Closed Hashing:

Quadratic Probing, Double Hashing,
and Analysis
CIT594



Last Time:
Closed Hashing



Closed Hashing

e A hash system where all records are stored in slots inside the hash table

e Implementations:
o Closed hashing with buckets

o Closed hashing with no buckets



Closed Hashing with
No Buckets



Collision Resolution Policy

The process of finding the proper position in a hash table that contains the
desired record

Used if the hash function did not return the correct position for that
record due to a collision with another record

Mainly used in closed hashing systems with no buckets

A good collision should ensure that empty slots in the table have an
equal probability of receiving the next record inserted



Collision Resolution

e Goal: find a free slot in the hash table when the home position for the
record is already occupied

e Uses aprobe function



Collision Resolution
e Probe function: function used by a collision resolution method to calculate
where to look next in the hash table

e Probe sequence: the series of slots visited by the probe function during

collision resolution.


https://opendsa-server.cs.vt.edu/lti/launch?custom_book_path=upenn%2Fcit594%2Fspring-2020%2FMW_300PM&custom_inst_book_id=704&custom_inst_chapter_module_id=69144&custom_module_file_name=Glossary&custom_module_title=12.01%20Glossary

We will use:

e Hash function: simple mod (%)

e Slot = key % array_size



Collision Resolution

1. Find homesslot

o 1nt pos = home = h(K); wherehisthe hash function and Kis the
key
2. Probe sequence (iterative process)

o pos = (home + p(k, 1)) % M;

B Initialize1 atl

| Probe function

B Increment 1 until the slot at pos is empty
e The probe function returns an offset from the original home position



Collision Resolution Policies

e Linear probing

e Linear probing by steps
e Pseudo-random probing
e Quadratic probing

e Double hashing



Quadratic Probing



Quadratic Probing

e Eliminates primary clustering
e Probe function is quadratic.
e Probe function:

o pCk, 1) = c112+Cr1+C3

e Simplestform:
© p(k’ 1) = 12

o Probe sequence: the 1thvalueis: h(K) + 12



Quadratic Probing

e Problem: not all slots visited by the “simplest form” probe function

)

0o 1 2 3 4 5 6 7 8 9

If a value hashes to slot 5. Only
the slots in yellow will be visited



Harry Smith

Harry Smith


Quadratic Probing

e Solution:
o Length of hash table: power of 2
o probefunction:pCk, 1) = (12+ 1)/ 2
All slots will be visited by the probe function

o Given a hash table of length 8, if a value hashes to slot 0, the probe sequence
will be: 1,3,6,2,7,5,4



Quadratic Probing

e Google SparseHash Tables (https://github.com/sparsehash/sparsehash)

e Facebook Haystack (photo storage system) uses Google SparseHash
Tables (https://engineering.fb.com/core-data/needle-in-a-haystack-
efficient-storage-of-billions-of-photos/)



https://github.com/sparsehash/sparsehash
https://engineering.fb.com/core-data/needle-in-a-haystack-efficient-storage-of-billions-of-photos/

Secondary Clustering

e Pseudo-random probing and quadratic probing ignore the key when
computing the probe sequence

e Two records with the same home slot will share the same probe sequence

e Secondary Clustering results from the keys hashing to the same slot of the
table sharing the same probe sequence



Double Hashing



Double Hashing

e Eliminates secondary clustering

e Probe function uses the original key

e Probe function:p(k, 1) = 1*h,(k)

e h,isasecond hash function



Double Hashing

e Implementation 1:

o select Mto be a prime number
o hy(k)=1+(k % (M-1))

o pCk, 1) =1 * hy(k)



Double Hashing

e Example:
M=11
A record with key = 0 will generate the probe sequence: 1,2,3,4,5,6,7,8,9, 10

A record with key = 11 will generate the probe sequence: 2,4,6,8,10,1,3,5,7,9



Double Hashing
e Implementation 2:
o select Mto be a power of two
o hyreturns an odd number
o hy (k)= (CCL/M) % (M/2))*2)+1

o pCk, i) =1 * h2Ck)



Double Hashing

e Example:
M=16

A record with key =0 will generate the probe sequence: 1,2,3,4,5,6,7,8,9,10, 11,
12,13, 14,15

A record with key = 16 will generate the probe sequence: 3,6,9,12,15,2,5, 8,11,
14,1,4,7,10, 13



Deletion




Deletion

e Challenges:

o Empty slots should not stop the probe sequence when searching

o The freed slot should be available to a future insertion



Deletion
e Atombstoneis usedto mark aslotinthe hash table where a record
has been deleted.

e Searching: if atombstone is encountered, the probe sequence
continues

e Insertion: if atombstone is encountered, that slot is used to store the
new record.

e The insertion procedure must check for duplicates



Analysis



Analysis of Closed Hashing

e Assuming that every slotin the table has equal probability of being the
home slot for the next record

e The probability of finding the home positionis N/M (load factor - «)

e The expected number of probes is:

1+ Z(N/M)" = 1/(1 - a).

i=1

e The costis afunction of the load factor



Analysis of Closed Hashing

Horizontal axis is the value for a

Vertical axis is the expected number of
accesses to the hash table

Dashed lines show the cost for linear probing

Solid lines show the cost for "random"
probing (a theoretical lower bound)

Plot showing the growth rate of the cost for
insertion and deletion into a hash table as
the load factor.



Analysis of Closed Hashing

* For small values of a, the expected cost is
low. It remains below two until the hash
table is about half full

* Rule of thumb: design a hashing system so
that the hash table never gets above about
half full

* Select the table size accordi ngly Plot showing the growth rate of the cost for
insertion and deletion into a hash table as
the load factor.



