
Static Types vs. Dynamic Classes

"Static" types vs. "Dynamic" classes
• The static type of an expression is a type that describes what

we know about the expression at compile-time (without
thinking about the execution of the program)
Displaceable x;

• The dynamic class of an object is the class that was used to
create it (at run time)
x = new Point(2,3)

• In Java, we also have dynamic classes because of objects
– The dynamic class will always be a subtype of its static type
– The dynamic class determines what methods are run

2

Dynamic Dispatch

When do constructors execute?
How are fields accessed?

What code runs in a method call?
What is ‘this’?

How do method calls work?

• What code gets run in a method invocation?
o.move(3,4);

• When that code is running, how does it access the fields of
the object that invoked it?

x = x + dx;

• When does the code in a constructor get executed?

• What if the method was inherited from a superclass?

ASM refinement: The Class Table
Workspace Stack Heap

…

Class Table

ASM refinement: The Class Table

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

Class Table

Counter
extends

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

The class table contains:
• the code for each method,
• references to each class’s parent, and
• the class’s static members.

this
• Inside a non-static method, the variable this is a reference

to the object on which the method was invoked.

• References to local fields and methods have an implicit
“this.” in front of them.

class C {
private int f;

public void copyF(C other) {
this.f = other.f;

}
}

this C
f 0

Stack Heap

…
…

…

An Example

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

// … somewhere in main:
Counter d = new Counter(2);
d.incBy(2);
int x = d.get();
System.out.println(d);

…with Explicit this

public class Counter extends Object {
private int x;
public Counter () { this.x = 0; }
public void incBy(int d) { this.x = this.x + d; }
public int get() { return this.x; }

}

// … somewhere in main:
Counter d = new Counter(2);
d.incBy(2);
int x = d.get();
System.out.println(d.toString());

Constructing an Object
Workspace Stack Heap

Counter d = new Counter(2);
d.incBy(2);
int x = d.get();
System.out.println(d);

Class Table

Counter
extends

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Allocating Space on the Heap
Workspace Stack Heap

this.x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Invoking a constructor:
• allocates space for a new object

in the heap
• includes slots for all fields of all

ancestors in the class tree
(here: x)
• creates a pointer to the class –

this is the object’s dynamic type
• runs the constructor body after

pushing parameters and this
onto the stack

Counter
x 0

Counter d = _;
d.incBy(2);
int x = d.get();
System.out.println(d);

this

Note: fields start with a
“sensible” default

- 0 for numeric values
- null for references

Assigning to a Field
Workspace Stack Heap

this.x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

Counter d = _;
d.incBy(2);
int x = d.get();
System.out.println(d);

this

Assignment into the this.x field
goes in two steps:

- look up the value of this in the
stack

- write to the “x” slot of that
object.

Assigning to a Field
Workspace Stack Heap

.x = 0;

Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

Counter d = _;
d.incBy(2);
int x = d.get();
System.out.println(d);

this

Assignment into the this.x field
goes in two steps:

- look up the value of this in the
stack

- write to the “x” slot of that
object.

Done with the call
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

Counter d = _;
d.incBy(2);
int x = d.get();
System.out.println(d);

this

;

Done with the call to the
Counter constructor, so pop the
stack and return to the saved
workspace, returning the newly
allocated object (now in the this
pointer).

Returning the Newly Constructed Object
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

Continue executing the program.

Counter d = ;
d.incBy(2);
int x = d.get();
System.out.println(d);

Allocating a local variable
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

Allocate a stack slot for the local
variable d. Note that it’s mutable…
(bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable in Java,
we sometimes omit the bold boxes
and just assume the contents can
be modified.

d.incBy(2);
int x = d.get();
System.out.println(d);

d

Search through the
methods of the Counter,
class trying to find one
called incBy.

d

Dynamic Dispatch: Finding the Code
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

Invoke the incBy method on the
object. The code is found by
“pointer chasing” through the class
hierarchy.

This is an example of dynamic
dispatch: Which code is run
depends on the dynamic class of
the object. (In this case,
Counter.)

.incBy(2);
int x = d.get();
System.out.println(d)
;

d

Dynamic Dispatch: Finding the Code
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments
(none in this case).

this.x = this.x + d;
_;
int x = d.get();
System.out.println(d);

this

d 2

d

Reading a Field’s Contents
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

this.x = this.x + d;
_;
int x = d.get();
System.out.println(d);

this

d 2

d

Running the body of incBy
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 0

this.x = this.x + d;

_;
int x = d.get();
System.out.println(d);

this

d 2

this.x = 2;

2

d

After a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 2

int x = d.get();
System.out.println(d);

Now use dynamic dispatch to invoke the
get method for d. This involves
searching up the class hierarchy again…

d

After yet a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 2

System.out.println(d);

x 2

d

After yet a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 2

System.out.println(d);

x 2

Now use dynamic dispatch to invoke the
toString method for d. This involves
searching up the class hierarchy again… Search through the

methods of the Counter
class looking for one
called toString.
If the search fails,
recursively search the
parent classes.

d

After yet a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 2

System.out.println(d);

x 2

Now use dynamic dispatch to invoke the
toString method for d. This involves
searching up the class hierarchy again… Search through the

methods of the Counter
class looking for one
called toString.
If the search fails,
recursively search the
parent classes.

Counter@...

d

After yet a few more steps…
Workspace Stack Heap Class Table

Counter
extends Object

Counter() { x = 0; }

void incBy(int d){…}

int get() {return x;}

Object
String toString(){…

boolean equals…

…

Counter
x 2

System.out.println(d);

x 2

Counter@...

Done! (Phew!)

Summary: this and dynamic dispatch
• When object’s method is invoked, as in o.m(), the code that runs is

determined by o’s dynamic class.
– The dynamic class, represented as a pointer into the class table, is included in

the object structure in the heap
– If the method is inherited from a superclass, determining the code for m might

require searching up the class hierarchy via pointers in the class table
– This process of dynamic dispatch is the heart of OOP!

• Once the code for m has been determined, a binding for this is pushed
onto the stack.
– The this pointer is used to resolve field accesses and method invocations

inside the code.

