:27

[53] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon, and Kang G. Shin. 2022. Hydra : Resilient and
Highly Available Remote Memory. In FAST. USENIX Association, 181–198.

[54] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.
stanford.edu/data.

[55] Derek Leung, Yossi Gilad, Sergey Gorbunov, Leonid Reyzin, and Nickolai Zeldovich. 2022. Aardvark: An Asynchronous
Authenticated Dictionary with Applications to Account-based Cryptocurrencies. In 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022. 4237–4254.

[56] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko Novakovic, Monish Shah, Samir
Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based
Memory Pooling Systems for Cloud Platforms. In ASPLOS (2). ACM, 574–587.

[57] Mingyu Li, Xuyang Zhao, Le Chen, Cheng Tan, Huorong Li, Sheng Wang, Zeyu Mi, Yubin Xia, Feifei Li, and Haibo
Chen. 2023. Encrypted Databases Made Secure Yet Maintainable. In OSDI. USENIX Association, 117–133.

[58] Shuang Liang, Ranjit Noronha, and Dhabaleswar K. Panda. 2005. Swapping to Remote Memory over In�niBand: An
Approach using a High Performance Network Block Device. In CLUSTER. IEEE Computer Society, 1–10.

[59] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A. Lee. 2008. Predictable
programming on a precision timed architecture. In CASES. ACM, 137–146.

[60] Google LLC. 2023. gVisor. https://github.com/google/gvisor Accessed: 2023-10-15.
[61] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D. Bond, Stephen M. Blackburn, Miryung Kim, and Guo-

qing Harry Xu. 2022. Mako: a low-pause, high-throughput evacuating collector for memory-disaggregated datacenters.
In PLDI. ACM, 92–107.

[62] Sunilkumar S. Manvi and Gopal Krishna Shyam. 2014. Resource management for Infrastructure as a Service (IaaS) in
cloud computing: A survey. J. Netw. Comput. Appl. 41 (2014), 424–440.

[63] Hasan Al Maruf and Mosharaf Chowdhury. 2020. E�ectively Prefetching Remote Memory with Leap. In USENIX
Annual Technical Conference. USENIX Association, 843–857.

[64] Hasan Al Maruf and Mosharaf Chowdhury. 2023. Memory Disaggregation: Advances and Open Challenges. ACM
SIGOPS Oper. Syst. Rev. 57, 1 (2023), 29–37.

[65] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agarwal, Pallab Bhattacharya, Chris
Petersen, Mosharaf Chowdhury, Shobhit O. Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent Page Placement
for CXL-Enabled Tiered-Memory. In ASPLOS (3). ACM, 742–755.

[66] Wes McKinney et al. 2011. pandas: a foundational Python library for data analysis and statistics. Python for high
performance and scienti�c computing 14, 9 (2011), 1–9.

[67] Ines Messadi, Shivananda Neumann, Nico Weichbrodt, Lennart Almstedt, Mohammad Mahhouk, and Rüdiger Kapitza.
2021. Precursor: A fast, client-centric and trusted key-value store using rdma and intel sgx. In Proceedings of the 22nd
International Middleware Conference. 1–13.

[68] Ethan Miller, Achilles Benetopoulos, George Neville-Neil, Pankaj Mehra, and Daniel Bittman. 2023. Pointers in Far
Memory: A rethink of how data and computations should be organized. Queue 21, 3 (2023), 75–93.

[69] Hossein Moein. 2023. DataFrame. https://github.com/hosseinmoein/DataFrame Accessed: 2023-10-15.
[70] Muhammad Faheem Mushtaq, Sapiee Jamel, Abdulkadir Hassan Disina, Zahraddeen A Pindar, Nur Sha�naz Ahmad

Shakir, and Mustafa Mat Deris. 2017. A survey on the cryptographic encryption algorithms. International Journal of
Advanced Computer Science and Applications 8, 11 (2017).

[71] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, and Mark Oskin. 2015.
Latency-Tolerant Software Distributed Shared Memory. In USENIX Annual Technical Conference. USENIX Association,
291–305.

[72] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos: ExitLess OS services for SGX
enclaves. In Proceedings of the Twelfth European Conference on Computer Systems. 238–253.

[73] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrishnan. 2019. Shenango: Achieving
high {CPU} e�ciency for latency-sensitive datacenter workloads. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). 361–378.

[74] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. 2013. Storage Management in the NVRAM Era.
Proc. VLDB Endow. 7, 2 (2013), 121–132.

[75] Constantin Pohl and Kai-Uwe Sattler. 2018. Joins in a heterogeneous memory hierarchy: exploiting high-bandwidth
memory. In DaMoN. ACM, 8:1–8:10.

[76] Tony Printezis and David Detlefs. 2000. A Generational Mostly-Concurrent Garbage Collector. In ISMM. ACM,
143–154.

[77] Kiran Puttaswamy and Gabriel H. Loh. 2005. Implementing Caches in a 3D Technology for High Performance
Processors. In ICCD. IEEE Computer Society, 525–532.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://github.com/google/gvisor
https://github.com/hosseinmoein/DataFrame

155:28 Mo Sha et al.

[78] Yifan Qiao, Xubin Chen, Jingpeng Hao, Tong Zhang, Changsheng Xie, and Fei Wu. 2020. Architecting Heterogeneous
Memory Systems with DRAM Technology Only: A Case Study on Relational Database. In MCHPC@SC. IEEE, 25–33.

[79] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter. 2021. HeMem: Scalable Tiered Memory
Management for Big Data Applications and Real NVM. In SOSP. ACM, 392–407.

[80] Vincent Rijmen. 2000. E�cient Implementation of the Rijndael S-box. Katholieke Universiteit Leuven, Dept. ESAT.
Belgium (2000).

[81] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020. AIFM: High-Performance,
Application-Integrated Far Memory. In OSDI. USENIX Association, 315–332.

[82] Stephen M. Rumble, Ankita Kejriwal, and John K. Ousterhout. 2014. Log-structured memory for DRAM-based storage.
In FAST. USENIX, 1–16.

[83] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015. Trusted Execution Environment: What It
is, and What It is Not. In TrustCom/BigDataSE/ISPA (1). IEEE, 57–64.

[84] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark
Russinovich. 2015. VC3: Trustworthy Data Analytics in the Cloud Using SGX. In IEEE Symposium on Security and
Privacy. IEEE Computer Society, 38–54.

[85] Mo Sha, Jialin Li, Sheng Wang, Feifei Li, and Kian-Lee Tan. 2023. TEE-based General-purpose Computational Backend
for Secure Delegated Data Processing. Proc. ACM Manag. Data 1, 4 (2023), 263:1–263:28.

[86] Hovav Shacham,MatthewPage, Ben Pfa�, Eu-Jin Goh, NagendraModadugu, andDan Boneh. 2004. On the e�ectiveness
of address-space randomization. In CCS. ACM, 298–307.

[87] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed shared persistent memory. In SoCC. ACM, 323–337.
[88] Claude E Shannon. 1949. Communication theory of secrecy systems. The Bell system technical journal 28, 4 (1949),

656–715.
[89] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su, Yangfan Zhou, and Michael R. Lyu. 2023. FUSEE:

A Fully Memory-Disaggregated Key-Value Store. In FAST. USENIX Association, 81–98.
[90] Rui Shu, Peipei Wang, Sigmund Albert Gorski III, Benjamin Andow, Adwait Nadkarni, Luke Deshotels, Jason Gionta,

William Enck, and Xiaohui Gu. 2016. A Study of Security Isolation Techniques. ACM Comput. Surv. 49, 3 (2016),
50:1–50:37.

[91] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
2013. Path ORAM: an extremely simple oblivious RAM protocol. In CCS. ACM, 299–310.

[92] Adam J. Storm, Christian Garcia-Arellano, Sam Lightstone, Yixin Diao, and Maheswaran Surendra. 2006. Adaptive
Self-tuning Memory in DB2. In VLDB. ACM, 1081–1092.

[93] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building Enclave-Native Storage Engines for Practical
Encrypted Databases. Proc. VLDB Endow. 14, 6 (2021), 1019–1032.

[94] Michael Szydlo. 2004. Merkle Tree Traversal in Log Space and Time. In EUROCRYPT (Lecture Notes in Computer
Science, Vol. 3027). Springer, 541–554.

[95] Rik van Riel. 2001. Page Replacement in Linux 2.4 Memory Management. In USENIX Annual Technical Conference,
FREENIX Track. USENIX, 165–172.

[96] VenkatanathanVaradarajan, Yinqian Zhang, Thomas Ristenpart, andMichaelM. Swift. 2015. A Placement Vulnerability
Study in Multi-Tenant Public Clouds. In USENIX Security Symposium. USENIX Association, 913–928.

[97] Chenxi Wang, Ting Cao, John N. Zigman, Fang Lv, Yunquan Zhang, and Xiaobing Feng. 2016. E�cient Management
for Hybrid Memory in Managed Language Runtime. In NPC (Lecture Notes in Computer Science, Vol. 9966). 29–42.

[98] Chenxi Wang, Huimin Cui, Ting Cao, John N. Zigman, Haris Volos, Onur Mutlu, Fang Lv, Xiaobing Feng, and
Guoqing Harry Xu. 2019. Panthera: holistic memory management for big data processing over hybrid memories. In
PLDI. ACM, 347–362.

[99] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson, Christian Navasca, Shan Lu, and Guoqing Harry
Xu. 2022. MemLiner: Lining up Tracing and Application for a Far-Memory-Friendly Runtime. In OSDI. USENIX
Association, 35–53.

[100] Jing Wang, Chao Li, Taolei Wang, Lu Zhang, Pengyu Wang, Junyi Mei, and Minyi Guo. 2022. Excavating the Potential
of Graph Workload on RDMA-based Far Memory Architecture. In IPDPS. IEEE, 1029–1039.

[101] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan Zhang, Yubing Ma, Lie Yan, Yuanyuan
Sun, Xuntao Cheng, Xiaolong Xie, and Yu Zou. 2022. Operon: An Encrypted Database for Ownership-Preserving
Data Management. Proc. VLDB Endow. 15, 12 (2022), 3332–3345.

[102] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On Tightness of the Goldreich-Ostrovsky Lower
Bound. In CCS. ACM, 850–861.

[103] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. 1995. Dynamic Storage Allocation: A Survey and
Critical Review. In IWMM (Lecture Notes in Computer Science, Vol. 986). Springer, 1–116.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures 155:29

[104] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main
Memories. In FAST. USENIX Association, 323–338.

[105] Juncheng Yang, Yao Yue, and KV Rashmi. 2021. A large-scale analysis of hundreds of in-memory key-value cache
clusters at twitter. ACM Transactions on Storage (TOS) 17, 3 (2021), 1–35.

[106] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula,
and Nicholas Fullagar. 2010. Native Client: a sandbox for portable, untrusted x86 native code. Commun. ACM 53, 1
(2010), 91–99.

[107] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and Youngjin Kwon. 2023. DiLOS: Do Not Trade Compatibility for
Performance in Memory Disaggregation. In EuroSys. ACM, 266–282.

[108] Daniel Zahka and Ada Gavrilovska. 2022. FAM-Graph: Graph Analytics on Disaggregated Memory. In IPDPS. IEEE,
81–92.

[109] Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and Feifei Li. 2021. VeriDB: An SGX-based Veri�able
Database. In SIGMOD Conference. ACM, 2182–2194.

[110] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Minlan Yu, Chris Kennelly, Paul Turner,
David E. Culler, Henry M. Levy, and Amin Vahdat. 2022. Carbink: Fault-Tolerant Far Memory. In OSDI. USENIX
Association, 55–71.

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 155. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Preliminaries and Related Studies
	2.1 Heterogeneous Memory Architectures
	2.2 Memory Security
	2.3 Object-oriented Memory Management

	3 UEM Approach
	3.1 Threat Model
	3.2 Rationales and Key Ideas
	3.3 Architecture Overview

	4 Design and Implementation
	4.1 Abstractions and Interfaces
	4.2 Object Swapping
	4.3 Data Verification Module
	4.4 Data Encryption Module
	4.5 Optimizations

	5 Security Discussions
	5.1 Encryption Strength
	5.2 Verification Reliability
	5.3 Limitations

	6 Evaluation
	6.1 Experimental Setup
	6.2 Mircobenchmarks
	6.3 Evaluation on Graph Processing
	6.4 Evaluation on Key-Value Queries
	6.5 Evaluation on Relational Tabular Analysis

	7 Conclusion
	References

