
List ADT
CIT 5940



Abstract Data Types

• An ADT defines a data type and a set of operations on that type
• An ADT does not specify how the data type is implemented

• Interfaces define ADTs in Java, Classes define their implementations
• A data structure is the implementation for an ADT

• The List is an ADT, LinkedList and ArrayList are implementations



The List ADT

● A List is a finite, ordered sequence of data items (all of a single type) known as 
elements.

○ Finite: specific size, although the size may change over time
○ Ordered: each element has a position in the list called an index

● The operations: (well, some of them)
○ Append

■ public boolean add(E e); 

○ Insert
■ public boolean add(int index, E e);

○ Get
■ public E get(int index);

○ Remove
■ public E remove(int index); and public boolean remove(Object o); 



Java’s List Interface & Implementation

● The java.util.List interface contains a ton of other methods
○ Won’t discuss them here, but make sure you remember that you can use them!

● The two common implementations of Lists:
○ Array-based lists

■ Store an array internally to contain all of the elements, resize as needed
■ In Java, this is the ArrayList class

○ Linked lists
■ Each element is stored in a Node, linking the nodes defines the order of the List
■ In Java, this is the LinkedList class

https://docs.oracle.com/javase/8/docs/api/java/util/List.html


List Check-in

● Write a method that collects all elements of an integer array above a value k.

public List<Integer> takeAbove(int[] array, int k) {
return null;

}



List Check-in

● Write a method that collects all elements of an integer array above a value k.

public List<Integer> takeAbove(int[] array, int k) {
List<Integer> filtered = new LinkedList<>();
for (int number : array) {

if (number > k) {
filtered.add(number);

}
}
return filtered;

}



List Check-in

● Write a method that collects all elements of an integer array above a value k.

public List<Integer> takeAbove(int[] array, int k) {
List<Integer> filtered = new LinkedList<>();
for (int number : array) {

if (number > k) {
filtered.add(number);

}
}
return filtered;

}

Could have used 
an ArrayList, too!



Linked Lists



What is a Linked List?

● A doubly-linked list is a data structure for implementing a list ADT, where 
each node has

○ Data
○ a pointer to the next node
○ a pointer to the previous node.

● The list structure typically has pointers to the list's first node (the head) and 
last node (the tail).



Linked List Instance Variables & Constructor

● Singly or doubly linked, the 
LinkedList should keep track 
of:

○ the head, the tail
○ (for convenience) the # of 

elements contained
● The constructor creates an

empty List, so set the head and
tail to be null.

public class LinkedList<E> implements List<E> {

private Node head;
private Node tail;
private int size;

public LinkedList() {
head = null;
tail = null;

}

...
}



Appending to a Singly Linked List: add(E e)



Appending to a Singly Linked List: add(E e)

● Handle an empty list specially:
○ head & tail should be updated 

to point to the new, single 
Node

● If the list isn’t empty:
○ Point the tail node to the new 

node
○ Update the tail variable to 

point to the new node

@Override
public boolean add(E e) {

Node newNode = new Node(e);
if (head == null) {

head = newNode;
tail = newNode;

} else {
tail.next = newNode;
tail = newNode;

}
size++;
return true;

}



Appending to a Singly Linked List: add(E e)

● Handle an empty list specially:
○ head & tail should be updated 

to point to the new, single 
Node

● If the list isn’t empty:
○ Point the tail node to the new 

node
○ Update the tail variable to 

point to the new node

What would be different in a 
Doubly Linked List?

@Override
public boolean add(E e) {

Node newNode = new Node(e);
if (head == null) {

head = newNode;
tail = newNode;

} else {
tail.next = newNode;
tail = newNode;

}
size++;
return true;

}



Appending to a Doubly Linked List: add(E e)

● Algorithm is the same!
● Handle an empty list specially:

○ head & tail should be updated 
to point to the new, single 
Node

● If the list isn’t empty:
○ Point the tail node to the new 

node and the new node to 
the previous tail!

○ Update the tail variable to 
point to the new node

@Override
public boolean add(E e) {

Node newNode = new Node(e);
if (head == null) {

head = newNode;
tail = newNode;

} else {
tail.next = newNode;
newNode.previous = tail;
tail = newNode;

}
size++;
return true;

}



Working up to Insert, Remove, Get

● Each of these three abstract methods behaves basically like linear search
○ add(int index, E e), get(int index), remove(int index) traverse the list to a specific index
○ remove(Object o) searches for o and tries to remove it 

● A simple linked list traversal algorithm:
○ Start at the list's head node, 
○ Follow next pointers index many times
○ Return a reference to the node



Activity 

● Return the (non-null) Node at the 
specified element index.

● Main idea: start from the head and
follow pointers until we’re at the
desired Node.

Node<E> node(int index) {

}



Activity 

● Return the (non-null) Node at the 
specified element index.

● O(n) solution!
○ For loop runs i times, i ranges from 0

to n

Node<E> node(int index) {

Node<E> x = first;
for (int i = 0; i < index; i++)

x = x.next;
return x;

}



Insert: add(int index, E e)

public void add(int index, E element) {
if (index < 0 || index > size()) {

throw new IllegalArgumentException();
}

if (index == size)
add(element);

else
linkBefore(element, node(index));

}

O(1)

O(1)

???



Insert: add(int index, E e)

public void add(int index, E element) {
if (index < 0 || index > size()) {

throw new IllegalArgumentException();
}

if (index == size)
add(element);

else
linkBefore(element, node(index));
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Insert: add(int index, E e)

public void add(int index, E element) {
if (index < 0 || index > size()) {

throw new IllegalArgumentException();
}

if (index == size)
add(element);

else
linkBefore(element, node(index));

}

void linkBefore(E e, Node<E> succ) {
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, 

succ);
succ.prev = newNode;
if (pred == null)

first = newNode;
else

pred.next = newNode;
size++;
modCount++;

}

linkBefore moves a lot of pointers, but just O(1)



Insert: add(int index, E e)

public void add(int index, E element) {
if (index < 0 || index > size()) {

throw new IllegalArgumentException();
}

if (index == size)
add(element);

else
linkBefore(element, node(index));

}

O(1)

O(1)

O(n)



Activity: improving node(int index)

● Can’t do better than O(n) solution in 
general.

● Right now, O(n) for getting node n. 
Bad!

● How can we minimize the number of 
iterations needed to get to any 
particular location in a doubly linked 
list?

Node<E> node(int index) {

Node<E> x = first;
for (int i = 0; i < index; i++)

x = x.next;
return x;

}



Activity: improving node(int index)

● Can’t do better than O(n) solution in 
general.

● Right now, O(n) for getting node n. 
Bad!

● How can we minimize the number of 
iterations needed to get to any 
particular location in a doubly linked 
list?

Node<E> node(int index) {
if (index < (size / 2)) {

Node<E> x = first;
for (int i = 0; i < index; i++)

x = x.next;
return x;

} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)

x = x.prev;
return x;

}
}



Get and Remove Work Basically the Same!

public E get(int index) {
checkElementIndex(index);
return node(index).item;

}

public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));

}

(both are O(n), with optimization to help search from the closer side)



Linked List Summary

● Each element is stored in a node
● The position of an element in the list is determined by how many  nodes away from 

the head it is
● Can’t access an element in the list directly, must follow pointers
● Adding to the head/tail of a linked list is constant time
● Adding, getting, and removing within the linked list is linear time

○ Doubly linked lists allow starting from the closer end; not faster asymptotically but 
still useful in practice.



Array Lists



What is an Array List?

● An array-based list is a list ADT implemented using an array.
● The implementation usually needs to track:

○ The array
○ The allocation size
○ The current size of the list

● In Java, arrays are fixed in size!
○ We’ll need to implement our own dynamic allocation
○ Let’s come back to this later



Structure of an Array List
public class FixedArrayList<E> implements List<E>{

Object[] array;
int allocationSize;
int size;

final int DEFAULT_CAPACITY = 10;

public FixedArrayList(int initialCapacity) {
allocationSize = initialCapacity;
size = 0;
array = new Object[initialCapacity];

}
....

}



Activity: Adding to a Fixed-Length Array List

● Given instance variables array, 
allocationSize, and size, write a
function that

○ Adds an element to the end of the list 
if there’s space and returns true

○ Return false and do nothing
otherwise.

@Override
public boolean add(E e) {

}



Activity: Adding to a Fixed-Length Array List

● Given instance variables array, 
allocationSize, and size, write a
function that

○ Adds an element to the end of the list 
if there’s space and returns true

○ Return false and do nothing
otherwise.

@Override
public boolean add(E e) {

if (size == allocationSize) {
return false;

}
array[size] = e;
size++;
return true;

}



Understanding add(int index, E e)

● If we want to add(4, 17), we can’t 
just do array[4] = 17;

○ Clobbers whatever is there 
already!

● To insert at a specific index, we’ll
need to:

○ Copy all elements at and after 
this index one place to the right

○ Then, place the desired element
at index

Expected output:
91 45 84 36 17 12 78 51



Understanding remove(int index)

● If we want to remove(3), we can’t 
just do array[3] = null;

○ Leaves an unused spot in the 
array!

● To remove from a specific index,
we’ll need to:

○ Copy all elements after this 
index one place to the left

Expected output:
91 45 84 17 12 78 51



Adding/Removing within a list is an O(n) operation*!

public boolean add(int index, E e) {
if (size == allocationSize) {

return false;
}
for (int i = size; i > index; i--) {

array[i] = array[i - 1];
}
array[index] = e;
size++;
return true;

}

public E remove(int index) {
E toRemove = (E) array[index];
for (int i = index; i < size - 1; i++) {

array[i] = array[i + 1];
}
array[size - 1] = null;
size--;
return toRemove;

}

*Worst case

These loops run once for each of the elements after the target index!



Fixed Size to Resizing

● One small tweak, and we have resizing Array Lists

public boolean add(E e) {
if (size == allocationSize) {

return false;
}
array[size] = e;
size++;
return true;

}

public boolean add(E e) {
if (size == allocationSize) {

grow();
}
array[size] = e;
size++;
return true;

}



Fixed Size to Resizing

● grow() is clearly an O(n) operation, but with some amortized analysis magic, we 
can prove that resizing array lists still have O(1) append!

private void grow() {
Object[] newArray = new Object[allocationSize * 2];
for (int i = 0; i < allocationSize; i++) {

newArray[i] = array[i];
}
array = newArray;
allocationSize = allocationSize * 2;

}



Amortized Analysis

● An algorithm analysis technique that looks at the total cost for a series of operations 
and amortizes this total cost over the full series.

● Useful when the individual analysis of the worst case cost might lead to an 
overestimate for the total cost of the series.



Proof!

● We’ll use mathematical induction:
● Base case:

○ Array List is empty, so size = 0.
○ Just do array[0] = e

● Induction hypothesis:
○ Assume that the average cost of appending n-1 elements is in O((n – 1) / (n – 1)) à O(1)



Proof!

● Need to show that the average cost is O(1) for n elements
● Appending the nth element leads to two cases:

○ Case 1: array is not full, and so we have a constant time array[i] = e. Average cost of 
adding the first n-1 is O(n-1), cost of the next one is O(1), so average cost is O(n – 1 + 1) 
/ n à O(1).

○ Case 2: the array is full, and so we pay O(n) for the grow operation and O(1) for the 
actual append.
■ The total cost is now O(n + n + 1), averaged over n elements
■ O(2n + 1) / n à O(1)

● So, the average cost of appending an element to a resizing array-based list is O(1)!



Runtime Analysis Summary

Operation Array List Singly Linked List Doubly Linked List

append O(1)* O(1) O(1)

insert O(n) O(n) O(n)**

delete O(n) O(n) O(n)**

getValue O(1) O(n) O(n)

*amortized!
**faster in practice than the O(n) for singly LLs



Space Complexity

● Overhead refers to all information stored by a data structure aside from the actual 
data

○ Smaller overhead means better space complexity
● For Array Lists

○ Size must be predetermined before the array can be allocated
○ Unused space (overhead) if the array contains few elements
○ No overhead when array is full

● For Linked Lists
○ Only need space for the elements in the list
○ Needs space for next and/or prev pointers (overhead)



Which to choose?

Given :
n the number of elements in the list
P the size of a pointer
E the size of a data element
D the maximum number elements that can be stored in the 
array
Space complexity

• Array List: DE
• Linked Lists: n(P+E)



Break-Even Point

(1) n >DE/(P+E)

Solving (1) for n gives us the break-even point beyond 
which the array-based implementation is more space 
efficient
If we assume P = E then break-even point is D/2 (array 
half full)



Rule of Thumb

● Linked Lists are more space efficient when the number of elements varies widely 
or is unknown

● Array Lists are more space efficient when you know the eventual size of the list in 
advance.


