
File I/O, Collections, & 
Tries
(on our way to Autocomplete)



File I/O Refresher



Distinguishing Between Two Models of Reading

● Readers (stream-based) ● Random Access Files



Distinguishing Between Two Models of Reading

● Readers (stream-based)
○ Data is primarily read from front to 

back, not much skipping around
○ Key methods:

■ close, mark, read, reset, skip
○ e.g. BufferedReader in Java

● Random Access Files
○ File cursor can be easily moved to 

arbitrary position in the file
○ Key methods:

■ close, read, seek, skip
○ e.g. RandomAccessFile in Java



Distinguishing Between Two Models of Reading

● Readers (stream-based)
○ Data is primarily read from front to 

back, not much skipping around
○ Key methods:

■ close, mark, read, reset, skip
○ e.g. BufferedReader in Java

● Random Access Files
○ File cursor can be easily moved to 

arbitrary position in the file
○ Key methods:

■ close, read, seek, skip
○ e.g. RandomAccessFile in Java

Supports moving the read position 
backwards?

Supports moving the read position 
forwards?

Supports buffered reading without 
providing your own array?



Distinguishing Between Two Models of Reading

● Readers (stream-based)
○ Data is primarily read from front to 

back, not much skipping around
○ Key methods:

■ close, mark, read, reset, skip
○ e.g. BufferedReader in Java

● Random Access Files
○ File cursor can be easily moved to 

arbitrary position in the file
○ Key methods:

■ close, read, seek, skip
○ e.g. RandomAccessFile in Java

Supports moving the read position 
backwards (to a marked position)

Supports moving the read position 
forwards

Supports buffered reading without 
providing your own array 

Supports moving the read position 
backwards (to any position)

Supports moving the read position 
forwards



Problem Solving

● I have: a collection of people ordered by Penn ID, about 12GB large.
○ the entry on line 239281 is the person with Penn ID 239281
○ (like an array too big to fit in RAM)

● I need: to write a program that displays that person’s role in the university when 
they sign in to PennInTouch

● Which class is more useful here? BufferedReader or RandomAccessFile?



Problem Solving

● I have: a collection of people ordered by Penn ID, about 12GB large.
○ the entry on line 239281 is the person with Penn ID 239281
○ (like an array too big to fit in RAM)

● I need: to write a program that displays that person’s role in the university when 
they sign in to PennInTouch

● Should use a RandomAccessFile
○ You don’t know the order that people will sign in to PiT, so you’ll need to do a lot of 

skipping around to different lines
○ You may need to come back to different positions a bunch of different times



Problem Solving

● I have: a ~1GB file containing on each line...
○ A word
○ The frequency with which that word appears in some dataset

● I need: to read each of the entries in the file and add them to a data structure that I 
will keep in working memory

● Which class is more useful here? BufferedReader or RandomAccessFile?



Problem Solving

● I have: a ~1GB file containing on each line...
○ A word
○ The frequency with which that word appears in some dataset

● I need: to read each of the entries in the file and add them to a data structure that I 
will keep in working memory

● Should use a BufferedReader
○ The data fits in memory, so we just need to read everything once and come back to it
○ We’re not strictly required to preserve the original order of the data, so we can just read 

the file start to finish, processing line by line



Speaking of line by line…

● From BufferedReader.java:

(a favorite method from the times when we just used Scanners to read through files.)



What’s in a line?

● r.readLine() would return 
“5627187200 the”, e.g. 

● How do you parse out the data 
contained in each line?



What’s in a line?

“5627187200 the”.split(” “) à {“5627187200”, “the”}

(still have to take the Strings in the array to the right data type—parsing!)



Collections Refresher



Plenty of Useful Methods in java.util.Collections!

Name Use

frequency(Collection c, 
Object o)

Count how often o appears 
in c

max(Collection 
c)/min(Collection c)

Find the largest/smallest 
element in c based on the 
natural ordering of elements

shuffle(List l) Permute the elements in l
randomly

sort(List l) Sorts the list l into 
ascending order based on 
the natural ordering of the 
elements.



Sometimes you don’t care about the “Natural Order”



Sometimes you don’t care about the “Natural Order”

This is a 
joke–

ignore this 
definition



Comparator Versions

Name Use

max(Collection c, 
Comparator comp)

Find the largest/smallest 
element in c based on the 
result of comp.compare()

sort(List l, Comparator 
comp)

Sorts the list l into 
ascending order based on 
the result of 
comp.compare()



Reinventing the Natural Order: An Example

● Imagine we want to sort some Strings first by their lengths, and then
alphabetically

○ (e.g. book comes before antagonist but after been)

● Strings already have their own compareTo and equals methods
○ We can’t and don’t want to override those
○ We might want to keep a bunch of options around: STRATEGY pattern



Reinventing the Natural Order: An Example

● Imagine we want to sort some Strings first by their lengths, and then
alphabetically

○ (e.g. book comes before antagonist but after been)

StringComp.java



Tries



Working towards Autocomplete

● Main idea: given a prefix of a String, suggest the most likely word that has that 
prefix



Working towards Autocomplete

● Main idea: given a prefix of a String, suggest the most likely word that has that 
prefix

● What we need:
○ A way of storing all possible words
○ A way of considering which words have a certain prefix
○ A way of associating a possible word with its likelihood of being the correct word



Using our Previous Data Structures

● Lists
○ Can store all candidate words
○ Tricky—but not impossible—to find words that have a certain prefix
○ No clean way of mapping words to likelihoods



Using our Previous Data Structures

● Lists
○ Can store all candidate words
○ Tricky—but not impossible—to find words that have a certain prefix
○ No clean way of mapping words to likelihoods

● Sets
○ Can store all candidate words
○ Tricky—but not impossible—to find words that have a certain prefix
○ No clean way of mapping words to likelihoods



Using our Previous Data Structures

● Lists
○ Can store all candidate words
○ Tricky—but not impossible—to find words that have a certain prefix
○ No clean way of mapping words to likelihoods

● Sets
○ Can store all candidate words
○ Tricky—but not impossible—to find words that have a certain prefix
○ No clean way of mapping words to likelihoods

● Hash Maps
○ Can store all candidate words and their likelihoods
○ Possibly even trickier to find words with a certain prefix



Using our Previous Data Structures

● Trees
○ Can store all candidate words
○ BSTs could be useful for finding words with a prefix…
○ Could store the likelihood of a word in the node containing that word

● Key sticking point: Still hard to find all words that have a certain prefix!!



We would like to do retrieval based on prefixes

● Trie (pronounced try) is a tree-based data structure used to find words in a 
dictionary based on the prefixes of that word

○ Retrieval à Trie

● At right: the trie containing the words
“assoc”, “algo”, “all”, “also”, “trie”, and “tree”



The Trie Property

● Each node represents a prefix
● If node n is a descendent of node m, then the String that m represents is a prefix of 

the String that n represents.

m -> “bat” n -> “bath”

b a t h



Details about Tries

● Tries are 26-ary trees for English
○ 26 letters from A-Z
○ Not necessarily complete or full!

● Trie Nodes do not necessarily need to contain a char/String
○ This is an abstraction for the purposes of demonstration
○ Instead, the character contained in a Trie Node is determined implicitly from which 

child it is
■ Child 0 of node representing “gal” would itself represent “gala”
■ Child 25 of node representing “jaz” would itself represent “jazz”

○ The HW implementation will have you store the words in the nodes



Fields of a Trie Node (for Autocomplete)

● Term t
○ The word represented by this Node in the Trie, along with its corresponding weight

● int words
○ The number of words in this Tree represented by this current prefix (always 0 or 1 for 

this assignment)
● int prefixes

○ The number of words in this Tree that contain this current prefix
● Node[] references

○ An array of length 26, where position i contains a reference to the node representing this 
prefix with the ith character of the alphabet appended to the end



A Small Example:

● Class 10
● Clap 3
● Claps 2



HW 5: Autocomplete Me


