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Topological Sort

● Goal: Find an acceptable order for processing subtasks



Example

● Problem: We want to write a program that automatically builds an 
online textbook from a collection of tutorials. 

● We need to organize the tutorials  so that given two tutorials A and B, if 
a A is a prerequisite for B, then A should be added and listed in the 
online textbook before B

● Our program needs to access and list the tutorials in a specific order
● Topological sort allows us to do just that



Example - OpenDSA
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Topological Sort

● The process of laying out the vertices of a DAG in a linear order such that 
no vertex A in the order is preceded by a vertex that can be reached by a 
(directed) path from A

○ DAG: directed, acyclic graph

● The (directed) edges in the graph define a prerequisite system

● Goal: list the vertices in an order such that no prerequisites are violated



Topological Sort

● Depth-first implementation

1. When a node (n) is visited, do nothing

2. Recursively call topological sort on all the neighbors of n

3. When the recursion pops back to n (after processing all its neighbors) add 
n to the (output) list of nodes 

● This method produces a topological sort in reverse order
● It does not matter where the sort starts, but all vertices must be visited



Topological Sort

● Queue-based implementation
1. Count the number of edges that lead to each vertex
2. All vertices with no prerequisites are placed on the queue
3. Process the queue:

1. When Vertex v is dequeued, it is printed, and all neighbors of v (all vertices 
that have v as a prerequisite) have their counts decremented by one

2. Enqueue any neighbor whose count becomes zero
● If the queue is empty without printing all the vertices, then the graph is 

not a DAG
● This method produces a topological sort in order



Class Activity

● Given the following graph, return its topological sort using the depth-first 
implementation.

● Start at the vertex 4. Always select the vertex with the smallest label at 
each step



Shortest-Paths Problems

● Goal: find the total length of the shortest path between two specified 
vertices



Shortest-Paths Problems

● We can model a road or a computer network as a directed graph

● Edges are labeled with numbers representing the distance (or other cost 
metrics, such as travel time) between two vertices



Single-source Shortest-Paths Problems

● Given a graph with weights or distances on the edges, and a designated 
start vertex s, find the shortest path from s to every other vertex in the 
graph

● If the graph is unweighted (or all edges have the same cost) then BFS
can be used

● If the graph is weighted, we need another solution: Dijkstra's algorithm



Dijkstra's algorithm

● Idea: process the vertices in a fixed order
● We process the vertices in order of distance from the start vertex (S)
● Assume that we have processed in order of distance from S to the first 

i−1 vertices that are closest to S; call this set of vertices N, we are now 
processing the ith closest vertex; call it X:

○ The shortest path from S to X is the minimum overall paths that go from S
to U, then have an edge from U to X, where U is some vertex in N



Dijkstra's algorithm



Dijkstra's algorithm

● Runtime analysis:

○ O(|V2|) if we use a linear DS to find the minimum distance. Appropriate when 
the graph is dense

○ O((|V|+|E|)log|E|) if we use a priority queue to find the minimum distance. 
Appropriate when the graph is sparse


