
Recitation 5:
Binary Search Trees, Heaps,
& Priority Queues
CIT 5940
February 23, 2023

Attendance

ENTER CODE:

090909
2

Announcements
1. HW3 due March 1st @ 11:59PM ET (Extended)

2. Look out for HW2 Regrades in the future
a. Grades should come out soon!

3. Recitation Assignment due 2/24 @ 11:45 PM ET

4. HW4 will be released next week, but due in
3 weeks (to account for Spring Break)

Binary Search Trees
(BST)

● The left subtree of a node contains only

nodes with keys lesser than the node’s

key.

● The right subtree of a node contains only

nodes with keys greater than the node’s

key.

● The left and right subtree each must also

be a binary search tree.

BST Properties

Q: Write a program to search for a given key in a BST

BST Code Example (Easy)

Q: Write a program to determine whether a given binary tree is

a BST

BST Code Example (Medium)

Q: Write a program to find a pair with the given sum in a BST

Example: If the given sum is 14, the pair is (8, 6)

BST Code Example (Hard)

The idea is to traverse the tree in an inorder fashion and insert every node’s
value into a set. Also check if, for any node, the difference between the given
sum and node’s value is found in the set, then the pair with the given sum
exists in the tree.

https://www.techiedelight.com/inorder-tree-traversal-iterative-recursive/

Heaps and Priority
Queues

Binary Heap

Definition: a binary heap is a complete binary tree - that is,
all levels of the tree, except the last level are fully filled. If the
last level of the tree is not complete, the nodes of that level
are filled from left to right.

Max Heap: every node stores a value that is greater than or
equal to the value of either of its children

Min Heap: every node stores a value that is less than or
equal to that of its children

● Parent(r) =⌊(r −1)/2⌋ if r ≠ 0
● Left child(r) = 2r + 1 if 2r + 1 < n
● Right child(r) =2r + 2 if 2r + 2 < n
● Left sibling(r) =r − 1 if r is even and r ≠ 0
● Right sibling(r) = r + 1 if r is odd and r+1<

n

Heap Invariant

● Heapify (swim, sink) - O(n)
○ Appropriately sorts the heap

● BuildTree - O(nlogn)
○ Builds tree from scratch

● Insert - O(logn)
○ Inserts at the bottom level of the tree

● Remove - O(logn)
○ Removes the root of the tree

Heap Functions

1. With given array, build a unsorted heap
2. Heapify tree to get a max heap
3. Swap root with lowest node, remove the

lowest node (this node is sorted)
4. Repeat to step 2

Heap Sort

Priority Queues
● Queue Data structure that is implemented using heaps
● Ordered by priority rather than position

○ Natural ordering
○ Custom Comparator

● Can be used to define Min/MaxHeap
○ Depending on the priority, items may be dequeued in descending order

(MaxHeap) or ascending order (MinHeap)

Priority Queues/Binary Heap Example

MinHeap

PriorityQueue<Integer> pq =
new PriorityQueue<>()

pq.addAll(list)
System.out.println(pq)
while (!pq.isEmpty()) { System.out.println(pq.poll());}

pq = [1, 3, 2, 7, 4, 8, 5, 10]
prints: 1, 2, 3, 4, 5, 7, 8, 10

MaxHeap

PriorityQueue<Integer> pq = new
PriorityQueue<>(Comparator.reverseOrder())

pq.addAll(list)
System.out.println(pq)
while (!pq.isEmpty()) { System.out.println(pq.poll());}

pq = [10, 7, 8, 4, 3, 2, 5, 1]
prints: 10, 8, 7, 5, 4, 3, 2, 1

list = {4, 7, 2, 10, 3, 8, 5, 1}

Recitation Activity

Problem 1: Creating a Balanced BST
What makes a balanced BST?

Formal Definition: The absolute difference between heights of left and right subtrees at any
node should be less than 1

5

42

63

1

h = 3 h = 1

52

4

1 3

❌ ✔

h = 2 h = 1

Problem 1: Creating a Balanced BST
Can we make something unbalanced into something balanced?

5

42

63

1

h = 3 h = 1

❌ ✔

5

3

2

6

4

1

h = 2 h = 2

1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6

Problem 1: Creating a Balanced BST
Given a list of items, turn it into a balanced BST

D

EA

FBA, B, C, D, E, F, G

C G

Hint: Pay attention to what becomes the root at every level!

Problem 2: Fun with Comparators and Records
You’ve been given a Patient record:

public record Patient(String name, int pain, boolean preexisting)
implements Comparable<Patient> {

 …
 }

Records are a special type of class that aggregates the canonical methods/fields of
class, such as getters/setters, and equals/hashcode/toString.
For instance, printing out a new Patient(“Voravich”, 10, true) gets you:

Patient[name=Voravich, pain=10, preexisting=true]

Problem 2: Fun with Comparators and Records
● Patient record implements Comparable, allowing it to be ordered in a

PriorityQueue properly

● You just need to fill out the compareTo() method with the proper conditions:
○ Descending order of pain
○ If there is a tie, order those with preexisting conditions ahead of those

that don’t have preexisting conditions
■ That implies: If both don’t have preexisting conditions or both do, order

doesn’t matter

Attendance

ENTER CODE:

090909
25

