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Goal

Calculate the shortest path distance between any two pairs of vertices in the graphs.

Constraints:

Cycles?

Negative Edge Weights?

Negative Weight Cycles?
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An Example
Instance

The output for APSP
problems is a

 matrix

Rows are "from",

columns are "to"
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An
Observation...

The matrix diagonal is all

zeroes.
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A Conclusion!

Provided that there are no
negative weight cycles,
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A Corollary.

If  is on a negative weight
cycle,
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 as a Function

 represents the cost of the shortest path starting at vertex  and
ending at vertex 

We can "overload"  with a third argument: 
We label all vertices in  with indices 

The shortest path starting at vertex  and ending at vertex  containing only

intermediate vertices with indices 

Therefore, 
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Calculating 

This is the hard part of the APSP problem: find  for all values
.

Some of these are easy, though
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Base Cases to the Rescue

For which values of  is it trivial to compute
?
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Base Cases to the Rescue

For which values of  is it trivial to compute
?

When .

When  and 

When  and 

CIT 5940

11



Starting Out

A B C D

A 0 2

B 0 -3 7

C 5 0

D -4 0

This is the full set of results of

!
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Inductive Steps: Bringing More Vertices into the Fold

For any , we can infer that 
There are at least as many paths from  to  that include the first  vertices

than those that can be built with just the first 

If there's a shorter path, then we take that one!

If there isn't, then we stick with the previous shortest.
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Inductive Steps: Bringing More Vertices into the Fold

If ...

That means we found a shorter path using vertex ! (Otherwise, we would
have had the path using just )

This new path consists of a path from  and a path from 

Both of these subpaths use only vertices  ( ), and they are the shortest
paths using these vertices.
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Inductive Steps: Bringing More Vertices into the Fold

Therefore, assuming we have  for all  and a fixed , then we know

that
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Floyd-Warshall

(pseudo-java)

floydWarshall(Graph g) {
    distances = new double[|V|][|V|];
    distances.setAllValues(Double.POSITIVE_INFINITY)
    for (Edge e : g.edges) {
        distances[e.from][e.to] = e.weight
    }
    for (Vertex v : g.vertices) {
        distances[v][v] = 0
    }
    for (int k = 1; k <= |V|; k++) {
        for i --> |V| and for j --> |V|:
            if (distances[i][j] > distances[i][k] + distances[k][j]) {
                distances[i][j] = distances[i][k] + distances[k][j]
            }
    }
}
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Running the Algorithm

A B C D

A 0 2

B 0 -3 7

C 5 0

D -4 0
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Running the Algorithm

(let the labeling be
)

A B C D

A 0 2

B 0 -3 7

C 5 7 0

D -4 -2 0
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Running the Algorithm

(let the labeling be
)

A B C D

A 0 2 -1 -9

B 0 -3 7

C 5 7 0 14

D -4 -2 -5 0
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Running the Algorithm

(let the labeling be
)

A B C D

A 0 2 -1 -9

B 2 0 -3 7

C 5 7 0 14

D -4 -2 -5 0

CIT 5940

20



Running the Algorithm

(let the labeling be
)

A B C D

A 0 2 -1 -9

B 2 0 -3 7

C 5 7 0 14

D -4 -2 -5 0
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Done!

CIT 5940

22



Runtime Analysis

floydWarshall(Graph g) {
    distances = new double[|V|][|V|];
    distances.setAllValues(Double.POSITIVE_INFINITY)
    for (Edge e : g.edges) {
        distances[e.from][e.to] = e.weight
    }
    for (Vertex v : g.vertices) {
        distances[v][v] = 0
    }
    for (int k = 1; k <= |V|; k++) {
        for i --> |V| and for j --> |V|:
            if (distances[i][j] > distances[i][k] + distances[k][j]) {
                distances[i][j] = distances[i][k] + distances[k][j]
            }
    }
}
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Runtime Analysis

We have a triply nested for-loop ranging from  each time.

Therefore, our runtime is a cut-and-dry !

Gut check: Dijkstra's runs in  for an unsorted vertex ordering

Good that Floyd-Warshall is no worse than running Dijkstra's  more times!
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Java time!
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Reconstructing the Path

Floyd-Warshall is a dynamic programming algorithm, and these algorithms typical have a
step where we have to read a solution from the resulting table.

A B C D

A 0 2 -1 -9

B 2 0 -3 7

C 5 7 0 14

D -4 -2 -5 0
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Reconstructing the Path

How do we read the shortest path from B to A?

We know the path goes through A.

Of all possible ways to get to A, we should

choose the shortest.
Perhaps the path comes from C?

Alternatively, maybe from D?
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Reconstructing the Path

How do we read the shortest path from B to A?

For an edge to be part of the shortest path,

we need that

If we come from C,

 and

If we come from D, 
and 
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Reconstructing the Path

How do we read the shortest path from B to A?

Apparently, the shortest path goes from D to A.
Now, we need to repeat, calculating the last step

of the path from B to D.

Eventually, we get that the shortest path is

.
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Reconstructing the Path

reconstructPath(graph, startVertex, endVertex, distances) {
   path = new, empty path

   currentV = endVertex
   while (currentV != startVertex) {
      incomingEdges = graph.getEdgesTo(currentV)
      for (Edge e : incomingEdges) {
         expected = distances[startVertex][currentV] - e.weight
         actual = distances[startVertex][e.from]
         if (expected == actual) {
            currentV = e.from
            path.append(e)
            break
         }
      }
   }

   return path
}
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Easier: Just Store the Parents

Why bother with that fussy algorithm? Just store a table of parent pointers!

Same space complexity

Update the parents each time a "relaxation" is performed

Lookup is straightforward
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Easier: Just Store the Parents

floydWarshall(Graph g) {
    distances = new double[|V|][|V|];
    parents = new Vertex[|V|][|V|];
    distances.setAllValues(Double.POSITIVE_INFINITY)
    for (Edge e : g.edges) {
        distances[e.from][e.to] = e.weight
        parents[e.from][e.to] = e.from
    }
    for (Vertex v : g.vertices) {
        distances[v][v] = 0
        parents[v][v] = v;
    }
    for (int k = 1; k <= |V|; k++) {
        for i --> |V| and for j --> |V|:
            if (distances[i][j] > distances[i][k] + distances[k][j]) {
                distances[i][j] = distances[i][k] + distances[k][j]
                parents[i][j] = parents[k][j]
            }
    }
}
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More Dynamic Programming & Heuristics
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Knapsack Problem

Knapsack:
Given a set of items with weights (kgs) and values ($$), choose the correct

number of each item in the set to maximize total value without exceeding a
maximum weight

0-1 Knapsack:

Same as above, but each item can be chosen 0 or 1 times.

CIT 5940

34



Knapsack Example

Can you find the optimal solution to this Knapsack problem?
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Knapsack Example

Optimal: 2 of item 1 and 1 of item 4 for a total of $145.
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0-1 Knapsack Formulation

Each of our  items have labels .

The maximum weight of the knapsack is .

The weight of each individual item  is represented by .

The value of each individual item  is represented by .

We want to choose the subset  of  such that the sum of weights is less than  but

the sum of values is maximized.
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Objective Function

We will use an objective function , meaning the maximum value
attainable using only the first  elements with a maximum weight of .

Therefore, the overall problem we want to solve is .
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Base Cases

Can't get any value using no items!

 when 
Can't add the new item if it's too heavy.
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Recursive Cases

If , then we have the choice of whether or not to include item .

When we include an item , we are effectively lowering the maximum available weight
by .

If we don't include an item , then we're using the maximum values using only items
.
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Recursive Cases

If , then we have the choice of whether or not to include item .

In this case,

(either we include the element, or we don't!)
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Dynamic Programming to the Rescue!

Without Dynamic Programming, the recursive  operation will incur an 

runtime.
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Heuristic

A technique that willingly accepts a non-optimal or less accurate
solution in order to improve execution speed.
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Heuristics & Knapsack

Knapsack is very hard (read: slow) to solve!

Already NP-Complete to just identify if a certain value can be acheived for a
given Knapsack instance

Even harder still to calculate an optimal solution
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Heuristics & Knapsack

If we're willing to trade optimality for speed, we can use a heuristic
The solution will not necessarily be the best, but at least we'll come up with a

solution!
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0-1 Knapsack Heuristic

Sort the list of available items in descending order of value

Traverse through the list in descending order and add each item if there is space
remaining.
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0-1 Knapsack Heuristic

public static Knapsack knapsack01(Item[] availableItems, double maxWeight) {
    // Sort the items in descending order based on value
    Arrays.sort(availableItems, new ItemValueComparator());
    
    // Initialize a new knapsack to hold items
    Knapsack knapsack = new Knapsack(maxWeight);

    double remaining = maxWeight;
    for (Item item : availableItems) {
        if (item.weight <= remaining) {
            knapsack.getItems().add(item);
            remaining -= item.weight;
        }
    }
    
    return knapsack;
}
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Soon: Heuristics as Pathways to Optimal Solutions

In A*, we use a heuristic function to help guide a shortest path search

Even though the heuristic is always an optimistic (read: wrong) guess, we can use the
intuition to pick better candidate paths
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