
All-Pairs Shortest Paths

CIT 5940

1

Goal

Calculate the shortest path distance between any two pairs of vertices in the graphs.

Constraints:

Cycles?

Negative Edge Weights?

Negative Weight Cycles?

CIT 5940

2

Goal

Calculate the shortest path distance between any two pairs of vertices in the graphs.

Constraints:

Cycles?

Negative Edge Weights?

Negative Weight Cycles

CIT 5940

3

An Example
Instance

The output for APSP
problems is a

 matrix

Rows are "from",

columns are "to"

CIT 5940

4

An
Observation...

The matrix diagonal is all

zeroes.

CIT 5940

5

A Conclusion!

Provided that there are no
negative weight cycles,

CIT 5940

6

A Corollary.

If is on a negative weight
cycle,

CIT 5940

7

 as a Function

 represents the cost of the shortest path starting at vertex and
ending at vertex

We can "overload" with a third argument:
We label all vertices in with indices

The shortest path starting at vertex and ending at vertex containing only

intermediate vertices with indices

Therefore,

CIT 5940

8

Calculating

This is the hard part of the APSP problem: find for all values
.

Some of these are easy, though

CIT 5940

9

Base Cases to the Rescue

For which values of is it trivial to compute
?

CIT 5940

10

Base Cases to the Rescue

For which values of is it trivial to compute
?

When .

When and

When and

CIT 5940

11

Starting Out

A B C D

A 0 2

B 0 -3 7

C 5 0

D -4 0

This is the full set of results of

!

CIT 5940

12

Inductive Steps: Bringing More Vertices into the Fold

For any , we can infer that
There are at least as many paths from to that include the first vertices

than those that can be built with just the first

If there's a shorter path, then we take that one!

If there isn't, then we stick with the previous shortest.

CIT 5940

13

Inductive Steps: Bringing More Vertices into the Fold

If ...

That means we found a shorter path using vertex ! (Otherwise, we would
have had the path using just)

This new path consists of a path from and a path from

Both of these subpaths use only vertices (), and they are the shortest
paths using these vertices.

CIT 5940

14

Inductive Steps: Bringing More Vertices into the Fold

Therefore, assuming we have for all and a fixed , then we know

that

CIT 5940

15

Floyd-Warshall

(pseudo-java)

floydWarshall(Graph g) {
 distances = new double[|V|][|V|];
 distances.setAllValues(Double.POSITIVE_INFINITY)
 for (Edge e : g.edges) {
 distances[e.from][e.to] = e.weight
 }
 for (Vertex v : g.vertices) {
 distances[v][v] = 0
 }
 for (int k = 1; k <= |V|; k++) {
 for i --> |V| and for j --> |V|:
 if (distances[i][j] > distances[i][k] + distances[k][j]) {
 distances[i][j] = distances[i][k] + distances[k][j]
 }
 }
}

CIT 5940

16

Running the Algorithm

A B C D

A 0 2

B 0 -3 7

C 5 0

D -4 0

CIT 5940

17

Running the Algorithm

(let the labeling be
)

A B C D

A 0 2

B 0 -3 7

C 5 7 0

D -4 -2 0

CIT 5940

18

Running the Algorithm

(let the labeling be
)

A B C D

A 0 2 -1 -9

B 0 -3 7

C 5 7 0 14

D -4 -2 -5 0

CIT 5940

19

Running the Algorithm

(let the labeling be
)

A B C D

A 0 2 -1 -9

B 2 0 -3 7

C 5 7 0 14

D -4 -2 -5 0

CIT 5940

20

Running the Algorithm

(let the labeling be
)

A B C D

A 0 2 -1 -9

B 2 0 -3 7

C 5 7 0 14

D -4 -2 -5 0

CIT 5940

21

Done!

CIT 5940

22

Runtime Analysis

floydWarshall(Graph g) {
 distances = new double[|V|][|V|];
 distances.setAllValues(Double.POSITIVE_INFINITY)
 for (Edge e : g.edges) {
 distances[e.from][e.to] = e.weight
 }
 for (Vertex v : g.vertices) {
 distances[v][v] = 0
 }
 for (int k = 1; k <= |V|; k++) {
 for i --> |V| and for j --> |V|:
 if (distances[i][j] > distances[i][k] + distances[k][j]) {
 distances[i][j] = distances[i][k] + distances[k][j]
 }
 }
}

CIT 5940

23

Runtime Analysis

We have a triply nested for-loop ranging from each time.

Therefore, our runtime is a cut-and-dry !

Gut check: Dijkstra's runs in for an unsorted vertex ordering

Good that Floyd-Warshall is no worse than running Dijkstra's more times!

CIT 5940

24

Java time!

CIT 5940

25

Reconstructing the Path

Floyd-Warshall is a dynamic programming algorithm, and these algorithms typical have a
step where we have to read a solution from the resulting table.

A B C D

A 0 2 -1 -9

B 2 0 -3 7

C 5 7 0 14

D -4 -2 -5 0

CIT 5940

26

Reconstructing the Path

How do we read the shortest path from B to A?

We know the path goes through A.

Of all possible ways to get to A, we should

choose the shortest.
Perhaps the path comes from C?

Alternatively, maybe from D?

CIT 5940

27

Reconstructing the Path

How do we read the shortest path from B to A?

For an edge to be part of the shortest path,

we need that

If we come from C,

 and

If we come from D,
and

CIT 5940

28

Reconstructing the Path

How do we read the shortest path from B to A?

Apparently, the shortest path goes from D to A.
Now, we need to repeat, calculating the last step

of the path from B to D.

Eventually, we get that the shortest path is

.

CIT 5940

29

Reconstructing the Path

reconstructPath(graph, startVertex, endVertex, distances) {
 path = new, empty path

 currentV = endVertex
 while (currentV != startVertex) {
 incomingEdges = graph.getEdgesTo(currentV)
 for (Edge e : incomingEdges) {
 expected = distances[startVertex][currentV] - e.weight
 actual = distances[startVertex][e.from]
 if (expected == actual) {
 currentV = e.from
 path.append(e)
 break
 }
 }
 }

 return path
}

CIT 5940

30

Easier: Just Store the Parents

Why bother with that fussy algorithm? Just store a table of parent pointers!

Same space complexity

Update the parents each time a "relaxation" is performed

Lookup is straightforward

CIT 5940

31

Easier: Just Store the Parents

floydWarshall(Graph g) {
 distances = new double[|V|][|V|];
 parents = new Vertex[|V|][|V|];
 distances.setAllValues(Double.POSITIVE_INFINITY)
 for (Edge e : g.edges) {
 distances[e.from][e.to] = e.weight
 parents[e.from][e.to] = e.from
 }
 for (Vertex v : g.vertices) {
 distances[v][v] = 0
 parents[v][v] = v;
 }
 for (int k = 1; k <= |V|; k++) {
 for i --> |V| and for j --> |V|:
 if (distances[i][j] > distances[i][k] + distances[k][j]) {
 distances[i][j] = distances[i][k] + distances[k][j]
 parents[i][j] = parents[k][j]
 }
 }
}

CIT 5940

32

More Dynamic Programming & Heuristics

CIT 5940

33

Knapsack Problem

Knapsack:
Given a set of items with weights (kgs) and values ($$), choose the correct

number of each item in the set to maximize total value without exceeding a
maximum weight

0-1 Knapsack:

Same as above, but each item can be chosen 0 or 1 times.

CIT 5940

34

Knapsack Example

Can you find the optimal solution to this Knapsack problem?

CIT 5940

35

Knapsack Example

Optimal: 2 of item 1 and 1 of item 4 for a total of $145.

CIT 5940

36

0-1 Knapsack Formulation

Each of our items have labels .

The maximum weight of the knapsack is .

The weight of each individual item is represented by .

The value of each individual item is represented by .

We want to choose the subset of such that the sum of weights is less than but

the sum of values is maximized.

CIT 5940

37

Objective Function

We will use an objective function , meaning the maximum value
attainable using only the first elements with a maximum weight of .

Therefore, the overall problem we want to solve is .

CIT 5940

38

Base Cases

Can't get any value using no items!

 when
Can't add the new item if it's too heavy.

CIT 5940

39

Recursive Cases

If , then we have the choice of whether or not to include item .

When we include an item , we are effectively lowering the maximum available weight
by .

If we don't include an item , then we're using the maximum values using only items
.

CIT 5940

40

Recursive Cases

If , then we have the choice of whether or not to include item .

In this case,

(either we include the element, or we don't!)

CIT 5940

41

Dynamic Programming to the Rescue!

Without Dynamic Programming, the recursive operation will incur an

runtime.

CIT 5940

42

Heuristic

A technique that willingly accepts a non-optimal or less accurate
solution in order to improve execution speed.

CIT 5940

43

Heuristics & Knapsack

Knapsack is very hard (read: slow) to solve!

Already NP-Complete to just identify if a certain value can be acheived for a
given Knapsack instance

Even harder still to calculate an optimal solution

CIT 5940

44

Heuristics & Knapsack

If we're willing to trade optimality for speed, we can use a heuristic
The solution will not necessarily be the best, but at least we'll come up with a

solution!

CIT 5940

45

0-1 Knapsack Heuristic

Sort the list of available items in descending order of value

Traverse through the list in descending order and add each item if there is space
remaining.

CIT 5940

46

0-1 Knapsack Heuristic

public static Knapsack knapsack01(Item[] availableItems, double maxWeight) {
 // Sort the items in descending order based on value
 Arrays.sort(availableItems, new ItemValueComparator());

 // Initialize a new knapsack to hold items
 Knapsack knapsack = new Knapsack(maxWeight);

 double remaining = maxWeight;
 for (Item item : availableItems) {
 if (item.weight <= remaining) {
 knapsack.getItems().add(item);
 remaining -= item.weight;
 }
 }

 return knapsack;
}

CIT 5940

47

Soon: Heuristics as Pathways to Optimal Solutions

In A*, we use a heuristic function to help guide a shortest path search

Even though the heuristic is always an optimistic (read: wrong) guess, we can use the
intuition to pick better candidate paths

CIT 5940

48

	All-Pairs Shortest Paths
	Goal
	Goal
	An Example Instance
	An Observation...
	A Conclusion!
	A Corollary.
	as a Function
	Calculating
	Base Cases to the Rescue
	For which values of is it trivial to compute ?

	Base Cases to the Rescue
	For which values of is it trivial to compute ?

	Starting Out
	Inductive Steps: Bringing More Vertices into the Fold
	Inductive Steps: Bringing More Vertices into the Fold
	Inductive Steps: Bringing More Vertices into the Fold
	Floyd-Warshall
	Running the Algorithm
	Running the Algorithm
	Running the Algorithm
	Running the Algorithm
	Running the Algorithm
	Done!
	Runtime Analysis
	Runtime Analysis
	Java time!
	Reconstructing the Path
	Reconstructing the Path
	Reconstructing the Path
	Reconstructing the Path
	Reconstructing the Path
	Easier: Just Store the Parents
	Easier: Just Store the Parents
	More Dynamic Programming & Heuristics
	Knapsack Problem
	Knapsack Example
	Knapsack Example
	0-1 Knapsack Formulation
	Objective Function
	Base Cases
	Recursive Cases
	Recursive Cases
	Dynamic Programming to the Rescue!
	Heuristic
	A technique that willingly accepts a non-optimal or less accurate solution in order to improve execution speed.

	Heuristics & Knapsack
	Heuristics & Knapsack
	0-1 Knapsack Heuristic
	0-1 Knapsack Heuristic
	Soon: Heuristics as Pathways to Optimal Solutions

