
AVL Tree
CIT5940

Unbalanced BST

● BST can be easily unbalanced

○ E.g. insert keys in order
● Linear runtime in the worst case
● BST must be balanced to guarantee logarithmic runtime in the worst

case
● Balanced criteria:

○ The tree is height-balanced

○ The tree has a roughly equal number of nodes in each subtree.

AVL Tree

● Invented by Adelson-Velskii
and Landis

● Self-balancing BST
● Height-balanced BST

AVL Tree Property

●

Implementation

● Each node maintains its height

● Empty BST/Nodes:

○ height = -1

● Non-empty nodes:

○ height = max(height of left child, height of right child) + 1

Balance Factor

Balance factor = height of left child – height of right child

● Nodes with balance factor {-1, 0, 1} are balanced

● Unbalanced nodes must be “balanced”

Unbalanced Nodes

● Inserting a new node can cause the BST to be unbalanced

● Given S the bottommost unbalanced node, there are four cases:

1. The new node is in the left child of the left child of S

2. The new node is in the right child of the left child of S

3. The new node is in the left child of the right child of S

4. The new node is in the right child of the right child of S

Right Rotation

● The new node is in the left child of the left child of S

Left Rotation

● The new node is in the right child of the right child of S

Right-Left Rotation

● The new node is in the left child of the right child of S

Left-Right Rotation

● The new node is in the right child of the left child of S

Runtime Analysis

●

