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Abstract— This paper describes an approach to cooperative
localization which finds its roots in robust estimation, employing
an unknown-but-bounded error model for sensor measure-
ments. In this framework, range and bearing measurements ob-
tained by the robots are viewed as constraints which implicitly
define a set of feasible solutions in the joint configuration space
of the robot team. The scheme produces bounded uncertainty
estimates for the relative configuration of the team by using
convex optimization techniques to approximate the projection
of this feasible set onto various subspaces of the configuration
space. The scheme can also be used to localize distributed sensor

nodes.
An important advantage of the proposed approach is that it is

able to produce bounded uncertainty estimates for the relative
configuration of the robots even in the case where the relative
orientations of the robots are completely unknown. This is an
important practical advance since errors in relative orientation
are often a major contributor to positioning uncertainty in
multi-robot localization schemes.

I. INTRODUCTION

Localization is a critical base level capability for mo-

bile robots and sensor networks enabling numerous other

technologies including mapping, manipulation, and target

tracking. It is not surprising then that considerable research

effort has been directed at this problem [1], [2], [3], [4],

[5]. Within this realm of research, there is a narrower

yet still significant focus on cooperative localization for

multi-robot teams [6], [7], [8]. In this paradigm, groups of

robots combine sensor measurements to improve localization

performance. This approach is motivated by the fact that

robots within a team can often identify one another and

communicate sensor measurements, such as relative range

and bearing readings.

In this paper, we revisit our bounded uncertainty approach

to the multi-robot localization problem initially proposed

in [9]. Conceptually, the idea is that sensor measurements

induce constraints on the configuration space of the robot

team. Merging these constraints induces a feasible set on the

configuration space that represents the set of formation poses

that are consistent with all of the available sensor measure-

ments. Estimates for the uncertainty in various parameters of

C.J. Taylor is with the Department of Computer and Information Science,
University of Pennsylvania, 3330 Walnut St, Philadelphia PA. 19104, USA
cjtaylor@cis.upenn.edu

J. Spletzer is with the Department of Computer Science and Engineering,
Lehigh University, 19 Memorial Drive West, Bethlehem PA. 18015,USA
spletzer@cse.lehigh.edu

This material is based upon work supported by the National Science
Foundation under Grant Nos. 9875867 and 0130858. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation.

the team’s configuration such as the absolute position of a

single robot, or the relative positions of two or more nodes

can then be obtained by projecting this feasible set onto

appropriately chosen subspaces of the configuration space.

Unfortunately, recovering these projections exactly is quite

cumbersome - requiring exponential time in the number of

constraints. Instead, we propose a scheme to approximate

these projections using modern convex optimization tech-

niques.

A significant shortcoming of our previous work was the

requirement that each of the robots have a sensor which

provided an orientation estimate with respect to a common

reference frame (e.g., a compass or solar sensor). Such an

assumption makes the math more tractable, and is often

employed in multi-robot localization schemes [10], [11],

[12], [8]. The primary contribution of this work is a means

for localization using bearings sensors (e.g. cameras) that

can recover the relative robot positions without such an

orientation sensor. The approach can also accommodate

range measurements, and has a computational complexity

scaling polynomially in the number of robots. Furthermore,

the workload is readily distributed requiring only the com-

munication of sensor measurements between nodes.

The remainder of this paper is organized as follows:

Section II provides a literature review. A discussion of the

localization approach follows in Section III. Experimental

results are presented in Section IV. Finally, a discussion of

the approach’s merits along with directions for future work

are outlined in Section V.

II. RELATED WORK

In our previous work [9], we described bounded uncer-

tainty approaches that could be used in the case where

the robots could measure their orientation with respect to

a common frame of reference. In this case, the available

range and bearing measurements can be converted into linear

inequality constraints on the joint configuration space of the

robots. In this work we extend the same basic approach to

deal with feasible sets that are defined in terms of quadratic

constraints. This advance allows us to deal with upper

and lower bound range constraints and the relative bearing

constraints which will be described in the sequel. This in turn

allows us to handle cases where the relative orientations of

the robots are completely unknown.

This work relates to cooperative localization techniques,

where sensor measurements from multiple robots are inte-

grated to estimate uncertainties in absolute or relative posi-

tion. The first forays in this area employed direct localization
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techniques, where the relative robot poses could be solved

analytically [13], [14]. These efforts were followed by other

researchers relying upon Bayesian techniques [6], [7], [12],

[8] for pose estimation. A primary advantage of Bayesian

approaches is that they not only propagate a state estimate

over time, but also the uncertainty associated with the state

estimate.

Our proposed approach also provides an estimate of the

uncertainty in the robot position. However, this is represented

instead in terms of feasible sets in the configuration space

and measurements are combined via set intersection. An

important advantage of this approach is that we do not

need to account for dependencies or correlations between

measurements to combine them using set intersection. We

can contrast this with the bookkeeping required to properly

account for dependencies between estimates in a Bayesian

framework. This is a particularly important advantage in the

context of cooperative localization where the measurements

of relative range and bearing induce a complex web of

dependencies among the node position estimates. Another

advantage of the approach is that it avoids the linearizations

inherent in approaches based on the Kalman filter. These

linearizations can be particularly problematic when they are

used to model the effects of uncertainties in the robots’ orien-

tations. In the sequel we will describe a bounded uncertainty

estimation scheme that can produce accurate estimates for

the robots configuration without any prior estimates for the

robots relative orientation. However, these benefits are not

without cost as the computational complexity exceeds that

of Kalman Filter approaches in both theory and practice.

The proposed approach shares the same general philos-

ophy as the set based SLAM algorithm proposed by Di

Marco, Garulli, Giannitrapani, and Antonio Vicino [21]. In

our work the feasible set is represented implicitly in terms of

a set of inequality constraints which is a significant point of

departure. It also explicitly deals with situations where the

robot orientations are unknown through the use of higher

order constraint equations on the feasible set.

Cooperative robot localization is also strongly related to

the problem of localizing wireless sensor nodes. This has

received significant attention in the sensor networks literature

and a number of effective approaches have been proposed

[15], [16], [17], [18], [19]. Perhaps most related is the work

of Biswas, Aghajan and Ye [18] who have also used relative

bearing measurements to help estimate the configuration of

sensor nodes [20]. Our work extends these approaches by

showing how relative bearing constraints can be used to

produce useful guaranteed bounds on the relative positions

of the node. Importantly, this allows us to tackle localization

problems that were previously beyond the reach of bounded

uncertainty techniques.

III. THE LOCALIZATION APPROACH

The basic elements of the localization framework are

diagrammed in Figure 1. Here a set of robots or sensor

nodes equipped with range and/or bearing sensors are located

on the plane. The edges in the figure indicate available
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Fig. 1. A set of robot or sensor nodes located in a 2D workspace. The edges
between the nodes indicate available sensor measurements, that is an edge
between nodes i and j indicates that robot i can measure the range and or
bearing to node j from its current position.

Fig. 2. This smart camera node, which is equipped with an accelerometer,
can measure the relative bearing to other sensor nodes or robots.

relative measurements, that is an edge between nodes i and

j indicates that robot i can measure the range and or bearing

to node j from its current position. Note that the edges in

this graph will, in general, be directed.

For example, the proposed scheme can be employed to

localize ensembles of smart camera sensor nodes such as the

one shown in Figure 2. These nodes are capable of measuring

the relative bearing to other sensor nodes in the vicinity using

image measurements and their orientation with respect to

gravity using an onboard accelerometer [19]. Our method

can then be used to gauge the relative positions of the nodes

in the horizontal plane based on this information.

Let C ⊂ R
2n denote the configuration space of our robot

team. Let x =
(

x1 y1 x2 y2 · · · xn yn

)

∈ C
denote the current configuration of the ensemble. Note that x

is simply the concatenation of the coordinates of the n robots.

Note also that we are purposely vague about the frame of

reference to which these coordinates are to be measured.

Depending on what parameters we are trying to estimate,

various choices will be more or less convenient. Hence we

defer this decision until the parameter estimation phase.

A. Generating Sensor Constraints

In this framework, we assume that we can bound the

error in the range and bearing measurements. Each such

measurement is then viewed as a constraint on the possible

values of the configuration vector x. This section focuses on
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Fig. 3. Robot i simultaneously observes two other robots, j and k. The
measurement for the angle αijk subtended at i can be used to constrain the
configuration of the team.

the transformations required to realize this.

In the sequel we will let the vector vij ∈ R
2 denote the

displacement between nodes i and j. This vector can be

expressed as a linear function of the configuration vector x as

follows: vij = (Dj − Di)x, where Dm ∈ R
2×2n denotes

the sparse projection matrix that extracts the coordinates of

node m from the configuration vector x in R
2n.

Importantly, all of the constraints that we will describe

in the following subsections can be expressed as quadratic

inequalities of the configuration vector x, that is they can

all be written in the form x
T Ax + bT

x + c ≤ 0 for some

A ∈ R
2n×2n, b ∈ R

2n, c ∈ R. A constraint of this form

is termed convex if the matrix A is positive semidefinite

or 0 since inequalities of this form define convex regions

in the configuration space. Note that the set of quadratic

inequalities subsumes the set of all linear inequalities.

1) Relative Bearing Constraints: In Figure 3 Robot i
simultaneously observes two other nodes, j and k. The

vectors vij and vik denote the displacements between nodes

i and j and i and k respectively. Multiplying vij by the

constant rotation matrix R90 =

(

0 −1
1 0

)

yields a second

vector v′ij with the same magnitude as vij but rotated by 90

degrees counter clockwise. If we take inner products between

the vector vik and the vectors vij and v′ij we can form

another vector which encodes the angular separation , αijk ,

between vij and vik:
(

vik · vij

vik · v′ij

)

=

(

vT
ikvij

vT
ikR90vij

)

= ‖vik‖‖vij‖

(

cosαijk

sinαijk

)

(1)

The available bearing measurements would constrain this

vector to the sector defined by the two angles α−

ijk and α+

ijk

These constraints are expressed in the following inequalities.

(

sin α−

ijk − cosα−

ijk

)

(

vik · vij

vik · v′ij

)

≤ 0 (2)

(

sin α+

ijk − cosα+

ijk

)

(

vik · vij

vik · v′ij

)

≥ 0 (3)

Using Equation 1, both of these constraint equations can

be rewritten as quadratic functions of the parameter vector

x.

vT
ik(sin α−

ijkI − cosα−

ijkR90)vij ≤ 0 (4)

vT
ik(sin α+

ijkI − cosα+

ijkR90)vij ≥ 0 (5)

Note that these constraints will, typically, not be convex

functions of x. Note also that these constraints do not

require any knowledge of the robots orientation with respect

to an absolute frame of reference. This is an important

advance since it allows us to directly exploit the kinds of

relative bearing measurements that can be derived easily and

accurately from imaging sensors without requiring a compass

or any other orientation estimation scheme.

Relative bearing measurements have also been employed

in a different manner for bounded uncertainty single robot lo-

calization problems by Briechle and Hanebeck [22]. Biswas,

Aghajan and Ye also make use of relative bearing constraints

in their work but use a different mathematical formulation

based on the circle defined by the three points. In contrast

our formulation provides equations which directly bound the

relative configuration of the nodes.

i

j

r-ij

r+ij

Fig. 4. Range measurements with bounded error constrain the distance
between two nodes i and j.

2) Range Constraints: Figure 4 depicts the annulus of

feasible configurations induced by constraints on the range

between nodes i and j. The constraints induced by a bounded

error range measurement can be expressed quite simply

[15] in terms of the configuration vector x. Here we again

note that the vector displacement between nodes i and j,

vij can be expressed as a linear function of the global

configuration vector x. i.e. vij = (Dj − Di)x. If r+

ij and

r−ij respectively denote the upper and lower bounds on the

range measurement, we can derive two quadratic constraints

as follows:

vT
ijvij ≤ (r+

ij)
2

⇒ x
T (Dj − Di)

T (Dj − Di)x ≤ (r+

ij)
2 (6)

vT
ijvij ≥ (r−ij)

2

⇒ x
T (Dj − Di)

T (Dj − Di)x ≥ (r−ij)
2 (7)

Note that the upper bound constraint shown in Equation 6 is

a convex function of x while the lower bound constraint in

Equation 7 is concave.
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Xj - Xi

Yj - Yi

Fig. 5. A convex approximation for the feasible set of displacements (the
dark region) can be obtained by bounding the its extent along various search
directions. The intersection of the resulting half planes defines a convex
polytope (the light gray area) which, by construction, encloses the feasible
set.

B. Gauging Team Configurations

Once a set of constraints has been derived from the

available measurements, we can proceed to consider the

problem of gauging the positions of the robots with respect to

each other. Consider for example the problem of estimating

the relative position of node j with respect to node i
represented by the displacement vector vij . As discussed

earlier, this vector can be expressed as a linear function of

the configuration vector x as follows: vij = (Dj − Di)x.

Hence, we can view the problem of bounding this vector

as one of gauging the projection of the set of feasible

configurations onto the 2D subspace corresponding to the

displacement vij .

We can bound the uncertainty in this displacement vector

by choosing search directions parallel to the subspace of

interest and bounding the extent of the feasible region in

those directions. This amounts to finding bounds for objec-

tive functions of the form shown in Equation 8 given the

constraints derived from the measurements.
(

cos θ sin θ
)

vij = sT
x (8)

where sT =
(

cos θ sin θ
)

(Dj − Di) (9)

In this case the vector s ∈ span((Dj − Di)
T ) corresponds

to the search direction in the configuration space.

Figure 5 depicts the most general situation where the

feasible set and its projection need not be convex or even

connected. In any case, the goal of the localization scheme

is to produce a convex polyhedral approximation which

bounds the projection of all feasible configurations and,

hence, bounds the displacement vector. We see then that the

process of bounding the displacement vector relating two

nodes, vij , can be reformulated as a sequence of constrained

optimization problems which serve to gauge the extent of

the feasible region along various search directions. Here

we recognize that these optimization problems are actually

quadratically constrained quadratic programs (QCQP) since

both the objective function described in Equation 8 and the

constraint functions described in the previous sections can

be written as quadratic functions of the parameter vector x.

More precisely, our goal is to solve constrained optimization

problems of the following form.

minimize x
T A0x + bT

0 x + c0

subject to x
T Aix + bT

i x + ci ≤ 0 i = 1, . . . , m.

Note that although the objective function described in equa-

tion 8 is actually a linear function of x, we are in fact able

to bound arbitrary quadratic functions of x. This means, for

example that we can use precisely the same machinery to

bound the square of the distance between nodes i and j
which can, clearly, be expressed as a quadratic function of

x as shown in Equation 10.

‖vij‖
2 = ‖(Dj − Di)x‖

2 (10)

= x
T (Dj − Di)

T (Dj − Di)x

Most of the literature on solving QCQPs centers on the

special case where the constraint functions are convex which

is not, in general, the case here. Nonetheless we can make

progress by observing that there are convex relaxations of the

original optimization problem that provide useful bounds on

the feasible solutions. In this work we use the Lagrangian

relaxations described in [23], [24], [25]. The Lagrangian,

L(x, λ), and the Lagrangian dual, g(λ), of our original

optimization problem can be expressed as follows:

L(x, λ) = (xT A0x + bT
0 x + c0) +

m
∑

i=1

λi(x
T Aix + bT

i x + ci) (11)

g(λ) = inf
x

L(x, λ) (12)

We can bound the minima of our original optimization

problem by finding the maximum of the Lagrangian dual

function g(λ) over all non-negative values of λ. Note that

the Lagrangian dual will be convex even if the original

optimization problem is not. Using Shur complements this

optimization problem can be recast as a semidefinite program

as follows: maximize γ subject to the constraint that the

following matrix remains positive semi-definite.
[

(A0 +
∑m

i=1
λiAi) (b0 +

∑m

i=1
λibi)/2

(b0 +
∑m

i=1
λibi)

T /2 (c0 +
∑m

i=1
λici) − γ

]

We further constrain λ to be non-negative, that is λi ≥
0, i = 1, . . . , m. Once the problem is in this form, we can

apply modern semidefinite programming codes to solve this

optimization problem and provide a bound on the optimal

value. Importantly, these codes are able to exploit the sparse

structure of the Ai matrices to significantly reduce the

computational effort required to solve these problems.

1) Choosing Search Directions: Given the ability to

bound the extent of the feasible region in a given search

direction, we can now consider the question of how those

search directions should be chosen. A straightforward but

effective technique that works quite well in the general case
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is to simply choose a set of uniformly spaced search direc-

tions parallel to the plane of projection. With this approach,

the accuracy of the resulting convex approximation is simply

a function of the number of search directions employed.

In the special case where all of the measurement con-

straints are convex we have proposed [9] a more sophisticated

approach to choosing search directions which allows us

to make precise statements about the performance of the

projection approximation scheme.

IV. LOCALIZATION EXPERIMENTS

The simulation experiments described in this section were

designed to characterize the performance of the localization

scheme under a variety of conditions. For each trial, a set of

10 nodes were randomly distributed on a plane. The x and

y coordinates of these locations were restricted to the unit

interval. A randomly chosen subset of the available range and

bearing measurements relating the nodes were considered.

These measurements were then corrupted with uniformly

distributed, bounded random errors. The range measurements

were corrupted with random errors in the range ±0.1 while

the bearing measurements were corrupted with errors in the

range ±0.25◦.

The magnitude of the angular errors was chosen by

considering a typical camera with a 60 degree field of view

and a horizontal resolution of 640 pixels. In this context a

localization error of ±2 pixels on each bearing measurements

would translate to an error of approximately 0.2 degrees.

Note that this means that the relative bearing measurements

would have errors in the range ±0.4 degrees. Importantly,

we do not assume that the robots have access to an absolute

bearing sensor like a compass, so the robots do not, initially,

have any idea about their relative orientation.

The localization procedure described previously was used

to construct convex approximations for the position of each

of the nodes with respect to the first node which was fixed as

the origin (0, 0). To fix orientation and scale, the second point

in the set was also held fixed. The convex approximations

for the remaining 8 node locations were constructed by

considering 8 evenly spaced search directions in the plane.

For purposes of comparison, the localization procedure

was run under four different conditions. The first variant only

made use of the convex range constraints given in Equation

6 this experimental condition is analogous to the localization

scheme described in [15]. The second condition made use of

both the convex and non convex range constraints. The third

condition only considered the relative bearing constraints

while the last condition considered all available range and

bearing constraints.

The results obtained on a typical trial are shown in Figure

7. Figure 6 shows the ground truth configuration used for

this trial. Here the crosses denote the randomly chosen node

positions and the edges indicate the available range and

bearing measurements. A grand total of 51 range and bearing

measurements were used in this instance.

In order to compare the results of these four conditions

quantitatively, we computed the areas of the polyhedral
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Actual Node Positions and Available Measurements

Fig. 6. For each trial a set of 10 node locations was chosen at random,
these are denoted by the blue crosses. The edges between the nodes indicate
available range and/or bearing measurements.

approximations returned by the procedure. These areas pro-

vide an indication of how effective the constraints are at

narrowing down the set of feasible configurations. Larger

areas correspond to greater uncertainty. The results of this

analysis are summarized in Table I.

These results shows that under these experimental condi-

tions, the relative bearing constraints are much more pow-

erful than the range constraints. The convex approxima-

tions constructed with these constraints are two orders of

magnitude smaller than those constructed using the range

constraints. When the range constraints are added to the

bearing constraints the average area is approximately halved.

In these experiments the results obtained with the range

only localization scheme reflect the fundamental flip am-

biguity associated with such measurements. That is, any

configuration that satisfies the range constraints can be

reflected in the plane to obtain another configuration that

also satisfies the constraints. The convex bounding region

that this method constructs must reflect that. In order to

overcome this, one would need to presuppose the existence

of known anchor points or some other means of resolving

the ambiguity. In this sense range and bearing measurements

can serve as complementary sources of information since

the bearing measurements can resolve the flip ambiguity

associated with the range measurements while the range

measurements resolve the scale ambiguity associated with

the bearing measurements.

In this round of simulation experiments the system did not

attempt to estimate the relative orientations of the robots. It

is possible to construct bounded uncertainty estimates for

these quantities when bearing measurements are available as

described in [26].

V. DISCUSSION AND CONCLUSIONS

This paper describes a novel approach to multi-robot

localization grounded in robust estimation. The scheme

employs an unknown-but-bounded error model for sensor

measurements and leverages recent advances in convex opti-

mization theory - specifically computational improvements
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Fig. 7. The localization procedure was run under four conditions. a) Using only the convex range constraints b) Using both convex and non-convex range
constraints. c) Using only the relative bearing constraints d) Using all available range and bearing constraints. The blue crosses in these figures denote the
actual node locations while the red xs denote the centroids of the bounding polygons.

Conditions Mean Area Median Area Max. Area

Convex Range Only 0.4610 0.4433 0.9956
Convex and NonConvex Range 0.3540 0.3175 0.9805
Relative Bearing Only 0.0020 0.0008 0.0254
All Constraints 0.0011 0.0005 0.0108

TABLE I

COMPARISON OF BOUNDING AREAS P+ OBTAINED UNDER VARIOUS EXPERIMENTAL CONDITIONS

in semidefinite programming techniques, duality, and La-

grangian relaxations - to provide a localization framework

suitable for robotic systems.

Through convex approximations, our framework is able to

integrate any mixture of range and/or bearing measurements

from the robot formation into a single estimator which

provides estimates for the uncertainty in node positions

that are simultaneously conditioned on all available sensor

measurements. Since the method combines measurements

through set intersection rather than Bayes rules, it avoids

many of the issues associated with accounting for inter-

dependencies between multiple estimates. Furthermore, the

resulting uncertainty regions are guaranteed to contain the

true robot positions. Point estimates for the robots relative

positions can be obtained by considering the centroids or

Euclidean centers of various projections of the feasible set.

The ability to handle both convex and non-convex mea-

surement constraints is an important advance. With this

capability, we are able to make use of the relative bearing

constraint which takes the form of a nonconvex quadratic

inequality. This constraint is particularly useful since we

can typically measure relative bearings quite accurately with

imaging devices, often to within a small fraction of a degree.

Absolute bearing measurements, such as those obtained from

a compass are often off by a few degrees. Our localiza-

tion scheme is able to generate accurate estimates for the

configuration of a team of robots based on relative range

and bearing constraints without any prior estimates for the

robots orientation. This is potentially a significant advance

over EKF schemes which must account for uncertainties in

robot orientation through linearized approximations.

These advantages come at a cost however, and this is

the computational complexity of the associated semidefinite

programs. In theory, SDPs have an iteration complexity of

O(m
5

2 n2), where n corresponds to the number of nodes

and m the number of constraints - or in our case sensor
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measurements [23]. However, it is well known that this

bound is conservative and based upon empirical results in

[15], we would expect the results to be closer to O(n3)
in practice. This makes the approach suitable for real-time

operations for reasonably large formation sizes (i.e., 10s of

robots).

While the computational complexity of our approach sig-

nificantly lags that of the EKF, it fares better with respect

to storage complexity. The EKF requires O(n2) storage

for representing the state covariance matrix. Assuming k
linear inqualities are used to model each uncertainty region,

we require O(kn) storage. However, our previous work in

[9] showed that the quality of the approximation of the

projection was independent of the number of nodes or sensor

measurements. As a result, O(n) storage complexity should

be expected.

While the proposed technique has been described in

the context of static nodes the method can be extended

to dynamic nodes by convolving the uncertainty regions

obtained at one instant with the uncertainties associated

with the motion model to derive additional constraints on

the node locations during subsequent timestep. We are also

investigating the problem of outlier rejection since incorrect

measurements with artificially small error bounds can result

in inconsistent constraints and an empty feasible set. Here

we may be able to employ techniques from robust estimation

like validation gates which test a proposed measurement

against an existing feasible set before acceptance. Another

approach would be to choose random subsets of the available

measurements to define the feasible set and identify outliers

[27].
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