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Abstract— We present an approach for 2D sensor network
localization when only bearing measurements are available and
no global coordinate frame is known. Our work builds off of
the linear constraint given in Kennedy et al. (2012) for sets
of nodes that form triangles. We extend that constraint to
general networks and present methods for locally optimizing
the resulting cost function. We also show how these methods
can be used for 3D network localization when the vertical axis
is known. The algorithms are evaluated on both synthetic and
real datasets, and we also show how they can be applied to
the “structure from motion” problem in the field of computer
vision.

I. INTRODUCTION

Sensor network localization is a problem which arises
in many circumstances when sensors are deployed in an
environment. We focus specifically on the case when sensors
are able to take bearing measurements and cannot measure
distances. This problem occurs, for example, in robotic
networks [1]: if each robot is equipped with a set of antennae,
it may be able to tell which direction another robot is located
with respect to itself but not how far away it is. This problem
is also seen in camera networks since standard cameras can
only determine the relative bearings between points, but not
depth.

Most of the related work on the topic of network lo-
calization deals with distance constraints [2], [3], [4], [5],
where nodes can measure relative distances to a set of
other nodes. The case when only bearing measurements
are used has been studied much less often. In [6], the
conditions under which a network that uses only bearing
measurements is rigidly-constrained are explored, but an
efficient algorithm for actually localizing such a network is
not given. A similar situation to the one addressed in this
paper is studied in [7], where a quadratic constraint is given
for relative angle measurements by introducing additional
variables, and an approximate solution is computed using
semidefinite programming. In [8], a probabilistic approach
is taken.

In Brand et al. (2004) [9], a globally-optimal spectral
solution is given for the case when a global coordinate frame
was known. This was partially extended to networks lacking
a global coordinate frame in [10], where it was shown that if
three nodes all measure the relative bearings to each other,
then this can be written as a linear constraint. However, such
triangular constraints are not always common.

A related problem arises in computer vision as the “struc-
ture from motion” problem, where camera measurements
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Fig. 1: A network where each node is only able to measure
relative angles between others. In this paper we present a
method for estimating the layout of such a network.

of points in the world are used to reconstruct the network
consisting of both points and cameras [11], [12]. We apply
our algorithm to this setup in Section VII-B.

In this paper, we extend the constraint derived in [10] to
arbitrary networks using bearing constraints. Our contribu-
tions are as follows:

1) We re-derive the linear constraint of [10] in a much
simpler way using complex numbers.

2) We extend the constraint from triangles to general
angular constraints by adding additional parameters.

3) We propose two methods for locally optimizing the
resulting cost function.

4) We show how our methods can be used for 3D net-
works when the vertical axis is known by introducing
a subsequent linear system.

5) We evaluate our methods on several datasets, including
a “structure from motion” dataset from the computer
vision community.

II. PROBLEM DESCRIPTION

Given a network of n nodes, we consider the setup
where each node is capable of measuring its relative bearing
to other nodes within the network but where no global
coordinate frame is known. Equivalently, each node is able
to measure the angle between other nodes relative to its own
position. This setup is depicted in Figure 1. The goal is to
estimate the overall layout of the network, up to a similarity
transformation, based on this bearing information.

For now, we assume that the network exists on a 2-
dimensional plane. An extension of our methods to higher
dimensions is non-trivial, although we present an approach
that can be used in certain situations in Section VI. The
2D layout of the network of n nodes is then represented
by a vector x =

[
x1 x2 . . . xn

]T ∈ Cn. The Cartesian



coordinates of a node xi ∈ C are given by the real and
imaginary parts of the number xi, respectively. In [10], [13],
a quadratic constraint is derived for this situation. We begin
by reviewing this constraint. By using complex numbers
rather than pairs of real values, the notation becomes simpler.

Let i be a node which measures the angle between two
other nodes j and k, denoted as θijk. We desire an embedding
such that the angle between (xj − xi) and (xk − xi) is θijk.
Equivalently, if the vector (xj − xi) is rotated by an angle
θijk by multiplying it by eiθ, then it should be parallel with
(xk−xi). If it is subsequently rotated by π/2, the two vectors
should be orthogonal. In other words, ei(θ

i
jk+π/2)(xj − xi)

and (xk − xi) should be orthogonal, and thus their inner
product should vanish:

Re
{

(xk − xi)ei(θ+π/2)(xj − xi)
}

= 0 . (1)

Here, · is the complex conjugate operation. Expanding this
into a quadratic form gives the equivalent matrix constraint

[
x̄i x̄j x̄k

] c+ c̄ −c −c̄
−c̄ 0 c̄
−c c 0

xixj
xk

 = 0 (2)

for nodes xi, xj and xk where c = ei(θ
i
jk+π/2). In this way,

each angle constraint can be written as a quadratic constraint
on the variables x, and any solution x should satisfy all
constraints (in the absence of noise).

Unfortunately, these constraints are not positive semidef-
inite, as was noted in [10]. Because of this, the resulting
optimization problem is quite difficult. In [10], it was found
that if three nodes all observe each other, resulting in three
angle measurements, θijk, θjik and θkji that sum to π, then
there is a linear combination of the three associated quadratic
constraints which results in a positive semidefinite quadratic
constraint which is equivalent to the three original con-
straints. Furthermore, because a positive semidefinite matrix
M can be factored as M = LTL, the constraint is in fact
linear.

In other words, [10] shows how angle measurements
which form triangles can be written as linear constraints;
any triangle which has the same internal angles will satisfy
this constraint. However, this constraint is not obvious. The
first contribution of this paper is to show how the linear
constraint of [10] can be derived in a much simpler manner.
We proceed by separately deriving a linear constraint for
triangles and subsequently showing that this is the same as
the one given in [10].

III. LINEAR CONSTRAINT

Let t ∈ C3 be a triangle, where each entry ti ∈ C denotes
a single vertex on the plane:

t =

t1t2
t3

 . (3)

Our linear constraint is based on the following theorem:

Theorem 1: Let t =

t1t2
t3

 ∈ C3 be a triangle param-

eterized by three points in the complex plane. Then, the
set of all triangles which are related to t by a similarity
transformation (i.e., they have the same internal angles) is
given by span {t,1} where 1 is the constant vector of 1’s.

Proof: First, observe that any rotation and scaling of
t in the complex plane can be accomplished by multiplying
t by some value α ∈ C. In particular, if α is written as
α = reiθ, then αt is a new triangle produced by scaling t by
r and rotating it by the angle θ. Similarly, any translation of
t can be written as t + β1 for β ∈ C. Thus, any similarity
transformation of t can be written as αt+ β1.

The proof is then straightforward. If x ∈ C3 is related
to t by a similarity transformation, then x can be written
as x = αt + β1 for some constants α, β ∈ C and thus
x ∈ span {t,1}. In the reverse direction, if x ∈ span {t,1},
then x can be written as x = αt + β1 for some constants
α, β ∈ C and x is therefore similar to t.

The linear constraint is then derived as follows. For a
triangle t ∈ C3, Theorem 1 shows that the space of similarity
transformations of t in the complex plane is given by the set
span {t,1}. Alternatively, let t⊥ ∈ C3 be the vector which
is orthogonal to both t and 1 (there is only one such vector
up to scale, since the space is 3-dimensional). Then, any
vector x ∈ span {t,1} is orthogonal to t⊥ and therefore any
similarity transformation of t satisfies the constraint

t∗⊥x = 0 . (4)

Furthermore, the vector t⊥ can be calculated easily by taking
the complex conjugate of the cross product

t⊥ ∝ t× 1 , (5)

where the cross product here is computed just as it is with
real-valued vectors.

This linear constraint is quite simple, but is the same as
the constraint derived by [10], as we show in the following
proposition.

Proposition 1: The linear constraint t∗⊥x = 0 is the same
as the “triangle constraint” given in Section IV.A of [10], up
to scale.

Proof: For a triangle t, the constraint given by [10] is
of the form

xTMx = 0 . (6)

In [10], it was shown that the matrix M is positive semidef-
inite with exactly one non-zero eigenvalue 1. Thus, M is
rank-1, and can be written as

M = mm∗ (7)

using the definitions of positive semidefinite and rank. The
constraint is then

x∗(mm∗)x = ‖m∗x‖22 = 0 , (8)

1when using complex numbers; if real numbers are used then there are
two equal non-zero eigenvalues.
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Fig. 2: An angle constraint can be written as a triangle
constraint with one unknown parameter. We parameterize
this constraint as a triangle with an unknown side length,
r ∈ R+.

which is equivalent to

m∗x = 0 . (9)

This is of the same form as our constraint in Equation
(4), and both equivalently constrain x to be a similarity
transformation of t. However, Theorem 1 shows that any
such vector must be orthogonal to both t and 1. Because the
space of triangles is only 3-dimensional, there is only one
such vector and they must be the same, up to scale.

IV. APPLICATION TO NON-TRIANGULAR
PROBLEMS

The linear triangle constraint t∗⊥x = 0, unfortunately,
only deals explicitly with triangles. In a general network
localization problem, not all constraints will be triangular.
If sensors are able to sense others within a fixed radius (for
example, due to the sensor’s range), then it is relatively likely
that triangle constraints do exists due to the properties of
Euclidean geometry, as was shown in the experiments in [10].
However, even then some constraints will not form triangles,
and other situations may have many fewer or even no triangle
constraints at all.

To deal with non-triangular constraints, we consider an
angle constraint as a triangle constraint with one unknown
angle. In this way, an angle constraint can be written as a
triangle constraint with an unknown parameter.

To formalize this notion, suppose that a node t1 measures
the angle between t2 and t3 as θ. Then, let the triangle t(r)
with unknown parameter r be defined as

t(r) =

 0
eiθ

r

 , (10)

as depicted if Figure 2. Notice that the angle that t1 measures
between t2 and t3 is exactly θ for all values of the parameters
r. As r ∈ (0,∞) is varied, the other two angles change.
Thus, the angle constraint can be written as the parameterized
linear constraint

∃r s.t. t(r)∗⊥x = 0 , (11)

where

t(r)⊥ = t(r)× 1 =

e−iθ − rr
−e−iθ

 . (12)

For a network, each linear constraint can be stacked into
a matrix A(r), with r ∈ Rm+ , resulting in a linear system
with unknown variables x and unknown parameters r. If
done in a naive fashion, however, this may result in a very
large number of constraints. For example, consider a network
where a node i is able to sense k other nodes. For just node i,
we would have k2 linear constraints by measuring the angle
between all pairs. However, only k − 1 of these constraints
are linearly independent. A set of these k − 1 constraints
can be found by choosing one node j as the primary node
and measuring only the angle between j and all other k− 1
nodes that i sees. The choice of which primary node to use
is an interesting issue, but we found results to be sufficient
by choosing the primary node at random. In any case, the
result is a system of m linear equations and n nodes, which
we write as A(r)x = 0.

V. OPTIMIZATION
The system of constraints under consideration is

A(r)x = 0 , (13)

where both x ∈ Cn and r ∈ Rm+ are unknown. Solving
Equation (13) with respect to both x and r is a difficult
problem. In order to impose some tractability on the problem
and to deal with noisy systems where no exact solution
exists, we instead optimize the cost function

min
x∈Cn,r∈Rm

+

‖A(r)x‖22 = x∗M(r)x s.t. x∗1 = 0 , (14)

where M(r) = A(r)∗A(r). The constraint x∗1 = 0 is used
to avoid the trivial solution of x being a constant vector. Still,
this is difficult to optimize globally, and instead we propose
two different methods which rely on local optimization.
Initialization of these method is discussed in Section V-C.

A. Alternating minimization
Although Equation (14) is difficult to solve with respect

to both x and r simultaneously, if either x or r are fixed,
the other can be optimally solved for. First, consider r to
be fixed. The cost x∗M(r)x is then a positive semidefinite
quadratic form, the minimum of which is given by the
smallest eigenvector of M(r). However, this vector is simply
a constant vector. Because we have constrained x∗1 = 0 ,
the optimal solution is the vector which minimizes the cost
function and is orthogonal to the constant vector, which is
given by the second smallest eigenvector of M(r). Because
M(r) is very sparse (A(r) has only 3 non-zero entries
per row), a sparse eigensolver can be used to calculate
the eigenvalues and eigenvectors efficiently, even for large
networks.

Now, consider x to be fixed. Each unknown ri is asso-
ciated with only row i of A(r). To simplify matters, then,
consider just one row of A(r) and the three associated values
of x, which for simplicity we denote as x1, x2 and x3. This
cost is of the form∥∥∥∥∥∥[(eiθ − r) r −eiθ

] x1x2
x3

∥∥∥∥∥∥
2

2

, (15)



which can be written as∥∥r(x2 − x1)− eiθ(x3 − x1)
∥∥2
2
. (16)

By taking the derivative of this expression, setting it to 0 and
solving for r (and making use of the fact that r is real-valued,
or r̄ = r), the optimal value of r is found to be

r = Re
{
eiθ

x3 − x1
x2 − x1

}
. (17)

It can also be enforced that r > 0 by subsequently setting

r = max {r, ε} (18)

for small ε > 0. In our experiments, we use ε = 10−5.
Beginning with an initialization of either x or r, each can

be alternately solved for until a local optimum of the cost
function is obtained. In Section V-C, we propose a method
for initializing r.

B. Eigenvalue minimization

As noted in the previous section, for a fixed value of r the
optimal cost is given by the second-smallest eigenvalue of the
matrix M(r) with x being the associated eigenvector. Indeed,
the cost function can be regarded as a function f(r) : Rm+ →
R which maps a vector r to the second-smallest eigenvalue
of M(r). A local optimization can be performed using the
derivative of this function.

The derivative of an eigenvalue of a matrix with respect
to a parameter is relatively straightforward (see Section 17.2
of [14]). Let x be eigenvector corresponding to the second-
smallest eigenvalue of M(r). Then, we have

∂f

∂ri
= x∗

∂M(r)

∂ri
x (19)

= x∗
∂A(r)∗

∂ri
A(r)x+ x∗A(r)∗

∂A(r)

∂ri
x (20)

= 2Re
{
x∗A(r)∗

∂A(r)

∂ri
x

}
. (21)

Furthermore, because each ri is only associated with row i of
A(r), the derivative of A(r) with respect to any one variable
ri will result in a matrix of all zeros except for row i. This
allows the derivative of f to be computed with respect to all
ri within the same matrix operation as

∂f(r)

∂r
= 2Re

{[
A(r)x

]
◦ [A′(r)x]

}
, (22)

where · is the element-wise complex conjugate, ◦ is the
Hadamard (element-wise) product, and A′(r) is the matrix
formed by taking the derivative of each row i of A with
respect to the associated variable ri.

The algorithm is then a gradient descent optimization:
given a vector r, calculate the eigenvector x associated
with the second-smallest eigenvalue of M(r), evaluate the
derivative ∂f(r)

∂r , take a step in the negative gradient direction,
and repeat until convergence. In practice, we use a quasi-
Netwon method which estimates the Hessian matrix over
time and converges better than standard gradient descent.

C. Initialization

Any local optimization method must be initialized, ideally
within the basin of attraction of the global optimum. For the
algorithms given in this paper, we begin with an initialization
of r (rather than x). The most straightforward way to
initialize r is to set r = 1. Observe (Figure 2) that setting
ri = 1 corresponds to a triangular constraint where both of
the unknown angles are given an equal value of [π − θi]/2.
Intuitively, this says that because we don’t know the correct
values for the other angles, both are given equal weight. More
intelligent initializations may be possible depending on the
nature of the network being examined, but we found setting
r = 1 to work well in most cases.

D. Regularization of r

In many real-world scenarios, nodes will tend to sense
other nodes which are a similar distance away. This implies
that each ri will be close to 1 and it is unlikely that the
optimal values of r will either be very small or very large.
This can be formalized by adding a regularization term to
the cost function,

g(r) = λ‖r − 1‖22 , (23)

where λ ≥ 0 controls the amount of regularization. For the
alternating minimization algorithm given in Section V-A, the
optimal value of r can be calculated explicitly as

r =
Re
{
eiθ(x2 − x1)∗(x3 − x1)

}
+ λ

‖x2 − x1‖22 + λ
, (24)

which reduces to Equation (17) if λ = 0.

VI. APPLICATION TO R3 WITH GRAVITY

Unfortunately, the linear triangle constraint given in Equa-
tion (4) is not directly generalizable to 3-dimensional space.
However, in real-world applications, it may be possible
to determine the vertical axis in the world even if the
full orientation of the sensors is not known. For example,
photographs tend to be taken such that they are aligned
vertically or a vertical axis can be determined by lines in the
image such as the sides of a building, or in a sensor network
each node may be equipped with an accelerometer that can
be used to determine the direction of gravity. In any case, if a
vertical axis can be determined then a 3D reconstruction can
be decomposed into two parts. First, all angles are measured
orthogonal to the known vertical direction (i.e., projected
onto the 2D ground plane). The 2D layout of the network, as
if viewed from above, can be estimated using the methods of
this paper and of [10]. Then, given an estimated 2D layout of
the network, the vertical positions of the nodes are estimated
separately as follows.

Let x ∈ Cn be the fixed estimate of the 2D layout of
a network, with the vertical height of the nodes, z ∈ Rn,
unknown. Suppose that node i at position xi observes node
j at position xj to be at a relative angle φij (Figure 3). This
forms a triangle, from which we derive the linear constraint

zj − zi = tan(φij)‖xj − xi‖2 . (25)



‖xj − xi‖2
xi xj

zj − zi

φij

Fig. 3: Visualization of the linear constraint of Equation (25)
used for 3D network localization. The 2D locations x of all
points are estimated first, and then the vertical angles are
used to determine the height of each node.

The full set of observations can in this way be written as a
sparse linear system, and a least-squares solution is readily
solved for.

VII. EXPERIMENTS

Algorithms We compare the two algorithms presented in
this paper, ALTMIN (Section V-A) which performs alternat-
ing minimization, and EIGMIN (Section V-B) which locally
minimizes the second eigenvalue of M(r). Eigenvalues and
eigenvectors were computed using MATLAB’s eigs()
function. For EIGMIN, minimization was done using the
implementation of L-BFGS in the minFunc package [15].

Error measures Two different error measures are used:
the matrix error ‖Ax‖22 = x∗(A∗A)x, and the 2D root
mean squared error (RMSE) after Procrustes alignment of the
estimated network to the groundtruth dataset. Note that for
sparsely-connected networks, the matrix error may approach
zero while the 2D RMSE does not, corresponding to cases
where the network is under-constrained and all angle con-
straints can be satisfied without reaching the true 2D layout
of the network.

A. Synthetic dataset

We begin by analyzing performance on synthetically-
generated random 2D networks. For each random network
layout, a set of 100 points were randomly placed within a
square with sides of length

√
2/2. Each node is then able to

sense other nodes with a distance R from itself. Note that
the square has a diagonal of length 1, and so if R = 1 each
node is able to see every other.

Without noise Results are shown in Figure 4 for the
case of noise-free data. The sensing radius for the nodes
is set to values of 0.15, 0.2 and 0.5. This corresponds to
each node begin able to see about 11%, 18% and 77% of
all other nodes, respectively. As the sensing radius of the
nodes increases, the number of constraints grows and fewer
iterations are required to reach a low error. In most cases,
ALTMIN reaches a lower error much more quickly that
EIGMIN. In some cases when R = 0.15, the network is
under-constrained and the matrix cost x∗(A∗A)x reaches a
low error even though the 2D RMSE remains relatively high,
especially for EIGMIN. However, when the network is more
constrained, ALTMIN nearly always converges more quickly
for both error measures.
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Fig. 4: Comparison of EIGMIN and ALTMIN algorithms on
100 random networks of 100 points where each node has a
sensor range of a fixed radius R. We plot the median of all
runs, with the 25th and 75th percentiles plotted as dashed
lines. Top row: R = 0.15, Middle row: R = 0.2, Bottom
row: R = 0.5.

With noise The sensing radius of each node was fixed to
R = 0.2. For each run of the algorithm, normally-distributed
random noise with standard deviation σ was added to each
angle measurement. The algorithms were run until the matrix
error did not decrease more than 10−10. Results are given
in Table I. The algorithm ALTMIN finds solutions that are
relatively close to that of the groundtruth, and significantly
better than EIGMIN. Although the mean number of iterations
that EIGMIN takes to converge is lower, this is due to it
occasionally encountering very sub-optimal local minima
that take only a few iterations to converge to. ALTMIN
does not seem to have this problem, and has much better
convergence.

Effect of regularization For random networks, we found
that regularization does not improve the solutions. However,
this is not true for other types of networks. For example, in
Section VII-B, regularization is necessary for finding good
solutions.

B. Application to Structure from Motion

Structure from Motion (SFM) is well-studied problem in
computer vision where a 3D model of a scene is estimated
from a given set of images or a video. The first step in
structure from motion estimation is to find points which



(a) (b)
λ = 0
3.64× 10−4

0.8558

(c)
λ = 10−6

1.65× 10−3

0.3437

(d)
λ = 10−4

1.96× 10−3

0.0714

(e)
λ = 10−2

6.00× 10−2

0.1705

Fig. 5: Synthetic 2D SFM dataset (a) A circular object with 50 visible points is surrounded by 50 cameras. Each
camera is able to see points on the side of the circle within its field of view, as depicted here in blue. (b)-(e)
Reconstruction using ALTMIN (red circles) using various values of λ for regularization. The numbers shown are the value
of λ (top), the matrix cost x∗(A∗A)x (middle), and the 2D RMSE (bottom). The best reconstruction is given for λ ≈ 10−4.

σ EIGMIN ALTMIN Groundtruth

0.1◦ x∗(A∗A)x 6.40× 10−3 6.19× 10−5 3.16× 10−6

2D RMSE 6.08× 10−2 2.01× 10−4 0
# iterations 304.3 463.5 –

0.2◦ x∗(A∗A)x 3.65× 10−3 9.36× 10−5 1.24× 10−5

2D RMSE 4.14× 10−2 2.26× 10−3 0
# iterations 340.5 522.3 –

0.5◦ x∗(A∗A)x 2.99× 10−3 2.98× 10−4 7.99× 10−5

2D RMSE 4.85× 10−2 4.79× 10−4 0
# iterations 310.2 565.4 –

1.0◦ x∗(A∗A)x 5.17× 10−3 1.11× 10−3 3.20× 10−4

2D RMSE 6.38× 10−2 4.60× 10−3 0
# iterations 290.1 594.4 –

2.0◦ x∗(A∗A)x 8.89× 10−3 4.38× 10−3 1.26× 10−3

2D RMSE 6.18× 10−2 2.82× 10−3 0
# iterations 312.1 531.4 –

5.0◦ x∗(A∗A)x 1.64× 10−2 2.49× 10−2 7.75× 10−3

2D RMSE 9.36× 10−2 1.89× 10−2 0
# iterations 346.1 1359.9 –

TABLE I: Effect of noise on the algorithms. The noise level
σ is varied and the sensing radius is fixed at R = 0.2.
We show the mean error and number of iterations over 100
trials. Each algorithm was run until the matrix error did
not decrease more than 10−10. The last column shows the
matrix error of the groundtruth 2D layout (which has zero 2D
RMSE). Although EIGMIN takes fewer average iterations,
this is mostly caused by occasional local optima that prevent
convergence to the groundtruth, as can be seen in the error.

correspond in several frames, which may be done by tracking
points in a video sequence or matching features in an
unordered set of images. The 3D locations of all cameras
and scene points are then estimated using only the 2D (x, y)
positions of the points in each image.

This setup is quite similar to the one studied in this paper.
The 3D features in the world are projected along rays to 2D
points in an image. In this way, a camera can measure angles
between scene points, but cannot determine distances. These
angles, as measured in the world coordinate system, however,

depend on the intrinsic parameters of the camera, which are
often unknown and are either estimated or assumed during
optimization.

For our purposes, we assume that the intrinsic parameters
of all cameras are known. Additionally, we assume that the
vertical coordinate axis is known, so that the 2D layout of
points can be estimated separately from their vertical heights.
These two assumptions are not necessarily that constraining
in real-wold situations. In the first case, images can be taken
with a pre-calibrated camera so that the camera intrinsics
are known. In the second case, images are often taken while
the camera is aligned with gravity, or else horizontal and
vertical lines on buildings or other objects in the image can
be used to estimate the vertical axis. Note that one interesting
difference between this setup and a sensor network is that
not all points are able to measure angles; only cameras can.
This network then has a set of nodes which can make angle
measurements (cameras) and a set of nodes which cannot
(points). This is a setup that can not be addressed at all by
the triangular constraints given by [10] since there are no
triangles whatsoever.

One popular method for 3D reconstruction from a set of
images involves an algorithm known as “bundle adjustment”
[11], [12]. Bundle adjustment is a local optimization method
which takes some initial set of positions of all cameras
and points and iteratively solves a nonlinear least-squares
problem. Typically, this least-squares problem includes all
camera parameters. Here, we have factored out these param-
eters and consider only the 3D layout of all points. Unlike
most approaches, our setup treats cameras and scene points
identically: they are all just nodes in a network.

In the following experiments, we focus only on the ALT-
MIN algorithm because we have found that it converges
faster and is less susceptible to local optima.

Synthetic 2D dataset We begin by studying a synthetic
2D dataset. In this dataset, a circular object of radius 1 has 50
visible points and is surrounded by 50 cameras. Each camera
can measure angles between points on the circular object
which are within its field of view. This setup is depicted in
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Fig. 6: Results on Dinosaur dataset (a),(b) Estimated 3D layout of all cameras (red) and scene points (black). (c),(d)
Two views of the estimated 3D Dinosaur model. (e) Histogram of the log of radius values for the given reconstruction.
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Fig. 7: The matrix cost x∗(A∗A)x and the 2D RMSE for the
synthetic SFM dataset shown in Figure 5 as the regularization
parameter λ is varied for the algorithm ALTMIN. The best
reconstruction is achieved for λ ≈ 10−4.

Figure 5a. We also added normally-distributed noise with a
standard deviation of σ = 1◦ to each angle measurement.

The reconstruction achieved by ALTMIN with no reg-
ularization is shown in Figure 5b, and is quite far from
the optimum. Imposing regularization greatly improves the
results. The estimated layouts using several different values
of λ are shown in Figures 5b-5e. The error for a range
of values of λ is given in Figure 7. Even though applying
regularization results in a higher value for the matrix error
x∗(A∗A)x, the resulting 2D RMSE is significantly improved.

Real 3D dataset We use the Dinosaur dataset from [16],
depicted in Figure 8, which is a toy dinosaur on a turntable.
The sequence consists of 36 frames taken every 10 degrees
around the circle. Points in each image were tracked over
the video sequence using a KLT tracker [17]. However, by
using tracking alone, the first and last frame will not have
any constraints in common, and so we tracked points from
frame 1 to frame 36 and then back to frame 1. The camera
matrices for this dataset are given in [18], which were used
to properly measure angles.

Our resulting sequence has 36 frames and 2330 points,
and the matrix A is of size 11667×2366. The reconstruction
was done using ALTMIN with λ = 10−4 and subsequently
estimating the vertical height of each point. The result is
shown in Figure 6. The reconstruction is accurate, although

(a) Frame 5 (b) Frame 10

Fig. 8: Two frames from the Dinosaur dataset used in our
experiments.

10 20 30

6

8

10

12

14

16

18

20

Camera #

A
n

g
le

 d
if
fe

re
n

c
e

 (
°
)

 

 

Our result

CSF

Groundtruth

Fig. 9: Variation of camera values in our reconstruction of the
dinosaur from an ideal reconstruction. Each camera should
rotate 10◦ around a circle.

somewhat noisy due to noise in the tracking algorithm.
Ideally, the camera centers should lie on the same plane
and form a circle around the dinosaur in increments of 10◦

between cameras. Deviations from this result are shown in
Figure 9, where the angles between successive cameras vary
from as little as 6◦ to as much as 17◦.

In Figure 10, we compare to another structure-from-
motion algorithm, CSF [19]. CSF is based on a result due to
Tomasi and Kanade [20] that under certain assumptions on
the camera being used, an optimal 3D model can be found



(a) (b) (c)

Fig. 10: Comparison to CSF [19] (a) Frame 3 with
tracked points in black. (b) 3D reconstruction using CSF
[19]. (c) 3D reconstruction using our algorithm.

from a factorization of the measurement matrix. The CSF
algorithm also encourages the cameras to move smoothly
over time. As Figure 10 shows, both our result and that of
CSF are similar, although CSF is somewhat more accurate.
This is because our method estimates heights separately from
the 2D locations and uses only angles, while CSF directly
minimizes reprojection error, leading to a more accurate
reconstruction for SFM. In Figure 9, the variation of camera
values for CSF is compared to our own algorithm. Again,
CSF results in a better reconstruction for this dataset due to
it directly optimizing reprojection error.

We should also note that the optimization encountered a
local minimum when initialized to r = 1, and it had to
be re-initialized. This is a familiar problem in the bundle
adjustment literature, where an initialization is crucial for
accurate results.

This experiment also demonstrates the efficiency of our
local optimization. Each iteration of ALTMIN took about
0.05 seconds on a standard laptop computer and used a
relatively small amount of memory due to the extreme
sparsity of A(r). Our method thus has the potential to be
used on very large networks.

VIII. DISCUSSION

The problem of network localization is an important and
difficult one. Although relative bearing measurements can be
written as quadratic constraints [10], the constraints are diffi-
cult to optimize. An improvement was made by [10], where
it was shown that constraints can be written for triangles
which can be efficiently optimized. Here, we have extended
this work to the case of general bearing measurements, even
when no triangles are present in the network. In essence, we
have traded a set of constraints which are difficult to optimize
for a set which have more variables (due to the unknown r
values), but which can be locally-optimized quite efficiently.
We have shown that this method works well and is very
efficient for several different types of networks.

There are several directions for future research. The prob-
lem of initialization is a common one in local optimization,
and there may be better ways to find an initialization here.
For highly-complex problems, an incremental method may
be useful as is often done for large-scale SFM problems. It

would also be interesting to explore the connection to bundle
adjustment in more detail, since this is a very important
algorithm in computer vision. Our results provide a new tool
which may lead to improvements in this and other domains.
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