
Recitation 7:
Tries + Intro to Hashing
CIT 594
March 22, 2023

Announcements
● Recitation 6 Assignment

○ Weird due date last week, extended to March 23rd (if you haven’t
already submitted)

● Recitation 7 Assignment
○ Due Date: March 23rd @ 11:59 PM

● HW4 Reflections?
○ Comments, questions, concerns, etc.

● HW5
○ Due April 3rd @ 11:59PM ET
○ Group OH Date: March 26th @ 5:15 PM in Berger Auditorium

Tries

Tries

● Trie (“try”) is a tree where
each vertex represents a
single word or a prefix

● A vertex that are k edges
of distance of the root
have an associated prefix
of length k

The Alphabet and Indexes
A char in java is represented by an int ASCII code
https://www.asciitable.com/

Since a trie node needs to fit 26 pointers to the alphabetical characters,
we need to convert from ASCII to indices from 0-25

a
ASCII: 97

a
Trie index: 0

root

a b c z…
z

ASCII: 122
z

Trie index: 25
0 1 2 25

https://www.asciitable.com/

Why do we use Tries?
● Space Complexity

○ A trie greatly reduces the
amount of space needed
to store keys

○ Ex: P-E prefix has 3
specific branches that
could be utilized to form
words

Visual Representation: Lists
Ex: Inserting “Pie” into a Trie
● Check if ‘P’ is null, create a

new node
● Continue on until the last

character is reached
● Indicate at E that there is a

full word from the previous
letters

Fields + Methods
Fields:
● Words (int): # of words that match the given string
● Prefixes (int): # of words that have the prefixes of the vertex
● Edges (arr[26]): references to all the possible sons (letters in the alphabet)

Methods:
● addWord: Adds a single word to the trie
● countPrefixes: Counts the number of words in the trie that have the given

prefix
● countWords: Counts the number of words in the trie that have the exact given

word

Introduction to Hashing

Hash System, Collision, and Load Factor
Hash System:
● Consist of the hash table, which is for storing data, and hash function,

which finds the position for a record to be stored in hash table
Collision:
● Two keys are mapped to the same position in HT

Load Factor:
● n/M (n = # of records in HT; M = # of slots in HT)

Use:
● Exact-match search query applications, but not range search

Runtime:
● Insertion, deletion and search all O(1)

Open Hashing

Open Hashing

● It is okay to hash two keys to
the same position, just link it up

● Uses array of linked lists to
resolve the collision

● Insert at head of the linked list
to save time

Homework 5:
Autocomplete Review + GUI Demo

https://www.cis.upenn.edu/~cit5940/current/assignments/hw05/

Recitation Activity:
Implement Insert and Search in a Trie!

