CI T
5940

DEsSIGN PATTERNS
VoLuME 2 :i

DESIGN PATTERNS

Composite Pattern

Structural pattern

Problem: we have a collection of objects in which an object can be composed of

other objects

Goal: We want to treat all objects (containers and components) uniformly / perform the
same action on all the objects in the collection

DESIGN PATTERNS

Composite Pattern

Solution:

e Share behavior/activity across all objects (using an interface)
e Each subclass implements the activity

o Call the activity on the first object in the collection

Sound familiar?

DESIGN PATTERNS '

Composite Pattern: Example

Expression Tree

e Collection of Nodes: internal and leaf nodes.
o Internal nodes composed of (two) internal and/or leaf nodes

e We want to evaluate the expression tree

o Call evaluate on the root of the tree

o Each internal node invokes evaluate of its subtrees with the appropriate
operator

o Leaf node return its value when performing evaluate

DESIGN PATTERNS

Composite Pattern: Example

(of F-113 Purpose

VarBinNode Interface for a binary node

VarIntlNode Class for an internal node, implements VarBinNode

VarLeafNode Class for a leaf node, implements VarBinNode

DESIGN PATTERNS

<<Interface==
VarbinNode

+ isLeaf(): boolean
+ traverse():
+ evaluate(): double

Composite
Pattern:
Example

: VarintiNod VarLeafNod
Class diagram arintiNods arLeafNode

- operator: Character - operand: String

+ leftChild(): VarBinNode + value(): String
+ rightChild(): VarBinNode
+ value(): Character

Composite Pattern: SVG g Element

<svg viewBox="0 0 100 100" xmlns="http://www.w3.0rg/2000/svg">
<!-- Using g to inherit presentation attributes -->
<g fill="white" stroke="green" stroke-width="5">
<circle cx="40" cy="40" r="25" />
<circle cx="60" cy="60" r="25" />
</g>
<circle fill="blue" stroke="red" cx="0" cy="50" r="15" />

</svg>

DESIGN PATTERNS '

How to Draw an SVG?

e For each element in the SVG, we can call the draw method using:
o its style properties

o any style properties of its ancestors

e If the element is a single object, it will draw itself

o If the element is a group (a g), it will recursively draw each of its children

DESIGN PATTERNS

Strategy Pattern

Behavioral pattern

Problem: We want to use a general algorithm; some part of it may vary depending on
the context. We want to avoid multiple slightly different version of the same algorithm

Goal: Improved reusability of the code

DESIGN PATTERNS '

Strategy
P a tter n I Stralegy

Contextimerfaca() | dlgonthminteriace()

Solution: Use a class that represents
the strategy and pass an instance to ConcreteStrategyA | | ConcreteStratey | | Concretestrategye

Algorithminterace]) Algorthminlerdace() Algorithminterface}

a single method that implement the
rest of the algorithm.

DESIGN PATTERNS '

Strategy Pattern: An Example

We want to search for an element (target) in a collection of objects (dogs) based on
different criteria: by name, or by id

We want to have one implementation of the search algorithm, and specify the strategy
to use every time we are calling the algorithm

e The "strategy" here is just the use of one Comparator over another!

DogSearcher

+searchByName(List<Dog>, Dog): boolean
+searchByld(List<Dog>, Dog): boolean

+search(List<Dog>, Dog, DogComparator): boolean

<<Interface>>
DogComparator

+ equalss(Dog, Dog): boolean

NameComparator

IdComparator

Created with draw.io (www.draw.io)

DESIGN PATTERNS '

Functional Interfaces

Comparator is an example of a functional interface

e An interface that has only one unimplemented method
 An implementing class for a functional interface can consist of one function

e An anonymous class implementing a functional interface is basically a single
function definition!

TreeSet<Treasure> ts = new TreeSet(new Comparator() 3
public int compare(Treasure tl1l, Treasure t2) 3
return tl.getValue() - t2.getValue();

$

DESIGN PATTERNS

J

Java 8 introduced lambdas to simplify the syntax for implementing functional
interfaces

Anonymous Functions (Lambdas)

TreeSet<Treasure> ts = new TreeSet((tl, t2) -> tl.getValue() - t2.getValue());

Here, (t1, t2) -> tl1.getValue() - t2.getValue() represents a concise
implementation of the compare method, which itself is a concise expression of an
entire new Comparator class!

(inputOne, inputTwo, ...) -> onelLineExpressionGivingValueToReturn;

DESIGN PATTERNS

Passing "Functions""

You can also "pass functions" (not really, but close enough) like so:

TreeSet<Treasure> ts = new TreeSet(Comparator.comparing(Treasure::getValue));

Comparator.comparing() is a method that takes in another method that selects
the proper value from the objects by which to compare them. It returns a Comparator
that uses that method to compare the objects.

	Design Patterns Volume 2
	Composite Pattern
	Composite Pattern
	Composite Pattern: Example
	Composite Pattern: Example
	Composite Pattern: Example
	Composite Pattern: SVG g Element
	How to Draw an SVG?
	Strategy Pattern
	Strategy Pattern
	Strategy Pattern: An Example
	Functional Interfaces
	Anonymous Functions (Lambdas)
	Passing "Functions"

