
ALGORITHM

ANALYSIS

1

Definitions

Problem: a task to be performed

Algorithm: a method or a process followed to solve a problem

Program: an instance, or concrete representation, of an algorithm in some

programming language

Check-in: Come up with an algorithm for the problem of finding the biggest

element in the list.

ALGORITHM ANALYSIS

2

Different Algorithms, Same Problem

The same problem can be solved with multiple different algorithms.

We decide which algorithm to use based on its complexity, or the amount of resources

that it requires in order to execute. These resources can be:

time (how many CPU cycles required)

space (the number & size of records that need to be saved in program memory)

ALGORITHM ANALYSIS

3

Motivating Example: Linear Search

If inputs has a length of ,

What situation leads to the smallest possible number of iterations before the function

returns? (What is that number?)

What situation leads to the largest possible number of iterations before the function

returns? (What is that number?)

public static boolean contains(int[] inputs, int target) {
 for (int i = 0; i < inputs.length; i++) {
 if (inputs[i] == target) {
 return true;
 }
 }
 return false;
}

Motivating Example: Linear Search

If inputs has a length of ,

The target might be the first element of inputs , meaning that we stop when

.

The target might not be in inputs at all, meaning that we stop when .

public static boolean contains(int[] inputs, int target) {
 for (int i = 0; i < inputs.length; i++) {
 if (inputs[i] == target) {
 return true;
 }
 }
 return false;
}

Sunny Days and Doomsdays

For an algorithm, on a given size of input (e.g. for an array of a given length), we can

define its:

Best case as the scenario where the algorithm does the minimum possible

number of operations

Worst case as the scenario where the algorithm does the maximum possible

number of operations.

What were the best and worst cases for Linear Search?

ALGORITHM ANALYSIS

6

Motivating Example: Binary Search

public static int binarySearch(String[] inputs, String target) {
int left = 0;
int right = inputs.length - 1;
while (right >= left) {

int middle = (left + right) / 2;
String middleElem = inputs[middle];
if (middleElem.compareTo(target) > 0) {

left = middle + 1;
} else if (middleElem.compareTo(target) < 0) {

right = middle - 1;
} else {

return middle;
}

}
return -1;

}

Motivating Example: Binary Search

If inputs is sorted and has a length of ,

What situation leads to the smallest possible number of iterations before the

function returns?

What situation leads to the largest?

ALGORITHM ANALYSIS

8

Note
2 5 6 14 16 24 32 63

Try searching for 14

Try searching for 24

Try searching for 25

Motivating Example: Binary Search

If inputs is sorted and has a length of N,

Middle element might be the target, so 1 iteration is the best case.

Element might not be present at all, causing us to throw out half of the elements

each time until none remain.

If we start with 8 elements, we would throw out 4, then 2, then 1, then 1 again,

for a total of 4 iterations.

ALGORITHM ANALYSIS

9

Note
2 5 6 14 16 24 32 63

Try searching for 14

Try searching for 24

Try searching for 25

Which is “faster?”

How many iterations will it take to determine that the target is not in the array?

Length of the array Linear Search Binary Search

� � �

� � �

� � �

�� �� �

��� ��� �

As the size of the array grows, the number of iterations required grows at different rates

for the two algorithms.

ALGORITHM ANALYSIS

10

Growth: Run-Time Complexity

Important: the implementation of an algorithm or data structure can require a

computer to spend more or fewer CPU cycles (and therefore more time and energy) in

order to solve a problem.

We want to write programs to be as fast as possible— is

We'll need a way of analyzing and categorizing the run-time complexity of different

algorithms in order for us to understand how efficient we're being.

ALGORITHM ANALYSIS

11

Definitions: Growth Rate &

Upper/Lower Bounds

Growth rate of an algorithm is a function, , that represents the number of

constant time operations performed by the algorithm on an input of size .

An algorithm with runtime complexity has a lower bound and an upper bound.

Lower bound: A function for all positive values of past a

certain point.*

Upper bound: A function for all positive values of past a

certain point.*

*more formal specification coming soon

ALGORITHM ANALYSIS

12

Size of the input

If we say that the in corresponds to the size of the input, what does

that mean?

The size of the input can be quantified with one (or a few) numbers.

Algorithm for parsing Strings input size is the # of chars in the String

Sorting or searching Lists # of elements in the List

Binary exponentiation length of the integer in bits

ALGORITHM ANALYSIS

13

Constant Time Operations

Basic operations (variable assignment, arithmetic, conditional checking) each take a

small, constant amount of time.

You can assume that all basic operations are equally as fast. BUT, they might need

to be done many times!

Anything that is not a basic operation incurs a cost that is proportional in some way to

the size of the input that it's being executed on.

ALGORITHM ANALYSIS

14

Definitions: Constant Time Operations

Operation Example

Addition, subtraction, multiplication, and division of

fixed size values.

w = 10.4 , x = 3.4 , y = 2.0 , z = (w

- x) / y

Assignment of a reference, pointer, or other fixed size

data value.
x = 1000 , y = x , a = true , b = a

Comparison of two fixed size data values. a = 100 , b = 200 , if (b > a) {...}

Read or write an array element at a particular index.
x = , arr[index] , arr[index + 1] =

x + 1

A constant time operation is an operation that, for a given processor, always operates in

the same amount of time, regardless of input values.

Constant Time or Not?

ALGORITHM ANALYSIS

int[] a = {3, 4, 5, 6, 7, 8};
a[a.length – 1] = a[0] + a[a.length – 2];

16

Constant Time or Not?

Yes, array getting/setting and addition are all constant time.

ALGORITHM ANALYSIS

int[] a = {3, 4, 5, 6, 7, 8};
a[a.length – 1] = a[0] + a[a.length – 2];

17

Constant Time or Not?

ALGORITHM ANALYSIS

List<String> listOne = ...;
List<String> listTwo = ...;
setUpLists(listOne, listTwo);
if (listOne.equals(listTwo)) { // is this line "constant time"?

doSomeStuff();
}

18

Constant Time or Not?

No! List equality requires us to compare all elements, of which there are possibly

very many.

ALGORITHM ANALYSIS

List<String> listOne = ...;
List<String> listTwo = ...;
setUpLists(listOne, listTwo);
if (listOne.equals(listTwo)) { // is this line "constant time"?

doSomeStuff();
}

19

Bounds vs. Cases

"Best Case" and "Worst Case" refer to variations of an algorithm’s performance based on

specific input classes to the problem that the algorithm is designed to solve.

“fix the algorithm & input length, find the inputs that will make it run

the fastest/slowest”

"Upper Bound" and "Lower Bound" refer to measures of an algorithm’s performance as

we vary the size of the input.

“for a fixed algorithm, as the inputs grow, how does the cost of the

algorithm grow?”

ALGORITHM ANALYSIS

20

Growth Rates Examples

What will be the growth rate of the number of constant-time operations performed in

the best case? Worst case?

ALGORITHM ANALYSIS

public static int linearSearch(int[] x, int target) {
 for(int i=0; i < x.length; i++) {
 if (x[i] == target)
 return i;
 }
 return -1; // target not found
}

21

Growth Rates Examples

Linear growth rate in the worst case, , constant growth rate in the best

case,

ALGORITHM ANALYSIS

public static int linearSearch(int[] x, int target) {
 for(int i=0; i < x.length; i++) {
 if (x[i] == target)
 return i;
 }
 return -1; // target not found
}

22

Note
What will be the growth rate in the best case

Growth Rates Examples

ALGORITHM ANALYSIS

public static boolean checkDuplicates(int[] arr) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] == arr[j]) {
 return true;
 }
 }
 }
 return false;
}

23

Growth Rates Examples

, quadratic growth rate in the

worst case.

ALGORITHM ANALYSIS

public static boolean checkDuplicates(int[] arr) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] == arr[j]) {
 return true;
 }
 }
 }
 return false;
}

24

Growth Rates Examples

ALGORITHM ANALYSIS

public static <T extends Comparable<T>> int binarySearch(List<T> inputs, T target) {
int left = 0;
int right = inputs.size() - 1;
while (right >= left) {

int middle = (left + right) / 2;
T middleElem = inputs.get(middle);
if (middleElem.compareTo(target) > 0) {

left = middle + 1;
} else if (middleElem.compareTo(target) < 0) {

right = middle - 1;
} else {

return middle;
}

}
return -1;

}

25

Growth Rates Examples

In binary search, we throw away half of the remaining inputs with each iteration of

the while loop. We are guaranteed to terminate by the time we have thrown out all of

the elements.

...

How many times are we going to spend ? times. So: .

ALGORITHM ANALYSIS

26

Upper bound: Big-Oh

For , a non-negatively valued function, if there exist two positive

constants and such that for all .

"Past a certain point, the runtime of the algorithm will always be less than a certain

factor of another function."

ALGORITHM ANALYSIS

27

Big-Oh Exercises

Show that if , .

ALGORITHM ANALYSIS

28

Big-Oh Exercises

Show that if , .

Need to choose such that .

ALGORITHM ANALYSIS

29

Big-Oh Exercises

Show that if , .

Need to choose such that .

Try...

Is for all ? Yes!

ALGORITHM ANALYSIS

30

Big-Oh Exercises

Show that if , .

Need to choose such that .

ALGORITHM ANALYSIS

31

Big-Oh Exercises

Show that if , .

Need to choose such that .

Try... . Is ?

ALGORITHM ANALYSIS

32

Big-Oh: Simplifying Rules

If is in and is in then is in

method1 is in and since .

ALGORITHM ANALYSIS

public void method1(int n){
 int i=0;
 while (i < n){
 //do something
 i = i + 1;
 }
}

33

Big-Oh: Simplifying Rules

If is in for any constant , then is in

method1 is in and, say, , but we’ll always drop the constant.

ALGORITHM ANALYSIS

public void method1(int n){
 int i=0;
 while (i < n){
 //do something
 i = i + 1;
 }
}

34

Big-Oh: Simplifying Rules

If is in and is in , then

method2 is in since

ALGORITHM ANALYSIS

public void method2(int n) {
 for (int i = 0; i < n; i++) {
 doSomethingConstantTime();
 }
 for (int i = 0; i < n * n; i++) {
 doSomethingConstantTime();
 }
}

35

Big-Oh: Simplifying Rules

If is in and is in , then is

in

method3 is in since

ALGORITHM ANALYSIS

public void method3(int n) {
 for (int i = 0; i < n; i++) {
 method2(n);
 }
}

36

Big-Oh Table

Families above are contained in the families below (e.g. if you show that ,

it follows that but .

Expression Name

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

ALGORITHM ANALYSIS

37

Growth, Visualized

Class Activity

Expression Dominant term(s) Big-Oh

 or

 or

ALGORITHM ANALYSIS

39

Class Activity

Expression Dominant term(s) Big-Oh

 or

 or

either

ALGORITHM ANALYSIS

40

Growth: Space

Time isn't the only resource! Space counts, too.

Recall that data structures store records, which are the individual units of information.

The size of a record changes based on an implementation: a single int is 32 bits,

but a 2D coordinate would require 64 bits.

The number of records stored depends on the context of the problem, too.

ALGORITHM ANALYSIS

41

Example: Who's the Tallest Person to

Pass By?

Imagine you have a camera pointed at a street and you want to know the height of the

tallest person who passes the camera.

ALGORITHM ANALYSIS

42

Example Solution #1

Initialize a list, empty to start.

For each person that passes by, append their height to the list.

At the end of the day, sort the list.

Return the height at the end of the list.

ALGORITHM ANALYSIS

43

Example Solution #1

Initialize a list, empty to start.

For each person that passes by, append their height to the list.

At the end of the day, sort the list.

Return the height at the end of the list.

If people pass by, you have to write down numbers.

ALGORITHM ANALYSIS

44

Example Solution #2

Initialize a variable, max , initialized to -1 .

For each person that passes by, compare that person's height to max .

If that person's height is larger than max , update max

Else, do nothing.

At the end of the day, return the value of max

ALGORITHM ANALYSIS

45

Example Solution #1

Initialize a variable, max , initialized to -1 .

For each person that passes by, compare that person's height to max .

If that person's height is larger than max , update max

Else, do nothing.

At the end of the day, return the value of max

Even if people pass by, you only have to write down number.

ALGORITHM ANALYSIS

46

Collections Runtime Cheat Sheet

LinkedList ArrayList TreeSet/Map HashSet/Map

add
O(�) to the head/tail, O(n) to

the middle

O(�) to the end, O(n)

elsewhere
O(log n) O(�)

get(int i) O(i) O(�) n/a n/a

remove
O(�) from the head/tail, O(n)

from the middle

O(�) to the end, O(n)

elsewhere
O(log n) O(�)

contains O(n) O(n) O(log n) O(�)

size/clear O(�) O(�) O(�) O(�)

ALGORITHM ANALYSIS

47

	Algorithm Analysis
	Definitions
	Different Algorithms, Same Problem
	Motivating Example: Linear Search
	Motivating Example: Linear Search
	Sunny Days and Doomsdays
	Motivating Example: Binary Search

	Motivating Example: Binary Search
	Motivating Example: Binary Search
	Which is “faster?”
	Growth: Run-Time Complexity
	Definitions: Growth Rate & Upper/Lower Bounds
	Size of the input
	Constant Time Operations
	Definitions: Constant Time Operations
	Constant Time or Not?
	Constant Time or Not?
	Constant Time or Not?
	Constant Time or Not?
	Bounds vs. Cases
	Growth Rates Examples
	Growth Rates Examples
	Growth Rates Examples
	Growth Rates Examples
	Growth Rates Examples
	Growth Rates Examples
	Upper bound: Big-Oh
	Big-Oh Exercises
	Big-Oh Exercises
	Big-Oh Exercises
	Big-Oh Exercises
	Big-Oh Exercises
	Big-Oh: Simplifying Rules
	Big-Oh: Simplifying Rules
	Big-Oh: Simplifying Rules
	Big-Oh: Simplifying Rules

	Big-Oh Table
	Growth, Visualized
	Class Activity
	Class Activity
	Growth: Space
	Example: Who's the Tallest Person to Pass By?
	Example Solution #1
	Example Solution #1
	Example Solution #2
	Example Solution #1

	Collections Runtime Cheat Sheet

