
Indexing
CIT5940

Introduction

● You’ll often work with a dataset that doesn’t entirely fit into your
program’s memory

● Indexing: the process of associating a search key with the location (on
disk) of a corresponding data record

○ Think of the index in a textbook: given a topic name, it tells you where to
go find more information about that topic.

● Remember: program memory is fast but expensive, whereas disk space
is slow and cheap.

○ Do as little seeking on disk as possible!

Index

● The index does not store
the record

● The index stores a
reference to the record

● A collection of records can
be supported by multiple
indices

○ separate index for each
key field in the record

Records

<Harry, Smith, sharry,
34893394, Lecturer>

<Eric, Fouh, efouh,
48983292, P.o.P>

<Vivian, Xi, vivianxi,
84293938, TA>

<Kevin, Dannenberg, kdann,
39483428, TA>

Index
● The index does not store the record

● The index stores a reference to the record

● A collection of records can be supported by multiple indices

Records

<Harry, Smith, sharry,
34893394, Lecturer>

<Eric, Fouh, efouh,
48983292, P.o.P>

<Vivian, Xi, vivianxi,
84293938, TA>

<Kevin, Dannenberg, kdann,
39483428, TA>

Vivian

Eric

Harry

Kevin

48983292

84293938

34893394

39483428

Primary Key

● Each record of a database normally has a unique identifier
(filed/attribute)

● Primary key: an attribute that uniquely identifies a record

○ ID number, Penn ID, Social Security Number, etc.

Primary Key Index

● Associates each primary key value with a pointer to the actual record on
disk

Primary Key: Caveats

● Primary key often not known by the user of the database

● Primary key often not useful when searching for a record.

● Database searches often performed using attributes other than the
primary key (name, age, major, salary, etc.)

Secondary Key

● Secondary key: a key field in a record where a particular key value might
be duplicated in multiple records

○ such as salary, name, major, etc.

● Secondary key is more likely to be used by a user as a search key than is
the record's primary key

○ Can’t be used to uniquely identify a record, though

Secondary Key

● Secondary key index: associates a secondary key value with the primary
key of each record having that secondary key value

Database indexing

○ Linear indexing

○ Hash-based indexing

○ Tree-based indexing

Index File

● Index file: a file whose records consist of key-value pairs where the
pointers are referencing the complete records stored in another file

Linear indexing

● Linear index: index file organized as a sequence of key-value pairs where
the keys are in sorted order and the pointers either

○ Point to the position of the complete record on disk (pictured)

○ Point to the position of the primary key in the primary key index

● Linear index amenable to binary search (efficient search)

Portion of main memory
where variable-length
records live

Sorted linear index

Linear indexing

● Linear index: index file organized as
a sequence of key-value pairs where
the keys are in sorted order and the
pointers either

○ Point to the position of the
complete record on disk

○ Point to the position of the
primary key in the primary key
index (pictured)

● The secondary key index is called
the inverted list

Linear indexing

● Linear index: index file organized as
a sequence of key-value pairs where
the keys are in sorted order and the
pointers either

○ Point to the position of the
complete record on disk

○ Point to the position of the
primary key in the primary key
index (pictured)

● The secondary key index is called
the inverted list

A better implementation: keep primary keys in
an array for better space efficiency.

Second-level index

● Linear Index as implemented so far is good when:

○ Keys are much smaller than records

○ The dataset is not too large

○ i.e. when the primary keys can all be kept in memory

● What if all primary keys can’t be kept in memory?

○ For large databases, linear index array/LL cannot fit in memory

○ Leads to expensive search because of several disk accesses

Second-level index

● Solution:

○ Second-level index stored in main memory (array)

■ NOT NECESSARILY RELATED TO SECONDARY KEYS

2. Each cell here
represents one
memory block

1. Here, the value in cell i
gives the minimum value in
block i.

3. Zoomed in view of block 1 from above, which is sorted
for easy retrieval of elements in that range.

Second-level index

● Solution:

○ Second-level index stored in main memory (array)

■ NOT NECESSARILY RELATED TO SECONDARY KEYS

○ Index file stored across several blocks (on disk)

○ Second-level index stores the first key value in the corresponding disk block
of the index file

○ Search requires 2 disk accesses: (1) load the block of the index file containing
the key, (2) retrieve the record

Linear indexing: Drawback

● Insertion and deletion are expensive

○ All secondary indices must be updated: the entire contents of the array might
be shifted

● Secondary key indexes contain duplicates: space expensive

Interlude: HW6

Goal of HW6

● Build a news aggregator that allows a user to view articles based on the terms
contained inside of them

● Tasks:
○ Reasoning about ethics and social impact
○ Using an RSS feel to crawl webpages (!!!)
○ Calculating TF-IDF for a corpus of documents
○ Creating an inverted index for each term-based search
○ Generating a term list and incorporating autocomplete

JSoup, RSS, & HTML

● We’re connecting to the internet and parsing documents hosted remotely.
● https://www.seas.upenn.edu/~cit5940/sample_rss_feed.xml

○ RSS, pictured above, is a markup language that allows you to specify a series of data
sources.

https://www.seas.upenn.edu/~cit594/sample_rss_feed.xml

JSoup, RSS, & HTML

● But wait: how do you connect to the internet?
○ Download JSoup and add it to your Eclipse/IntelliJ project (instructions included in

writeup)
○ Then, to manipulate each link in an RSS feed:

Each of these is a link to another
page!

JSoup, RSS, & HTML

● But wait: how do you connect to the internet?
○ Download JSoup and add it to your project (instructions included in writeup)
○ You can manipulate each link in an RSS feed.
○ For each link, navigate to that page to find the list of terms contained in that page
○ Use JSoup the same way to manipulate HTML as the RSS document.

JSoup, RSS, & HTML

● But wait: how do you connect to the internet?
○ Download JSoup and add it to your Eclipse project (instructions included in writeup)
○ You can manipulate each link in an RSS feed.
○ For each link, navigate to that page to find the list of terms contained in that page
○ Use JSoup the same way to manipulate HTML as the RSS document.

seas.upenn.edu/~cit5940/page1.html <data, structures, linear, data,
structures, lists, arraylist, linkedlist,
stacks, queues>

Testing and the internet

● You should write your own test cases as always, but how to host your own RSS
feed for access?

https://www.python.org/downloads/

https://www.python.org/downloads/

Writing your own testing files

Keep the base URL for your pages http://localhost:8090 and write
whatever you want in the other .html files in your directory!

http://localhost:8090/

Writing your own testing files

Put whatever text you want in the bodies of your custom pages
for testing. This is page5.html

Using a terminal, navigate to the directory containing
your sample files.

Start a web server on port 8090

TF-IDF: term frequency-inverse document frequency

● Term frequency: how often does a term appear in a particular document?
● Document frequency: how many documents does a particular term appear in?

● - TF(t) = (Number of times term t appears in a document) / (Total
number of terms in the document)
- IDF(t) = log_e(Total number of documents / Number of documents
with term t in it)
- TF-IDF(t) = TF * IDF

TF-IDF: term frequency-inverse document frequency

● Term frequency: how often does a term appear in a particular document?
● Document frequency: how many documents does a particular term appear in?

● - TF(t) = (Number of times term t appears in a document) / (Total
number of terms in the document)
- IDF(t) = log_e(Total number of documents / Number of documents
with term t in it)
- TF-IDF(t) = TF * IDF

● Check our understanding:
○ Term frequency of “the” in a typical English document? Document frequency in a

typical English corpus?
○ In which dataset would an email where “cat” appears a ton have a higher TF-IDF score?

■ a dataset of emails between pet enthusiasts, or
■ A dataset of emails about rare fruits

This Assignment’s Indices:

● The full records are, effectively, <Term, Document, TF-IDF>
● The first index you build looks up full records with the Document as the key

○ Useful for looking up the Terms that appear in a particular Document.
● The second index is inverted, mapping a Term to the Document it appears in

○ Useful for looking up in which Document a term had the highest (or lowest) TF-IDF

This Assignment’s Indices:

● Are all maps!
● Quick trick for iteration over maps:

○ Entry objects are defined as Key, Value pairs for a particular map

Indexing Example: Facebook’s Haystack

● Photo Storage infrastructure
● Disks are organized in volumes of fixed size
● Haystack index store consists of 2 files:

○ Haystack store (database)

○ Index file (used to rebuild the in-memory index)
● In-memory index used
● Each Haystack store manages multiple volumes
● Each haystack store has one in-memory index file
● Append-Only database

Facebook’s Haystack

● Haystack Store: contains
“needles”

● Each photo has a key and
an alternate key

Facebook’s Haystack

● Needle:

○ Represents a photo stored in the Haystack

○ Uniquely identified by its <Offset, Key, Alternate Key, Cookie> tuple

○ Multiple needles can have the same key

○ Offset: the needle offset in the haystack store

○ Offset is stored in index (file and in-memory)

Facebook’s Haystack

● In-memory index

○ Data structure that maps pairs of (key, alternate key) to the
corresponding needle’s flags, size, and offset

○ Key is the photo id

○ Alternate key is the photo’s type. Each photo is scaled to four types/sizes

○ Google Sparsehash used (closed hashing + quadratic probing)

Facebook’s Haystack

● In-memory index

ℎ𝑎𝑠ℎ (𝑘𝑒𝑦, 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 𝑘𝑒𝑦)

Alternate key: large, medium, small, thumbnail

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑒𝑒𝑑𝑙𝑒 𝑖𝑛 𝑖𝑛𝑑𝑒𝑥

Delete status

Facebook’s Haystack: Photo Read

● Exact match query

● Each request contains the photo’s: logical volume id, key, alternate key,
and cookie

● Hash function is used to find the photo in the in-memory index

Facebook’s Haystack: Photo Read

● If photo is deleted (flag sets to delete) stop

● Else find the needle in the volume based on the offset, reads the entire
needle, performs integrity checks and returns the image

● One disk access for each request

Facebook’s Haystack: Photo Write

● Each request contains the logical volume id, key, alternate key, cookie,
and data (photo)

● A new needle is created and appended (added at the end) to the Haystack
● A mapping for the new needle is added to the in-memory index

Facebook’s Haystack: Photo Write

● Special case: Photo modification (e.g. after rotation)
● A Needle cannot be overwritten (append-only)
● A new needle is created with the same key and alternate key as the

original needle
● The in-memory index is updated: offset is updated to match the new

needle

Facebook’s Haystack: Photo Delete

● Flag is set to “delete” in both in-memory index and Haystack store

● Requests to get deleted photos first check the in-memory flag and return
errors if that flag is enabled

