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Topological Sort

● Goal: Find an acceptable order for processing subtasks



Example

● Problem: We want to write a program that automatically builds an 
online textbook from a collection of tutorials. 

● We need to organize the tutorials  so that given two tutorials A and B, if 
a A is a prerequisite for B, then A should be added and listed in the 
online textbook before B

● Our program needs to access and list the tutorials in a specific order
● Topological sort allows us to do just that



Example - OpenDSA

Table of content / list of  
tutorials

1

2

3/4 3/4



Topological Sort

● The process of laying out the vertices of a DAG in a linear order such that 
no vertex A in the order is preceded by a vertex that can be reached by a 
(directed) path from A

○ DAG: directed, acyclic graph

● The (directed) edges in the graph define a prerequisite system

● Goal: list the vertices in an order such that no prerequisites are violated



Topological Sort

● Depth-first implementation

1. When a node (n) is visited, do nothing

2. Recursively call topological sort on all the neighbors of n

3. When the recursion pops back to n (after processing all its neighbors) add 
n to the (output) list of nodes 

● This method produces a topological sort in reverse order
● It does not matter where the sort starts, but all vertices must be visited



Topological Sort

● Queue-based implementation
1. Count the number of edges that lead to each vertex
2. All vertices with no prerequisites are placed on the queue
3. Process the queue:

1. When Vertex v is dequeued, it is printed, and all neighbors of v (all vertices 
that have v as a prerequisite) have their counts decremented by one

2. Enqueue any neighbor whose count becomes zero
● If the queue is empty without printing all the vertices, then the graph is 

not a DAG
● This method produces a topological sort in order



Class Activity

● Given the following graph, return its topological sort using the depth-first 
implementation.

● Start at the vertex 4. Always select the vertex with the smallest label at 
each step



Shortest-Paths Problems

● Goal: find the total length of the shortest path between two specified 
vertices



Shortest-Paths Problems

● We can model a road or a computer network as a directed graph

● Edges are labeled with numbers representing the distance (or other cost 
metrics, such as travel time) between two vertices



Single-source Shortest-Paths Problems

● Given a graph with weights or distances on the edges, and a designated 
start vertex s, find the shortest path from s to every other vertex in the 
graph

● If the graph is unweighted (or all edges have the same cost) then BFS
can be used

● If the graph is weighted, we need another solution: Dijkstra's algorithm



Dijkstra's algorithm

● Idea: process the vertices in a fixed order
● We process the vertices in order of distance from the start vertex (S)
● Assume that we have processed in order of distance from S to the first 

i−1 vertices that are closest to S; call this set of vertices N, we are now 
processing the ith closest vertex; call it X:

○ The shortest path from S to X is the minimum overall paths that go from S
to U, then have an edge from U to X, where U is some vertex in N



Dijkstra's algorithm

● Runtime analysis:

○ O(|V2|) if we use a linear DS to find the minimum distance. Appropriate when 
the graph is dense

○ O((|V|+|E|)log|E|) if we use a priority queue to find the minimum distance. 
Appropriate when the graph is sparse



Here Comes the Java

● Need a way of storing additional info per vertex
● Could implement with some additional tables:

○ HashMap<Vertex, Vertex> predecessor

○ HashMap<Vertex, Double> distance
● Could instead just create a wrapper class

○ PathVertexInfo, with fields:

■ Vertex vertex;

■ double distance;

■ Vertex predecessor;



Here Comes the Java

● In this implementation, Dijkstra’s returns a Map 
associating the Vertex with its PathVertexInfo

● Need a way to reconstruct the path from the Map!
● Exercise: 

String getShortestPath(Vertex startVertex, Vertex endVertex,     
HashMap<Vertex, PathVertexInfo> infoMap)



Dijkstra's algorithm: USEFUL FOR HW 7!!!



Runtime Revisited

● Runtime analysis:

○ O(|V2|) if we use a linear DS to find the minimum distance. 
Appropriate when the graph is dense

○ O((|V|+|E|)log|E|) if we use a priority queue to find the 
minimum distance. Appropriate when the graph is sparse

■ ?????????????????????????????????
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Runtime Revisited

● Runtime analysis:

○ O(|V2|) if we use a linear DS to find the minimum distance. 
Appropriate when the graph is dense

○ O((|V|+|E|)log|V|) if we use a priority queue to find the 
minimum distance. Appropriate when the graph is sparse 
and when the priority queue actually lets you update 
priority in log(V) time!!
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Minimal Cost Spanning Trees

● Goal: Find the subset of the (weighted) graph's edges 
that maintains the connectivity of the graph while 
having the lowest total cost



Minimal Cost Spanning Trees (MCST)

● The cost is defined by the sum of the weights of the edges in the MCST

● The MCST would never have a cycle (tree)

○ An edge can be removed from the cycle and still preserve connectivity 

● Algorithms:

○ Prim's algorithm (not covering here, but included in slides)

○ Kruskal's algorithm



Minimal Cost Spanning Trees (MCST)

● Applications:

○ Connected network design: find the least amount of cables need to connect 
cities, offices, etc.



MCST: Prim’s Algorithm

1. Start with any Vertex N in the graph, setting the MCST to be N initially
2. Pick the least-cost edge connected to N. This edge connects N to 

another vertex; call this M. Add Vertex M and Edge (N,M) to the MCST
3. Pick the least-cost edge coming from either N or M to any other vertex 

in the graph. Add this edge and the new vertex it reaches to the MCST 
4. Continue the process (2-3), at each step expanding the MCST by 

selecting the least-cost edge from a vertex currently in the MCST to a 
vertex not currently in the MCST



MCST: Prim’s Algorithm

● Similar to Dijkstra’s algorithm
● Theorem: Prim's algorithm produces a minimum-cost 

spanning tree



MCST: Prim’s Algorithm



MCST: Prim’s Algorithm

● Class Activity: Given the following graph. Build its MCST using Prim’s algorithm 
starting at vertex 1. Indicate the distances and the order in which the vertices are 
processed.

Verte
x

Distance From 
Vertex

1

2

3

4

5

6

List of vertices (in processing order)

_________________________________



Kruskal’s Algorithm

1. Partition the set of vertices into |V| disjoint sets (each consisting of one 
vertex)

2. Process the edges in order of weight

○ An edge is added to the MCST, and two disjoint sets are combined, if the edge 
connects two vertices in different disjoint sets 

○ This process is repeated until only one disjoint set remains



Kruskal’s Algorithm

● Class Activity: Given the following graph. Build its MCST using Kruskal’s algorithm 
Indicate the parent of each vertex and the order in which the edges are added to 
the MCST.

Vertex Parent
1

2

3

4

5

6

List of MCST edges (in order)

_________________________________

_________________________________



Kruskal’s Algorithm (for 

• O(|E|log|E|) in the worst case
• O(|V|log|E|) in the average case



Kruskal’s Algorithm: Union/Find

● A process for maintaining a collection of disjoint sets. 
● The FIND operation determines which disjoint set a given object resides in 
● The UNION operation combines two disjoint sets when it is determined 

that they are members of the same equivalence class under some 
equivalence relation.



Kruskal’s Algorithm: Union/Find

● Equivalence relation: “is connected to” (ref)
● A relation R is an equivalence relation on set S if it is reflexive, symmetric, 

and transitive
● Each subset/tree represents an equivalence class (connected 

components)



Kruskal’s Algorithm: Union/Find

● Parent pointer representation (PPR): a node implementation (for a Tree) 
where each node stores only a pointer to its parent, rather than to its 
children. 

● PPR makes it easy to go up the tree toward the root, but not down the tree 
toward the leaves

● PPR is often used to maintain a collection of disjoint sets.
● PPR implements a parent pointer tree



Kruskal’s Algorithm: Union/Find


