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Topological Sort

e Goal: Find an acceptable order for processing subtasks




Example

e Problem: We want to write a program that automatically builds an
online textbook from a collection of tutorials.

e We need to organize the tutorials so that given two tutorials A and B, if
a Ais a prerequisite for B, then A should be added and listed in the
online textbook before B

e Our program needs to access and list the tutorials in a specific order

e Topological sort allows us to do just that
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Graph Traversals

Many graph applications need to visit the vertices of a graph in some specific order based on the graph's topology. This is known as a
graph term: ‘traversal® and is similar in concept to a ref: tree traversal <BinaryTreeTraversal>". Recall that tree traversals visit every
node exactly once, in some specified order such as preorder, inorder, or postorder. Multiple tree traversals exist because various
applications require the nodes to be visited in a particular order. For example, to print a BST's nodes in ascending order requires an
inorder traversal as opposed to some other traversal. Standard graph traversal orders also exist. Each is appropriate for solving certain
problems. For example, many problems in artificial intelligence programming are modeled using graphs. The problem domain might
consist of a large collection of states, with connections between various pairs of states. Solving this sort of problem requires getting
from a specified start state to a specified goal state by moving between states only through the connections. Typically, the start and
goal states are not directly connected. To solve this problem, the vertices of the graph must be searched in some organized manner.
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Shortest-Paths Problems
Topological Sort

Shortest-Paths Problems
Assume that we need to schedule a series of tasks, such as classes or construction jobs, where we cannot start one task until after its ) o o
prerequisites are completed. We wish to organize the tasks into a linear order that allows us to complete them one at a time without On aroad map, a road connecting two towns is typically labeled with its distance. We can model a road network as a directed graph
S - ) o i o whose edges are labeled with real numbers. These numbers represent the distance (or other cost metric, such as travel time)
violating any prerequisites. We can model the problem using a DAG. The graph is directed because one task is a prerequisite of between two vertices. These labels may be called :term: " weights <weight>", sterm:"costs <cost>", or :term: distances <distance",
depending on the application. Given such a graph, a typical problem is to find the total length of the shortest path between two
specified vertices. This is not a trivial problem, because the shortest path may not be along the edge (if any) connecting two vertices,

_ order to meet the prerequisite rules is called a sterm: "topological sort _but rather may be along a path involving one or more intermediate vert _

another -- the vertices have a directed relationship. It is acyclic because a cycle would indicate a conflicting series of prerequisites
that could not be completed without violating at least one prerequisite. The process of laying out the vertices of a DAG in a linear



Topological Sort

e The process of laying out the vertices of a DAG in a linear order such that
no vertex A in the order is preceded by a vertex that can be reached by a
(directed) path from A

o DAG: directed, acyclic graph

e The (directed) edges in the graph define a prerequisite system

e Goal: list the vertices in an order such that no prerequisites are violated




Topological Sort

e Depth-firstimplementation
1. When anode (n) is visited, do nothing

2. Recursively call topological sort on all the neighbors of n

3. When the recursion pops back to n (after processing all its neighbors) add
n to the (output) list of nodes

e This method produces a topological sortin reverse order
e |t does not matter where the sort starts, but all vertices must be visited




Topological Sort

e Queue-based implementation
1. Countthe number of edges that lead to each vertex
2. All vertices with no prerequisites are placed on the queue
3. Processthe queue:

1. When Vertex vis dequeued, itis printed, and all neighbors of v (all vertices
that have v as a prerequisite) have their counts decremented by one

2.  Enqueue any neighbor whose count becomes zero
e |Ifthe queueis empty without printing all the vertices, then the graph is
not a DAG

e This method produces a topological sortin order




Class Activity

e Given the following graph, return its topological sort using the depth-first
implementation.

e Start atthe vertex 4. Always select the vertex with the smallest label at
each step




Shortest-Paths Problems

e Goal: find the total length of the shortest path between two specified
vertices




Shortest-Paths Problems

e We can model aroad or a computer network as a directed graph

e Edges are labeled with numbers representing the distance (or other cost
metrics, such as travel time) between two vertices




Single-source Shortest-Paths Problems

e Given a graph with weights or distances on the edges, and a designated
start vertex s, find the shortest path from s to every other vertex in the

graph

e Ifthe graphisunweighted (or all edges have the same cost) then BFS
can be used

e Ifthe graphisweighted, we need another solution: Dijkstra's algorithm




Dijkstra's algorithm

e |dea: process the vertices in a fixed order
e We process the vertices in order of distance from the start vertex (S)

e Assume that we have processed in order of distance from S to the first
i—1 vertices that are closest to S; call this set of vertices N, we are now
processing the it closest vertex; call it X:

o The shortest path from S to X is the minimum overall paths that go from S
to U, then have an edge from U to X, where U is some vertexin N




Dijkstra's algorithm

// Compute shortest path distances from s, store them in D
static void Dijkstra(Graph G, int s, int[] D) {

for (int i=0; i<G.nodeCount(); i++) // Initialize
D[i] = INFINITY;

D[s] = 0;

for (int i=0; i<G.nodeCount(); i++) { // Process the vertices
int v = minVertex(G, D); // Find next-closest vertex
G.setValue(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

int[] nList = G.neighbors(v);
for (int j=0; j<nList.length; j++) {
int w = nList[]];
if (D[w] > (D[v] + G.weight(v, w)))
D[w] = D[v] + G.weight(v, w);




Dijkstra's algorithm

e Runtime analysis:

o O(|Vv?|) if we use a linear DS to find the minimum distance. Appropriate when
the graph is dense

o  O((|V|[+|E|)log|E|) if we use a priority queue to find the minimum distance.

Appropriate when the graph is sparse




