
Graphs:
Topological Sort, Shortest
paths problems

CIT594

Topological Sort

● Goal: Find an acceptable order for processing subtasks

Example

● Problem: We want to write a program that automatically builds an
online textbook from a collection of tutorials.

● We need to organize the tutorials so that given two tutorials A and B, if
a A is a prerequisite for B, then A should be added and listed in the
online textbook before B

● Our program needs to access and list the tutorials in a specific order
● Topological sort allows us to do just that

Example - OpenDSA

Table of content / list of
tutorials

1

2

3/4 3/4

Topological Sort

● The process of laying out the vertices of a DAG in a linear order such that
no vertex A in the order is preceded by a vertex that can be reached by a
(directed) path from A

○ DAG: directed, acyclic graph

● The (directed) edges in the graph define a prerequisite system

● Goal: list the vertices in an order such that no prerequisites are violated

Topological Sort

● Depth-first implementation

1. When a node (n) is visited, do nothing

2. Recursively call topological sort on all the neighbors of n

3. When the recursion pops back to n (after processing all its neighbors) add
n to the (output) list of nodes

● This method produces a topological sort in reverse order
● It does not matter where the sort starts, but all vertices must be visited

Topological Sort

● Queue-based implementation
1. Count the number of edges that lead to each vertex
2. All vertices with no prerequisites are placed on the queue
3. Process the queue:

1. When Vertex v is dequeued, it is printed, and all neighbors of v (all vertices
that have v as a prerequisite) have their counts decremented by one

2. Enqueue any neighbor whose count becomes zero
● If the queue is empty without printing all the vertices, then the graph is

not a DAG
● This method produces a topological sort in order

Class Activity

● Given the following graph, return its topological sort using the depth-first
implementation.

● Start at the vertex 4. Always select the vertex with the smallest label at
each step

Shortest-Paths Problems

● Goal: find the total length of the shortest path between two specified
vertices

Shortest-Paths Problems

● We can model a road or a computer network as a directed graph

● Edges are labeled with numbers representing the distance (or other cost
metrics, such as travel time) between two vertices

Single-source Shortest-Paths Problems

● Given a graph with weights or distances on the edges, and a designated
start vertex s, find the shortest path from s to every other vertex in the
graph

● If the graph is unweighted (or all edges have the same cost) then BFS
can be used

● If the graph is weighted, we need another solution: Dijkstra's algorithm

Dijkstra's algorithm

● Idea: process the vertices in a fixed order
● We process the vertices in order of distance from the start vertex (S)
● Assume that we have processed in order of distance from S to the first

i−1 vertices that are closest to S; call this set of vertices N, we are now
processing the ith closest vertex; call it X:

○ The shortest path from S to X is the minimum overall paths that go from S
to U, then have an edge from U to X, where U is some vertex in N

Dijkstra's algorithm

● Runtime analysis:

○ O(|V2|) if we use a linear DS to find the minimum distance. Appropriate when
the graph is dense

○ O((|V|+|E|)log|E|) if we use a priority queue to find the minimum distance.
Appropriate when the graph is sparse

Here Comes the Java

● Need a way of storing additional info per vertex
● Could implement with some additional tables:

○ HashMap<Vertex, Vertex> predecessor

○ HashMap<Vertex, Double> distance
● Could instead just create a wrapper class

○ PathVertexInfo, with fields:

■ Vertex vertex;

■ double distance;

■ Vertex predecessor;

Here Comes the Java

● In this implementation, Dijkstra’s returns a Map
associating the Vertex with its PathVertexInfo

● Need a way to reconstruct the path from the Map!
● Exercise:

String getShortestPath(Vertex startVertex, Vertex endVertex,
HashMap<Vertex, PathVertexInfo> infoMap)

Dijkstra's algorithm: USEFUL FOR HW 7!!!

Runtime Revisited

● Runtime analysis:

○ O(|V2|) if we use a linear DS to find the minimum distance.
Appropriate when the graph is dense

○ O((|V|+|E|)log|E|) if we use a priority queue to find the
minimum distance. Appropriate when the graph is sparse

■ ?????????????????????????????????

ß Fantasy

Reality vvv

Runtime Revisited

● Runtime analysis:

○ O(|V2|) if we use a linear DS to find the minimum distance.
Appropriate when the graph is dense

○ O((|V|+|E|)log|V|) if we use a priority queue to find the
minimum distance. Appropriate when the graph is sparse
and when the priority queue actually lets you update
priority in log(V) time!!

Graphs:
Minimal Cost Spanning
Trees

CIT5940

Minimal Cost Spanning Trees

● Goal: Find the subset of the (weighted) graph's edges
that maintains the connectivity of the graph while
having the lowest total cost

Minimal Cost Spanning Trees (MCST)

● The cost is defined by the sum of the weights of the edges in the MCST

● The MCST would never have a cycle (tree)

○ An edge can be removed from the cycle and still preserve connectivity

● Algorithms:

○ Prim's algorithm (not covering here, but included in slides)

○ Kruskal's algorithm

Minimal Cost Spanning Trees (MCST)

● Applications:

○ Connected network design: find the least amount of cables need to connect
cities, offices, etc.

MCST: Prim’s Algorithm

1. Start with any Vertex N in the graph, setting the MCST to be N initially
2. Pick the least-cost edge connected to N. This edge connects N to

another vertex; call this M. Add Vertex M and Edge (N,M) to the MCST
3. Pick the least-cost edge coming from either N or M to any other vertex

in the graph. Add this edge and the new vertex it reaches to the MCST
4. Continue the process (2-3), at each step expanding the MCST by

selecting the least-cost edge from a vertex currently in the MCST to a
vertex not currently in the MCST

MCST: Prim’s Algorithm

● Similar to Dijkstra’s algorithm
● Theorem: Prim's algorithm produces a minimum-cost

spanning tree

MCST: Prim’s Algorithm

MCST: Prim’s Algorithm

● Class Activity: Given the following graph. Build its MCST using Prim’s algorithm
starting at vertex 1. Indicate the distances and the order in which the vertices are
processed.

Verte
x

Distance From
Vertex

1

2

3

4

5

6

List of vertices (in processing order)

Kruskal’s Algorithm

1. Partition the set of vertices into |V| disjoint sets (each consisting of one
vertex)

2. Process the edges in order of weight

○ An edge is added to the MCST, and two disjoint sets are combined, if the edge
connects two vertices in different disjoint sets

○ This process is repeated until only one disjoint set remains

Kruskal’s Algorithm

● Class Activity: Given the following graph. Build its MCST using Kruskal’s algorithm
Indicate the parent of each vertex and the order in which the edges are added to
the MCST.

Vertex Parent
1

2

3

4

5

6

List of MCST edges (in order)

Kruskal’s Algorithm (for

• O(|E|log|E|) in the worst case
• O(|V|log|E|) in the average case

Kruskal’s Algorithm: Union/Find

● A process for maintaining a collection of disjoint sets.
● The FIND operation determines which disjoint set a given object resides in
● The UNION operation combines two disjoint sets when it is determined

that they are members of the same equivalence class under some
equivalence relation.

Kruskal’s Algorithm: Union/Find

● Equivalence relation: “is connected to” (ref)
● A relation R is an equivalence relation on set S if it is reflexive, symmetric,

and transitive
● Each subset/tree represents an equivalence class (connected

components)

Kruskal’s Algorithm: Union/Find

● Parent pointer representation (PPR): a node implementation (for a Tree)
where each node stores only a pointer to its parent, rather than to its
children.

● PPR makes it easy to go up the tree toward the root, but not down the tree
toward the leaves

● PPR is often used to maintain a collection of disjoint sets.
● PPR implements a parent pointer tree

Kruskal’s Algorithm: Union/Find

