
Open & Bucket
Hashing

CIT 5940 Spring 2024 @ University of Pennsylvania

Introduction

Hashing: a method for storing and retrieving records from a database based on some

attribute value of the records.

Generate a hopefully unique key for each record

Insertion, deletion, and search is based on the key value of the record

Careful implementation of hashing allows for constant time insertion, deletion, and

search on average.

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 2

Hashing for Storage: The
Model

Imagine that you're searching for a book in a

gigantic library.

The books are not ordered meaningfully by

title, author, ISBN, or anything

Instead, to find a book, you use a "crystal

ball" which tells you the shelf number

where the book is located.

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 3

Introduction

Appropriate for

applications where all search is done by exact-match queries

Not Appropriate for

applications where multiple records with the same key are permitted

answering range searches

Java Implementations: Hashtable, HashMap, HashSet

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 4

Hashing, Hash Systems, and Hash Tables

Hashing creates some slightly overloaded terms. Some disambiguation:

Hashing refers to the process of applying a hash function to a key.

A hash function is a mathematical object that generates maps a key to an integer.

A hash table is a data structure that stores records in an array. A record's position

is determined by applying the hash function to the record's key.

A hash system is a system that uses a hash table to store records & resolve

collisions.

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 5

Defining a Hash System

A hash system consists of a hash table and a hash function.

A hash table is an array of slots. Depending on the hash system, the slots may

contain records or auxilliary data structures.

We use to denote the number of slots in a hash table.

A hash function maps a key to a slot in the hash table.

 refers to a slot in the hash table such that .

In a given hash system, a record with key is stored at .

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 6

Collisions

Collision: when two search keys are mapped by the hash function to the same slot in

the hash table

Finding a record with key in a database organized by hashing follows a two-step

procedure:

Compute the table location

Starting with slot , locate the record containing key using (if necessary) a

collision resolution policy

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 7

Hashing & Collisions: An Example

First, we hash to find its slot in the table. h() = 3 .

We can place in slot 3.

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 8

Note
Then, we hash :dog:to find its slot in the table. $h(:dog:) = 3$.

Hashing & Collisions: An Example

Then, we hash to find its slot in the table. h() = 8 .

We can place in slot 8.

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 9

Hashing & Collisions: An Example

Then, we hash to find its slot in the table. h() = 0 .

We can place in slot 0.

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 10

Hashing & Collisions: An Example

Then, we hash to find its slot in the table. h() = 0 .

We can try to place in slot 3. But it's filled!

This is a collision—where would we put so that:

we can find it again?

we don't overwrite any other records?

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 11

Collision Resolution Policies

Hashing and storing is simple, but collision resolution comes with a lot of tradeoffs!

Open hashing: store multiple records in the same slot by using auxiliary data

structures.

 Not all of the information is stored in the table itself

Closed hashing: store one record per slot, and use a collision resolution policy to

find a new slot for a record that collides with an existing record.

 All of the information is stored in the table itself

More (open) slots require more (unused) space, but allows for fewer collisions.

Fewer slots requires less space, but may lead to more collisions, requiring more

time to resolve.

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 12

Load Factor

Used to decide when to rehash (resize) the hash table

Load factor =

 = number of records in the hash table

 = the number of slots in the hash table

Resize and rehash the hash table when the load factor exceeds a certain threshold to

keep it as low as possible.

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 13

Open Hashing

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 14

Open Hashing

A hash system where multiple records might be associated with the same slot of a hash

table.

A linked list or other data structure is used to store the records in a slot

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 15

Example

Open Hashing, using a simple mod

(%) as hash function:

, with = the

number of slots in the hash

table.

If we insert the keys: 157, 313,

930, 207, 979, 100, 977

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 16

Note
Walk over insertion, searching, and deletion.

Open Hashing

Insertion:

Compute the hash value of the key

Insert the record at the head of the linked list at the hash value

Searching:

Compute the hash value of the key

Search the linked list at the hash value

Deletion:

Compute the hash value of the key

Delete the record from the linked list at the hash value

Runtimes??

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 17

Open Hashing

Insertion: on average, in the worst case

Compute the hash value of the key

Insert the record at the head of the linked list at the hash value

Searching: on average, in the worst case

Compute the hash value of the key

Search the linked list at the hash value

Deletion: on average, in the worst case

Compute the hash value of the key

Delete the record from the linked list at the hash value

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 18

Java HashMap

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 19

HashMap

Hash function: bitwise AND (&) operator

public static int findSlot(Object toHash) {
 slot = array_length & key.hashcode()
}

Treeification when list size above a threshold (8)

 in the worst case

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 20

Closed Hashing

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 21

Closed Hashing

A hash system where all records are stored in slots inside the hash table.

Implementations:

Closed hashing with buckets

Closed hashing with no buckets

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 22

Closed Hashing with Buckets

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 23

Bucket Hashing

Slots of the hash table are grouped into buckets

If the hash table has slots and buckets (>), each bucket will consist of

 slots.

Additionally, the table will include an overflow bucket: the bucket into which a

record is placed if the bucket containing the record's home slot is full

Overflow bucket is often considered to have infinite capacity—an ArrayList ,

perhaps

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 24

Bucket Hashing: Insertion

Hash the key to determine which bucket should contain the record

If the bucket is not full, insert the record in the first available slot

If the bucket is full then store the record in the first available slot in the overflow

bucket

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 25

Bucket Hashing: Searching

Hash the key to determine which bucket should contain the record.

The records in this bucket are then searched.

If the desired key value is not found and the bucket still has free slots, then the

search is complete.

If the bucket is full, then search the overflow bucket until the record is found or all

records in the overflow bucket have been checked.

Expensive process if many records are in the overflow bucket!

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 26

Collision Resolution Policy

The process of finding the proper position in a hash table that contains the desired

record

Used if the hash function did not return the correct position for that record due to a

collision with another record

Mainly used in closed hashing systems

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 27

Closed Hashing with No Bucket

Implements a collision resolution policy

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 28

Closed Hashing with No Bucket

Hash function: simple mod (%)

Slot = key.hashcode() % array_size

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 29

Collision Resolution

Goal: find a free slot in the hash table when the home position for the record is already

occupied

Uses a probe function

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 30

Collision Resolution

Probe function: function used by a collision resolution method to calculate where to

look next in the hash table

Probe sequence: the series of slots visited by the probe_ _function during collision

resolution.

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 31

https://opendsa-server.cs.vt.edu/lti/launch?custom_book_path=upenn%2Fcit594%2Fspring-2020%2FMW_300PM&custom_inst_book_id=704&custom_inst_chapter_module_id=69144&custom_module_file_name=Glossary&custom_module_title=12.01%20Glossary#term-probe-function

Collision Resolution

Find home slot

int pos = home = h(K); where h is the hash function and K is the key

Probe sequence (iterative process)

pos = (home + p(k, i)) % M;

Initialize i at 1

Increment i until the slot at pos is empty

The probe function returns an offset from the original home position

Probe function

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 32

Collision Resolution Policies

Linear probing

Linear probing by steps

Pseudo-random probing

Quadratic probing

Double hashing

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 33

Linear Probing

Works by moving sequentially through the hash table from the home slot.

Probe function:

 p(k, i) = i
If home slot is home , the probe sequence will be home + 1, home + 2, home +
3, … home + (M - 1)

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 34

Primary Clustering

The tendency in certain collision resolution methods to create clustering in

sections of the hash table

Happens when a group of keys follow the same probe sequence during collision

resolution

primary clustering lead to empty slots in the table to not have an equal probability

of receiving the next record inserted

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 35

Primary Clustering

Linear probing leads to primary clustering

Linear probing is one of the worst collision resolution methods

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 36

Linear Probing by Steps

Goal: avoid primary clustering / improve linear probing

Idea: skip slots by some constant c_ _other than 1

Probe function:

 p(k, i) = ci
c must be relatively prime to M to generate a linear probing sequence that visits all

slots in the table

HASHING I

CIT 5940 Spring 2024 @ University of Pennsylvania 37

	Open & Bucket Hashing
	Introduction
	Hashing for Storage: The Model
	Introduction
	Hashing, Hash Systems, and Hash Tables
	Defining a Hash System
	Collisions
	Hashing & Collisions: An Example
	Hashing & Collisions: An Example
	Hashing & Collisions: An Example
	Hashing & Collisions: An Example
	Collision Resolution Policies
	Load Factor
	Open Hashing
	Open Hashing
	Example
	Open Hashing
	Open Hashing
	Java HashMap
	HashMap
	Closed Hashing
	Closed Hashing
	Closed Hashing with Buckets
	Bucket Hashing
	Bucket Hashing: Insertion
	Bucket Hashing: Searching
	Collision Resolution Policy
	Closed Hashing with No Bucket
	Closed Hashing with No Bucket
	Collision Resolution
	Collision Resolution
	Collision Resolution
	Collision Resolution Policies
	Linear Probing
	Primary Clustering
	Primary Clustering
	Linear Probing by Steps

