
Closed Hashing:
Linear Probing, Linear Probing by
Steps, and Pseudo-Random Probing
CIT594

Closed Hashing

Closed Hashing

● A hash system where all records are stored in slots inside the hash table

● Implementations:

○ Closed hashing with buckets

○ Closed hashing with no buckets

Closed Hashing with
No Buckets

Collision Resolution Policy

● The process of finding the proper position in a hash table that contains the
desired record

● Used if the hash function did not return the correct position for that
record due to a collision with another record

● Mainly used in closed hashing systems with no buckets

● A good collision should ensure that empty slots in the table have an
equal probability of receiving the next record inserted

Collision Resolution

● Goal: find a free slot in the hash table when the home position for the
record is already occupied

● Uses a probe function

Collision Resolution

● Probe function: function used by a collision resolution method to calculate
where to look next in the hash table

● Probe sequence: the series of slots visited by the probe function during
collision resolution.

https://opendsa-server.cs.vt.edu/lti/launch?custom_book_path=upenn%2Fcit594%2Fspring-2020%2FMW_300PM&custom_inst_book_id=704&custom_inst_chapter_module_id=69144&custom_module_file_name=Glossary&custom_module_title=12.01%20Glossary

We will use:

● Hash function: simple mod (%)

● Slot = key % array_size

Collision Resolution

1. Find home slot

○ int pos = home = h(K); where h is the hash function and K is the
key

2. Probe sequence (iterative process)

○ pos = (home + p(k, i)) % M;

■ Initialize i at 1

■ Increment i until the slot at pos is empty

● The probe function returns an offset from the original home position

Probe function

Collision Resolution Policies

● Linear probing

● Linear probing by steps

● Pseudo-random probing

● Quadratic probing

● Double hashing

Linear Probing

Linear Probing

● Works by moving sequentially through the hash table from the home slot.

● Probe function:

○ p(k, i) = i

● If home slot is home, the probe sequence will be home + 1, home +
2, home + 3, … home + (M - 1)

Example

● Hash function: simple mod (%)

● M = 10

● home= key % M

● p(key, i) = i

● pos = (home + i) % M;

● Keys = [9877, 9050, 2037, 1059, 7200, 3348]

Primary Clustering

● The tendency in certain collision resolution methods to create clustering in
sections of the hash table

● Happens when a group of keys follow the same probe sequence during
collision resolution

● primary clustering lead to empty slots in the table to not have an equal
probability of receiving the next record inserted

Primary Clustering

○ Linear probing leads to primary clustering

○ Linear probing is one of the worst collision resolution methods

Linear Probing by Steps

Linear Probing by Steps

● Goal: avoid primary clustering / improve linear probing

● Idea: skip slots by some constant c other than 1

● Probe function:

○ p(k, i) = c * i

● cmust be relatively prime to M to generate a linear probing sequence
that visits all slots in the table

Example

● Hash function: simple mod (%)

● M = 10

● home= key % M

● c = 3

● p(key, i) = c * i

● pos = (home + 3i) % M;

● Keys = [9877, 9050, 2037, 1059, 7200, 3348]

Pseudo-Random Probing

Pseudo-Random probing

● Idea: select the next position on the probe sequence at random from the
unvisited slots

● The random sequence should be the same for insertion and searching
(impossible for a truly random sequence)

Pseudo-Random probing

● Stores a random permutation of the values 1 through the size of the hash
table

● The term i of the probe sequence is the value of position i in the
permutation array

Pseudo-Random probing

● Probe function:

○ p(k, i) = Permutation[i]

● Permutation:

○ Array of length M

○ Stores a value of 0 in position Permutation[0]

○ Stores a random permutation of the values from 1 to M−1 in slots 1 to M−1.

Example

● Hash function: simple mod (%)

● M = 10

● home = key % M

● Permutation = [0, 3, 7, 6, 1, 4, 9, 2, 5, 8]

● p(key, i) = Permutation[i]

● pos = (home + Permutation[i]) % M;

● Keys = [157, 273, 17, 913, 110, 258]

