
Algorithm
Analysis

CIT 5940 Spring 2024 @ University of Pennsylvania

Definitions

Problem: a task to be performed

Algorithm: a method or a process followed to solve a problem

Program: an instance, or concrete representation, of an algorithm in some

programming language

Check-in: Come up with an algorithm for the problem of finding the biggest

element in the list.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 1

Motivating Example: Linear Search

If inputs has a length of ,

What situation leads to the smallest possible number of iterations before the

function returns? (What is that number?)

What situation leads to the largest possible number of iterations before the

function returns? (What is that number?)

public static boolean contains(int[] inputs, int target) {
 for (int i = 0; i < inputs.length; i++) {
 if (inputs[i] == target) {
 return true;
 }
 }
 return false;
}

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 2

Motivating Example: Linear Search

If inputs has a length of ,

The target might be the first element of inputs , meaning that we stop when

.

The target might not be in inputs at all, meaning that we stop when .

public static boolean contains(int[] inputs, int target) {
 for (int i = 0; i < inputs.length; i++) {
 if (inputs[i] == target) {
 return true;
 }
 }
 return false;
}

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 3

Sunny Days and Doomsdays

For an algorithm, on a given size of input, we can define its:

Best case as the scenario where the algorithm does the minimum possible

number of operations

Worst case is the scenario where the algorithm does the maximum possible

number of operations.

What were the best and worst cases for Linear Search?

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 4

public static <T extends Comparable<T>> int binarySearch(List<T> inputs, T target) {
int left = 0;
int right = inputs.size() - 1;
while (right >= left) {

int middle = (left + right) / 2;
T middleElem = inputs.get(middle);
if (middleElem.compareTo(target) > 0) {

left = middle + 1;
} else if (middleElem.compareTo(target) < 0) {

right = middle - 1;
} else {

return middle;
}

}
return -1;

}

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 5

Motivating Example: Binary Search

Motivating Example: Binary Search

If inputs is sorted and has a length of ,

What situation leads to the smallest possible number of iterations before the

function returns?

What situation leads to the largest?

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 6

Note
2 5 6 14 16 24 32 63

Try searching for 14

Try searching for 24

Try searching for 25

Motivating Example: Binary Search

If inputs is sorted and has a length of N,

Middle element might be the target, so 1 iteration is the best case.

Element might not be present at all, causing us to throw out half of the elements

each time until none remain.

If we start with 8 elements, we would throw out 4, then 2, then 1, then 1 again,

for a total of 4 iterations.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 7

Note
2 5 6 14 16 24 32 63

Try searching for 14

Try searching for 24

Try searching for 25

Which is “faster?”

How many iterations will it take to determine that the target is not in the array?

Length of the array Linear Search Binary Search

2 2 2

4 4 3

8 8 4

16 16 5

100 100 7

As the size of the array grows, the number of iterations required grows at different rates

for the two algorithms.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 8

Definitions: Growth Rate & Upper/Lower Bounds

Growth rate of an algorithm is a function, , that represents the number of

constant time operations performed by the algorithm on an input of size .

An algorithm with runtime complexity has a lower bound and an upper bound.

Lower bound: A function for all positive values of past a certain

point.*

Upper bound: A function for all positive values of past a certain

point.*

*more formal specification coming soon

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 9

Size of the input

If we say that the in corresponds to the size of the input, what does that

mean?

Basic operations (variable assignment, arithmetic, conditional checking) each take

a small, constant amount of time.

You can assume that all basic operations are equally as fast. BUT, they might

need to be done many times!

The size of the input can be quantified with one (or a few) numbers.

Algorithm for parsing Strings input size is the # of chars in the String

Sorting or searching Lists # of elements in the List

Binary exponentiation length of the integer in bits

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 10

Definitions: Constant Time Operations

Operation Example

Addition, subtraction, multiplication, and division of

fixed size integer or floating point values.

w = 10.4``x = 3.4``y = 2.0``z = (w
- x) / y

Assignment of a reference, pointer, or other fixed size

data value.
x = 1000``y = x``a = true``b = a

Comparison of two fixed size data values.
a = 100``b = 200``if (b > a) { ...
}

Read or write an array element at a particular index.
x = ``arr``[index]``arr``[index +
1] = x + 1

A constant time operation is an operation that, for a given processor, always operates in

the same amount of time, regardless of input values.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 11

Constant Time or Not?

int[] a = {3, 4, 5, 6, 7, 8};
a[a.length – 1] = a[0] + a[a.length – 2];

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 12

Constant Time or Not?

int[] a = {3, 4, 5, 6, 7, 8};
a[a.length – 1] = a[0] + a[a.length – 2];

Yes, array getting/setting and addition are all constant time.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 13

Constant Time or Not?

List<String> listOne = ...;
List<String> listTwo = ...;
setUpLists(listOne, listTwo);
if (listOne.equals(listTwo)) { // is this line "constant time"?

doSomeStuff();
}

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 14

Constant Time or Not?

List<String> listOne = ...;
List<String> listTwo = ...;
setUpLists(listOne, listTwo);
if (listOne.equals(listTwo)) { // is this line "constant time"?

doSomeStuff();
}

No! List equality requires us to compare all elements, of which there are possibly

very many.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 15

Bounds vs. Cases

"Best Case" and "Worst Case" refer to variations of an algorithm’s performance based on

specific input classes to the problem that the algorithm is designed to solve.

“fix the algorithm & input length, find the inputs that will make it run the

fastest/slowest”

"Upper Bound" and "Lower Bound" refer to measures of an algorithm’s performance as

we vary the size of the input.

“for a fixed algorithm, as the inputs grow, how does the cost of the algorithm

grow?”

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 16

Growth Rates Examples

public static int linearSearch(int[] x, int target) {
 for(int i=0; i < x.length; i++) {
 if (x[i] == target)
 return i;
 }
 return -1; // target not found
}

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 17

Note
What will be the growth rate in the best case

Growth Rates Examples

public static int linearSearch(int[] x, int target) {
 for(int i=0; i < x.length; i++) {
 if (x[i] == target)
 return i;
 }
 return -1; // target not found
}

Linear growth rate in the worst case, , constant growth rate in the best case,

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 18

Note
What will be the growth rate in the best case

Growth Rates Examples

public static boolean checkDuplicates(int[] arr) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] == arr[j]) {
 return true;
 }
 }
 }
 return false;
}

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 19

Growth Rates Examples

public static boolean checkDuplicates(int[] arr) {
 for (int i = 0; i < arr.length; i++) {
 for (int j = i + 1; j < arr.length; j++) {
 if (arr[i] == arr[j]) {
 return true;
 }
 }
 }
 return false;
}

, quadratic growth rate in the

worst case.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 20

Growth Rates Examples

public static <T extends Comparable<T>> int binarySearch(List<T> inputs, T target) {
int left = 0;
int right = inputs.size() - 1;
while (right >= left) {

int middle = (left + right) / 2;
T middleElem = inputs.get(middle);
if (middleElem.compareTo(target) > 0) {

left = middle + 1;
} else if (middleElem.compareTo(target) < 0) {

right = middle - 1;
} else {

return middle;
}

}
return -1;

}

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 21

Growth Rates Examples

In binary search, we throw away half of the remaining inputs with each iteration of the

while loop. We are guaranteed to terminate by the time we have thrown out all of the

elements.

...

How many times are we going to spend ? times. So: .

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 22

Upper bound: Big-Oh

For , a non-negatively valued function, if there exist two positive

constants and such that for all .

"Past a certain point, the runtime of the algorithm will always be less than a certain

factor of another function.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 23

BigOh Exercises

Show that if , .

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 24

BigOh Exercises

Show that if , .

Need to choose such that .

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 25

BigOh Exercises

Show that if , .

Need to choose such that .

Try...

Is for all ? Yes!

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 26

BigOh Exercises

Show that if , .

Need to choose such that .

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 27

BigOh Exercises

Show that if , .

Need to choose such that .

Try... . Is ?

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 28

Big-Oh: Simplifying Rules

If is in and is in then is in

public void method1(int n){
 int i=0;
 while (i < n){
 //do something
 i = i + 1;
 }
}

method1 is in and since

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 29

Big-Oh: Simplifying Rules

If is in for any constant , then is in

public void method1(int n){
 int i=0;
 while (i < n){
 //do something
 i = i + 1;
 }
}

method1 is in and, say, , but we’ll always drop the constant.

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 30

If is in and is in , then

public void method2(int n) {
 for (int i = 0; i < n; i++) {
 doSomethingConstantTime();
 }
 for (int i = 0; i < n * n; i++) {
 doSomethingConstantTime();
 }
}

method2 is in since

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 31

Big-Oh: Simplifying Rules

If is in and is in , then is in

public void method3(int n) {
 for (int i = 0; i < n; i++) {
 method2(n);
 }
}

method3 is in since

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 32

Big-Oh: Simplifying Rules

Big-Oh Table

Expression Name

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 33

Collections Runtime Cheat Sheet

LinkedList ArrayList TreeSet/Map HashSet/Map

add
O(1) to the head/tail, O(n) to
the middle

O(1) to the end, O(n)
elsewhere

O(log n) O(1)

get(int i) O(i) O(1) n/a n/a

remove
O(1) from the head/tail, O(n)

from the middle

O(1) to the end, O(n)

elsewhere
O(log n) O(1)

contains O(n) O(n) O(log n) O(1)

size/clear O(1) O(1) O(1) O(1)

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 34

Class Activity

Expression Dominant term(s) Big-Oh

 or

 or

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 35

Class Activity

Expression Dominant term(s) Big-Oh

 or

 or

either

ALGORITHM ANALYSIS

CIT 5940 Spring 2024 @ University of Pennsylvania 36

	Algorithm Analysis
	Definitions
	Motivating Example: Linear Search
	Motivating Example: Linear Search
	Sunny Days and Doomsdays
	Motivating Example: Binary Search

	Motivating Example: Binary Search
	Motivating Example: Binary Search
	Which is “faster?”
	Definitions: Growth Rate & Upper/Lower Bounds
	Size of the input
	Definitions: Constant Time Operations
	Constant Time or Not?
	Constant Time or Not?
	Constant Time or Not?
	Constant Time or Not?
	Bounds vs. Cases
	Growth Rates Examples
	Growth Rates Examples
	Growth Rates Examples
	Growth Rates Examples
	Growth Rates Examples
	Growth Rates Examples
	Upper bound: Big-Oh
	BigOh Exercises
	BigOh Exercises
	BigOh Exercises
	BigOh Exercises
	BigOh Exercises
	Big-Oh: Simplifying Rules
	Big-Oh: Simplifying Rules
	Big-Oh: Simplifying Rules
	Big-Oh: Simplifying Rules

	Big-Oh Table
	Collections Runtime Cheat Sheet
	Class Activity
	Class Activity

