
Huffman Coding Trees
CIT 5940

David A.
Huffman
1925-1999

Huffman Coding Tree

Introduction

● Fixed-length coding: encoding scheme that assigns a code to each

object in the collection using codes that are all of the same length

(ASCII)

● Variable-length coding: encoding scheme that assigns a code to each

object in the collection using codes that can be of different lengths

Problem: Save space when storing data

● Idea:

○ Use variable-length coding: assign shorter codes to frequently occurring data,

assign longer codes to data occurring less often

● At the heart of file compression techniques

● Huffman Trees help create variable-length coding

● Huffman codes use in “lossless” data compression

Priority Queue

● A sorted ADT.

● The head of a priority queue is always the smallest (or largest)

element.

● Most often implemented using the heap data structure—next

week!

● Java implementation: PriorityQueue
○ Elements are retrieved based on their natural ordering or by a

comparator

○ Keep in mind: for integers, this means the smallest numbers are

polled FIRST!

Building Huffman Coding Trees (for n letters/characters)

1. Create a collection of n initial Huffman trees, each tree is a single leaf node containing

one of the letters and its frequency

2. Put the n partial trees onto a priority queue organized by weight (frequency)

3. Remove the first two trees (the ones with lowest weight) from the priority queue

4. Join the two trees together to create a new tree whose root has the two trees as

children, and whose weight is the sum of the weights of the two trees

5. Put this new tree back into the priority queue

6. Repeat until all of the partial Huffman trees have been combined into one

Activity

● Build the CharCounter for the following text to get the frequencies of

each character.

‘TONI MORRISON’

(include space)

Activity

● Build the CharCounter for the following text to get the frequencies of

each character.

‘TONI MORRISON’

T: 1 <SPACE>: 1

O: 3 M: 1

N: 2 R: 2

I: 2 S:1

Activity

● Build the Huffman tree for the following text, including a count for a

<PSEUDO_EOF> character.

‘TONI MORRISON’

T: 1 <SPACE>: 1

O: 3 M: 1

N: 2 R: 2

I: 2 S:1

<P_EOF> : 1

Activity
● Build the Huffman tree for the

‘TONI MORRISON’ including a

count for a <PSEUDO_EOF>

character.

● “X” here refers to the

<PSEUDO_EOF> character

● There are multiple valid trees,

but here’s one

Assigning Huffman Codes: Encoding

● Beginning at the root:

○ Assign either a '0' or a '1' to each edge in the tree:

■ '0' is assigned to edges connecting a node with its left child

■ '1' to edges connecting a node with its right child

● Generate the codes for each letter

○ The code is the concatenation of the labels/values of the edges forming a path

from the root to the letter

Activity
● Build the Huffman code using

this tree. char code

O

N

EOF (X)

I

R

T

Space

M

S

Activity
● Build the Huffman code using

this tree. char code

O 00

N 011

EOF (X) 010

I 100

R 101

T 1100

Space 1101

M 1110

S 1111

Prefix property

● Prefix property: given a collection of strings, the collection has the prefix

property if no string in the collection is a prefix for another string in the

collection

● Huffman codes meet the prefix property. Any prefix for a code correspond

to an internal node, and all codes correspond to leaf nodes

Using Huffman Codes: Decoding

● Given a Huffman code and the tree used for encoding:

○ follow a path through the tree dictated by the bits in the code string

○ Starting at the root

■ Each '0' bit indicates a left branch

■ Each '1' bit indicates a right branch

Using Huffman Codes: Decoding

● Given a Huffman code and the tree used for encoding:

○ follow a path through the tree dictated by the bits in the code string

○ Starting at the root

■ Each '0' bit indicates a left branch

■ Each '1' bit indicates a right branch

PROBLEM: If I send you a compressed file, how are you supposed to know what
encoding I used?

Using Huffman Codes: Decoding

● You receive compressed.txt:

11000001
11001101
11100010
11011001
11100011
01000000

Using Huffman Codes: Decoding

● You receive compressed.txt: char code

O 00

N 011

EOF (X) 010

I 100

R 101

T 1100

Space 1101

M 1110

S 1111

+ = TONI MORRISON

11000001
11001101
11100010
11011001
11100011
01000000

Using Huffman Codes: Decoding

● You receive compressed.txt: char code

O 00

N 011

EOF (X) 010

I 100

R 101

T 1100

Space 1101

M 1110

S 1111

+ = TONI MORRISON

IDEA: Send the key
with the compressed

file

11000001
11001101
11100010
11011001
11100011
01000000

Using Huffman Codes: Header

● In compressed.txt, write:

● A magic number to identify the author of

the file

● A traversal of the tree used for encoding

that can be used to reconstruct the tree

● The compressed text of the file itself,

including a PSEUDO_EOF char

11111111
00100010

....
01010001
11000001
11001101
11100010
11011001
11100011
01000000

Activity
● Preorder Traversal of this

Huffman Tree
● Whenever we reach a non-leaf

node, we write 0. Whenever we
reach a leaf node, we write 1
followed by the 9 bit encoding

stored inside the leaf.

Activity
● Preorder Traversal of this

Huffman Tree
● Whenever we reach a non-leaf

node, we write 0. Whenever we
reach a leaf node, we write 1
followed by the 9 bit encoding
stored inside the leaf.

001O01N1X001I1R001T1<SPACE>0
1M1S
(the actual bits written would use
0001001111 for O, 0001001110 for
N, etc)

Full Practice: Decompress this File!

11111111
01001000
00101001
00001010
01001110
10011011
00100000

01000001 01000010 01001110

A B N

Efficiency of Huffman coding

● Huffman coding does better when there is large variation in the

frequencies of letters

● Huffman coding of a typical text file will save around 40% over

ASCII coding if we charge ASCII coding at eight bits per character

Efficiency of Huffman coding

● Huffman coding for a binary file have a very different set of

distribution frequencies and so have a different space savings

● Most commercial compression programs use two or three coding

schemes to adjust to different types of files

	Slide 1: Huffman Coding Trees CIT 5940
	Slide 2: David A. Huffman 1925-1999
	Slide 3: Huffman Coding Tree
	Slide 4: Introduction
	Slide 5: Problem: Save space when storing data
	Slide 6: Priority Queue
	Slide 7: Building Huffman Coding Trees (for n letters/characters)
	Slide 8: Activity
	Slide 9: Activity
	Slide 10: Activity
	Slide 11: Activity
	Slide 12: Assigning Huffman Codes: Encoding
	Slide 13: Activity
	Slide 14: Activity
	Slide 15: Prefix property
	Slide 16: Using Huffman Codes: Decoding
	Slide 17: Using Huffman Codes: Decoding
	Slide 18: Using Huffman Codes: Decoding
	Slide 19: Using Huffman Codes: Decoding
	Slide 20: Using Huffman Codes: Decoding
	Slide 21: Using Huffman Codes: Header
	Slide 22: Activity
	Slide 23: Activity
	Slide 24: Full Practice: Decompress this File!
	Slide 25: Efficiency of Huffman coding
	Slide 26: Efficiency of Huffman coding

