Binary Trees
CIT 5940

Binary Tree

From: sciblogs.co.nz

http://sciblogs.co.nz/code-for-life/tag/humour

Introduction

e Benefits
o Efficient management of large collections

o Easyimplementation

e Applications
o Priority queues
o Expression trees

o Data compression

Definitions

e Abinarytreeis:
o Afinite set of nodes

o Aroot node with two disjoint binary trees called the left and right subtrees
(or children)

e Each node contains:
o Avalue (the data we are storing)
o Areference to a left child (may be null), and

o Areference to a right child (may be null)

Definitions

e Abinary tree may be empty (contain no nodes)
e Internal node: any node that has at least one non-empty child

e Leaf node: any node that has two empty children

More Definitions

e The node P that directly links to a node A is the parent of A. Ais the
child of P

e Asequence of nodes Vi, VoseensV, forms a path of length n—-1 if there
exist edges from v. to v, for 1<i<n

e Foragiven node A, any node on a path from A up to the root is an
ancestor of A

More Definitions

e The depth of anode Min atreeis the length of the path from the
root of the treeto M

e asibling of node Ais any other node with the same parent as A

Size, Height, Depth and Level

® The ssize of a binary tree is the number of nodes in it
O This tree has asize of 77

/ \ ® Thedepth of a nodeis the length of his path to the
root

/ \ \ O aisatdepth zero, e is at depth 777

® The height of a tree is the depth of the deepest node

/ / \ / \ O Thistree has a height of 77?2

® All nodes of depth d are at level d in the tree

/ .

1 Theroot is at level 0

Size, Height, Depth and Level

® The ssize of a binary tree is the number of nodes in it
O Thistree has asize of 12

a
/ \ ® The depth of a node is the length of his path to the
b c root
/ \ \ O aisatdepth zero, e is at depth 2
d o f ® The height of a tree is the depth of the deepest node
/ | |\ O Thistree has a height of 4
g h i j k ® Allnodes of depth d are at level d in the tree

1 | ® Therootisatlevel0

Full BT

e Abinary treeis full:
o ifevery node is either a leaf node or else

o itisaninternal node with two non-empty children

Full BT Theorem

e The number of leaves in a non-empty full binary tree is one more than the
number of internal nodes

Proof Sketch of Full BT Theorem

e Base case: Let’s inspect the only non-empty full trees with 0 or 1 internal
nodes...

n=0 n=1

Proof Sketch of Full BT Theorem

e Base case: Let’s inspect the only non-empty full trees with 0 or 1 internal
nodes...

Proof Sketch of Full BT Theorem

e Base case: Let’s inspect the only non-empty full trees with 0 or 1 internal
nodes...

n=0 Q n=1

one leaf! two leaves!

Proof Sketch of Full BT Theorem

e Induction Hypothesis: Assume
that all full BTs withn-1
internal nodes have n leaves.

Proof Sketch of Full BT Theorem

e Induction Step: Show that a full tree on n internal nodes has n + 1 leaf
nodes
e From a maximal depth internal node, remove its children.

Proof Sketch of Full BT Theorem

e Induction Step: Show that a full tree on n internal nodes has n + 1 leaf
nodes
e From a maximal depth internal node, remove its children.

e Now:
o Treeis full, still
o n-1linternal nodes

Proof Sketch of Full BT Theorem

e Induction Step: Show that a full tree on n internal nodes has n + 1 leaf
nodes

e From a maximal depth internal node, remove its children.

e Now: we have a full tree on n -1 internal nodes, so we know there are n
leaves.

Proof Sketch of Full BT Theorem

e Induction Step: Show that a full tree on n internal nodes has n + 1 leaf
nodes

e From a maximal depth internal node, remove its children.

e Now: we have a full tree on n -1 internal nodes, so we know there are n
leaves.

e Replace the leaf nodes: one leaf is lost but two are gained!
o Thetreeis still full
o Thetree now has ninternal nodes
o Thetreehasn-1+2-n+1leaf nodes! QED

Complete BT

e Complete binary tree is:

o A BT where the nodes are filled row (level) by row, with the bottom row filled
in left to right

e Complete binary trees have a restricted shape:

o Thereis only one tree of n nodes for any value of n

Full vs Complete BT

(@)
(b)

/\
A
A

Is a Full BT
Is a Complete BT

The heap data structure is an example of a
complete BT

Heaps are used in priority queues
implementations

Huffman coding tree is an example of full BT

Huffman coding tree is used to implement file
compression algorithms

Balanced BT

e Atree where the subtrees meet some criteria for being balanced

e Balanced criteria:
o Thetreeis height-balanced

o The tree has a roughly equal number of nodes in each subtree

e Height balanced: a BT in which the depths of each subtree in the tree are
roughly the same

o AVL tree is an example of height-balanced BT
s

Binary Tree Node Implementations

e Same class definition vs Separate class definitions for leaves and internal

nodes?
o Onlyinternal nodes have non-empty children

o Wasteful to store child pointers in leaf nodes

m Full BT Theorem » 50% nodes are leaves! (Similar holds for complete trees, proof
withheld)

e Conclusion: Separate implementations for internal and leaf nodes to
reduce overhead. (Polymorphism)

Binary Tree Traversals

e Preorder traversal: a traversal that first visits the root, then
recursively visits the left child, then recursively visits the right child

e Postorder traversal: a traversal that first recursively visits the left
child, then recursively visits the right child, and then visits the root.

e Inorder traversal: a traversal that first recursively visits the left child,
then visits the root, and then recursively visits the right child.

Expression Tree

N
’ ® Atree structure used to represent a mathematical
*
expression
* + ® |nternal nodes of the expression tree are operators in the

/ expression, with the subtrees being the sub-expressions
* that are its operand
@ @ ® All leaf nodes are operands

Activity

e With your neighbor, build (draw) the expression tree from the following
prefix (preorder) traversal sequence:

*--abc+d*e%gh

e With your neighbor, build (draw) the expression tree from the following
postfix (postorder) traversal sequence:

ab%cdef-/+*

Coding Example

1. Tree Traversal

2. Expression Tree evaluation using a Stack and a Queue
O Place nodes in a Queue using postorder traversal

O Dequeue nodes:
| If node is a leaf, push onto the Stack

[| Else: (node is operator)

® pop next two nodes
® Compute operation and store the result in a new leaf node
® Push the new leaf node onto the stack

BT Space Requirements

® Overhead: the amount of space necessary to maintain the data structure

1. Every node has two pointers to its children
O P:space required by a pointer
O D:spacerequired by a data value

2P
(2P+D)

O Overhead=

2. Every node has three pointers (to its children and data record)

3P
(3P+D)

O Overhead=

BT Space Requirements
3» Full BT:
O Onlyinternal nodes have child pointers

O Yanodes areinternal, 2 nodes are leaf

O Overhead=

(P+D)

