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Nice to Meet You 



 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
 It is essential to make coherent decisions in a way that takes 

the interdependencies into account. Joint, Global Inference. 
 TODAY: 

 How to support making global, coherent decisions 
 How to learn models that are used, eventually, to make global decisions 

 
 A framework that allows one to exploit interdependencies among 

decision variables both in inference (decision making) and in learning. 
 Inference: A formulation for inference with expressive declarative 

knowledge. 
 Learning: Ability to learn simple models; amplify it power by exploiting 

interdependencies.  

Learning and Inference in NLP 
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Constraints Driven Learning and Decision Making 

 The focus of this tutorial is on  
 Augmenting statistical learning models with Declarative knowledge. 
 The knowledge will be expressed as constraints on the possible 

predictions our models can make. 

 Why Constraints? 
 The Goal: Building a good NLP systems easily 
 We have prior knowledge at our hand 
 Within our framework we will see that we can use this knowledge to : 

 Improve decision making  
 Guide learning 
 Simplify the models we need to learn 
 Replace labeled data 
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Comprehension 

1. Christopher Robin was born in England.      2.  Winnie the Pooh is a title of a book.   
3. Christopher Robin’s dad was a magician.     4. Christopher Robin must be at least 65 now   

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 

This is an Inference Problem 



Learning and Inference  

 Global decisions in which several local decisions play a role  
but there are mutual dependencies on their outcome. 
 In current NLP we often think about simpler structured problems: 

Parsing, Information Extraction, SRL, etc.  
 As we move up the problem hierarchy (Textual Entailment, QA,….) not 

all component models can be learned simultaneously 
 We need to think about (learned) models for different sub-problems 
 Knowledge relating sub-problems  (constraints) may appear only at 

evaluation time 

 Goal: Incorporate models’ information, along with prior 
knowledge (constraints) in making coherent decisions  
 decisions that respect the local models as well as domain & context 

specific knowledge/constraints. 
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Goal of the Tutorial 
 
 By the end of the tutorial you should be able to: 

 Model structure prediction problems  
 Injects declarative (domain, background) knowledge into your problem 

formulation   
 Think about problem representation and the decomposition of the 

problem into natural components. 
 Independently of algorithmic solutions 

 
 Represent domain and other relevant knowledge as linear constraints 

 
 Think about possible way to support inference 

 
 Think about possible ways to learn your models 

 Reason about several paradigms, their advantages and disadvantages. 
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This Tutorial: Constrained Conditional Models  (CCMs) 
 
 Part 1: Introduction to Constrained Conditional Models  (30min) 

 Examples:  
 NE + Relations  
 Information extraction – correcting models with CCMS 

 First summary: What are CCMs 
 Problem Setting 

 Features and Constraints; some hints about training issues 
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This Tutorial: Constrained Conditional Models 
 
 Part 2: Modeling NLP via CCMs (45 minutes) 

 Introduction to ILP  
 Posing NLP Problems as ILP problems 

 1. Sequence tagging          (HMM/CRF + global constraints) 
 2. SRL                                    (Independent classifiers + Global Constraints)  
 3. Sentence Compression (Language Model + Global Constraints) 

 Less detailed examples  
 1. Co-reference  
 2. A bunch more ... 

 Part 3: Inference Algorithms  (15 minutes) 
 Exact Algorithms 
 Relaxation methods 
 Approximate Algorithms 

BREAK 
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This Tutorial: Constrained Conditional Models (Part II) 

 Part 4: Training Paradigms for CCMs (20 min) 
 Independently of constraints (L+I); Jointly with constraints (IBT) 
 Decomposed to simpler models 

 Part 5: Constraints Driven Training (60 min) 
 Learning constraints’ penalties 

 Independently of learning the model  
 Jointly, along with learning the model  

 Dealing with lack of supervision 
 Constraints Driven Semi-Supervised learning (CODL) 
 Indirect Supervision  

 Learning Constrained Latent Representations 
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This Tutorial: Constrained Conditional Models (Part II) 

 Part 6: Conclusion (& Discussion)  (10 min) 
 Summary 
 Building CCMs;  Features and Constraints. Mixed models vs. Joint models;  
 Where is Knowledge coming from 

THE END 



PART 1: INTRODUCTION 
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This Tutorial: Constrained Conditional Models 
 
 Part 1: Introduction to Constrained Conditional Models  (30min) 

 Examples:  
 NE + Relations  
 Information extraction – correcting models with CCMS 

 First summary: What are CCMs  
 Problem Setting 

 Features and Constraints; some hints about training issues 



Three Ideas Underlying Constrained Conditional Models 
 Idea 1:  
     Separate modeling and problem formulation from algorithms 

 Similar to the philosophy of probabilistic modeling 
 

 Idea 2:  
     Keep model simple, make expressive decisions (via constraints) 

 Unlike probabilistic modeling, where models become more expressive  
 

 Idea 3:  
     Expressive structured decisions can be supported by simply  
     learned models  

 Global Inference can be used to amplify the simple models (and even 
minimal supervision). 

Modeling 

Inference 

Learning 
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Pipeline 

 Conceptually, Pipelining is a crude approximation  
 Interactions occur across levels and down stream decisions often interact 

with previous decisions. 
 Leads to propagation of errors 
 Occasionally, later stages are easier but cannot correct earlier errors. 

 But, there are good reasons to use pipelines  
 Putting everything in one basket may not be right  
 How about choosing some stages and think about them jointly? 

POS Tagging Phrases Semantic Entities  Relations 

   Most problems are not single classification problems 

Parsing WSD Semantic Role Labeling 

Raw Data 
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Inference with General Constraint Structure [Roth&Yih’04,07] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 

 E1                   E2                              E3   
R12 R23 

other 0.05 

per 0.85 

loc 0.10 

other 0.05 

per 0.50 

loc 0.45 

other 0.10 

per 0.60 

loc 0.30 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

other 0.05 

per 0.85 

loc 0.10 

other 0.10 

per 0.60 

loc 0.30 

other 0.05 

per 0.50 

loc 0.45 

irrelevant 0.05 

spouse_of 0.45 

born_in 0.50 

irrelevant 0.10 

spouse_of 0.05 

born_in 0.85 

other 0.05 

per 0.50 

loc 0.45 

Improvement over no 
inference: 2-5% 

Models could be learned separately; constraints may come up only at decision time.  

Note:  
Non Sequential 
Model 

Key Questions:  
- How to guide the global   
      inference?  
-     Why not learn Jointly? 

 
Y = argmax ∑y score(y=v) [[y=v]] =  
 
   = argmax score(E1 = PER)¢ [[E1 = PER]] + score(E1 = LOC)¢ [[E

1
 = LOC]] +…    

                score(R
1
 = S-of)¢ [[R

1
 = S-of]] +…..  

 
Subject to Constraints 
 



Task of Interests: Structured Output 

 For each instance, assign values to a set of variables 
 Output variables depend on each other 
 Common NLP tasks  

 Parsing; Semantic Parsing; Summarization; Transliteration; Co-
reference resolution, Textual Entailment…  

 Common Information Extraction Tasks: 
 Entities, Relations,… 

 

 Many pure machine learning approaches exist 
 Hidden Markov Models (HMMs) ; CRFs 
 Structured Perceptrons and SVMs… 

 However, … 
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Information Extraction via Hidden Markov Models 

Lars Ole Andersen . Program analysis and specialization for the 
 C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 

Prediction result of a trained HMM  
  Lars Ole Andersen . Program analysis and 
  specialization for the  
  C  
  Programming language 
   .  PhD thesis . 
  DIKU , University of Copenhagen , May 
  1994 . 
 

[AUTHOR]   
[TITLE]    
[EDITOR]   
[BOOKTITLE]   
[TECH-REPORT]   
[INSTITUTION]   

[DATE]    Unsatisfactory results ! 

Many “natural constraints” are violated  
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Strategies for Improving the Results 

 (Pure) Machine Learning Approaches 
 Higher Order HMM/CRF? 
 Increasing the window size? 
 Adding a lot of new features  

 Requires a lot of labeled examples 
 

 What if we only have a few labeled examples? 
 
 

 
 Other options?  

 Constrain the output to make sense 
 Push the  (simple) model in a direction that makes sense 

Increasing the model complexity 

Can we keep the learned model simple and 
still make expressive decisions?  

Increase difficulty of Learning 

1: 8 



1: 9 

Information extraction without Prior Knowledge 

Prediction result of a trained HMM 
  Lars Ole Andersen . Program analysis and 
  specialization for the  
  C  
  Programming language 
   .  PhD thesis . 
  DIKU , University of Copenhagen , May 
  1994 . 
 

[AUTHOR]   
[TITLE]    
[EDITOR]   
[BOOKTITLE]   
[TECH-REPORT]   
[INSTITUTION]   

[DATE]    

Violates lots of natural constraints! 

Lars Ole Andersen . Program analysis and specialization for the 
 C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 



1: 10 

 
Examples of Constraints 
 
 Each field must be a consecutive list of words and can appear 

at most once in a citation.  
 
 State transitions must occur on punctuation marks. 
 
 The citation can only start with AUTHOR or EDITOR.  
 
 The words pp., pages correspond to PAGE. 
 Four digits starting with 20xx and 19xx are DATE. 
 Quotations can appear only in TITLE 
 ……. Easy to express pieces of “knowledge” 

Non Propositional; May use Quantifiers  
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 Adding constraints, we get correct results! 
 Without changing the model 

 
 
 [AUTHOR]    Lars Ole Andersen .  
      [TITLE]           Program analysis and specialization for the  
        C Programming language . 
 [TECH-REPORT]  PhD thesis . 
 [INSTITUTION]   DIKU , University of Copenhagen ,  
 [DATE]     May, 1994 . 
 

Information Extraction with Constraints 

Constrained Conditional Models Allow: 
 Learning a simple model  
 Making decisions with a more complex model 
 Accomplished by directly incorporating constraints to bias/re-

ranks decisions made by the simpler model 
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 Random Variables Y: 
 
 
 
 
 
 

 Conditional Distributions P (learned by models/classifiers)  
 Constraints C– any Boolean function  
        defined over partial assignments  (possibly:  + weights W ) 
 
 Goal:  Find the “best” assignment 

 The assignment that achieves the highest global performance. 
 This is an Integer Programming Problem 

Problem Setting 

y7 y4 y5 y6 y8 

y1 y2 y3 C(y1,y4) 
C(y2,y3,y6,y7,y8) 

Y*=argmaxY P•Y                         subject to constraints C (+ W•C) 

observations 



Constrained Conditional Models 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  
exact solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

How to train? 

Training is learning the objective 
function 

Decouple? Decompose?  

How to exploit the structure to        
minimize supervision? 
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What is a Constrained Conditional Model? 

Modeling NLP problem 
• Variables, Features and constraints 

Objective function 
• Constrained Conditional Model 

Constrained optimization language 
• How to represent inference? Integer linear program 

Inference 
• How to solve it? 

Several inference algorithms: Exact 
ILP, search, relaxation; dynamic prog. 

Learning 
• How to learn the objective 

function? 

Learning λ and ρ. Several learning 
strategies: L+I, IBT, others. 
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Linguistics Constraints 
 
Cannot have both A states and B states 
in an output sequence.  

Linguistics Constraints 
 
 
If a modifier chosen, include its head 
If verb is chosen, include its arguments  

Examples: CCM Formulations 

CCMs can be viewed as a general interface to easily combine 
declarative domain knowledge with data driven statistical models 

Sequential Prediction 
 
HMM/CRF based: 
                     Argmax ∑ ¸ij xij 

Sentence 
Compression/Summarization: 
 
Language Model based: 
                     Argmax ∑ ¸ijk xijk 

Formulate NLP Problems as ILP problems         (inference may be done otherwise) 
 1. Sequence tagging            (HMM/CRF + Global constraints) 
 2. Sentence Compression   (Language Model + Global Constraints) 
 3. SRL                                      (Independent classifiers + Global Constraints)  
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Context: There are Many Formalisms  

 Our goal is to assign values to multiple interdependent discrete variables  
 These problems can be formulated and solved with multiple approaches 

 Markov Random Fields (MRFs) provide a general framework for it. But: 
 The decision problem for MRFs can be written as an ILP too 

 [Roth & Yih 04,07, Taskar 04] 

 Key difference: In MRF approaches the model is learned globally.  
 Not easy to systematically incorporate problem understanding and knowledge 
 Our approach, on the other hand,  is designed to address also cases in which 

some of the component models are learned in other contexts and at other 
times, or incorporated as background knowledge.  

 That is, some components of the global decision need not, or cannot, be 
trained in the context of the decision problem. 

 Markov Logic Networks (MLNs) attempt to compile knowledge into an MRF, 
thus provide one example of a global training approach. 

 Caveat: Everything can be done with everything, but there are key 
conceptual differences that impact what is easy to do 
 1: 16 



       y* = argmaxy ∑ wi Á(x; y) 
  
 Linear objective functions  
 Typically Á(x,y) will be local 

functions, or Á(x,y) = Á(x)   

Context: Constrained Conditional Models 

y7 y4 y5 y6 y8 

y1 y2 y3 

y7 y4 y5 y6 y8 

y1 y2 y3 

Conditional Markov Random Field Constraints Network 

           −  ∑i ½i dC(x,y) 
 

 Expressive constraints over output 
variables  

 Soft, weighted constraints  
 Specified declaratively as FOL formulae 

 Clearly, there is a joint probability distribution that represents 
this mixed model.  

 We would like to:  
 Learn a simple model or several simple models 
 Make decisions with respect to a complex model                  

Key difference from MLNs which provide a concise 
definition of a model, but the whole joint one. 
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Features Versus Constraints in CCMs 

 Fi : X £ Y ! {0,1} or R;             Ci : X £ Y ! {0,1};  
 In principle, constraints and features can encode the same properties 

  In practice, they are very different 
 
   Features  

 Local , short distance properties – to allow tractable inference  
 Propositional (grounded):       
 E.g. True if:           “the” followed by a Noun occurs in the sentence”  

   Constraints 
 Global properties 
 Quantified, first order logic expressions  
 E.g.True if:       “all yis in the sequence y are assigned different values.”  
 

Indeed, used differently 



Role of Constraints: Encoding Prior Knowledge 
 Consider encoding the knowledge that:  

 Entities of type A and B cannot occur simultaneously in a sentence  

 The “Feature” Way        
 Many new (possible) features: propsitionalizing;  
 Only a “suggestion” to the learning algorithm; need to learn weights 
 Wastes parameters to learn indirectly knowledge we have. 
 Results in higher order models; may require tailored models  

 The  Constraints  Way 
 Tell the model what it should attend to 
 Keep the model simple;  add expressive constraints directly 
 A small  set of constraints 
 Allows for decision time incorporation of constraints  

1: 20 

A form of supervision 

Details depend on whether (1) learned model use Á(x,y) or Á (x) 
                                                   (2) hard or soft constraints  



 
 Constrained Conditional Models – ILP formulations – have been 

shown useful in the context of many NLP problems 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications; Transliteration; Textual Entailment; Knowledge 
Acquisition; Sentiments; Temporal Reasoning, Dependency Parsing,… 

 Some theoretical work on training paradigms [Punyakanok et. al., 05 
more; Constraints Driven Learning, PR, Constrained EM…]  

 
 

 We will provide some insights into theoretical issues and cover 
some of the applications. 
 

 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html 
  

 
 

Constrained Conditional Models—Before a Summary 
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Constrained Conditional Models – 1st Summary  
 
 Introduced CCMs as a formalisms that allows us to 

 Learn simpler models than we would otherwise 
 Make decisions with expressive models, augmented by declarative 

constraints 

 Focused on modeling – posing NLP problems as CCMs 
 1. Sequence tagging          (HMM/CRF + global constraints) 
 2. SRL                                    (Independent classifiers + Global Constraints)  
 3. Sentence Compression (Language Model + Global Constraints) 

 Next: More Modeling & Inference 
 From declarative constraints to CCMs; solving ILP, exactly & approximately 

 Second half – Learning 
 Supervised setting, and supervision-lean settings 



PART 2: MODELING 
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This Tutorial: Constrained Conditional Models 
 
 Part 2: Modeling NLP via CCMs (45 minutes) 

 Introduction to ILP  
 Posing NLP Problems as ILP problems 

 1. Sequence tagging          (HMM/CRF + global constraints) 
 2. SRL                                    (Independent classifiers + Global Constraints)  
 3. Sentence Compression (Language Model + Global Constraints) 

 Less detailed examples  
 1. Co-reference  
 2. A bunch more ... 



What is a Constrained Conditional Model? 

Modeling NLP problem 
• Variables, Features and constraints 

Objective function 
• Constrained Conditional Model 

Constrained optimization language 
• How to represent inference? Integer linear program 

Inference 
• How to solve it? 

Several inference algorithms: Exact 
ILP, search, relaxation; dynamic prog. 

Learning 
• How to learn the objective 

function? 

Learning λ and ρ. Several learning 
strategies: L+I, IBT, others. 
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Modeling NLP via CCMs 

 Inference is a discrete optimization problem 
 Goal: To assign values to a collection of variables of interest 

 

 We choose to model inference step using the language of 
Integer Linear Programming 
 

 CCMs provides: 
 A way to focus on problem definition rather than how to solve it 
 Simple (to write down) but expressive formulation 
 A way to use of declarative knowledge  
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Integer Linear Programming: Review 

 Telfa Co. produces tables and chairs; wants to maximize profit 
 Each table makes $8 profit, each chair makes $5 profit. 
 A table requires 1 hour of labor and 9 sq. feet of wood 
 A chair requires 1 hour of labor and 5 sq. feet of wood 
 We have only 6 hours of work and 45sq. feet of wood 

 Variables 
 Objective function 

 
 Constraints 

 Labor 
 Wood 
 Variable 

2:5 

y1: Number of tables manufactured 
y2: Number of chairs manufactured 

We cannot build fractional tables or chairs! 



Geometry of integer linear programs 
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Cost (profit) vector 



Modeling Your Problem 

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

A collection of Classifiers; 
Log-linear models  (HMM, 
CRF) or a combination 

 How do we write our models in this form? 
 What goes in an objective function? 
 How to design constraints? 
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We will consider the 
case when y’s are 
restricted to 0 or 1. 



Modeling Your Problem: Decision Variables 

 F(x,y) is a collection of features from x and y 
 Eg: Does the ith word have the POS tag NN? 
 Several such features, not all active in a given (x,y) instance 

 

 Define indicator variables 
  Is fi is active in an input? 

 
  F(x,y) can be rewritten using indicator variables as 
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Functions from 
(x,y) to 0 or 1 



Modeling Your Problem: Constraints 

 
 
 
 

 
 Suppose we want to disallow all “illegal” assignments. 

 Make all the ½i infinity 
 Hard constraints; can be written as linear inequalities in terms of the 

inference variables 
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Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Inference variables can be 0 or 1 

1f is the vector of all inference variables 

Score for this 
variable 



CCM Examples 

 Many works in NLP make use of constrained conditional 
models, implicitly or explicitly. 

 Next we describe three examples in detail. 
 
 Example 1: Semantic Role Labeling 

 The use of inference with constraints to improve semantic parsing 

 Example 2: Sequence Tagging 
 Adding long range constraints to a simple model 

 Example 3: Sentence Compression 
 Simple language model with constraints outperforms complex models 
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Example 1: Semantic Role Labeling 

Demo:http://L2R.cs.uiuc.edu/~cogcomp 

Top ranked system in CoNLL’05 
shared task  

Key difference is the Inference 

Who did what to whom, when, where, why,… 
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A simple sentence 

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 

 
I left my pearls to my daughter in my will . 
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Algorithmic Approach 

 Identify argument candidates 
 Pruning  [Xue&Palmer, EMNLP’04] 
 Argument Identifier  

 Binary classification 

 Classify argument candidates 
 Argument Classifier  

 Multi-class classification 

 Inference 
 Use the estimated probability distribution 

given by the argument classifier 
 Use structural and linguistic constraints 
 Infer the optimal global output 

 

I left my nice pearls to her 

I left my nice pearls to her 
[ [    [       [      [ 
 ]    ]  ]            ]     ] 

I left my nice pearls to her 

candidate arguments 

I left my nice pearls to her 
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Semantic Role Labeling (SRL) 

I left my pearls to my daughter in my will . 

0.5 
0.15 
0.15 
0.1 
0.1 

0.15 
0.6 
0.05 
0.05 
0.05 

0.05 
0.1 
0.2 
0.6 
0.05 

0.05 
0.05 
0.7 
0.05 
0.15 

0.3 
0.2 
0.2 
0.1 
0.2 
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Semantic Role Labeling (SRL) 

I left my pearls to my daughter in my will . 

0.5 
0.15 
0.15 
0.1 
0.1 

0.15 
0.6 
0.05 
0.05 
0.05 

0.05 
0.1 
0.2 
0.6 
0.05 

0.05 
0.05 
0.7 
0.05 
0.15 

0.3 
0.2 
0.2 
0.1 
0.2 
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Semantic Role Labeling (SRL) 

I left my pearls to my daughter in my will . 

0.5 
0.15 
0.15 
0.1 
0.1 

0.15 
0.6 
0.05 
0.05 
0.05 

0.05 
0.1 
0.2 
0.6 
0.05 

0.05 
0.05 
0.7 
0.05 
0.15 

0.3 
0.2 
0.2 
0.1 
0.2 

One inference 
problem for each 
verb predicate.  
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 No duplicate argument classes 
 
 

 Reference-Ax 
 
 
 

 Continuation-Ax 
 
 
Many other possible constraints: 

 Unique labels 
 No overlapping or embedding 
 Relations between number of arguments; order constraints 
 If verb is of type A, no argument of type  B 

Any Boolean rule can be encoded as 
a set of linear inequalities. 

If there is an Reference-Ax phrase, there is an Ax 

If there is an Continuation-x phrase, there is an Ax before it 

Constraints 

Universally quantified 
rules 

Learning Based Java: allows a developer 
to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  
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SRL: Posing the Problem 
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CCM Examples 

 Many works in NLP make use of constrained conditional 
models, implicitly or explicitly. 

 Next we describe three examples in detail.  
 
 Example 1: Semantic Role Labeling 

 The use of inference with constraints to improve semantic parsing 

 Example 2: Sequence Tagging 
 Adding long range constraints to a simple model 

 Example 3: Sentence Compression 
 Simple language model with constraints outperforms complex models 
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Example 2: Sequence Tagging 

HMM : 

Every edge is a Boolean variable 
that selects a transition CPT entry. 

They are related: if we choose  

Here, y’s are labels; x’s are observations. 

The ILP’s objective function must 
include all entries of the 
Conditional Probability Table. 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

Example: the the man saw dog 

y0 = D then we must choose an edge 
y0 = D Æ  y1 = ? . 

Every assignment to the y’s is a path. 
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Example 2: Sequence Tagging 

HMM: 

As an ILP: 
Inference Variables 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

Example: the the man saw dog 
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Learned Parameters 



Example 2: Sequence Tagging 

HMM: 

As an ILP: 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

Example: the the man saw dog 

Unique label for each word 
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Example 2: Sequence Tagging 

HMM : 

As an ILP: 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

Example: the the man saw dog 

Unique label for each word 

Edges that are chosen 
must form a path 
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Example 2: Sequence Tagging 

HMM : 

As an ILP: 

Unique label for each word 

There must be a verb! 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

Example: the the man saw dog 
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Edges that are chosen 
must form a path 



Constraints 

 We have seen three different constraints in this example 
1. Unique label for each word 
2. Chosen edges must form a path 
3. There must be a verb 

 All three can be expressed as  linear inequalities 
 

 In terms of modeling, there is a difference 
 The first two define the output structure (in this case, a sequence) 
 The third one adds knowledge to the problem 

 
 

2:25 

A conventional 
model 

In CCMs, knowledge is an integral 
part of the modeling 



CCM Examples 

 Many works in NLP make use of constrained conditional 
models, implicitly or explicitly. 

 Next we describe three examples in detail.  
 
 Example 1: Semantic Role Labeling 

 The use of inference with constraints to improve semantic parsing 

 Example 2: Sequence Tagging 
 Adding long range constraints to a simple model 

 Example 3: Sentence Compression 
 Simple language model with constraints outperforms complex models 

2:26 



Example 3: Sentence Compression (Clarke & Lapata) 
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Example 

Example: 
 
 
 
 
 
 

0 1 2 3 4 5 6 7 8 
Big fish eat small fish in a small pond 
Big fish in a pond 

1
1

568156015

86510

===
=====

γγγ
δδδδδ
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Language model-based compression 
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Example: Summarization 

This formulation requires some additional constraints 
Big fish eat small fish in a small pond 

No selection of decision variables can make these trigrams appear 
consecutively in output. 
 
We skip these constraints here.  
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Trigram model in action 
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Modifier Constraints 
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Example 
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Example 
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Sentential Constraints 
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Example 
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Example 
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More constraints 
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Sentence Compression: Posing the Problem 

maximize

n¡2X

i=0

n¡1X

j=i+1

nX

k=j+1

¸k;i;j °i;j;k

subject to

8i; j; k; 0 · i < j < k · n; 3°i;j;k · ±i + ±j + ±k

2 + °i;j;k ¸ ±i + ±j + ±k

(k ¡ i¡ 2)°i;j;k +

j¡1X

s=i+1

±s +

k¡1X

s=j+1

±s · k ¡ i¡ 2

Learned Parameters 
Inference Variables 

If the inference variable is on, the three 
corresponding auxiliary variables must also be on. 

If the three corresponding auxiliary variables are on, 
the inference variable must be on. 

If the inference variable is on, no intermediate 
auxiliary variables may be on. 

2:39 

The tutorial web page has good notes on how to 
convert Boolean constraints to linear inequalities. . 



Other examples: Coreference Resolution 
  K. Chang et. al 2011. Inference Protocols for Coreference 

Resolution 
 Also Denis and Baldridge, 2009 

 
 
 
 
 
 
 
 Input: a set of pairwise mention scores over a document  
 Output: globally consistent cliques representing entities 
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3.1 

Best-Link Inference 

 For each mention u, Best-Link considers the best mention on 
its left to connect to 

 Then, it creates a link between them if the score is above some 
threshold (typically 0) 

 
 
 
 

 
 

 Best-Link inference is simple and effective (Bengtson and Roth, 
2008) 

 
 
 
 
 
 
 

1.5 3.1 

-1.5 1.2 
0.2 

u m* 
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All-Link Inference 

 It scores a clustering of mentions by including all possible 
pairwise links in the score: 
 
 
 
 
 

  McCallum and Wellner, 2003; Finley and Joachims, 2005 
 

 
 
 
 

1.5 3.1 
-0.5 

1.5 

Score: 1.5 + 3.1 - 0.5 + 1.5 = 5.6  
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Integer Linear Programming (ILP) Formulation for Inference 

 Best-Link 
 
 
 
 
 
 

 All-Link 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pairwise  mention score 

Binary variable 

Enforce the transitivity 
closure of the clustering 
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Opinion Recognition  

 Y. Choi, E. Breck, and C. Cardie. Joint Extraction of Entities and 
Relations for Opinion Recognition EMNLP-2006 

 
 
 
 Semantic parsing variation: 

 Agent=entity 
 Relation=opinion 

 Constraints: 
 An agent can have at most two opinions. 
 An opinion should be linked to only one agent. 
 The usual non-overlap constraints. 
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Extending Semantic role labeling 

2:45 

A0: The causer  
of the transformation 

A1:  The thing  
changing AM-TMP: Temporal 

Agent of 
action Temporal 

Verb arguments Preposition relations Consistency enforced 

V. Srikumar and D. Roth. A Joint Model for Extended Semantic Role 
Labeling. EMNLP 2011. 

   The field goal of Brien changed the game in the fourth quarter 
 
 
 
 
 
 
 
 
 



Temporal Ordering 

 N. Chambers and D. Jurafsky. Jointly Combining Implicit 
Constraints Improves Temporal Ordering. EMNLP-2008. 
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Temporal Ordering 

 N. Chambers and D. Jurafsky. Jointly Combining Implicit 
Constraints Improves Temporal Ordering. EMNLP-2008. 

Three types of edges: 
1) Annotation relations before/after 
2) Transitive closure constraints 
3) Time normalization constraints 
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Event Timeline construction 

[…] The Iraqi insurgents attacked a police station in Tal Afar on Tuesday 
killing 6 policemen and injuring 8 other people. This action brings the 
casualties to over 3000 since the invasion of the coalition armies on 
3/20/2003. Police wants to arrest the insurgents in a campaign next 
week. […] Publishing date: Wed., May 24th, 2006 

-∞ +∞ 

e5 

e4 

e1 e2/e3 e6 

arrest attacked killing injuring invasion casualties 

I3 
I4 

I2 I1 I5 

since […] 
3/20/2003 3/20/2003 Tuesday Wed., May 

24th, 2006 next week 

 Q. Do,  L. Wei and D. Roth. Joint inference for Event Timeline 
Construction. EMNLP 2012 



Language generation. 

 R. Barzilay and M. Lapata. Aggregation via Set Partitioning for 
Natural Language Generation.HLT-NAACL-2006. 
 
 
 
 

 
 Constraints: 

 Transitivity: if (ei,ej)were aggregated, and (ei,ejk) were too, then (ei,ek) 
get aggregated. 

 Max number of facts aggregated, max sentence length.  

 

2:49 



MT & Alignment  

 Ulrich Germann, Mike Jahr, Kevin Knight, Daniel Marcu, and 
Kenji Yamada. Fast decoding and optimal decoding for 
machine translation. ACL 2001. 

 John DeNero and Dan Klein. The Complexity of Phrase 
Alignment Problems. ACL-HLT-2008. 
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Learning Based Java: Translating to ILP 

 Constraint syntax based on First Order Logic 
 Declarative; interspersed within pure Java 
 Grounded in the program’s Java objects 

 Automatic run-time translation to linear inequalities 
 Creates auxiliary variables 
 Resulting ILP size is linear in size of propositionalization 
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Summary of Examples 

 We have shown several different NLP solutions that use 
CCMs. 
 

 In all cases, knowledge about the problem can be stated as 
constraints in a high level language, and then transformed 
into linear inequalities.  
 

 Learning based Java (LBJ) [Rizzolo&Roth ’07, ’10]  describes an 
automatic way to compile high level description of constraint 
into linear inequalities.  

http://cogcomp.cs.illinois.edu/page/software 
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PART 3: INFERENCE 

3:1 



This Tutorial: Constrained Conditional Models 
 
 Part 3: Inference Algorithms  (15 minutes) 

 Exact Algorithms 
 Relaxation methods 
 Approximate Algorithms 



What is a Constrained Conditional Model? 

Modeling NLP problem 
• Variables, Features and constraints 

Objective function 
• Constrained Conditional Model 

Constrained optimization language 
• How to represent inference? Integer linear program 

Inference 
• How to solve it? 

Several inference algorithms: Exact 
ILP, search, relaxation; dynamic prog. 

Learning 
• How to learn the objective 

function? 

Learning λ and ρ. Several learning 
strategies: L+I, IBT, others. 

1: 3 



Inference strategies 

1. Solving an ILP directly 
2. Problem specific approaches 

 Dynamic programming 

3. Relaxing constraints 
 Cutting place strategy 
 Dual decomposition and Lagrangian relaxation 
 LP relaxation 

4. Approximation methods 
 Beam Search 

5. Amortized inference 
 Data set optimization rather than instance based optimization 
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1. Inference by solving an ILP directly 
 Several powerful off-the-shelf solvers available 

 Gurobi 
 Xpress-MP 
 GLPK 
 LPsolve  

 Inference problems in NLP 
 Sometimes actually easy for ILP solvers 

 Semantic role labeling  
 5217 instances, with an average of 146 variables and 51 constraints each 

takes ~13 seconds to solve 

 Entities-Relations [Roth and Yih, 2004] 
 Problem is known to be NOT totally unimodular 
 ILP solver still efficient! 
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 R 
 Mosek 
 CPLEX 

- Most solvers have good  
     APIs 
- LBJ provides hooks for  
     Gurobi, Xpress-MP,   GLPK 



 How to get  a score for the pair? 
 The CCM approach: 

 Introduce an internal structure (characters) 
 Constrain character mappings to “make sense”. 

2. Problem specific approaches 
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Transliteration Discovery with CCM 

 
 
 
 
 
 
 
 
 

 The problem now: inference 
 How to find the best mapping that satisfies the constraints? 
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A weight is assigned to each edge. 
 
Include it or not? A binary decision. 

Score = sum of the 
mappings’ weight 

• Natural constraints 
• Pronunciation constraints 
• One-to-One  
• Non-crossing 
•… 

Score = sum of the mappings’  
weight 
s. t. mapping satisfies constraints 



Finding The Best Character Mappings 

 An Integer Linear 
Programming Problem 
 
 
 
 
 
 
 

 What is the best inference 
algorithm? 
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Maximize the mapping score 

Pronunciation constraint 

One-to-one constraint 

Non-crossing constraint 



Finding The Best Character Mappings 

A Dynamic Programming Algorithm 
 
 
 
 
 
 
 
 

 Exact and fast!  

3:9 

Maximize the mapping score 

Restricted mapping constraints 

One-to-one constraint 

Non-crossing constraint 

Take Home Message: 
Although ILP can solve most 
problems, the fastest inference 
algorithm depends on the 
constraints and can be simpler  

Weighted edit distance! 



3. Relaxing constraints 

 Given an ILP, find a set of constraints that make the problem 
“hard” to solve 
 Eg. In sequence labeling, without long-range constraints, the inference 

is tractable. The long-range constraints make the problem difficult. 

 Solve the easier problem without these constraints  
 Maybe incrementally introduce the “difficult” constraints into the 

problem 

 Examples 
 Cutting plane approach [Riedel and Clarke, EMNLP 2006] 
 Dual decomposition/ Lagrangian relaxation [Rush and Collins. 2010, 2011, 

Chang and Collins 2011] 
 LP relaxation [Roth and Yih, ICML 2005] 

 Dropping the integrality constraints 
 Exact solution if the constraints are totally unimodular 
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Extending Semantic role labeling 

2:11 

A0: The causer  
of the transformation 

A1:  The thing  
changing AM-TMP: Temporal 

Agent of 
action Temporal 

Verb arguments Preposition relations Consistency enforced 

V. Srikumar and D. Roth. A Joint Model for Extended Semantic Role 
Labeling. EMNLP 2011. 

Uses cutting plane approach: Introduce agreement constraints ONLY if 
they are violated 

   The field goal of Brien changed the game in the fourth quarter 
 
 
 
 
 
 
 
 
 



Dual Decomposition: Combining different parsers 

 Combining dependency parser and constituent parser  
 The parsers should agree on their dependencies 
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[Rush et al, 2010] 

Inference iteratively removes disagreements to reach  
consensus 

The two trees do 
not agree on the 
head of the word 
some. 



4. Approximate inference 

 When ILP solver isn’t fast enough, and one can resort to 
approximate solutions. 
 

 Beam search 
 We will see an example next 
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Example: Search based Inference for SRL 

 The objective function 
 
 
 
 

 Constraints 
 Unique labels 
 No overlapping or embedding 
 If verb is of type A, no argument of type  B 
 … 

 Intuition: check constraints’ violations on partial assignments 
 

3:14 

Maximize total score subject to 
linguistic constraints ∑ ⋅

ji
ijij xc

,
max                   

Indicator variable 
assigns the j-th class for the i-th token 

Classification confidence 



Inference using Beam Search 

 For each step, discard partial assignments that violate 
constraints! 

3:15 

Shape: argument 
 
Color: label 
 
Beam size = 2, 
Constraint: 
Only one Red 

Rank them 
according to 
classification 
confidence!  

Rank them according to 
classification confidence!  



Heuristic Inference 

 Problems of heuristic inference 
 Problem 1: Possibly, sub-optimal solution 
 Problem 2: May not find a feasible solution 

 Drop some constraints, solve it  again 
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 Using search on SRL gives comparable results to using ILP, 
but is much faster.   



Other Inference Options 

 Amortized inference 
 [Srikumar et. al, EMNLP 2012] 
 A way of speeding up any inference algorithm 
 Key idea:  

 Consider inference over an entire data set  
 Identify examples for which previous solutions can be re-used 
 Speedup obtained by not running inference 

 Other search algorithms 
 A-star, Hill Climbing… 
 Gibbs Sampling Inference [Finkel et. al, ACL 2005] 

 Named Entity Recognition: enforce long distance constraints 
 Can be considered as : Learning + Inference 
 One type of constraints only 
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Inference Methods – Summary 

 Why ILP?  A powerful way to formalize the problems  
 However, not the only algorithmic solution 
 

 Heuristic inference algorithms are useful sometimes! 
 Beam search 
 Other approaches: annealing … 

 

 Sometimes, a specific inference algorithm can be designed 
 According to your constraints 
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Constrained Conditional Models – 1st Part 
 
 Introduced CCMs as a formalisms that allows us to 

 Learn simpler models than we would otherwise 
 Make decisions with expressive models, augmented by declarative 

constraints 

 Focused on modeling – posing NLP problems as ILP problems 
 1. Sequence tagging          (HMM/CRF + global constraints) 
 2. SRL                                    (Independent classifiers + Global Constraints)  
 3. Sentence Compression (Language Model + Global Constraints) 

 Described Inference 
 Solving inference problems, exactly & approximately 

 Second half – Learning 
 Supervised setting, and supervision-lean settings 



PART 4: LEARNING PARADIGMS 

4: 1 
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This Tutorial: Constrained Conditional Models (Part II) 
 

 Part 4: Training Paradigms (20 min) 
 Learning models 

 Independently of constraints (L+I); Jointly with constraints (IBT) 
 Decomposed to simpler models 
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Decompose Model 
Training Constrained Conditional Models  

 Learning model 
 Independently of the constraints (L+I) 
 Jointly, in the presence of the constraints (IBT) 
 Decomposed to simpler models 

 
 
 

Decompose Model from constraints 
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Where are we?  

 Modeling & Algorithms for Incorporating Constraints  
 Showed that CCMs allow for formalizing many problems  
 Showed several ways to incorporate global constraints in the decision.  

 
 Training: Coupling vs. Decoupling Training and Inference.  

 Incorporating global constraints is important but 
 Should it be done only at evaluation time or also at training time? 
 How to decompose the objective function and train in parts? 
 Issues related to: 

 Modularity, efficiency and performance, availability of training data 
 Problem specific considerations 
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Training Constrained Conditional Models  

 Learning model 
 Independently of the constraints (L+I) 
 Jointly, in the presence of the constraints (IBT) 

 Note that structured prediction algorithms (S-SVM, S-Perceptron, CRFs) 
can be used both  

 When we decide to learn jointly (IBT) 
 When the left part is structured but we still want to add additional 

constraints at inference time  
 It is possible to train a model (left side), but make decisions with 

additional information (right side)  that was not incorporated during 
learning model.  (Not available, not needed, or just too expensive)  

Decompose Model from constraints 
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Comparing Training Methods 

 Option 1: Learning + Inference (with Constraints) 
 Ignore (some) constraints during training 
 

 Option 2:  Inference (with Constraints) Based Training  
 Consider constraints during training 

 
 In both cases: Global Decision Making with Constraints 

 
 Question: Isn’t Option 2 always better?  

 
 Not so simple…  

 Next,  the “Local model  story” 



Intuition: Solving Multi-Class with Binary Classifiers 

 MultiClass classifier 
 Function    f : Rd  {1,2,3,...,k} 

 
 Not always easy 
 Constrained Classification:  
     [Har-Peled et. el 2002; Crammer et. al 2002] 
 But the way we typically address it is via 1-vs- all:  

 Decompose into binary problems 
 It works quite well even though 1-vs-all is not expressive enough 

 

Real 
Problem: 

4: 7 
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f1(x) 

f2(x) 

f3(x) 
f4(x) 

f5(x) 

Training Methods 

x1 

x6 

x2 
x5 

x4 x3 

x7 

y1 
y2 

y5 

y4 

y3 

X 

Y 

Learning + Inference  (L+I) 
Learn models independently 

Inference Based Training (IBT) 
Learn one model, all y’s together! 

 
Intuition: Learning with 
constraints may make 
learning more difficult  
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-1 1 1 1 1 Y’   Local Predictions:  

Training with Constraints 
Example: Perceptron-based Global Learning: Structured Perceptron 

x1 

x6 

x2 
x5 

x4 x3 

x7 

f1(x) 

f2(x) 

f3(x) 
f4(x) 

f5(x) 

X 

Y 

-1 1 1 -1 -1 Y True Global Labeling 

Apply Constraints (Inference):  -1 1 1 1 -1 Y’   

Which one is better?  
When and Why? 
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YPRED= 

For each iteration 
 For each (X, YGOLD ) in the training data 
 
 
  If  YPRED != YGOLD 
   λ = λ + F(X, YGOLD ) - F(X, YPRED)  
  endif 
 endfor 
   

L+I & IBT: General View – Structured Perceptron 

 Graphics for the case:  F(x,y) = F(x) 

The difference between  
L+I and IBT 
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Claims [Punyakanok et. al , IJCAI 2005] 

 Theory applies to the case of local models  
 F(x,y) = F(x ); applies broadly, e.g., SRL 

 
 When the local modes are “easy” to learn, L+I outperforms IBT. 

 In many applications, the components are identifiable and easy to learn (e.g., 
argument, open-close, PER). 

 Only when the local problems become difficult to solve in isolation, IBT 
outperforms L+I, but needs a larger number of training examples. 
 
 
 
 

 Other training paradigms are possible 
 Pipeline-like Sequential Models: [Roth, Small, Titov: AI&Stat’09] 

  Identify a preferred ordering among components 
  Learn k-th model jointly with previously learned models 

 Constrained Driven Learning [Chang et. al’07,12; later] 

L+I: cheaper computationally; modular 
IBT  is better in the limit, and when there is strong 
interaction among y’s   
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εopt=0.2 
εopt=0.1 εopt=0 

L+I vs IBT  

 Local         ε ≤ εopt + ( ( d log m + log 1/δ ) / m )1/2 

 Global ε ≤ 0 + ( ( cd log m + c2d +  log 1/δ ) / m )1/2 

Bounds Simulated Data 

L+I vs. IBT: the more identifiable 
individual problems are, the better 
overall performance is with L+I 

Indication for 
hardness of 

problem 

Ac
cu

ra
cy

 

Ac
cu

ra
cy

 

# of Examples # of Examples 
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Relative Merits: SRL 

Difficulty of the learning problem 
(# features) 

L+I is better. 
 
When  the problem is 
artificially made 
harder, the tradeoff is 
clearer.  

easy hard 

In some cases problems are hard due 
to lack of training data.  

Semi-supervised learning  
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Decompose Model 
Training Constrained Conditional Models (II) 

 Learning model 
 Independently of the constraints (L+I) 
 Jointly, in the presence of the constraints (IBT) 
 Decomposed to simpler models 

 Local Models (trained independently)  vs.  Structured Models 
 In many cases,  structured models might be better due to expressivity 

 But, what if we use constraints? 
 Local Models + Constraints     vs.            Structured Models + Constraints 

 Hard to tell: Constraints are expressive  
 For tractability reasons, structured models have less expressivity than what’s 

possible with constraints; L+I could be better then, and easier to learn. 

Decompose Model from constraints 
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Recall: Example 1: Sequence Tagging (HMM/CRF) 

HMM / CRF: 

y¤ = argmax
y2Y

P (y0)P (x0jy0)

n¡1Y

i=1

P (yijyi¡1)P (xijyi)

As an ILP: 

X

y2Y

1fy0=yg = 1 Discrete predictions 

1fy0=\V"g +

n¡1X

i=1

X

y2Y
1fyi¡1=y ^ yi=\V"g ¸ 1 There must be a verb! 

maximize
X

y2Y
¸0;y1fy0=yg +

n¡1X

i=1

X

y2Y

X

y02Y
¸i;y;y01fyi=y ^ yi¡1=y0g

subject to

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

D 

N 

V 

A 

Example: the the man saw dog 

¸0;y = log(P (y)) + log(P (x0jy))

¸i;y;y0 = log(P (yjy0)) + log(P (xijy))

8y; 1fy0=yg =
X

y02Y

1fy0=y ^ y1=y0g

8y; i > 1
X

y02Y

1fyi¡1=y0 ^ yi=yg =
X

y002Y

1fyi=y ^ yi+1=y00g
Feature consistency 
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Example: CRFs are CCMs   

 Consider a common model for sequential inference: HMM/CRF                                                                          
 Inference in this model is done via                 
     the  Viterbi Algorithm.  

 
 

 
 

 Viterbi is a special case of the Linear Programming based 
Inference. 
 It is a shortest path problem, which is a LP, with a canonical matrix that is 

totally unimodular. Therefore, you get integrality constraints for free.  
 One can now incorporate non-sequential/expressive/declarative 

constraints by modifying this canonical matrix 
 No value can appear twice; a specific value must appear at least once; AB 

 And, run the inference as an ILP inference. 
 

y1 y2 y3 y4 y5 y 
x x1 x2 x3 x4 x5 

s 
A 
B 
C 

A 
B 
C 

A 
B 
C 

A 
B 
C 

A 
B 
C 

t 

Learn a rather simple model; make decisions with a more expressive model 

But, you can do better 
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Experiment: Semantic Role Labeling Revisited 

s 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

t 

 Sequential Models 
 Conditional Random Field  
 Global perceptron 

 Training: Sentence based 
 Testing: Find best global 

assignment (shortest path)  
 + with constraints 

 Local Models 
 Logistic Regression 
 Avg. Perceptron 

 Training: Token based 
 Testing: Find best assignment 

locally   
 + with constraints (Global) 
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Model CRF-ML CRF-D CRF-IBT Avg. P 
Baseline 66.46 69.14 

 
58.15 

+ Constraints 71.94 73.91 69.82 74.49 
Training Time 48 38 145 0.8 

Which Model is Better? Semantic Role Labeling 

 Experiments on SRL: [Roth and Yih, ICML 2005] 
 Story: Inject expressive Constraints into conditional random field 

 
 Sequential Models Local 

L+I L+I IBT 

Sequential Models are better than Local Models !  
(No constraints)  

 Local Models are now better than Sequential Models!  
(With constraints)  
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Summary: Training Methods – Supervised Case 

 Many choices for training a CCM 
 Learning + Inference  (Training w/o  constraints; add constraints later) 
 Inference based Learning (Training with constraints) 

 Based on this, what kind of models should you use?  
 Decomposing models can be better that structured models   

 

 Advantages of L+I 
 Require  fewer training examples 
 More efficient; most of the time, better performance 
 Modularity; easier to incorporate already learned models. 

 Bottom line: L+I is better when y-level interactions are not 
very strong  

 Next: Soft Constraints; Supervision-lean models 



PART 5: CONSTRAINTS DRIVEN 
LEARNING 
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Training Constrained Conditional Models  

 
 
 
 

 Learning constraints’ weights 
 Independently of learning the model  
 Jointly, along with learning the model  

 Dealing with lack of supervision 
 Constraints Driven Semi-Supervised learning (CODL) 
 Learning Constrained Latent Representations  
 Indirect Supervision  

5: 2 



 
 

 Hard Versus Soft Constraints 
 Hard constraints:  Fixed Penalty 
 Soft constraints:   Need to set the penalty 

 

 Why soft constraints? 
 Some constraint violations are more serious than others 
 An example can violate multiple constraints, multiple times! 
 Sometime we cannot make a prediction that violates no constraint 
 Degree of violation is only meaningful when constraints are soft! 

Soft Constraints 

¡
PK

i=1 ½kd(y; 1Ci(x))

½i = 1

5: 3 
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Information extraction without Prior Knowledge 

Prediction result of a trained HMM 
  Lars Ole Andersen . Program analysis and 
  specialization for the  
  C  
  Programming language 
   .  PhD thesis . 
  DIKU , University of Copenhagen , May 
  1994 . 
 

[AUTHOR]   
[TITLE]    
[EDITOR]   
[BOOKTITLE]   
[TECH-REPORT]   
[INSTITUTION]   

[DATE]    

Violates lots of natural constraints! 

Lars Ole Andersen . Program analysis and specialization for the 
 C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 
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Examples of Constraints 
 
 Each field must be a consecutive list of words and can appear 

at most once in a citation.  
 
 State transitions must occur on punctuation marks. 
 
 The citation can only start with AUTHOR or EDITOR.  
 
 The words pp., pages correspond to PAGE. 
 Four digits starting with 20xx and 19xx are DATE. 
 Quotations can appear only in TITLE 
 ……. Easy to express pieces of “knowledge” 

Non Propositional; May use Quantifiers  



Degree of Violations 

Lars Ole Andersen . 
AUTH AUTH EDITOR EDITOR 

Φc(y1)=0 Φc(y2)=0 Φc(y3)=1 Φc(y4)=0 

1 - if assigning yi to xi violates the constraint C  
with respect to assignment (x1,..,xi-1;y1,…,yi-1) 
 
0  - otherwise 

One possibility: Count how many times the assignment y violates a  constraint  

 
 1 1,  is a punctuationi i ii y y x− −∀ ≠ ⇒

Lars Ole Andersen . 
AUTH BOOK EDITOR EDITOR 

Φc(y1)=0 Φc(y2)=1 Φc(y3)=1 Φc(y4)=0 
∑Φc(yi) =1 ∑Φc(yj) =2 

ÁC(yj) =

d(y; 1C(x)) =
PT

j=1 ÁC(yj)

State transition must occur on  
punctuations. 
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Reason for using degree of violation 

 An assignment might violate a constraint multiple times 
 Allows us to chose a solution with fewer constraint violations 

Lars Ole Andersen . 
AUTH BOOK EDITOR EDITOR 

Φc(y1)=0 Φc(y2)=1 Φc(y3)=1 Φc(y4)=0 

Lars Ole Andersen . 
AUTH AUTH EDITOR EDITOR 

Φc(y1)=0 Φc(y2)=0 Φc(y3)=1 Φc(y4)=0 
       The first one is 
better because of 
d(y,1c(X))!  
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Learning the constraints’ weights 

 
 

 Strategy 1: Independently of learning the model  
 Handle the learning parameters ¸  and the penalty ½  separately 
 Learn a feature model and a constraint model 
 Similar to L+I, but also learn the penalty weights 
 Keep the model simple 
 

 Strategy 2: Jointly, along with learning the model  
 Handle the learning parameters  ¸  and the penalty ½  together 
 Treat soft constraints as high order features 
 Similar to IBT, but also learn the penalty weights 

 

¸ ¢ F (x; y)¡
PK

i=1 ½kd(y; 1Ci(x))
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Strategy 1: Independently of learning the model  

 Model: (First order) Hidden Markov Model P¸ (x,y) 
 Constraints: long distance constraints 

 The i-th the constraint: 
 The probability that the i-th constraint Ci is violated P(Ci = 1) 

 Assumption: Product of Experts 
 

 The learning problem 
 Given labeled data, estimate ¸ and P(Ci = 1) 
 For one labeled example, 

 
 

 Training: Maximize the score of all labeled examples! 
 

  
 

Score(x; y) = HMM Probability£ Constraint Violation Score
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Strategy 1: Independently of learning the model (cont.) 

 
 

 The new scoring function is a CCM! 
 Setting  
 New score: 

 
 Maximize this new scoring function on labeled data 

 Learn a HMM separately 
 Estimate P(Ci=1)  separately by counting how many times the 

constraint is violated by the training data! 

 The product of experts assumption justifies optimizing the 
model and the constraints’ weights separately 

 

 

Score(x; y) = HMM Probability£ Constraint Violation Score

½i = ¡ log P (Ci=1)
P (Ci=0)

log Score(x; y) = ¸ ¢ F (x; y)¡
PK

i=1 ½id(y; 1Ci(x)) + c
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Strategy 2: Jointly, along with learning the model  

 The problem is now a standard structured learning problem 
 Structured perceptron, Structured SVM 
 Need to supply the inference algorithm: 
 For example, Structured SVM  

 
 

 The function  LS(x,s,w)  measures the distance between gold label and 
the inference result for this example! 

 Simple solution for Joint  parameter learning 
 Add constraints directly into the inference problem 
  w=[¸ ½], Á(x,y) contains both features and constraint violations    

 It’s also possible to learn the joint weight vector with CRF: 
 Sum problem in inference during training [cannot use ILP] 

maxy wTÁ(x; y)

minw
kwk2

2 + C
Pl

i=1 LS(xi; yi; w),
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Summary: Learning constraints’ weights 

 The need for soft constraints 
 Constraints can be violated by gold data; some are more important 
 Want to have degree of violation 
 Experimental Evidence: Domain Specific – soft constraints help for the 

Citation & Advertisement Domain  

 Learning constraints’ weights 
 Independent approach: fix the model 

 Learn constraints weights by counting violations  
 Joint approach 

 Treat constraints as long distance/abstract features 
 Structured learning problem: can use Sum or Max (easier)  

 Experimental evidence: Joint learning of constraints improves only 
with enough training data. 

 See details in: [Chang, Ratinov, Roth, Machine Learning Journal 2012] 
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Training Constrained Conditional Models  

 Learning constraints’ weights 
 Independently of learning the model  
 Jointly, along with learning the model  

 Dealing with lack of supervision 
 Constraints Driven Semi-Supervised learning (CODL) 
 Learning Constrained Latent Representations  
 Indirect Supervision  

5: 14 



Dealing with lack of supervision 

 Goal of this tutorial: learning structured models 
 Learning structured models requires annotating structures. 

 Very expensive process 
 

 Constraints can easy the burden in two ways: 
 
 Constraints can serve as a supervision source 

 Will be discussed in the context of semi-supervised learning 
 Constrained EM 

 The presence of constraints can help amplify simple forms of 
supervision 
 Use binary supervision to learn structure 
 Indirect supervision  

 
 5: 15 



Role of Constraints: Encoding Prior Knowledge 
 Consider encoding the knowledge that:  

 Entities of type A and B cannot occur simultaneously in a sentence  

 The “Feature” Way        
 Requires larger models 
 Needs more training data 

 The  Constraints  Way 
 Tells the model what it should attend to 
 Keep the model simple;  add expressive constraints directly 
 A small  set of constraints 
 Allows for decision time incorporation of constraints  

A form of supervision 

We can use constraints to replace training data 
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Guiding (Semi-Supervised) Learning with Constraints 

Model 

Decision Time  
Constraints 

Un-labeled Data 

Constraints 

 In traditional Semi-Supervised learning the model can drift 
away from the correct one.  

 Constraints can be used to generate better training data 
 At training to improve labeling of un-labeled data (and thus 

improve the model) 
 At decision time, to bias the objective function towards favoring 

constraint satisfaction.  

Better model-based labeled data Better Predictions 

Seed examples 
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Constraints Driven Learning (CoDL)    

 
(w0,½0)=learn(L)  
For N iterations do 
  T=φ  
     For each x in unlabeled dataset 
    h Ã argmaxy wT Á(x,y) - ∑ ½k dC(x,y) 
    T=T ∪ {(x, h)}   
   
    (w,½) = γ (w0,½0) + (1- γ) learn(T) 

[Chang, Ratinov, Roth, ACL’07;ICML’08,MLJ’12] 

Supervised learning algorithm parameterized by 
 (w,½). Learning can be justified as an optimization 
 procedure for an objective function 

Inference with constraints:  
augment the training set  

Learn from new training data 
Weigh supervised &  
unsupervised models. 

Excellent Experimental Results showing the advantages of using constraints, 
especially with small amounts on labeled data [Chang et. al, Others] 
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Value of Constraints in Semi-Supervised Learning 
Objective function:  

# of available labeled examples 

Learning w 10 Constraints 
Constraints are used to 
Bootstrap a semi-
supervised learner  
Poor model + constraints 
used to annotate 
unlabeled data, which in 
turn is used to keep 
training the model.  

Learning w/o Constraints: 300 examples. 
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Train and Test With Constraints 

 

KEY : 
 
No need to modify the HMM 
algorithm.  
 
- Constraints are used to  
      train the model  
- Contribute both to a 

better model and to 
better final predictions. 
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CoDL as Constrained Hard EM 

 Hard EM is a popular variant of EM 
 While EM estimates a distribution over all y variables in the E-

step, 
 … Hard EM predicts the best output in the E-step 

y*= argmaxy P(y|x,w) 

 Alternatively, hard EM predicts a peaked distribution 

q(y) = ±y=y*  
 Constrained-Driven Learning (CODL) – can be viewed as a 

constrained version of hard EM:  
 

       y*= argmaxy:Uy· b Pw(y|x) 

Constraining the 
feasible set 
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Constrained EM: Two Versions 

 While Constrained-Driven Learning  [CODL; Chang et al, 07] is a 
constrained version of hard EM: 
 

                        y*= argmaxy:Uy· b Pw(y|x) 
 … It is possible to derive a constrained version of EM: 
 To do that, constraints are relaxed into expectation 

constraints on the posterior probability q:  

Eq[Uy] · b 

 The E-step now becomes: 
              q’ =  

 
 This is the Posterior Regularization  model [PR; Ganchev et al, 10] 

 
 
 
 
 
 

Constraining the 
feasible set 
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Which (Constrained) EM to use? 

 There is a lot of literature on EM vs hard EM 
 Experimentally, the bottom line is that with a good enough (???) 

initialization points , hard EM is probably better (and more efficient). 
 E.g., EM vs hard EM (Spitkovsky et al, 10) 

 Similar issues exist in the constrained case: CoDL vs. PR 
 New – Unified EM (UEM)   

 [Samdani et. al., Talk this Wednesday, ML-II session] 
 UEM is a family of EM algorithms,  

 Parameterized by a single parameter  𝛾 that  
 Provides a continuum of algorithms – from EM to hard EM, and 

infinitely many new EM algorithms in between.   
 Implementation wise, not more complicated than EM 
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Unsupervised POS tagging: Different EM instantiations 

 Measure percentage accuracy relative to EM 
 
 
 

Uniform 
Initialization 

Initialization with 
5 examples 

Initialization with 
10 examples 

Initialization with 
20 examples 

Initialization with 
40-80 examples 

Gamma 

Pe
rf

or
m

an
ce

 re
la

tiv
e 

to
 E

M
 

Hard EM EM 
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Summary: Constraints as Supervision 

 Introducing domain knowledge-based constraints can help 
guiding semi-supervised learning 
 E.g. “the sentence must have at least one verb”, “a field y appears once 

in a citation”  

 Constrained Driven Learning (CoDL) : Constrained hard EM  
 PR: Constrained  soft EM 
 UEM : Beyond “hard” and “soft” 

 

 Related literature:  
 Unified EM (Samdani et al 2012: Talk on Wednesday) 
 Constraint-driven Learning (Chang et al, 07), 
 Posterior Regularization (Ganchev et al, 10), 
 Generalized Expectation Criterion (Mann & McCallum, 08), 
 Learning from Measurements (Liang et al, 09) 
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Training Constrained Conditional Models  

 Learning constraints’ penalties 
 Independently of learning the model  
 Jointly, along with learning the model  

 Dealing with lack of supervision 
 Constraints Driven Semi-Supervised learning (CODL) 
 Learning Constrained Latent Representations  
 Indirect Supervision  
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Different types of structured learning tasks 

 Type 1: Structured output prediction 
 Dependencies between different output decisions 
 We can add constraints on the output variables 
 Examples: information extraction, parsing, pos tagging, …. 

 

 Type 2: Binary output tasks with latent structures 
 Output: binary, but requires an intermediate representation 

(structure) 
 The intermediate representation is hidden 
 Examples: paraphrase identification, TE, … 
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Textual Entailment 

Former military specialist Carpenter took the helm at FictitiousCom Inc. 
after five years as press official at the United States embassy in the 
United Kingdom. 
                            
 
 
 
 
 
 
 
 
 
                                         
 
 
    
   Jim Carpenter worked for the US Government. 

x1 

x6 

x2 
x5 

x4 x3 

x7 

x1 

x2 

x4 x3 

 Entailment Requires an Intermediate Representation  
 Alignment based Features  
 Given the intermediate features – learn a decision 
 Entail/ Does not Entail  

But only positive entailments are expected to have 
a meaningful intermediate representation 

5: 28 



Paraphrase Identification 

 Consider the following sentences:  
 

 S1:           Druce will face murder charges, Conte said. 
 
 S2:           Conte said Druce will be charged with murder . 

 
 

 Are S1 and S2 a paraphrase of each other? 
 There is a need for an intermediate representation to justify 

this decision 
 

Given an input x 2 X 
Learn a model f : X !  {-1, 1} 

We need latent variables that explain:  
why this is a positive example. 

Given an input x 2 X 
Learn a model f : X  ! H !  {-1, 1} 
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Structured output learning 

x1 

x6 

x2 
x5 

x4 x3 

x7 

X 

Y 

y1 
y2 

y4 

y3 

y5 

Structure Output Problem: 

Dependencies between 
different outputs 

Use constraints 
to capture the 
dependencies 

5: 30 



Standard Binary Classification problem 

x1 

x6 

x2 
x5 

x4 x3 

x7 

X 

Y 
y1 

Single Output Problem: 

Only one output 
constraints!? 
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Binary classification problem with latent representation 

 

x1 

x6 

x2 
x5 

x4 x3 

x7 

X 

Y 
f1 

f2 

f4 
f3 

f5 

y1 
Binary Output Problem 

with latent variables 

Use constraints 
to capture the 
dependencies on 
latent 
representation 
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Algorithms: Two Conceptual Approaches  

 
 
 
 

 Two stage approach (typically used for TE and paraphrase identification) 

 Learn hidden variables; fix it 
 Need supervision for the hidden layer (or heuristics) 

 For each example, extract features over x and (the fixed) h. 
 Learn a binary classier 

 Proposed Approach: Joint Learning  
 Drive the learning of h from the binary labels 
 Find the best h(x)  [Use constraints here to search only for “legitimate” h’s] 
 An intermediate structure representation is good to the extent is supports 

better final prediction.  
 Algorithm? 

b 

Structure prediction Binary Prediction 

Input 

Predicted  Structure Feature  representation 

Binary 
 label 

𝑥 → ℎ Á 𝑥, ℎ → 𝑌 

Feedback 
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New feature vector for the final decision. 
Chosen h selects a representation. 

Learning with Constrained Latent Representation (LCLR): Intuition 

 If x is positive 
 There must exist a good explanation (intermediate representation) 
  9 h, wT Á(x,h) ¸ 0 
 or, maxh wT Á(x,h) ¸ 0 

 If  x is negative  
 No explanation is good enough to support the answer  
  8 h, wT Á(x,h) · 0 
 or, maxh wT Á(x,h) · 0 

 

 Altogether, this can be combined into an objective function: 
                Minw 1/2||w||2   +  C∑i L(1-zimaxh 2 C wT ∑{s} hs Ás (xi)) 

 

This is an inference step that will 
gain from the CCM formulation  

CCM on the latent structure 

Inference: best h subject to constraints C 
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Optimization 

 Non Convex, due to the maximization term inside the global 
minimization problem 

 In each iteration: 
 Find the best feature representation h* for all positive examples (off-

the shelf ILP solver) 
 Having fixed the representation for the positive examples, update w 

solving the convex optimization problem: 
 
 

 Not the standard SVM/LR: need inference 

 Asymmetry: Only positive examples require a good 
intermediate representation that justifies the positive label.  
 Consequently, the objective function decreases monotonically  
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 Formalized as Structured SVM + Constrained Hidden Structure 
 LCRL: Learning Constrained Latent Representation 

Iterative Objective Function Learning 

Inference 
best h subj. to C 

Prediction 
with inferred h 

Training 
w/r to binary 

decision label 

Initial Objective 
Function  

Generate features 

Update weight 
vector 

Feedback relative 
to binary problem 

A CCM goes here: restrict 
possible hidden structures 

considered.  
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 LCLR provides a general inference formulation that allows the 
use of expressive constraints to determine the hidden level 
 Flexibly adapted for many tasks that require latent representations.  
 
 
 

 Paraphrasing: Model input as graphs, V(G1,2), E(G1,2) 
 Four (types of) Hidden variables:  

 hv1,v2 – possible vertex mappings; he1,e2 – possible edge mappings  
 Constraints: 

 Each vertex in G1 can be mapped to a single vertex in G2 or to null 
 Each edge in G1 can be mapped to a single edge in G2 or to null 
 Edge mapping active iff the corresponding node mappings are active 

 
 

Learning with Constrained Latent Representation (LCLR): Framework 

LCLR Model H: Problem Specific  
Declarative Constraints  X Y H 
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Experimental Results 

Transliteration: 

Recognizing Textual Entailment: 

Paraphrase Identification:* 
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Summary 

 Many important NLP problems require latent structures 
 

 LCLR: 
 An algorithm that applies CCM to a latent structure  
 Can be used for many different NLP tasks 
 Easy to inject linguistic constraints on latent structures 
 A general learning framework that is good for many loss functions 

 

 Take home message: 
 It is possible to apply constraints on many important problems with 

latent variables! 
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Training Constrained Conditional Models  

 Learning constraints’ penalties 
 Independently of learning the model  
 Jointly, along with learning the model  

 Dealing with lack of supervision 
 Constraints Driven Semi-Supervised learning (CODL) 
 Learning Constrained Latent Representations  
 Indirect Supervision  
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Indirect supervision for Structured Prediction 

 Our goal is to exploit constraints to aid learning structures. 
 Intuition:   

 If the y variables we are after are tightly coupled (via constraints)  
 …perhaps supervising some of them could be propagated to others 

and amplify the weak supervision 
 

 Before, the structure was in the intermediate level 
 We cared about the structured representation only to the extent it 

helped the final binary decision 
 The binary decision variable was given as supervision 

 What if we care about the structure? 
 Information & Relation Extraction; POS tagging, Semantic Parsing  

 Invent a companion binary decision problem! 
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Information extraction 

Prediction result of a trained HMM 
  Lars Ole Andersen . Program analysis and 
  specialization for the  
  C  
  Programming language 
   .  PhD thesis . 
  DIKU , University of Copenhagen , May 
  1994 . 
 

[AUTHOR]   
[TITLE]    
[EDITOR]   
[BOOKTITLE]   
[TECH-REPORT]   
[INSTITUTION]   

[DATE]    

Lars Ole Andersen . Program analysis and specialization for the 
 C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 
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Structured Prediction 

 The problem we have now is a “real” structure learning 
problem.  
 We will reduce the previous problem to this one by introducing a 

“fictitious” companion binary variable that is easy to supervise.  
 

 Invent a companion binary decision problem! 
 Parse Citations: Lars Ole Andersen . Program analysis and specialization 

for the C Programming language.  PhD thesis. DIKU , University of 
Copenhagen, May 1994 . 
 Companion: Given a citation; does it have a legitimate citation parse? 

 POS Tagging 
 Companion: Given a word sequence, does it have a legitimate POS 

tagging sequence? 
 Binary Supervision is almost free 

X Y H 
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Companion Task Binary Label as Indirect Supervision 

 The two tasks are related just like the binary and structured 
tasks discussed earlier 
 
 
 
 

 All positive examples must have a good structure 
 Negative examples cannot have a good structure 
 We are in the same setting as before 

 Binary labeled examples are easier to obtain 
 We can take advantage of this to help learning a structured model  

 Algorithm: combine binary learning and structured learning 
 

X Y H 
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Learning Structure with Indirect Supervision 

 In this case we care about the predicted structure 
 Use both Structural learning and Binary learning 

The feasible structures 
of an example 

Correct 

Predicted 

Negative examples cannot 
have a good structure 

Negative examples restrict 
the space of hyperplanes  
supporting the decisions for x 
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Joint Learning Framework 

 Joint learning  : If available, make use of both supervision types 

∑∑
∈∈

++
Bi

iiB
Si

iiS
T

w
wzxLCwyxLCww );,();,(

2
1min 21

y l a t I 
 א  ה י ל ט י

Target Task 

Yes/No 

Loss on Target Task Loss on Companion Task 

Loss function – same as described earlier. 
 Key: the same parameter w for both components 

Companion Task 

 י א  ו י י ל נ

I   l   l  i  n o  i  s 
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Experimental Result 

 Very little direct (structured) supervision.  
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 a
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Experimental Result 

 Very little direct (structured) supervision.  
 (Almost free) Large amount binary indirect supervision 

 
 
 
 
 

55

60

65

70

75

80

85

Phonetic
Alignment

POS IE

Direct
(structured
labeled) only

Direct + indirect
(both structured
and binary)
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More on Dealing with minimal of supervision 
 Constraint Driven Learning 

 Use constraints to guide semi-supervised learning! 
 
 

 Use Binary Labeled data to help structured output prediction 
 Training Structure Predictors by Inventing (easy to supervise) binary 

labels  
 

 Driving supervision signal from World’s Response  
 Efficient Semantic Parsing = CCM + world’s response 
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Connecting Language to the World 

 How to recover meaning from text? 
 Annotate with meaning representation; use (standard) “example based” ML 

 Teacher needs deep understanding of the learning agent  
 Annotation burden; not scalable. 

 Instructable computing 
 Natural communication between teacher/agent  

 

Connecting Language to the World 

Can I get a coffee with sugar 
and no milk 

MAKE(COFFEE,SUGAR=YES,MILK=NO) 

Arggg 

Great! 

Semantic Parser 

Can we rely on this interaction to 
provide supervision (and,  
eventually, recover meaning) ? 
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Traditional approach: 
learn from logical forms 
and gold alignments 

EXPENSIVE! 

Semantic parsing is a  structured prediction problem:  
identify mappings from text to a meaning representation 
 
We will use a CCM formulation with a lot of “legitimacy” constraints 

Query  
Response: 

Supervision = Expected Response 
 

 
 
 
 

                     
                              Check if Predicted response == Expected response 

Logical 
Query 

Real World Feedback 

  

Interactive Computer 
System Pennsylvania 

Query  
Response: 

r 

largest( state( next_to( const(NY)))) y 

“What is the largest state that borders NY?" NL 
Query 

x 

Train a structured predictor with this binary supervision ! 

Expected : Pennsylvania 
Predicted : NYC 

Negative Response 

Pennsylvania r 

Binary 
Supervision 

Expected : Pennsylvania 
Predicted : Pennsylvania 

Positive Response 

Our approach: use 
only the responses  
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Response Based Learning  

Repeat 
   for all input sentences do 
     Find best logical representation y 
      given current w 
     Query feedback function 
   end for 
   Learn new W using feedback 
Until Convergence 

TRAIN: Try to get more positive examples (representations with positive feedback) 
Direct (Binary) protocol: a binary classifier on Positive/Negative ex’s 
                   (Problem: many good structures are being demoted) 
Structured Protocol: Use only correct structures.  
                    (Problem: ignores negative feedback) 

Difficulty:  
- Need to generate training examples 
- Negative examples give no information 

Basic Algorithm: 
- Try to generate good structures 
- Update parameters based on current 

examples 
- Coarse use of incorrect structures 
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Empirical Evaluation [CoNLL’10,ACL’11, IJCAI’11] 

 Key Question: Can we learn from this type of supervision? 
 

Algorithm # training 
structures 

Test set  
accuracy 

No Learning: Initial Objective Fn 
Binary signal: Binary Protocol                                          

0 
0 

22.2% 
69.2 %  

Binary signal: Structured Protocol  0 73.2 % 

Improved Protocol: 0 79.6% 

WM*2007   (fully supervised – uses 
gold structures)  

310 75 % 

*[WM]   Y.-W. Wong and R. Mooney. 2007. Learning synchronous grammars for semantic 
parsing with lambda calculus. ACL. 
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Summary 
 Constrained Conditional Models:  Computational Framework 

for global inference and a vehicle for incorporating knowledge 
 

 Direct supervision for structured NLP tasks is expensive 
 Indirect supervision is cheap and easy to obtain 

 
 We suggested learning protocols for Indirect Supervision  

 Make use of simple, easy to get, binary supervision  
 Showed how to use it to learn structure and latent structures 
 CCM Inference is key in propagating the simple supervision 

 

 Learning Structures from Real World Feedback 
 Obtain binary supervision from “real world” interaction 
 Indirect supervision replaces direct supervision 
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This Tutorial: Constrained Conditional Models (Part II) 

 Part 6: Conclusion (& Discussion)  (10 min) 
 Building CCMs;  Features and Constraints. Mixed models vs. Joint models;  
 where is Knowledge coming from 

THE END 
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Conclusion 

 Constrained Conditional Models combine 
 Learning conditional models with using declarative expressive constraints 
 Within a constrained optimization framework 

 
 Our goal was to describe: 

 A clean way of incorporating constraints to bias and improve decisions of 
learned models 

 A clean way to use (declarative) prior knowledge to guide semi-supervised 
learning 

 Ways to make use of (declarative) prior knowledge when choosing 
intermediate (latent) representations.   
 

 Provide examples for the diverse usage CCMs have already found 
in NLP 
 Significant success on several NLP and IE tasks (often, with ILP)  



What is a Constrained Conditional Model? 

Modeling NLP problem 
• Variables, Features and constraints 

Objective function 
• Constrained Conditional Model 

Constrained optimization language 
• How to represent inference? Integer linear program 

Inference 
• How to solve it? 

Several inference algorithms: Exact 
ILP, search, relaxation; dynamic prog. 

Learning 
• How to learn the objective 

function? 

Learning λ and ρ. Several learning 
strategies: L+I, IBT, others. 
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Technical Conclusions 
 Presented and discussed modeling issues  

 How to improve existing models using declarative information  
 Incorporating expressive global constraints into simpler learned models  

 Discussed Inference issues 
 Often, the formulation is via an Integer Linear Programming formulation, 

but algorithmic solutions can employ a variety of algorithms. 

 Training issues – Training protocols matters 
 Training with/without constraints; soft/hard constraints;  
 Performance, modularity and ability to use previously learned models.  
 Supervision-lean models 

 We did not attend to the question of “how to find constraints” 
 Emphasis on: background knowledge is important, exists, use it. 
 But, it’s clearly possible to learn constraints. 



6: 5 

       y* = argmaxy ∑ wi Á(x; y) 
  
 Linear objective functions  
 Typically Á(x,y) will be local 

functions, or Á(x,y) = Á(x)   

Summary: Constrained Conditional Models 

y7 y4 y5 y6 y8 

y1 y2 y3 

y7 y4 y5 y6 y8 

y1 y2 y3 

Conditional Markov Random Field Constraints Network 

           −  ∑i ½i dC(x,y) 
 

 Expressive constraints over output 
variables  

 Soft, weighted constraints  
 Specified declaratively as FOL formulae 

 Clearly, there is a joint probability distribution that represents 
this mixed model.  

 We would like to:  
 Learn a simple model or several simple models 
 Make decisions with respect to a complex model                  
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 Decide what variables are of interest – learn model (s)  
 Think about constraints among the variables of interest 
 Design your objective function  

LBJ (Learning Based Java): http://L2R.cs.uiuc.edu/~cogcomp 
A modeling language for Constrained Conditional Models. Supports 

programming along with building learned models, high level specification of 
constraints and inference with constraints 

Designing CCMs 

       y* = argmaxy ∑ wi Á(x; y) 
  
 Linear objective functions  
 Typically Á(x,y) will be local functions, 

or Á(x,y) = Á(x)   

y7 y4 y5 y6 y8 

y1 y2 y3 

y7 y4 y5 y6 y8 

y1 y2 y3 

           −  ∑i ½i dC(x,y) 
 

 Expressive constraints over output 
variables  

 Soft, weighted constraints  
 Specified declaratively as FOL formulae 

Thanks! 

http://l2r.cs.uiuc.edu/~cogcomp
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Questions? 
 Thank you! 



Global Inference Using Integer Linear Programming

Wen-tau Yih

August 15, 2004

1 Introduction

This report is a supplemental document of some of our papers [5, 3, 4]. It gives a simple but
complete step-by-step case study, which demonstrates how we apply integer linear programming to
solve a global inference problem in natural language processing. This framework first transforms
an optimization problem into an integer linear program. The program can then be solved using
existing numerical packages.

The goal here is to provide readers an easy-to-follow example to model their own problems in
this framework. There are two main parts in this report. Sec. 2 describe a problem of labeling
entities and relations simultaneously as our inference task. It then discusses the constraints among
the labels and shows how the objective function and constraints are transformed to an integer linear
program. Although transforming the constraints to their linear forms is not difficult in this entity
and relation example, sometimes it can be tricky, especially when more variables are involved.
Therefore, we discuss how to handle different types of constraints in Sec. 3.

2 Labeling Entities & Relations

Given a sentence, the task is to assign labels to the entities in this sentence, and identify the relation
of each pair of these entities. Each entity is a phrase and we assume the boundaries of these entities
are given.

Figure 1 gives an example of the sentence “Dole’s wife, Elizabeth, is a native of N.C.” In this
sentence, there are three entities, Dole, Elizabeth, and N.C. We use E1, E2, and E3 to represent
their entity labels. In this example, possible entity labels include other, person, and location.
In addition, we would like to know the relation between each pair of the entities. For a pair of
two entities Ei and Ej , the relation is represented by Rij . In this example, there will be 6 relation
variables – R12, R21, R13, R31, R23, R32. Since most entities have no special relation, the value of
most relation variables should be irrelevant. Besides this special label, the relations of interest in
this example are spouse of and born in.

Assume that magically some local classifiers have already provided some confidence scores on
possible labels, as shown in Table 1.

If we want to choose the labels that maximize the sum of those confidence scores, it’s the same
as choosing the label that has the highest score for each variable. The global labeling then becomes:
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Dole 's wife, Elizabeth , is a native of N.C.
E1 E2 E3

R13

R31

R12
R23

R21 R32

Figure 1: A sentence that has 3 entities

variable other person location
E1 0.05 0.85 0.10
E2 0.10 0.60 0.30
E3 0.05 0.50 0.45

variable irrelevant spouse of born in
R12 0.05 0.45 0.50
R21 0.75 0.10 0.15
R13 0.85 0.05 0.10
R31 0.80 0.05 0.15
R23 0.10 0.05 0.85
R32 0.65 0.20 0.15

Table 1: The confidence scores on the labels of each variable.

variable label score
E1 person 0.85
E2 person 0.60
E3 person 0.50
R12 born in 0.50
R21 irrelevant 0.75
R13 irrelevant 0.85
R31 irrelevant 0.80
R23 born in 0.85
R32 irrelevant 0.65

sum 6.35

At this point, the problem seems to have been solved by the magic local classifiers. However,
after a second look at this labeling, we can easily find the inconsistency between entity and relation
labels. For example, R12 cannot be born in if both entities E1 and E2 are persons. Indeed, there
exists some natural constraints between the labeling of entity and relation variables that the local
classifiers may not know or respect. In our example, we know the global labeling also stratifies the
following two constraints.
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• if Rij = spouse of, then Ei = person AND Ej = person

• if Rij = born in, then Ei = person AND Ej = location

In summary, the problem we want to solve here really is to find the best legitimate global
labeling, which is subject to the constraints and maximizes the sum of the confidence scores.

Note that although exhaustive search seems plausible in this toy problem, it soon becomes
intractable when the number of variables or the number of possible labels grows. In the rest of this
section, we are going to show that how we transfer this problem to an integer linear program, and
let the numerical packages help us to find the answer.

2.1 Indicator Variables

In order to apply (integer) linear programming, both the objective function and constraints have to
be linear. Since the confidence score could be any real number, the original function is not linear.
In addition, the logical constraints we have are not linear as well.

To overcome this difficulty, the first step of the transformation is to introduce several indicator
(binary) variables, which represent the assignment of the original variables. For each entity or
relation variable a and each legitimate label k, we introduce a binary variable xa,k. When the
original variable a is assigned label k, xa,k is set to 1. Otherwise, xa,k is 0. In our toy example, we
then have 27 such indicator variables:

xE1,other, xE1,person xE1,location,
xE2,other, xE2,person, xE2,location,
xE3,other, xE3,person, xE3,location,

xR12,irrelevant, xR12,spouse of , xR12,born in,
xR21,irrelevant, xR21,spouse of , xR21,born in,
xR13,irrelevant, xR13,spouse of , xR13,born in,
xR31,irrelevant, xR31,spouse of , xR31,born in,
xR23,irrelevant, xR23,spouse of , xR23,born in,
xR32,irrelevant, xR32,spouse of , xR32,born in.

To simplify the notation, let LE = {other,person, location} and LR = {irrelevant, spouse of,born in}
represent the sets of entity and relation labels, respectively. Assume n = 3 means the number of
entities we have in the sentence. The indicator variables we introduce are:

xEi,le , where 1 ≤ i ≤ n and le ∈ LE

xRij ,lr , where 1 ≤ i, j ≤ n, i 6= j, and lr ∈ LR

2.2 Objective Function

Suppose cEi,le represents the confidence score of Ei being le, where 1 ≤ i ≤ n and le ∈ LE , and
cRij ,lr represents the confidence score of Rij being lr, where 1 ≤ i, j ≤ n, i 6= j and lr ∈ LR. The
objective function f (i.e., the sum of confidence scores) can be represented by

f =
∑

1≤i≤n,le∈LE

cEi,lexEi,le +
∑

1≤i,j≤n,i6=j,lr∈LR

cRij ,lrxRij ,lr

If we plug in the numbers in Table 1, the function f is:

f = 0.05 ·xE1,other +0.85 ·xE1,person + · · ·+0.65 ·xR32,irrelevant +0.20 ·xR32,spouse of +0.15 ·xR32,born in
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Inevitably, this transformation also brings new constraints, which come from the fact that one
entity/relation variable can only have one label, and must have one label. For example, only exact
one of the labels other, person, location can be assigned to E1. As a result, only one of the indicator
variables xE1,other, xE1,person, xE1,location can and must be 1. This restriction can be easily written
as the following linear equations.

∑
le∈LE

xEi,le = 1 ∀1 ≤ i ≤ n∑
lr∈LR

xRij ,lr = 1 ∀1 ≤ i, j ≤ n, i 6= j

2.3 Logical Constraints

The other reason of introducing indicator variables is to handle the real constraints we have – the
logical constraints between entity and relation labels. Let me remind you what they are in our
example:

• if Rij = spouse of, then Ei = person AND Ej = person, where 1 ≤ i, j ≤ n and i 6= j

• if Rij = born in, then Ei = person AND Ej = location, where 1 ≤ i, j ≤ n and i 6= j

If we treat the indicator variables as boolean variables, where 1 means true and 0 means false,
the constraints can be rephrased as:

xRij ,spouse of → xEi,person ∧ xEj ,person 1 ≤ i, j ≤ n, and i 6= j

xRij ,born in → xEi,person ∧ xEj ,location 1 ≤ i, j ≤ n, and i 6= j

In fact, these two boolean constraints can be modeled by the following two linear inequalities.

2 · xRij ,spouse of ≤ xEi,person + xEj ,person 1 ≤ i, j ≤ n, and i 6= j

2 · xRij ,born in ≤ xEi,person + xEj ,location 1 ≤ i, j ≤ n, and i 6= j

Let’s do a simple check to see if they are correct. When xRij ,spouse of is 0 (false), xEi,person

and xEj ,person can be either 0 or 1, and the inequality still holds. However, when xRij ,spouse of is 1
(true), both xEi,person and xEj ,person have to be 1 (true).

Transforming the logical constraints into linear forms is the key of this framework. It is not
hard, but may be tricky sometimes (which makes it an interesting brain exercise). We will talk
more about transforming other types of logical constraints in Sec. 3 later.

2.4 Solving the Integer Linear Program Using Xpress-MP

Figure 2 shows the complete integer linear program. Now, all we need to do now is to apply
some numeric packages, such as Xpress-MP [7], CPlex [1], or the LP solver in R [6], to solve
it. Transferring the solution back to the global labeling we want is straightforward – just find
those indicator variables that have the value 1. In this section, I will demonstrate how to apply
Xpress-MP to do the job.

The syntax in Xpress-MP is fairly easy and straightforward. Here I simply list the source code
with some comments, which are the lines beginning with the “!” symbol.
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max
∑

1≤i≤n,le∈LE
cEi,lexEi,le +

∑
1≤i,j≤n,i6=j,lr∈LR

cRij ,lrxRij ,lr

subject to:
xEi,le ∈ {0, 1} ∀1 ≤ i ≤ n (1)
xRij ,lr ∈ {0, 1} ∀1 ≤ i, j ≤ n, i 6= j (2)∑
le∈LE

xEi,le = 1 ∀1 ≤ i ≤ n (3)∑
lr∈LR

xRij ,lr = 1 ∀1 ≤ i, j ≤ n, i 6= j (4)
2 · xRij ,spouse of ≤ xEi,person + xEj ,person 1 ≤ i, j ≤ n, and i 6= j (5)
2 · xRij ,born in ≤ xEi,person + xEj ,location 1 ≤ i, j ≤ n, and i 6= j (6)

Figure 2: The complete integer linear program

model "Entity Relation Inference"
uses "mmxprs"

parameters
DATAFILE = "er.dat"
Num_Entities = 3;

end-parameters

declarations
ENTITIES = 1..Num_Entities
ENT_CLASSES = {"Other", "Person", "Location"}
REL_CLASSES = {"Irrelevant", "SpouseOf", "BornIn"}

scoreEnt: array(ENTITIES, ENT_CLASSES) of real
scoreRel: array(ENTITIES, ENTITIES, REL_CLASSES) of real

end-declarations

! DATAFILE stores the confidence scores from the local classifiers.
initializations from DATAFILE

scoreEnt scoreRel
end-initializations

! These are the indicator variables. declarations
ent : array(ENTITIES, ENT_CLASSES) of mpvar
rel : array(ENTITIES, ENTITIES, REL_CLASSES) of mpvar

end-declarations

! The objective function: sum of confidence scores
Obj := sum(u in ENTITIES, e in ENT_CLASSES) scoreEnt(u,e)*ent(u,e)

+ sum(u,v in ENTITIES, r in REL_CLASSES | u <> v) scoreRel(u,v,r)*rel(u,v,r)
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! Constraints (1) and (2): the indicator variables take only binary values
forall(u in ENTITIES, e in ENT_CLASSES)

ent(u,e) is_binary
forall(e1,e2 in ENTITIES, r in REL_CLASSES | e1 <> e2)

rel(e1,e2,r) is_binary

! Constraints (3) and (4): sum = 1
forall(u in ENTITIES) sum(e in ENT_CLASSES)

ent(u,e) = 1
forall(u,v in ENTITIES | u <> v) sum(r in REL_CLASSES)

rel(u,v,r) = 1

! Constraints (5) and (6): logical constraints on entity and relation labels
forall(e1,e2 in ENTITIES | e1 <> e2)

2*rel(e1,e2,"SpouseOf") <= ent(e1,"Person") + ent(e2,"Person")
forall(e1,e2 in ENTITIES | e1 <> e2)

2*rel(e1,e2,"BornIn") <= ent(e1,"Person") + ent(e2,"Location")

! Solve the problem
maximize(Obj)

! Output the indicator variables that are 1
forall(u in ENTITIES, e in ENT_CLASSES | getsol(ent(u,e)) >= 1)

writeln(u, " ", e)
forall(e1,e2 in ENTITIES, r in REL_CLASSES | e1 <> e2 and getsol(rel(e1,e2,r)) >= 1)

writeln(e1, " ", e2, " ", r)

end-model

3 Transforming Logical Constraints into Linear Forms

This section summarizes and revises some rules of transforming logical constraints to linear (in)equalities
described in [2]. To simplify the illustration, symbols a, b, c and x1, x2, · · · , xn are used to represent
indicator variables, which are treated as boolean variables and binary variables at the same. As
usual, the values 0, 1 represents the truth values false and true, respectively.

3.1 Choice Among Several Possibilities

In our entity and relation example, we have already processed the constraint “exactly k variables
among x1, x2, · · · , xn are true”, where k = 1. The general form of this linear equation is:

x1 + x2 + · · ·+ xn = k

Another constraint, “at most k variables among x1, x2, · · · , xn can be true”, can be represented
in a similar inequality.

x1 + x2 + · · ·+ xn ≤ k
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Uninterestingly, “k or more variables among x1, x2, · · · , xn must be true” will be

x1 + x2 + · · ·+ xn ≥ k

3.2 Implications

Implications are usually the logical constraints we encounter. While handling two or three variables
may be trivial, extending it to more variables may be tricky. Here we illustrate how to develop the
ideas from the simplest case to complicated constraints.

Two variables Suppose there are only two indicator variables a, b in the implication. The con-
straint, a → b, can be represented as a ≤ b. This can be easily verified by the following truth
table.

a ≤ b b = 0 b = 1
a = 0 true true
a = 1 false true

What if we need to deal with something like a → b̄? The value of the compliment of b is exactly
1− b. Therefore, the corresponding linear constraint is a ≤ 1− b, or a + b ≤ 1.

The relation “if and only if” is straightforward too. a ↔ b is identical to a → b and b → a. The
corresponding linear constraints are a ≤ b and b ≤ a, which is in fact a = b.

Three variables Now, let’s try to generalize the implication a little bit to cover three variables.
Since a → b∧ c can be separated as a → b and a → c, the straightforward transformation is to put
two linear inequalities a ≤ b and a ≤ c. Alternatively, the transformation in our entity and relation
example “2a ≤ b + c” also suffice, which is easy to check using a truth table.

Another implication, a → b ∨ c, can be modeled by a ≤ b + c. This is because when a = 1, at
least one of b and c has to be 1 to make the inequality correct.

What about the inverse of the above two implications? They can be derived using the compli-
ment and DeMorgan’s Theorem. b ∧ c → a is equivalent to ā → b ∧ c, which is ā → b̄ ∨ c̄. Use the
above rule and the the compliment, it can be modeled by (1−a) ≤ (1−b)+(1−c), or a ≥ b+c−1.
b ∨ c → a is equivalent to b → a and c → a, so it can be modeled by two inequalities b ≤ a and
c ≤ a. Alternatively, this can be transformed to ā → b ∨ c, which is ā → b̄∧ c̄. Therefore, it can be
modeled by 2(1− a) ≤ (1− b) + (1− c), or b+c

2 ≤ a.

More variables A logical constraint that has more variables can be complicated. Therefore, we
only discuss some common cases here. Suppose we want to model “if a, then k or more variables
among x1, x2, · · · , xn are true.” We can extend the transformation of a → b∨c, and use the following
linear inequality.

a ≤ x1 + x2 + · · ·+ xn

k
This transforation is certainly valid for k = 1. It is also easy to verify for other cases. If a = 0,
then the right-hand-side is always larger or equal to 0, and the inequality is satisfied. However,
when a = 1, it forces at least k x’s are true, which is exactly what we want.

The next case we would like to try is the inverse, which is “if k or more variables among
x1, x2, · · · , xn are true, then a is true.” This might be somewhat tricker than others. Our first guess
might be:

(x1 + x2 + · · ·+ xn)− (k − 1) ≤ a
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Original constraint Linear form
Exactly k of x1, x2, · · · , xn x1 + x2 + · · ·+ xn = k
At most k of x1, x2, · · · , xn x1 + x2 + · · ·+ xn ≤ k
At least k of x1, x2, · · · , xn x1 + x2 + · · ·+ xn ≥ k

a → b a ≤ b
a = b̄ a = 1− b
a → b̄ a + b ≤ 1
ā → b a + b ≥ 1
a ↔ b a = b

a → b ∧ c a ≤ b and a ≤ c

or, a ≤ b+c
2

a → b ∨ c a ≤ b + c
b ∧ c → a a ≥ b + c− 1
b ∨ c → a a ≥ b+c

2

if a then at least k of x1, x2, · · · , xn a ≤ x1+x2+···+xn
k

if at least k of x1, x2, · · · , xn then a a ≥ x1+x2+···+wn−(k−1)
n−(k−1)

a = x1 · x2 · · ·xn a ≤ x1+x2+···+xn
n and a ≥ x1 + x2 + · · ·+ xn − (n− 1)

Table 2: Rules of mapping constraints to linear (in)equalities

Although this may seem correct at the first glance, we observe that the left-hand-side (LHS) will
be larger than 1 when more than k of the x variables are 1. Because a can be either 0 or 1, this
constraint will be infeasible. In fact, what we really need is to squash the LHS to less than 1.
Currently, the largest possible value of the left-hand-side is n − (k − 1). Therefore, dividing the
LHS by n− (k − 1) should suffice.

(x1 + x2 + · · ·+ xn)− (k − 1)
n− (k − 1)

≤ a

Let’s examine two special cases of this transformation to see if they are correct. Remember b∨c → a
is indeed one of these cases, given that n = 2 and k = 1. The linear inequality b+c

2 ≤ a is exactly
the same as what we derived previously. The other special case is “x1∧x2∧ · · ·∧xn → a”, which is
equivalent to say k = n here. Obviously, a ≥ x1 +x2 + · · ·+wn− (n−1) is correct. One interesting
observation is that the conjunction of a set of boolean variables is the same as the product of the
corresponding binary variables. Therefore, the nonlinear constraint a = x1 · x2 · · ·xn is the same
as a = x1 ∧ x2 ∧ · · · ∧ xn. Its linear transformation is therefore a ≥ x1 + x2 + · · ·+ xn− (n− 1) and
a ≤ x1+x2+···+xn

n .

Table 2 summarizes all the transformations we have discussed in this section.

4 Conclusions

Thanks to the theoretical developments of integer linear programming in the last two decades, and
the tremendous improvement on hardware and software technology, numerical packages these days
are able to solve many integer linear programming problems within very short time, even though
ILP is in general NP-hard.
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In this report, we have provided an entity and relation problem as example, and discussed several
cases for transforming boolean constraints. We hope these illustrations are helpful to remodeling
your inference problem, and allow you to take advantage of the numerical LP solvers as well.
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