
Recitation 2 :
Maps and Sets
CIT 594

https://qr-codes.io/ZYEoEY

Attendance

Reminders

●HW1 due 2/7 @11:59PM ET
●HW2 was released. Due on 2/14 @11:59PM ET
●Recitation Assignment this week due 2/3 @ 11:45 PM ET

○ Should be able to finish it in this recitation period!
●Java Review Session

○ Recordings and slides were posted

Maps

The Map Interface
● A map is an object that maps keys to values.

● A map cannot contain duplicate keys

● Each key can only map to at most one value

● Subinterfaces and implementations:

○ SortedMap

■ TreeMap

○ HashMap

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/SortedMap.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/HashMap.html

Map implementations
● Map is an interface; you can’t say new Map ()
● Here are two implementations:

○ HashMap is the faster
○ TreeMap guarantees the order of iteration

● It’s poor style to expose the implementation, so:
● Good: Map map = new HashMap ();
● Bad: HashMap map = new HashMap ();

The Map Interface: Operations
● V put(K key, V value): Associates the specified value with the specified key in this map

● V get(Object key): Returns the value to which the specified key is mapped, or null

● boolean containsKey(Object key): Returns true if this map contains a mapping for the specified key

● V remove(Object key): Removes the mapping for the specified key from this map if present

● boolean remove(Object key, Object value): Removes the entry for the specified key only if it is
currently mapped to the specified value

Operations relying on comparing elements using the equals() or hashCode() methods take an object as
parameter

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html

More about put
● If the map already contains a given key, put(key, value) replaces the

value associated with that key
● This means Java has to do equality testing on keys
● With a HashMap implementation, you need to define equals and

hashCode for all your keys
● With a TreeMap implementation, you need to define equals and

implement the Comparable interface for all your keys

Map: Bulk operations
● void putAll(Map t);

○ copies one Map into another
● void clear();

Map: Collection views
● public Set keySet();
● public Collection values();
● public Set entrySet();

○ returns a set of Map.Entry (key-value) pairs
● You can create iterators for the key set, the value set, or the entry set
● The above views provide the only way to iterate over a Map

Map.Entry: Interface for entrySet elements
public interface Entry {
 Object getKey();
 Object getValue();
 Object setValue(Object value);
}
● This is a small interface for working with the Collection returned by

entrySet()
● Can get elements only from the Iterator, and they are only valid

during the iteration

Sets

The Set Interface
● A set is unordered and has no duplicates
● Operations are exactly those for Collections

○ i.e.- size(), isEmpty(), contains(), add(), remove(), iterator(), containsAll(),
addAll(), removeAll(), retainAll(), clear(), toArray()

Iterators for sets
● A set has a method Iterator iterator() to create an iterator over the

set
● The iterator has the usual methods:

○ Boolean hasNext()
○ Object next()
○ void remove()

● remove() allows you to remove elements as you iterate over the set
● If you change the set in any other way during iteration, the iterator will

throw a ConcurrentModificationException

Set implementations
● Set is an interface; you can’t say new Set()
● There are two implementations:

○ HashSet is best for most purposes
○ TreeSet guarantees the order of iteration

● It’s poor style to expose the implementation, so:
● Good: Set s = new HashSet();
● Bad: HashSet s = new HashSet();

Typical set operations
● Testing if s2 is a subset of s1

 s1.containsAll(s2)
● Setting s1 to the union of s1 and s2

 s1.addAll(s2)
● Setting s1 to the intersection of s1 and s2

 s1.retainAll(s2)
● Setting s1 to the set difference of s1 and s2

 s1.removeAll(s2)

Membership testing in HashSets
● When testing whether a HashSet contains a given object, Java does

this:
○ Java computes the hash code for the given object

■ We’ll discuss hash codes later
■ Java compares the given object, using equals, only with elements in the set

that have the same hash code
● Hence, an object will be considered to be in the set only if both:

○ It has the same hash code as an element in the set, and
○ The equals comparison returns true

● Moral: to use a HashSet properly, you must have a good public int
hashCode() defined for the elements of the set

The SortedSet interface
● A SortedSet is just like a Set, except that an Iterator will go through it

in a guaranteed order
● Implemented by TreeSet

Membership testing in TreeSets
● In a TreeSet, elements are kept in order
● That means Java must have some means of comparing elements to

decide which is “larger” and which is “smaller”
● Java does this by using the int compareTo(Object) method of the

Comparable interface
● For this to work properly, compareTo must be consistent with equals
● Moral: to use a TreeSet properly, you must implement both the

equals method and the Comparable interface for the elements of the
set

Set tips
● add and remove return true if they modify the set
● Here's a trick to remove duplicates from a Collection c:

○ Collection noDups = new HashSet(c);
● A Set may not contain itself as an element
● Danger: the behavior of a set is undefined if you change an element

to be equal to another element

Recitation Coding
Assignment

Problem 1:

Given an array of integers, return another array of integers containing all
duplicate integers removed.

{1, 2, 3, 4, 4, 5} → {1, 2, 3, 4, 5}

Problem 2:

Given an array of Strings where there might be many null values,
return a map that contains an entry for each index with a non-null

String, mapping the index in the original array to the String.

This is a common technique for saving space when the array is
mostly empty.

{"Voravich", "Mia", null, "Norris", null, "Harry"} →
{0=Voravich, 1=Mia, 3=Norris, 5=Harry}

https://qr-codes.io/ZYEoEY

Attendance

