
DESIGN PATTERNS

VOLUME 2

Composite Pattern

Structural pattern

Problem: we have a collection of objects in which an object can be composed of

other objects

Goal: We want to treat all objects (containers and components) uniformly / perform the

same action on all the objects in the collection

DESIGN PATTERNS

1

Composite Pattern

Solution:

Share behavior/activity across all objects (using an interface)

Each subclass implements the activity

Call the activity on the first object in the collection

Sound familiar?

DESIGN PATTERNS

2

Composite Pattern: Example

Expression Tree

Collection of Nodes: internal and leaf nodes.

Internal nodes composed of (two) internal and/or leaf nodes

We want to evaluate the expression tree

Call evaluate on the root of the tree

Each internal node invokes evaluate of its subtrees with the appropriate

operator

Leaf node return its value when performing evaluate

DESIGN PATTERNS

3

Composite Pattern: Example

Class Purpose

VarBinNode Interface for a binary node

VarIntlNode Class for an internal node, implements VarBinNode

VarLeafNode Class for a leaf node, implements VarBinNode

DESIGN PATTERNS

4

Composite

Pattern:

Example

Class diagram

DESIGN PATTERNS

5

Composite Pattern: SVG g Element

<svg viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg">
 <!-- Using g to inherit presentation attributes -->
 <g fill="white" stroke="green" stroke-width="5">
 <circle cx="40" cy="40" r="25" />
 <circle cx="60" cy="60" r="25" />
 </g>
 <circle fill="blue" stroke="red" cx="0" cy="50" r="15" />
</svg>

How to Draw an SVG?

For each element in the SVG, we can call the draw method using:

its style properties

any style properties of its ancestors

If the element is a single object, it will draw itself

If the element is a group (a g), it will recursively draw each of its children

DESIGN PATTERNS

7

Strategy Pattern

Behavioral pattern

Problem: We want to use a general algorithm; some part of it may vary depending on

the context. We want to avoid multiple slightly different version of the same algorithm

Goal: Improved reusability of the code

DESIGN PATTERNS

8

Strategy

Pattern

Solution: Use a class that represents

the strategy and pass an instance to

a single method that implement the

rest of the algorithm.

DESIGN PATTERNS

9

Strategy Pattern: An Example

We want to search for an element (target) in a collection of objects (dogs) based on

different criteria: by name, or by id

We want to have one implementation of the search algorithm, and specify the strategy

to use every time we are calling the algorithm

The "strategy" here is just the use of one Comparator over another!

DESIGN PATTERNS

10

Functional Interfaces

Comparator is an example of a functional interface

An interface that has only one unimplemented method

An implementing class for a functional interface can consist of one function

An anonymous class implementing a functional interface is basically a single

function definition!

DESIGN PATTERNS

TreeSet<Treasure> ts = new TreeSet(new Comparator() {
public int compare(Treasure t1, Treasure t2) {

return t1.getValue() - t2.getValue();
}

});

11

Anonymous Functions (Lambdas)

Java 8 introduced lambdas to simplify the syntax for implementing functional

interfaces

Here, (t1, t2) -> t1.getValue() - t2.getValue() represents a concise

implementation of the compare method, which itself is a concise expression of an

entire new Comparator class!

DESIGN PATTERNS

TreeSet<Treasure> ts = new TreeSet((t1, t2) -> t1.getValue() - t2.getValue());

(inputOne, inputTwo, ...) -> oneLineExpressionGivingValueToReturn;

12

Passing "Functions"

You can also "pass functions" (not really, but close enough) like so:

Comparator.comparing() is a method that takes in another method that selects

the proper value from the objects by which to compare them. It returns a Comparator

that uses that method to compare the objects.

DESIGN PATTERNS

TreeSet<Treasure> ts = new TreeSet(Comparator.comparing(Treasure::getValue));

13

	Design Patterns Volume 2
	Composite Pattern
	Composite Pattern
	Composite Pattern: Example
	Composite Pattern: Example
	Composite Pattern: Example
	Composite Pattern: SVG g Element
	How to Draw an SVG?
	Strategy Pattern
	Strategy Pattern
	Strategy Pattern: An Example
	Functional Interfaces
	Anonymous Functions (Lambdas)
	Passing "Functions"

