QuadTrees
CIT5940

Multidimensional Keys

e Keycomposed of more than one attribute

e In many applications, records need to be searched based on more than
one attribute.

e BST is efficient for searching on a one-dimensional key (range query)

e BST does not work well for multidimensional range query

o How to find all elements between (1, 1) and (4, 4)??

Multidimensional Range Query

e Find all restaurants within two miles of my house
e Data need to be searched using two-dimensional key (x and y coordinates)

e All dimensions have the same importance

Spatial DS

e Spatial Data:

o Alocation identified by x and y coordinates

e Spatial DS allow efficient processing of multidimensional range queries

PR QuadTree

e Point-Region quadtree

e Invented by Rafael Finkel and Jon Louis
Bentley

e Full four-way branching (4-ary) tree

PR QuadTree

e Each node either has exactly four children or is a leaf
e Represents a collection of data points in two dimensions

e Eachregionisrepresented by a Node / quadrant

PR QuadTree

e Internal nodes do not store data (points)
e Aleaf node represents aregion containing zero or one data point

e Aregion containing more than one point is repeatedly subdivided into 4
equals subquadrants until no leaf node contains more than a single point

PR QuadTree

NE
0 127
0 []
C
N A
W y . (40,45)
D
B
o s (70, 10) (69,50)
S (55,80)(80, 90)
127
W (a) (b)
S
E

« Example: Google Maps Utility Library
https://developers.google.com/maps/documentation/ios

-sdk/utility/quadtree

https://developers.google.com/maps/documentation/ios-sdk/utility/quadtree
https://developers.google.com/maps/documentation/ios-sdk/utility/quadtree

PR QuadTree: Insert

INSERT (Node node, Point p)

1. if (node.isNotEmpty())

2. SPLIT(node)

3. nextNode = CHOOSE_LEAF (node, p)
4. INSERT (nextNode, p)

5. else if (node.isLeaf())

6. node.setKey(p)

7. else
8. nextNode = CHOOSE_ LEAF (node, p) CHOOSE_LEAF (Node node, Point p)
9. INSERT (nextNode, p) 1. Let x be the child of node whose

region contains p.
2. return x

SPLIT(Node node)
1. Split the region occupied by node into four
equally-sized regions SW, NW, SE and NE.

2. Create four children for node and assign them to
occupy the quadrants SW, NW, SE and NE in that order.

. P = node.getKey()

. node.deleteKey()

. leaf = CHOOSE_LEAF (node, p)

leaf.setKey(p)

oUW

Breadth-first Search (BFS)

e Visits nodes/regions one level at a time (from root to leaves)

e Siblings of a node are visited before its children

BFS Algorithm

Initialize empty queue Q
ENQUEUE(Q, root)
while Q not empty do
u < DEQUEUE(Q)|
for each v € Children(u) do
ENQUEUE(Q, v)

Example

e HW4 - Blocky

