
Closed Hashing:
Quadratic Probing, Double Hashing,
and Analysis
CIT594

Last Time:
Closed Hashing

Closed Hashing

● A hash system where all records are stored in slots inside the hash table

● Implementations:

○ Closed hashing with buckets

○ Closed hashing with no buckets

Closed Hashing with
No Buckets

Collision Resolution Policy

● The process of finding the proper position in a hash table that contains the
desired record

● Used if the hash function did not return the correct position for that
record due to a collision with another record

● Mainly used in closed hashing systems with no buckets

● A good collision should ensure that empty slots in the table have an
equal probability of receiving the next record inserted

Collision Resolution

● Goal: find a free slot in the hash table when the home position for the
record is already occupied

● Uses a probe function

Collision Resolution

● Probe function: function used by a collision resolution method to calculate
where to look next in the hash table

● Probe sequence: the series of slots visited by the probe function during
collision resolution.

https://opendsa-server.cs.vt.edu/lti/launch?custom_book_path=upenn%2Fcit594%2Fspring-2020%2FMW_300PM&custom_inst_book_id=704&custom_inst_chapter_module_id=69144&custom_module_file_name=Glossary&custom_module_title=12.01%20Glossary

We will use:

● Hash function: simple mod (%)

● Slot = key % array_size

Collision Resolution

1. Find home slot

○ int pos = home = h(K); where h is the hash function and K is the
key

2. Probe sequence (iterative process)

○ pos = (home + p(k, i)) % M;

■ Initialize i at 1

■ Increment i until the slot at pos is empty

● The probe function returns an offset from the original home position

Probe function

Collision Resolution Policies

● Linear probing

● Linear probing by steps

● Pseudo-random probing

● Quadratic probing

● Double hashing

Quadratic Probing

Quadratic Probing

● Eliminates primary clustering
● Probe function is quadratic.
● Probe function:

○ p(k, i) = c1i2+c2i+c3

● Simplest form:

○ p(k, i) = i2

○ Probe sequence: the ith value is: h(K) + i2

Quadratic Probing

● Problem: not all slots visited by the “simplest form” probe function

If a value hashes to slot 5. Only
the slots in yellow will be visited

Harry Smith

Harry Smith

Quadratic Probing

● Solution:

○ Length of hash table: power of 2

○ probe function: p(k, i) = (i2 + i)/ 2

All slots will be visited by the probe function

○ Given a hash table of length 8, if a value hashes to slot 0, the probe sequence
will be: 1, 3, 6, 2, 7, 5, 4

Quadratic Probing

● Google SparseHash Tables (https://github.com/sparsehash/sparsehash)

● Facebook Haystack (photo storage system) uses Google SparseHash
Tables (https://engineering.fb.com/core-data/needle-in-a-haystack-
efficient-storage-of-billions-of-photos/)

https://github.com/sparsehash/sparsehash
https://engineering.fb.com/core-data/needle-in-a-haystack-efficient-storage-of-billions-of-photos/

Secondary Clustering

● Pseudo-random probing and quadratic probing ignore the key when
computing the probe sequence

● Two records with the same home slot will share the same probe sequence

● Secondary Clustering results from the keys hashing to the same slot of the
table sharing the same probe sequence

Double Hashing

Double Hashing

● Eliminates secondary clustering

● Probe function uses the original key

● Probe function: p(k, i) = i*h2(k)

● h2 is a second hash function

Double Hashing

● Implementation 1:

○ select M to be a prime number

○ h2(k)=1+(k % (M−1))

○ p(k, i) = i * h2(k)

Double Hashing

● Example:

M = 11

A record with key = 0 will generate the probe sequence: 1, 2, 3 , 4, 5, 6, 7, 8, 9, 10

A record with key = 11 will generate the probe sequence: 2, 4 , 6, 8, 10, 1, 3, 5, 7, 9

Double Hashing

● Implementation 2:

○ select M to be a power of two

○ h2 returns an odd number

○ h2 (k)= (((k/M) % (M/2))∗2)+1

○ p(k, i) = i * h2(k)

Double Hashing

● Example:

M = 16

A record with key = 0 will generate the probe sequence: 1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15

A record with key = 16 will generate the probe sequence: 3, 6, 9, 12, 15, 2, 5, 8, 11,
14, 1, 4, 7, 10, 13

Deletion

Deletion

● Challenges:

○ Empty slots should not stop the probe sequence when searching

○ The freed slot should be available to a future insertion

Deletion

● A tombstone is used to mark a slot in the hash table where a record
has been deleted.

● Searching: if a tombstone is encountered, the probe sequence
continues

● Insertion: if a tombstone is encountered, that slot is used to store the
new record.

● The insertion procedure must check for duplicates

Analysis

Analysis of Closed Hashing

● Assuming that every slot in the table has equal probability of being the
home slot for the next record

● The probability of finding the home position is N/M (load factor - ⍺)

● The expected number of probes is:

● The cost is a function of the load factor

Analysis of Closed Hashing

Plot showing the growth rate of the cost for
insertion and deletion into a hash table as
the load factor.

• Horizontal axis is the value for α

• Vertical axis is the expected number of
accesses to the hash table

• Dashed lines show the cost for linear probing

• Solid lines show the cost for "random"
probing (a theoretical lower bound)

Analysis of Closed Hashing

Plot showing the growth rate of the cost for
insertion and deletion into a hash table as
the load factor.

• For small values of α, the expected cost is
low. It remains below two until the hash
table is about half full

• Rule of thumb: design a hashing system so
that the hash table never gets above about
half full

• Select the table size accordingly

