
FILE I/O

Announcements:

First Graded Recitation Activity on 1/31

Questions: write a compareTo , write a function using a Collection ,

analyze runtime of your solution.

It's a bit shorter!

You'll have a clock!

Explicit instruction about how correct your Java has to be!

HW1 due tonight, -10% for tomorrow, -20% for Monday

HW2 comes out now, due 2/12 (two weeks)

Two autograders: one for style and one for style & correctness

FILE I/O

1

Agenda

1. I/O Streams (quickly)

2. InputStream (quickly)

3. OutputStream (quickly)

4. Buffered Streams (very quickly)

5. Reader

6. Writer

7. RandomAccessFile

FILE I/O

2

I/O Streams

A stream is a sequence of data.

The stream abstraction represents a communication channel with the world

outside the program

a file, a network connection

An I/O stream represents an input source or output destination that can be read

from or written to, respectively

Information of several different types can be sent along a stream

bytes, primitive data types, objects

Streams throw IOExceptions in Java

FILE I/O

3

Class Hierarchy of I/O Streams

Reading Bytes: InputStream

InputStream is an abstract class that serves as a superclass for all input

streams of bytes

subclasses: FileInputStream , ByteArrayInputStream ,

StringBufferInputStream

Recall that abstract classes cannot be instantiated, but do provide a list of all methods

that any subclass must be able to implement.

FILE I/O

5

InputStream Interface

method purpose

void close() close this stream for reading

void mark(int

limit)

specify the current location in the file to be able to return to, along with a

maximum number of bytes that can be read before the mark is invalidated.

int read() return the next byte (8 bits) as an int

void reset() return to the previously marked location

FILE I/O

6

Using InputStream

All subclasses of InputStream are byte streams, meaning that they return 8 bits of

data from a file at a time as a byte .

Useful for reading raw data from a file: image data, audio data, machine code

Not so useful for dealing with text: a char is 16 bits, or two bytes .

The byte type is just a sequence of eight 1s and 0s that can be interpreted in a

number of ways.

FILE I/O

7

Example: FileInputStream

A FileInputStream is a fully-implemented subclass of the InputStream and can

be used to read information from a file.

A simple look at reading one or a few bytes from a file:

FILE I/O

FileInputStream fis = new FileInputStream("myFile.txt");
int b = fis.read(); // get one byte at a time
byte[] chunk = new byte[8];
int result = fis.read(chunk); // get a chunk of 8 bytes
// the return value is the number of bytes read; hopefully chunk.length

8

Example: FileInputStream

int readUntil(byte stop, FileInputStream fis) reads from a file until it

encounters a specific byte, and returns the number of bytes read before that point.

FILE I/O

public static int readUntil(byte stop, FileInputStream fis) {
 int count = 0;
 while (fis.read() != stop) {
 count++;
 }
 return count;
}

9

Writing Bytes: OutputStream

OutputStream is an abstract class that serves as a superclass for all Output

streams of bytes

subclasses: FileOutputStream , ByteArrayOutputStream ,

StringBufferOutputStream

Behaves exactly like the InputStream abstract class, but in reverse!

FILE I/O

10

OutputStream Interface

method purpose

void close() close this stream for reading

void write(byte[] b) writes all of the bytes in the array to the destination

void write(int b) writes the first 8 bits of the int to the destination

FILE I/O

11

Example: FileOutputStream

FILE I/O

FileOutputStream fos = new FileOutputStream("myFile.txt");
fos.write(5); // write a single byte

byte[] chunk = {1, 2, 3, 4, 5, 6, 7, 8};
fos.write(chunk); // write a chunk of 8 bytes

fos.close(); // close the stream

12

Buffered Streams

Buffered streams read/write data from/to a buffer, which is a temporary storage area

in memory.

This means that the disk operations are only executed when the buffer is empty

(reading) or full (writing)

Gives improved performance since reading and writing to program memory is very

fast compared to disk operations

Writing to an array: nanoseconds

Writing to a disk: milliseconds

BufferedInputStream and BufferedOutputStream are subclasses of

InputStream and OutputStream , respectively that can be used wherever the

superclass is expected.

Constructing Buffered Streams

First, create the InputStream or OutputStream that you want to buffer.

Then, construct the buffered version by passing a reference to the unbuffered

stream to the constructor.

FILE I/O

FileInputStream fis = new FileInputStream("myFile.txt");
BufferedInputStream bis = new BufferedInputStream(fis);

FileOutputStream fos = new FileOutputStream("myFile.txt");
BufferedOutputStream bos = new BufferedOutputStream(fos);

14

Writing Without a Buffer

Takes ~4ms to write 4 bytes to disk. A disk has to literally rotate four times.

FILE I/O

fos.write(0); // write to disk, taking 1 ms
fos.write(3); // write to disk, taking 1 ms
fos.write(4); // write to disk, taking 1 ms
fos.write(7); // write to disk, taking 1 ms

15

Writing With a Buffer

Takes 1ms + 4ns (= 1.000004 ms) to write 4 bytes to disk. A disk has to literally

rotate once.

FILE I/O

bos.write(0); // write to buffer, taking ~1 ns
bos.write(3); // write to buffer, taking ~1 ns
bos.write(4); // write to buffer, taking ~1 ns
bos.write(7); // write to buffer, taking ~1 ns

bos.flush(); // write to disk, taking 1 ms

16

Character Streams

Whereas InputStream and OutputStream manipulate bytes , Reader and

Writer deal with chars .

char is a 16-bit type that can represent a single Unicode character

Reader and Writer are abstract classes that serve as superclasses for all character

streams.

FILE I/O

17

Reader & Writer

The Reader is implemented by InputStreamReader , FileReader , and

StringReader .

The Writer is implemented by BufferedWriter , FileWriter , and

StringWriter .

FILE I/O

18

Examples

This example uses a StringReader, but similar code would work with a FileReader

for example.

The characters are still read as ints , so you need to remember to cast them to

chars . Why?

FILE I/O

@Test
void test() throws IOException {
 Reader r = new StringReader("one two three four five");
 char c = (char) r.read();
 assertEquals('o', c);
 c = (char) r.read();
 assertEquals('n', c);
}

19

Examples

This example uses a StringWriter, but similar code would work with a FileWriter

for example.

Why is the type of w Writer and not StringWriter?

FILE I/O

@Test
void test() throws IOException {
 Writer w = new StringWriter();
 w.write('ê');
 assertEquals("ê", w.toString());
}

20

Random Access Files

Streams (and Readers/Writers, and Scanners) have a sequential nature

You can only read from the beginning of a file to the end, sometimes resetting

backwards to a fixed position.

A random access file allows you to read from or write to any position in the file

more easily

Behaves like a large array of bytes that you can freely index into

Provides a file pointer, which marks the current position in the file and can be

reset to any position

FILE I/O

21

RandomAccessFile.java

method purpose

RandomAccessFile(String name,

String mode)

constructs a new random access file with the given name

and mode (reading or writing or both)

int read(byte[] b)
Read some bytes from the current position in the file. The

current position moves forward as the bytes are read.

int readInt()
Reads four bytes from the file and returns them as an

int

String readLine()
Reads bytes from the file until a \n character is read and

returns them as a String

void seek(long pos) Sets the file pointer to the given position

void write(byte[] b) Writes the given bytes to the file at the current position.

RandomAccessFile.java

Check out the JavaDocs for the full API. The RandomAccessFile has several

additional methods for reading and writing that make dealing with more structured data

(primitives, Strings, objects) easier than with Streams, Readers, and Writers.

FILE I/O

23

https://docs.oracle.com/javase/8/docs/api/java/io/RandomAccessFile.html

Live Coding

Read the contents (word by word using spaces as a separator) of a file using a Reader

and an Iterator.

Follow the design process:

1. Understand the problem

2. Formalize the interface

3. Write tests

4. Implement the behavior

FILE I/O

24

Design Process

1. Understand the problem

What are the relevant concepts and how do they relate?

2. Formalize the interface

How should the program interact with its environment?

3. Write test cases

How does the program behave on typical inputs? On unusual ones? On

invalid ones?

4. Implement the required behavior

Often by decomposing the problem into simpler ones and applying the same

recipe to each

FILE I/O

25

Understand the Problem:

Read the content of a file using a reader and an iterator.

Content: what is the type of information we're trying to read from the file?

"tokens" or individual words separated by white space

File: where is the file located and how do we identify it?

it will be stored locally; we can describe the path using a String of directories

separated by backslashes

Reader: the means by which we will pull the source data from the file

relevant: read() to get a character at a time

Iterator: the interface we'll implement

required methods: next() and hasNext()

FILE I/O

26

https://docs.oracle.com/javase/8/docs/api/java/io/Reader.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

Formalize the Interface

It should read from a file using a Reader, so we don't need to worry about file paths or

anything here. Still, possible I/O Exception woes.

We're implementing the Iterator interface, so that tells us two methods we need. Also,

probably a constructor! What to construct?

Save the file (the Reader in this case)

store the most recent character read

FILE I/O

27

Write Test Cases

Typical inputs?

Unusual inputs?

Invalid inputs?

(go to DocumentIteratorTest.java)

Implement

Let's go!

FILE I/O

28

	File I/O
	Announcements:
	Agenda
	I/O Streams
	Class Hierarchy of I/O Streams
	Reading Bytes: InputStream
	InputStream Interface
	Using InputStream
	Example: FileInputStream
	Example: FileInputStream
	Writing Bytes: OutputStream
	OutputStream Interface
	Example: FileOutputStream
	Buffered Streams
	Constructing Buffered Streams
	Writing Without a Buffer
	Writing With a Buffer
	Character Streams
	Reader & Writer
	Examples
	Examples
	Random Access Files
	RandomAccessFile.java
	RandomAccessFile.java
	Live Coding
	Design Process
	Understand the Problem:
	Formalize the Interface
	Write Test Cases
	Implement

