
BINARY SEARCH

TREES



Announcements

No lecture on 2/26

HW3 Deadline Extended to 3/3

Group Project Proposals will be due 3/7

(don't worry)

BINARY SEARCH TREES

1



Group Project

Teams of X

Two tracks:

independently submitted project idea

propose own idea

check in frequently with Project TA

choosing one of a few sample projects

implementation is open ended with a few end targets

check in semi-frequently with Project TA

"Proposal" is mostly "what track do I want to do and who do I want to work with"

BINARY SEARCH TREES

2



The Problem: Searchable Symbol Tables

Symbol Tables are lists of variables along with information about their scopes & types.

The compiler generates and uses a symbol table to check the validity of the

program and generate machine code.

Make sure no two variables are declared with the same name in the

same scope

Make sure that every variable is declared before it is used

The compiler should be as fast as possible—you need to recompile your code every

time you make a change!—so the symbol table should be quickly searchable.

BINARY SEARCH TREES

3



Example: Searchable Symbol Tables

Symbol Type Scope

Counter class global

count double instance var

increment
void

method

instance

method

incrementBy
void

method

instance

method

amount int parameter

BINARY SEARCH TREES

public class Counter {
    public int count;

    public Counter(int count) {
        this.count = count;
    }

    public void increment() {
        count++;
    }

    public void incrementBy(int amount) {
        count += amount;
    }

    ...
}

4



Understanding the Problem

Representing the symbol table as a "table" is not well-defined—so let's define!

We want to be able to:

Add a new symbol to the table (variable declaration)

Look up a symbol to see if it's already in the table (using a variable,

variable declaration)

Remove a symbol from the table (leaving a specific scope in the program)

...and we want to be able to do all of the above quickly.

BINARY SEARCH TREES

5



The Symbol Class

BINARY SEARCH TREES

public record Symbol(String name, String type) implements Comparable<Symbol> {
    @Override
    public int compareTo(Symbol other) {
        return this.name.compareTo(other.name);
    }
}

6



Formalizing the Interface

Goal Method Notes

Add a new symbol to

the table
boolean add(Symbol s)

Careful! What happens if we already

have such a Symbol?

Look up a symbol
boolean 

contains(Symbol s)

Remove a symbol
boolean remove(Symbol 

s)

How do we decide which Symbols

to remove?

BINARY SEARCH TREES

7



Do We Need a New Data Structure?

Is there any reason to build something new to solve this problem, or can we leverage

something we already know how to use?

Lists?

contains  is  if the list is unsorted, which is bad since we'll have to look

up symbols a lot!

contains  is  if the list is sorted, but then add  is even slower to

maintain the sorted order

BINARY SEARCH TREES

8



Do We Need a New Data Structure?

Is there any reason to build something new to solve this problem, or can we leverage

something we already know how to use?

Stacks? Queues?

These are actually vital for the most efficient real world compilers to help

define scope in a clever way, but that's beyond us here.

In our case, not really clear how to support contains  in a Stack/Queue.

Trees?

General binary trees don't offer anything better than lists a priori

Huffman Trees—too specific!

BINARY SEARCH TREES

9



Our New Data Structure

Binary Search Trees are Binary Trees with the Binary Search Tree property:

All nodes stored in the left subtree of a node whose key value is K have key values

less than or equal to K

All nodes stored in the right subtree of a node whose key value is K have key values

greater than K

…and all subtrees of the root obey the BST property too, recursively

BINARY SEARCH TREES

10



Which

Subtrees of

This Tree Are

BSTs?

The tree rooted at the

Node of 900?

The tree rooted at the

Node of 750?

The tree rooted at the

Node of 500?

The tree rooted at the

Node of 201?

BINARY SEARCH TREES

11



Which

Subtrees of

This Tree Are

BSTs?

The tree rooted at the

Node of 900? 

The tree rooted at the

Node of 750? 

The tree rooted at the

Node of 500? 

The tree rooted at the

Node of 201? 

BINARY SEARCH TREES

12



Inorder Traversal

Recall: Inorder Traversal visits the left

subtree, then the current node, then the

right subtree.

Returns the records (stored in the nodes) in

sorted order from lowest to highest



Inorder Traversal

For the tree rooted at 56, the inorder

traversal is:

Visit the left subtree (none!), then the current

node (61), then the right subtree (none!).

 17 19 25 38 43 51 56 58 61 



Binary Search Tree

Sorted Data Structure with the operations we want for our Symbol Table:

add

remove

contains

TreeSet  and TreeMap  in Java are implemented using a BST. What are the

complexities of these operations?

BINARY SEARCH TREES

15



BST: implementation

Data fields

Root of the BST

Number of nodes

E  does not have to be Comparable ! 

In order to place an element in a BST, we do need to compare it to other values…

If E  is Comparable , use the natural ordering

If E  is not Comparable , the user can provide a Comparator

BINARY SEARCH TREES

private BSTNode<E> root;
private int size;
private Comparator<E> comparator;

16



BSTNode: implementation

Binary Node instance variables (polymorphic)

E element;
Element for this node, stored in BSTLeaf and BST Internal

BSTNode left;

Pointer to left child, only stored in Internal

BSTNode right;

Pointer to right child, only stored in Internal

BINARY SEARCH TREES

17



BST: contains

High-level description:

If the tree is null, return false

Check the root of the tree

if we found the element,

return true

if we don’t find the element,

recurse on the subtree

where we’d expect to find

the element

BINARY SEARCH TREES

18



BST: contains

BINARY SEARCH TREES

private boolean containsHelper(Comparable<E> e, BSTNode<E> treeRoot) {
   if (treeRoot == null) {
       return false;
   }
   int comparison = e.compareTo(treeRoot.getValue());
   boolean isLeaf = treeRoot.isLeaf();
   if (comparison == 0) {
       return true;
   } else if (comparison < 0) {
       // if this is a leaf, STOP! if this is internal, then continue the search
       // to the left subtree
       return !isLeaf && containsHelper(e, ((BSTInternal<E>) treeRoot).getLeft());
   } else {
       // if this is a leaf, STOP! if this is internal, then continue the search
       // to the right subtree
       return !isLeaf && containsHelper(e, ((BSTInternal<E>) treeRoot).getRight());
   }
} 19



BST: contains

Runtime analysis: at most  recursive

calls, each of which takes constant

time in addition to any recursive calls.

 runtime.

Here, 9 nodes, but at most 4

recursive calls.

BINARY SEARCH TREES

20



BST: add

High-level description:

If the tree is null, put the node here

Check the root of the tree

if we found the element, do nothing

if we don’t find the element,

recursively add the element in the left

subtree if it’s less than the root,

otherwise add in the right.

What happens if we insert 18, insert 28,

insert 41?

BINARY SEARCH TREES

21

Note
insert 18, insert 28, insert 41



BST: add complexity

Base case: inserting into an empty (sub)tree of depth  is 

Recursive case: Follow a Left or Right child pointer ( ) and then insert into a

subtree with a depth of at most .

Analysis:

Recurrence relation gives  runtime

BINARY SEARCH TREES

22



What good is O(d)?

Starting from an empty tree, add values 63, 62, 61, … 3, 2, 1 in that order.

What is the shape of the tree, and what is its depth in terms of the number

of nodes?

What would be the order of additions that would lead to the least-depth tree?

BINARY SEARCH TREES

23



Main Idea of BST Complexity

The important operations (add, contains, remove) are all  operations.

In the worst case, a pathological BST of  values is just a linked list where

.

Fortunately, in the best (and average!) case, .

In a few weeks, we will study self-balancing trees that allow us to guarantee that

 without even increasing runtime complexity of the operations!

BINARY SEARCH TREES

24



BST: remove

Find the node (basically contains)

Remove the node

Node was a leaf

Set reference to the node to null

Node had only one child

Make the reference to the node to point to its (not null) child

Node has two children

BST property must be maintained

Swap the value stored in the node with the largest value in its left subtree

Delete the largest node in the left subtree

BINARY SEARCH TREES

25

Note
Largest value is a leaf node. why



BST: remove implementation

Requires a parent pointer in addition to the typical current pointer we’ve been

passing around (implicitly with recursion)

Possible with recursion as well, but the provided implementation is iterative to

show you how that looks

Runtime analysis: , since it's a call to contains  and then a constant number of

operations to remove the node.

Worst case (badly unbalanced BST): 

Average case (balanced tree): 

BINARY SEARCH TREES

26



Activity

Draw the BST that results when you insert items with keys: 3, 4, 1, 6, 9, 5, 7, 2

Rebuild the above tree after removing 3

BINARY SEARCH TREES

27



TreeSet is a BST

Implementation of the Set ADT using a BST

Provides  time for add , remove , and contains  since they are self-

balancing trees.

BINARY SEARCH TREES

28



TreeMap is a BST

The BST, as we’ve implemented it, is also pretty much already a TreeMap!

We have already rejected duplicates, so that map invariant is maintained

BST add, remove, and contains behave similar to put(K key, V value), remove(K

key), and containsKey(K key)

Problem: The BST stores individual pieces of data, but the TreeMap wants to store

key-value pairs.

Solution: Write an inner-class of Entry objects and store those in the BST ordered

by the keys.

BINARY SEARCH TREES

29



Back to the Symbol Table

...now we have an efficient data structure for add , remove , and contains  operations

on Symbol  records.

Let's have our SymbolTable  be a TreeSet<Symbol>

We can use the add , remove , and contains  methods of TreeSet  to

implement the add , remove , and contains  methods of SymbolTable .

BINARY SEARCH TREES

30



Test Cases

Consider what should happen for each of these cases.

Adding a new symbol to an empty table

Adding a new symbol to a non-empty table

Adding a symbol that is already in the table

Checking for a symbol that is present in the table

Checking for a symbol that is not present in the table

Removing a symbol that is present in the table

Removing a symbol that is not present in the table

BINARY SEARCH TREES

31



Test Cases

(  for acceptable/  for unacceptable)

Adding a new symbol to an empty table 

Adding a new symbol to a non-empty table 

Adding a symbol that is already in the table ( , redeclaring a variable!)

Checking for a symbol that is present in the table 

Checking for a symbol that is not present in the table 

Removing a symbol that is present in the table 

Removing a symbol that is not present in the table ( , shouldn't happen)

BINARY SEARCH TREES

32



Writing the Code

(Check the .zip  file on the website for today's class.)

BINARY SEARCH TREES

33


	Binary Search Trees
	Announcements
	Group Project
	The Problem: Searchable Symbol Tables
	Example: Searchable Symbol Tables
	Understanding the Problem
	The Symbol Class
	Formalizing the Interface
	Do We Need a New Data Structure?
	Do We Need a New Data Structure?

	Our New Data Structure
	Which Subtrees of This Tree Are BSTs?
	Which Subtrees of This Tree Are BSTs?

	Inorder Traversal
	Inorder Traversal
	Binary Search Tree
	BST: implementation
	BSTNode: implementation
	BST: contains
	BST: contains
	BST: contains
	BST: add
	BST: add complexity
	What good is O(d)?
	Main Idea of BST Complexity
	BST: remove
	BST: remove implementation
	Activity
	TreeSet is a BST
	TreeMap is a BST
	Back to the Symbol Table
	Test Cases
	Test Cases
	Writing the Code

