AVL Tree

CIT5940

Unbalanced BST

e BST can be easily unbalanced

o E.g.insert keysin order
e Linearruntimeinthe worst case
e BST must be balanced to guarantee logarithmic runtime in the worst
case
e Balanced criteria:

o Thetreeis height-balanced

o The tree has a roughly equal number of nodes in each subtree.

AVL Tree

o Invented by Adelson-Velskii
and Landis

o Self-balancing BST

o Height-balanced BST

AVL Tree Property

[
For every node, the heights of its left and right subtrees differ by at most 1

e Ifthe tree contains n nodes, then it has a depth of at most O(logn)

Implementation

e Each node maintains its height

e Empty BST/Nodes:

o height=-1

e Non-empty nodes:

o height =max(height of left child, height of right child) + 1

Balance Factor

Balance factor = height of left child - height of right child

e Nodes with balance factor{-1, 0, 1} are balanced

e Unbalanced nodes must be “balanced”

Unbalanced Nodes

e Inserting a new node can cause the BST to be unbalanced

e Given S the bottommost unbalanced node, there are four cases:
The new node is in the left child of the left child of S

The new node is in the right child of the left child of S

The new node is in the left child of the right child of S

AN Lo dhd

The new node is in the right child of the right child of S

Right Rotation

e Thenew nodeisin the left child of the left child of S

O

” Right Rotation ‘ \

Left Rotation

e Thenew nodeisintheright child of the right child of S

Left Rotation

Right-Left Rotation

e The new nodeisin the left child of the right child of S

O

Right Rotation

>

Cj =
OO

Left-Right Rotation

e The new nodeisin the right child of the left child of S

‘ Left Rotation @

O L)
)

Runtime Analysis

® Rotations are local operations
e Rotations are constant time(0(1)) operations
e AVLTree

- Search: O(logn)

- Insertion: O (logn)

- Deletion: O(logn)

