
Binary Trees
CIT 5940

Binary Tree

From: sciblogs.co.nz

http://sciblogs.co.nz/code-for-life/tag/humour

Introduction
● Benefits

○ Efficient management of large collections

○ Easy implementation

● Applications

○ Priority queues

○ Expression trees

○ Data compression

Definitions

● A binary tree is:

○ A finite set of nodes

○ A root node with two disjoint binary trees called the left and right subtrees
(or children)

● Each node contains:

○ A value (the data we are storing)

○ A reference to a left child (may be null), and

○ A reference to a right child (may be null)

Definitions

● A binary tree may be empty (contain no nodes)

● Internal node: any node that has at least one non-empty child

● Leaf node: any node that has two empty children

More Definitions
● The node P that directly links to a node A is the parent of A. A is the

child of P

● A sequence of nodes v1,v2,...,vn forms a path of length n−1 if there
exist edges from vi to vi+1 for 1≤i<n

● For a given node A, any node on a path from A up to the root is an
ancestor of A

More Definitions
● The depth of a node M in a tree is the length of the path from the

root of the tree to M

● a sibling of node A is any other node with the same parent as A

Size, Height, Depth and Level
● The size of a binary tree is the number of nodes in it

○ This tree has a size of ??

● The depth of a node is the length of his path to the
root
○ a is at depth zero, e is at depth ???

● The height of a tree is the depth of the deepest node
○ This tree has a height of ???

● All nodes of depth d are at level d in the tree

● The root is at level 0

a

b c

d e f

g h i j k

l

Size, Height, Depth and Level
● The size of a binary tree is the number of nodes in it

○ This tree has a size of 12

● The depth of a node is the length of his path to the
root
○ a is at depth zero, e is at depth 2

● The height of a tree is the depth of the deepest node
○ This tree has a height of 4

● All nodes of depth d are at level d in the tree

● The root is at level 0

a

b c

d e f

g h i j k

l

Full BT

● A binary tree is full:

○ if every node is either a leaf node or else

○ it is an internal node with two non-empty children

Full BT Theorem

● The number of leaves in a non-empty full binary tree is one more than the
number of internal nodes

●

Proof Sketch of Full BT Theorem

● Base case: Letʼs inspect the only non-empty full trees with 0 or 1 internal
nodes…

n = 0 n = 1

Proof Sketch of Full BT Theorem

● Base case: Letʼs inspect the only non-empty full trees with 0 or 1 internal
nodes…

n = 0 n = 1

Proof Sketch of Full BT Theorem

● Base case: Letʼs inspect the only non-empty full trees with 0 or 1 internal
nodes…

n = 0 n = 1

one leaf! two leaves!

Proof Sketch of Full BT Theorem

● Induction Hypothesis: Assume
that all full BTs with n - 1
internal nodes have n leaves.

Proof Sketch of Full BT Theorem

● Induction Step: Show that a full tree on n internal nodes has n + 1 leaf
nodes

● From a maximal depth internal node, remove its children.

Proof Sketch of Full BT Theorem

● Induction Step: Show that a full tree on n internal nodes has n + 1 leaf
nodes

● From a maximal depth internal node, remove its children.
● Now:

○ Tree is full, still
○ n - 1 internal nodes

Proof Sketch of Full BT Theorem

● Induction Step: Show that a full tree on n internal nodes has n + 1 leaf
nodes

● From a maximal depth internal node, remove its children.
● Now: we have a full tree on n - 1 internal nodes, so we know there are n

leaves.

Proof Sketch of Full BT Theorem

● Induction Step: Show that a full tree on n internal nodes has n + 1 leaf
nodes

● From a maximal depth internal node, remove its children.
● Now: we have a full tree on n - 1 internal nodes, so we know there are n

leaves.
● Replace the leaf nodes: one leaf is lost but two are gained!

○ The tree is still full
○ The tree now has n internal nodes
○ The tree has n - 1 + 2 → n + 1 leaf nodes! QED

Complete BT

● Complete binary tree is:

○ A BT where the nodes are filled row (level) by row, with the bottom row filled
in left to right

● Complete binary trees have a restricted shape:

○ There is only one tree of n nodes for any value of n

Full vs Complete BT

● The heap data structure is an example of a
complete BT

● Heaps are used in priority queues
implementations

● Huffman coding tree is an example of full BT

● Huffman coding tree is used to implement file
compression algorithms

(a) Is a Full BT
(b) Is a Complete BT

Balanced BT

● A tree where the subtrees meet some criteria for being balanced

● Balanced criteria:

○ The tree is height-balanced

○ The tree has a roughly equal number of nodes in each subtree

● Height balanced: a BT in which the depths of each subtree in the tree are
roughly the same

○ AVL tree is an example of height-balanced BT

Binary Tree Node Implementations

● Same class definition vs Separate class definitions for leaves and internal
nodes?
○ Only internal nodes have non-empty children

○ Wasteful to store child pointers in leaf nodes

■ Full BT Theorem → 50% nodes are leaves! (Similar holds for complete trees, proof
withheld)

● Conclusion: Separate implementations for internal and leaf nodes to
reduce overhead. (Polymorphism)

Binary Tree Traversals

● Preorder traversal: a traversal that first visits the root, then
recursively visits the left child, then recursively visits the right child

● Postorder traversal: a traversal that first recursively visits the left
child, then recursively visits the right child, and then visits the root.

● Inorder traversal: a traversal that first recursively visits the left child,
then visits the root, and then recursively visits the right child.

Expression Tree

● A tree structure used to represent a mathematical
expression

● Internal nodes of the expression tree are operators in the
expression, with the subtrees being the sub-expressions
that are its operand

● All leaf nodes are operands

Activity

● With your neighbor, build (draw) the expression tree from the following
prefix (preorder) traversal sequence:

*- - abc+d*e%gh

● With your neighbor, build (draw) the expression tree from the following
postfix (postorder) traversal sequence:

ab%cdef-/+*

Coding Example
1. Tree Traversal

2. Expression Tree evaluation using a Stack and a Queue

○ Place nodes in a Queue using postorder traversal

○ Dequeue nodes:

■ If node is a leaf, push onto the Stack

■ Else: (node is operator)

● pop next two nodes

● Compute operation and store the result in a new leaf node

● Push the new leaf node onto the stack

○ Stop when the queue is empty

○ Return the value of the node in the stack

BT Space Requirements

BT Space Requirements
●

