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Introduction
● Benefits

○ Efficient management of large collections

○ Easy implementation

● Applications

○ Priority queues

○ Expression trees

○ Data compression 



Definitions

● A binary tree is:

○ A finite set of nodes

○ A root node with two disjoint binary trees called the left and right subtrees 
(or children)

● Each node contains:

○ A value (the data we are storing)

○ A reference to a left child (may be null), and

○ A reference to a right child (may be null)



Definitions

● A binary tree may be empty (contain no nodes)

● Internal node: any node that has at least one non-empty child

● Leaf node: any node that has two empty children



More Definitions
● The node P that directly links to a node A is the parent of A.  A is the 

child of P

● A sequence of nodes v1,v2,...,vn forms a path of length n−1 if there 
exist edges from vi to vi+1 for 1≤i<n

● For a given node A, any node on a path from A up to the root is an 
ancestor of A



More Definitions
● The depth of a node M in a tree is the length of the path from the 

root of the tree to M

● a sibling of node A is any other node with the same parent as A



Size, Height, Depth and Level
● The size of a binary tree is the number of nodes in it

○ This tree has a size  of ??

● The depth of a node is the length of his path to the 
root
○ a is at depth zero, e is at depth ???

● The height of a tree is the depth of the deepest node 
○ This tree has a height of  ???

● All nodes of depth d are at level d in the tree 

● The root is at level 0
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Size, Height, Depth and Level
● The size of a binary tree is the number of nodes in it

○ This tree has a size  of 12

● The depth of a node is the length of his path to the 
root
○ a is at depth zero, e is at depth 2

● The height of a tree is the depth of the deepest node 
○ This tree has a height of  4

● All nodes of depth d are at level d in the tree 

● The root is at level 0

a

b c

d e f

g h i j k

l



Full BT

● A binary tree is full:

○  if every node is either a leaf node or else 

○ it is an internal node with two non-empty children



Full BT Theorem

● The number of leaves in a non-empty full binary tree is one more than the 
number of internal nodes

●



Proof Sketch of Full BT Theorem

● Base case: Letʼs inspect the only non-empty full trees with 0 or 1 internal 
nodes…

n = 0 n = 1



Proof Sketch of Full BT Theorem

● Base case: Letʼs inspect the only non-empty full trees with 0 or 1 internal 
nodes…

n = 0 n = 1



Proof Sketch of Full BT Theorem

● Base case: Letʼs inspect the only non-empty full trees with 0 or 1 internal 
nodes…

n = 0 n = 1

one leaf! two leaves!



Proof Sketch of Full BT Theorem

● Induction Hypothesis: Assume 
that all full BTs with n - 1 
internal nodes have n leaves.



Proof Sketch of Full BT Theorem

● Induction Step: Show that a full tree on n internal nodes has n + 1 leaf 
nodes

● From a maximal depth internal node, remove its children.



Proof Sketch of Full BT Theorem

● Induction Step: Show that a full tree on n internal nodes has n + 1 leaf 
nodes

● From a maximal depth internal node, remove its children.
● Now: 

○ Tree is full, still
○ n - 1 internal nodes



Proof Sketch of Full BT Theorem

● Induction Step: Show that a full tree on n internal nodes has n + 1 leaf 
nodes

● From a maximal depth internal node, remove its children.
● Now: we have a full tree on n - 1 internal nodes, so we know there are n 

leaves.



Proof Sketch of Full BT Theorem

● Induction Step: Show that a full tree on n internal nodes has n + 1 leaf 
nodes

● From a maximal depth internal node, remove its children.
● Now: we have a full tree on n - 1 internal nodes, so we know there are n 

leaves.
● Replace the leaf nodes: one leaf is lost but two are gained!

○ The tree is still full
○ The tree now has n internal nodes
○ The tree has n - 1 + 2 → n + 1 leaf nodes! QED



Complete BT

● Complete binary tree is:

○   A BT where the nodes are filled row (level) by row, with the bottom row filled 
in left to right

● Complete binary trees have a restricted shape:

○  There is only one tree of n nodes for any value of n



Full vs Complete BT

● The heap data structure is an example of a 
complete BT

● Heaps are used in priority queues 
implementations

● Huffman coding tree is an example of full BT

● Huffman coding tree is used to implement file 
compression algorithms

(a) Is a Full BT
(b) Is a Complete BT



Balanced BT

● A tree where the subtrees meet some criteria for being balanced

● Balanced criteria:

○ The tree is height-balanced

○ The tree has a roughly equal number of nodes in each subtree

● Height balanced: a BT in which the depths of each subtree in the tree are 
roughly the same

○ AVL tree is an example of height-balanced BT



Binary Tree Node Implementations

● Same class definition vs Separate class definitions for leaves and internal 
nodes?
○ Only internal nodes have non-empty children

○ Wasteful to store child pointers in leaf nodes

■ Full BT Theorem → 50% nodes are leaves! (Similar holds for complete trees, proof 
withheld)

● Conclusion: Separate implementations for internal and leaf nodes to 
reduce overhead. (Polymorphism)



Binary Tree Traversals

● Preorder traversal: a traversal that first visits the root, then 
recursively visits the left child, then recursively visits the right child

● Postorder traversal: a traversal that first recursively visits the left 
child, then recursively visits the right child, and then visits the root.

● Inorder traversal: a traversal that first recursively visits the left child, 
then visits the root, and then recursively visits the right child.



Expression Tree

● A tree structure used to represent a mathematical 
expression

● Internal nodes of the expression tree are operators in the 
expression, with the subtrees being the sub-expressions 
that are its operand 

● All leaf nodes are operands 



Activity

● With your neighbor, build (draw) the expression tree from the following 
prefix (preorder) traversal sequence:

*- - abc+d*e%gh

● With your neighbor, build (draw) the expression tree from the following 
postfix (postorder) traversal sequence:

ab%cdef-/+*



Coding Example
1. Tree Traversal

2. Expression Tree evaluation using a Stack and a Queue

○ Place nodes in a Queue using postorder traversal

○ Dequeue nodes:

■ If node is a leaf, push onto the Stack

■ Else: (node is operator)

● pop next two nodes

● Compute operation and store the result in a new  leaf node

● Push the new leaf node onto the stack

○ Stop when the queue is empty

○ Return the value of the node in the stack



BT Space Requirements



BT Space Requirements
●  


