
Graphs:
Topological Sort, Shortest
paths problems

CIT594

Topological Sort

● Goal: Find an acceptable order for processing subtasks

Example

● Problem: We want to write a program that automatically builds an
online textbook from a collection of tutorials.

● We need to organize the tutorials so that given two tutorials A and B, if
a A is a prerequisite for B, then A should be added and listed in the
online textbook before B

● Our program needs to access and list the tutorials in a specific order
● Topological sort allows us to do just that

Example - OpenDSA

Table of content / list of
tutorials

1

2

3/4 3/4

Topological Sort

● The process of laying out the vertices of a DAG in a linear order such that
no vertex A in the order is preceded by a vertex that can be reached by a
(directed) path from A

○ DAG: directed, acyclic graph

● The (directed) edges in the graph define a prerequisite system

● Goal: list the vertices in an order such that no prerequisites are violated

Topological Sort

● Depth-first implementation

1. When a node (n) is visited, do nothing

2. Recursively call topological sort on all the neighbors of n

3. When the recursion pops back to n (after processing all its neighbors) add
n to the (output) list of nodes

● This method produces a topological sort in reverse order
● It does not matter where the sort starts, but all vertices must be visited

Topological Sort

● Queue-based implementation
1. Count the number of edges that lead to each vertex
2. All vertices with no prerequisites are placed on the queue
3. Process the queue:

1. When Vertex v is dequeued, it is printed, and all neighbors of v (all vertices
that have v as a prerequisite) have their counts decremented by one

2. Enqueue any neighbor whose count becomes zero
● If the queue is empty without printing all the vertices, then the graph is

not a DAG
● This method produces a topological sort in order

Class Activity

● Given the following graph, return its topological sort using the depth-first
implementation.

● Start at the vertex 4. Always select the vertex with the smallest label at
each step

Shortest-Paths Problems

● Goal: find the total length of the shortest path between two specified
vertices

Shortest-Paths Problems

● We can model a road or a computer network as a directed graph

● Edges are labeled with numbers representing the distance (or other cost
metrics, such as travel time) between two vertices

Single-source Shortest-Paths Problems

● Given a graph with weights or distances on the edges, and a designated
start vertex s, find the shortest path from s to every other vertex in the
graph

● If the graph is unweighted (or all edges have the same cost) then BFS
can be used

● If the graph is weighted, we need another solution: Dijkstra's algorithm

Dijkstra's algorithm

● Idea: process the vertices in a fixed order
● We process the vertices in order of distance from the start vertex (S)
● Assume that we have processed in order of distance from S to the first

i−1 vertices that are closest to S; call this set of vertices N, we are now
processing the ith closest vertex; call it X:

○ The shortest path from S to X is the minimum overall paths that go from S
to U, then have an edge from U to X, where U is some vertex in N

Dijkstra's algorithm

Dijkstra's algorithm

● Runtime analysis:

○ O(|V2|) if we use a linear DS to find the minimum distance. Appropriate when
the graph is dense

○ O((|V|+|E|)log|E|) if we use a priority queue to find the minimum distance.
Appropriate when the graph is sparse

