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THE DISCRETE GEODESIC PROBLEM*

JOSEPH S. B. MITCHELLY, DAVID M. MOUNT# AND CHRISTOS H. PAPADIMITRIOU$

Abstract. We present an algorithm for determining the shortest path between a source and a destination
on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and
distances are measured according to the Euclidean metric. Our algorithm runs in time O(n?logn) and
requires O(n?) space, where n is the number of edges of the surface. After we run our algorithm, the distance
from the source to any other destination may be determined using standard techniques in time O(log n) by
locating the destination in the subdivision created by the algorithm. The actual shortest path from the source
to a destination can be reported in time O(k+log n), where k is the number of faces crossed by the path.
The algorithm generalizes to the case of multiple source points to build the Voronoi diagram on the surface,
where n is now the maximum of the number of vertices and the number of sources.
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1. Introduction. Recent research in the algorithmic aspects of robot motion and
terrain navigation has resulted in a number of interesting variants of the shortest path
problem. The problem of determining the shortest path between two points in three
dimensions in the presence of polyhedral obstacles seems to be very hard, and only
extremely inefficient algorithms [16], [17] or approximation algorithms [14] are known
for it. The two-dimensional special case with polygonal obstacles can be solved easily
in O(n’logn) time by constructing the visibility graph [4], [6], [8], [9], [17] and
O(n log n) is attainable in special cases when shortest paths possess certain monotonic-
ity properties [5], [9], [17] (here, n is the total number of vertices in the polygonal
obstacles). Recently, an algorithm for the two-dimensional shortest path problem which
runs in time O(nk+nlogn) (where k is the number of disjoint simple polygonal
obstacles) has been announced [16].

In this paper we examine a special case of the three-dimensional shortest path
problem called the Discrete Geodesic Problem. We are given two points which lie on
the surface of a given polyhedron, and we are asked to find the shortest path between
them which lies on the polyhedral surface. The geodesic problem is of considerable
interest in terrain navigation, where a moving vehicle is bound to move along a surface
that could be modeled by a polyhedron. Notice that this measure of distance may not
be the shortest distance in three-space which avoids the polyhedron, since we are
constrained to travel along the surface. To see why this is a special case of the
three-dimensional problem, consider two polyhedral obstacles, namely the open poly-
hedron and the complement of its closure; a path between two points which avoids
both polyhedra is exactly a path on the polyhedral surface. On the other hand, the
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problem we solve is a generalization of the two-dimensional problem, since any
polygonal obstacle can be simulated by a tall prism emanating from the plane whose
base is the given polygon.

The shortest path problem on a surface was first posed in [17], where an O(n? log n)
algorithm was given for the case of convex polyhedra. Here n is a measure of the
complexity of the scene, which in our case we may take as the number of edges, say,
of the polyhedral surface. Mount [10] has given an algorithm for convex polyhedra
which improves the running time to O(n”log n). For nonconvex polyhedra, [13] gives
an O(n®) algorithm.

We improve these results as follows: We handle general (possibly nonconvex, and
even of higher genus) polyhedra, and we improve the time bound to O(n”log n).
Furthermore, we solve the single-source shortest path problem (and by a simple
extension, the multiple-source shortest path problem; see [11]), creating a subdivision
for a given source point so that we can find the length of the shortest path to any
destination point simply by locating it in the subdivision. Thus, in O(log n) time, the
length of the shortest path is determined to any other destination, and the shortest
path can then be listed in time O(k), where k is the number of edges crossed by the
path. Our algorithm therefore generalizes the work in [4] and [17] for the two-
dimensional shortest path problem among obstacles. We concentrate here on the case
of bounded polyhedra; however, the generalization of the algorithm to handle
unbounded faces is straightforward.

Our algorithm uses a technique we call “continuous Dijkstra,” as it closely
resembles in structure the famous algorithm of Dijkstra for finding shortest paths in
a graph [1]. Edges of the polyhedron behave like nodes of a graph, except that here
there is no unique distance from the source to an edge. Instead, there is a function
that serves as a label for a node, and we keep track of a discrete description of the
minimum such function. This involves keeping track of “intervals of optimality”’ on
each edge, which subdivide the edge into regions for which the shortest path to points
in the region have the same discrete structure, passing through the same sequence of
vertices and edges. These intervals are similar to the notion of “slices” used in [17].

2. Preliminaries. We are given a polyhedral surface, ¥, specified by a set of faces,
edges, and vertices, with each edge occurring in two faces and two faces intersecting
either at a common edge, a vertex, or not at all. We consider faces to be closed polygons
(they include their boundaries) and edges to be closed line segments (they include
their endpoints, which are vertices). We are also given two special points s and ¢ (the
source and destination, respectively). Without loss of generality, we assume that all
faces are triangles (since polygons may be triangulated in time O(n log n) [2] and the
number of edges introduced is linear in the number of vertices) and that s and ¢ are
vertices of the polyhedral surface. We are asked to find the shortest path from the
source to the destination which lies completely on the surface.

DiscrReTE GEODESIC PROBLEM (DGP).

Instance: Two points s and ¢ on a polyhedral surface ¥, which has been triangu-
lated.

Question: Find a shortest path in the Euclidean metric from s to ¢ such that the
path stays on the surface &.

In fact, our algorithm solves the following query form of the problem.

SINGLE-SOURCE DISCRETE GEODESIC PrROBLEM (SS-DGP).

Instance: Two points s and ¢ on a polyhedral surface &, which has been triangu-
lated.
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Question: Build a structure which allows one to compute a shortest path from s
to any query point ¢ such that the path stays on the surface &.

Thus, we are able to find the shortest path between the source and any point on
the surface, and we know of no algorithm which solves DGP in less time (worst-case,
asymptotic) than SS-DGP. Consequently, in our exposition we shall not concern
ourselves with a specific destination point.

Two faces f and f' are said to be edge-adjacent if they share a common edge e.
A sequence of edge-adjacent faces is a list of one or more faces F=(f1, /o, ", fi+1)
such that face f; is edge-adjacent to face f;., (sharing common edge ¢;) (see Fig. 1).
We then refer to the (possibly empty) list of edges €=(e;, e,," ', e) as an edge
sequence and to the vertex of face f; which is opposite e, as the root, r(€), of & (r(J)
is undefined). If no face (resp., edge) appears more than once in & (resp., &), then
we call the sequence simple.

FIG. 1. A sequence of edge-adjacent faces.

Each face has a two-dimensional coordinate system associated with it. If faces f
and f' are edge-adjacent sharing edge e, we define the planar unfolding of face f' onto
Jace f as the image of points of f’ when rotated about the line through e into the plane
of f such that the points of f’ fall on the opposite side of e to points of f (i.e., do not
unfold face f' on top of face f). Points in the planar unfolding of f’ onto f are written
in the coordinate system of face f. Extending this notion, we say that we unfold an
edge sequence €=(e;, e,, -, e) as follows: Rotate f; around e; until its plane
coincides with that of f,, rotate f; and f, around e, until their plane coincides with
that of f;, continue in this way until all faces f;, f>, - - -, fx lie in the plane of fi.,.
The resulting planar unfolding along € represents points of faces f;, f>, - -, fi in the
coordinate system of face f,..,. If x is a point on face f; (1=i=k+1), then let Ug(x)
be the unfolded image of x along & (written in the coordinate system of face fi.;).

A path on & will always be understood to be a simple (that is, not self-intersecting)
path whose intersection with any face is a union of disjoint line segments. A geodesic
path is a path which is locally optimal and cannot, therefore, be shortened by slight
perturbations. We say that path p connects edge sequence €= (e, e, ", ¢e) if p
consists of segments which join interior points of e, e,, - - -, ¢, (in that order). (Note
that such a path cannot pass through the endpoint of any e;, for otherwise two distinct
consecutive edges of & would have to be collinear.) Path p goes through edge sequence
& if it has a subpath which connects & (note that it may have many such subpaths).
If p connects edge sequence &, then the planar unfolding of p along & is simply the
unfolded image of p along &.

3. Characterization of geodesics and optimal paths. We begin a characterization
of geodesics and optimal paths with a simple existence lemma stating that geodesics
and optimal paths exist (but they may not be unique).
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LEMMA 3.1. There exists a geodesic path from s to any other point x € &. Furthermore,
among the geodesic paths from s to x there exists at least one of minimal length.

We have assumed that paths are simple, so they do not go through any point more
than once. (This is certainly true for shortest paths.) Optimal paths also have the
property that they do not go through any face more than once, as the following lemma
states.

LEMMA 3.2. The intersection of an optimal path p with a face f is a (possibly empty)
line segment.

Proof. If pN f#Q, then let y be the first point of p on f, and let y’ be the last.
Then the part of p from y to y’ must also be optimal (otherwise, p could be improved).
The shortest path on & from y to y' is the line segment connecting them. Thus, the
intersection of p with f must be a line segment. [

Note that it is possible for the intersection of a geodesic path with a face to be a
union of many disjoint line segments. For example, if one tightly wraps a string many
times around a long thin rectangular bar, the resulting path of the taut string is locally
optimal but clearly not globally optimal. This also shows that not all geodesics are
optimal paths and that there can be infinitely many geodesic paths (although only
finitely many of them can pass through each face at most once).

We now state a simple property of geodesics (observed by [7] and [17]) which
says that if one unfolds a geodesic path along an edge sequence, it becomes a straight
line segment.

LEMMA 3.3. If p is a geodesic path which connects the edge sequence &, then the
planar unfolding of p along the edge sequence € is a straight line segment.

Proof. If the image were not a straight line segment, then there exist segments ax
and xa’ of p such that x is interior to edge e=fNf’'€ & and the angle Zaxa' is not
equal to 7. Then, there exists a “shortcut” BB’ for p, with 8 € ax, B’€ xa’, and segment
BB’ lies entirely within the faces f and f’. This contradicts the local optimality of p. 0O

In the case of convex polyhedra, an optimal path will pass through no vertices
other than its endpoints, and this property plays a critical role in the algorithm of [17].
In the case of nonconvex polyhedra, however, an optimal path may pass through many
other vertices. For example, in Fig. 2 the optimal path from s to ¢ goes through vertex
v. (Vertex v has the property that the sum of the angles at v on the faces adjacent to
v is greater than 247.) The optimal path may, in fact, follow a long chain of adjacent
edges (see Fig. 3).

We can characterize the way in which a geodesic path passes through a vertex.
If path p passes through vertex v while going from face f to face f’, then let av be
the segment of p on f leading into v, and let va’ be the segment of p on f’ leading

F1G. 2. An optimal path going through a vertex.
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F1G. 3. An optimal path following a chain of edges.

out of v. Define the clockwise angle of p at v as the angle from @v to va’ when the
faces containing v from f to f' (inclusive) in a clockwise order about v are “flattened”
(simply add the angles formed by the edges incident on v; this may give you an angle
far greater than 27). Similarly, define the counterclockwise angle from @ to va’. Define
the angle made by path p through vertex v as the minimum of these two angles. We
then have the following.

LeMMA 3.4. If a geodesic path p passes through vertex v, then the angle made by p
at v is = .

Proof. Assume that the angle is less than 7 and that (without loss of generality)
it is clockwise. When the faces f, f3, * * -, fx are flattened about v, we get the situation
depicted in Fig. 4. Now note that there exists a point 8 on the segment @v and a point
B’ on the segment va’ such that the segment BB’ lies entirely in the set of flattened
faces £, f1, >, *, fi. /. Clearly, the segment BB’ represents a “short cut” for the path
through v, so p cannot be a geodesic. O

The subpath of p between any two consecutive vertices v and v’ connects some
edge sequence € with root v =r(%) (if € =, then v and v’ are the endpoints of some

fl

a
FI1G. 4. A shortcut for a path through a vertex.
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edge e which is contained in p). If p is geodesic, then by Lemma 3.3 the subpath from
v to v’ is completely determined by giving the edge sequence &. Thus, we can describe
a geodesic path p from s to x by writing it as a list, p=(v,=s, &,, v, &, v, " *,
vk, &k, x), where v,, v,, * + +, vk are the vertices (in order) through which p passes,
and &,,%,, -, €k are (possibly empty) edge sequences which are connected by p.
Note that v; = r(&;) for each i such that &; # . We call vg the root of path p and €y
the last edge sequence of p. For geodesic paths p, the edge sequences &; may not be
simple (e.g., recall the example of the string wound around the rectangular bar);
however, if p is optimal, then each &; must be simple and no edge is contained in more
than one of the edge sequences &;, 1=i= K (otherwise, p would enter a face more
than once, violating Lemma 3.2).

In summary, we have the following characterization of geodesics and optimal
paths on (possibly) nonconvex surfaces.

LEMMA 3.5. The general form of a geodesic path is a path which goes through an
alternating sequence of vertices and (possibly empty) edge sequences such that the unfolded
image of the path along any edge sequence is a straight line segment and the angle of
the path passing through a vertex is greater than or equal to w. The general form of an
optimal path is the same as that of a geodesic path, except that no edge can appear in
more than one edge sequence and each edge sequence must be simple.

4. f-free paths and intervals of optimality. For any point x, let p(x) be an optimal
path from s to point x and let d(x) be the length of p(x). The set of all points y on
edge e such that there exists an optimal path to y with root r and last sequence & is
some subset of e which can, in general, consist of up to O(n) subsegments. This leads
to a considerable complication when our algorithm tries to “propagate” signals from
r across edge e. In the case of a convex polyhedron, this problem does not arise. In
that case, the “wedges” in the planar unfolding of the surface are all convex since their
boundaries are straight lines (which follows from the fact that optimal paths do not
pass through vertices other than s, implying that bisectors between ‘“‘wedges” are
straight lines). In the nonconvex case, bisectors will be hyperbolic arcs, so the “wedges”
will not be convex.

To overcome this difficulty, we define the notion of an f-free path: Given a face,
£, and e, one of its three edges (we call (e, f) an edge-face pair), an f-free path to yc e
is defined to be a path on & from s to y which does not intersect the interior of face
f. A shortest f-free path to y, p;(y), is an f-free path to y which has minimal length.
We will need to show the following.

LEMMA 4.1. An optimal path p(x) to a point x € e passes through the interior of at
most one face containing x.

Proof. If x is a vertex, there can be many faces containing x; if x is interior to e,
there are exactly two. Let f;, f>, * - * , fi be the faces containing x. If p(x) passes through
the interior of no face containing x, then we are done. Otherwise, let f; be the first
such face for which the optimal path, p(x), has a point on its interior, and let y be a
point on p(x) which is interior to f;. Then the subpath of p(x) from y to x must be
optimal. But the shortest path from y to x on & is just the straight segment from y to
x, since this entire segment lies on face f; and therefore on the surface &. Thus, no
other face f; # f; containing x has the path p(x) pass through its interior. [

Lemma 4.2 shows us how to obtain an optimal path to a point x on the interior
of e=fNf' from a shortest f-free and a shortest f'-free path to x.

LEMMA 4.2. An optimal path to x on the interior of e is given by the shorter of p;(x)
and pp(x).
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Lemma 4.3 states another important property of shortest f-free paths: that they
are not allowed to cross each other.

LemMMA 4.3. If p(x) and p(y) are optimal paths from s to points x and y, then they
can intersect only at vertices of &, and if they do intersect at v, then that subpath of p(x)
Jrom s to v has the same length as that subpath of p(y) from s to v. A similar statement
holds for shortest f-free paths p;(x) and p;(y).

Proof. If p(x) and p(y) intersect at z, then certainly the subpaths to z must be
equal in length (otherwise, one of the two paths could be shortened by replacing the
portion of it from s to z). If z were interior to a face, then both paths could be locally
improved by taking a shortcut around z. Similarly, if z were interior to an edge, a local
improvement would be possible for both paths (look now at the unfolded paths and
then improve them as if z were interior to a face). The same arguments hold for shortest
[-free paths, since such local improvements will keep both paths f-free. 0

Note that while p,(x) and p,(y) cannot cross, it is possible for shortest f-free
paths to cross for different f’s (e.g., p,(x) may cross p;(y); see Fig. 5). The problem
is that if we try to improve one of the paths (say p;(x)) by replacing part of it with a
subpath of p.(y), then it may cease to be f;-free.

FIG. 5. p;(x) may cross p;(y).

The importance to our algorithm of the concept of shortest f-free paths is evident
from the following lemma.

LemMA 4.4. For edge-face pair (e, f), edge sequence &, and some vertex r, the set
# of points x on e for which there exists a shortest f-free path to x with root r and last
edge sequence & is connected (and, therefore, a subsegment of e).

Proof. 1f there are no points of e which can be reached along a shortest f-free
path with root r and last edge sequence &, then we are done. Otherwise, let x and x'
be points of e such that p,(x) and p;(x’) have root r and last edge sequence €. Then
we wish to show that if y is a point of e between x and x’, then p,(y) also has root r
and last edge sequence . Now, unfold the edge sequence % and let # = Ug(r) be the
resulting unfolded image of r. Note that the segments 7x, 7x’, and xx’ form a triangle
in the unfolded image, since, by Lemma 3.3, the unfolded images of 7x and rx’ are
straight line segments. Any f-free path, p;(y), to y cannot go through the interior of
f; thus, p,(y) must pass through the interior of the triangle. Also, since shortest f-free
paths do not cross (Egmma 4.3), the unfolded image of p;(y) cannot intersect the
interiors of segments 7x and 7x’. Thus, p,(y) must intersect the triangle at the point 7,
meaning that p,(y) has root r and last edge sequence € O
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The interval $ of points can be open, closed, or half-open and half closed. (An
open endpoint arises in the degenerate case in which the unfolding of the shortest
J-free path to the point passes through two or more vertices (see Fig. 6). The fact that
the resulting interval has an open endpoint is really an artifact of our definition of the
root of a path as being the first vertex encountered when tracing back along the path.)
Let the subsegment I =[a, b] be the closure of #. (Normally, we would write I =ab
to indicate the segment with endpoints a and b; however, we write [a, b] to emphasize
the fact that coordinate values can be attached to points of e, and I can be thought
of as an interval of these coordinates.) The endpoint a (resp., b) is the one on the left
(resp., right) when viewed looking into face f. We call I the interval of optimality for
r and & with respect to (e, f). An alternative specification of an interval of optimality
is to give its unfolded root ¥ = Ug(r), its depth d = d(r), and the corresponding edge-face
pair (e, f). Note that r may be an endpoint of e (and hence of I) in the degenerate
case. (Let us establish the convention that € does not include the edge e, so that Ug(r)
writes the image of r in the coordinate system of face f'. If € =, then r will be one
of the vertices of f'.) A point x is an element of the interval of optimality of 7 with
respect to (e, f) if there exists a shortest f-free path to x whose unfolded image (along
its last edge sequence) in the plane of f contains the segment 7x.

We illustrate the notion of unfoldings and intervals of optimality in Fig. 6. On
the left we show the interval I' of points on e which are “accessible” from r through
the given edge sequence along paths that unfold into straight lines. Note that I’ is
determined by the left and right “clipping” vertices, r, and rg. (I' is simply that part
of e which is visible from r within the polygon obtained by unfolding the sequence
of adjacent faces.) In the figure on the right, we show the interval of optimality
I=[a, b]. (Note also that in this case, .$ =(a, b] is half open, since the root of the

F1G. 6. Unfoldings and intervals of optimality.
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path to a is r;, not r.) The interval to the left of I is simply that which is rooted at
r.. The right endpoint, b, was determined by clipping I' along the hyperbolic bisector
between 7 and 7'. Points right of b may be accessible from r, but they are better reached
from r'.

It is easy to see that intervals of optimality with respect to (e, f) form a covering
of e and that the intervals can touch but cannot overlap.

LEMMA 4.5. Intervals of optimality with respect to an edge-face pair (e, f) form a
covering of e and have mutually disjoint interiors.

Proof. First note that every point x € e must lie in some interval of optimality with
respect to (e, f) (if p;(x) is any shortest f-free path to x, then x lies in the interval of
optimality of the unfolded image of the root of p,(x) with respect to (e, f)). Now, for
a point x € e to be in the intervals of optimality of 7 and of 7’ with respect to (e, f) it
must satisfy the equation d(r)+|fx|=d(r')+|'x|. But this equation represents a
hyperbola (which degenerates to a straight line if d(r) =d(r')). The intersection of
this hyperbola with the edge e is a point (in the degenerate case, the straight line
cannot contain e since the points 7 and 7' would be on opposite sides of the line
through e). Thus, there can be no open subinterval of e all of whose points lie in two
or more intervals of optimality. This implies that the intervals must have disjoint
interiors. [

The point, ¢, in I which is closest to r is called the frontier point of the interval.
Since the distance from a point r to a closed line segment [a, b] is minimized at exactly
one point of [a, b], we know that a unique such ¢ exists. It will be either an endpoint
of I or a point in the interior of I depending on whether the perpendicular projection
of r onto the line through e lies outside or inside (respectively) the interval I

The intersection of the f-free path to ¢ with the face f' (which shares edge e with
face f) is a line segment, Bc, on face f'. We call point 8 the access point of interval
L Note that when c is a vertex, it is possible for B8 to equal c, so that Bc degenerates
to a point. If we draw the line segments Bc for every interval of optimality with respect
to (e, f), then we get a partitioning of face f’ into access channels (since no two such
segments can intersect). Note that an access channel is either a triangle, a quadrilateral,
or a pentagon. We will refer to an access channel by giving a pair, (I, I,), where I,
and I, are the intervals of optimality which give rise to the bordering segments, 8,c,
and B,c,. If I, =NIL, the channel is simply that part of f' to the left of B,c,; and if
I, = NIL, the channel is that to the right of B,c;.

§. The algorithm. Our algorithm operates in the precise spirit of Dijkstra’s
algorithm [1]. It is an important example of the power of the technique we are calling
“continuous Dijkstra.” A “signal” is propagated from the source to the rest of the
surface. Once a point x of the surface receives the signal for the first time, it propagates
it further; point x is considered to be permanently labeled with the time, d(x), at which
it received the signal, which is, of course, the minimum distance from the source to
x. Fortunately, we have to do this labeling and repropagation for only finitely many
(in fact, as we shall show, O(n?)) points (called event points) of the surface. (Actually,
we do a “directed” form of continuous Dijkstra, since we label points on an edge with
the lengths of paths that are incident to the edge from either of the two sides of the
edge. This comes from the fact that our intervals of optimality were defined with respect
to f-free paths.)

The algorithm uses a few simple data structures. We keep a list, ILIST, of candidate
intervals of optimality. A candidate interval (or interval for short) is a subsegment of
an edge which is a supersegment of some (possibly empty) interval of optimality and
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has exactly the same structure as that interval (i.e., it has the same type of information
associated with it in its data structure). We call them candidate intervals because, at
the conclusion of our algorithm, all remaining candidate intervals will be intervals of
optimality. A candidate interval, I, has the following information associated with it:
its extent, [a, b]; its edge-face pair, (e, f); its root, r; its unfolded root, 7; its depth,
d; its frontier point, c; its access point, 8; and its predecessor, I (which is the candidate
interval (or vertex) whose “propagation” originally gave rise to I). We then will write
I=(a, bl,(ef),rFdcpBI).

An edge-face pair, (e, f), has associated with it a sorted list of candidate intervals
with respect to (e, f), with the intervals in the order that they appear along the edge
(following the edge in the direction which keeps the face f on the left). Such an
ordering is possible since candidate intervals will always have disjoint interiors. Initially
and during the execution of the algorithm, the interval list of (e, f) need not cover the
edge e (that is, there may be points of e that lie in no candidate interval), but at the
conclusion of the algorithm, we will see that the list does form a covering.

Each vertex v has associated with it a pointer to each candidate interval of which
it is a root. Additionally, there is a permanent label, d(v), which indicates the shortest
path length to vertex v. Initially, d(v) =+ for every vertex v. As the algorithm
proceeds, vertices will become permanently labeled, meaning that they are assigned a
label d(v) <+o00. We will also be labeling some nonvertex points (frontier points which
are interior to edges). These are also assumed to have infinite initial labels.

The algorithm also maintains a log n priority queue (called the event queue) whose
entries are points of some candidate interval (either an endpoint or the frontier point)
and have labels which are the best-known distances back to the source. (We do not
actually need to keep track of all of the endpoints of candidate intervals as event
points. It would suffice to keep track only of events associated with vertices and with
frontier points that are interior to their intervals; however, the efficiency of our algorithm
is not affected by this change.)

The algorithm proceeds as follows.

ALGORITHM.

(0) (Initialize). Permanently label s with 0. Initialize the event queue and ILIST
to be empty. For each edge-free pair, initialize its interval list to be empty. For each
edge opposite to s, create a candidate interval whose extent is the entire edge and
whose root is s. Compute ¢ for each such interval and place each such ¢ and the
endpoints of the edges in the event queue, each point having as label its distance from
s. Push the resulting intervals onto the list ILIST and onto interval lists of the
corresponding edge-face pairs.

(1) (Main Loop). While there is an entry in the event queue, remove the one with
the smallest label and permanently label it. If it is being labeled as the frontier point
of some candidate interval, I, then do Propagate (I).

Intuitively, to propagate an interval I means to allow the “wave front” of signals
from the root of I to pass through I to the other two edges of the face and to record
on those edges the intervals of points that are optimally reached by the signal paths
through I One interval can propagate into two (one on each of the opposite edges),
so we will have to be careful how we propagate intervals so that the number of them
does not explode exponentially. The critical observation which allows for a “trimming”
of the number of intervals is that optimal paths and shortest f-free paths do not cross
(Lemma 4.3).
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Thus, the propagation of intervals can take place only through the access channels
already established by intervals on the opposite edges. We give now the details of the
procedure Propagate (I):

PROCEDURE Propagate (I).

(0) Assume that I is an interval with respect to (e, f), where e=fNf". Let cee
be the frontier point of I Let e, =f N f; and e, = fN f, be the edges of f opposite edge
e. Refer to Fig. 7.

(1) (c is not a vertex). Let I, = Project (I, ;) and, if I, # NIL, do Insert-Interval
(I, c), fori=1,2.

(2) (cis a vertex). For each edge e, opposite ¢ such that some point of e, makes
an angle greater than 7 with segment Bc, create a candidate interval, I,, on e, whose
extent is the entire edge e, and whose root is ¢. Do Insert-Interval (I, c).

Step (2) makes use of Lemma 3.4 to specify when it is reasonable to introduce
vertex ¢ as a root to a candidate interval on an opposite edge. (This is not essential
to the correctness of the algorithm or to its complexity, but only serves to make it run
slightly faster.) We only introduce intervals on edges for which there is a chance that
the angle that the resulting paths will make at ¢ will be greater than 4.

The function Project (I, e,) simply finds the subset of e, that is hit by paths through
L We just apply the local optimality criterion (that paths unfold into straight lines;
Lemma 3.3) to determine how the “wedge” of paths is extended through the next face.
The function returns a candidate interval, I, on e, whose points are accessible through
L (If no part of e, is accessible, we return NIL.) The root of I, is the same as that of
I, and the unfolded root of I, is obtained from that of I simply by rotating it (about
e) into the coordinate system of face f'.

The procedure Insert-Interval (I, c) simply inserts a new candidate interval, I,
between the intervals I, and I, that define the access channel containing c. The interval
I may “dominate” I, or I, (which can happen only if the corresponding frontier point
of I, or I, has not yet been permanently labeled), in which case the dominated candidate
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F1G. 7. Propagation of an interval.
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must be deleted. Also, I will possibly be “trimmed” at the “tie points” between the
root of I and the roots of I, and I,. Thus, the portion of I which survives the trimming
will correspond to that part of the edge containing I which will be “hit” first by signals
from the root of I which pass through the last edge sequence of L

PrROCEDURE Insert-Interval (I, c).

(0) Assume I =[a, b] is an interval with respect to (e, f) and that it has root r,
unfolded root 7, and depth d. Point c is the frontier point of I, the predecessor of I

(1) (Locate point ¢ in access channel). Locate point ¢ in an access channel, say
(I, L), of (e, f). The wavefront can only get to I through this channel. Let I, =[a;, b;]
(provided that I; # NIL), for i =1, 2. Let r; be the root, 7; be the unfolded root, and
d; be the depth of I.

(2) (Delete dominated candidate intervals). If I, NIL, a,€ I, and d,+|fa,|=
d +|ra,| then do Delete (I,), set I, to be the predecessor of I, in the interval list of e,
(set I, to NIL if no predecessor exists), and go back to (2). Similarly, if I, # NIL, b, € I,
and d,+|f,a,|= d +|7a,|, then do Delete (1), set I, to be the successor of I, in the
interval list of e, (set I, to NIL if no successor exists), and go back to (2).

(3) (Trim at tie points). If I, # NIL and b, € I, then set a to be the point in I N I,
such that d, +|7,a| = d +|Fa| (if no such point exists, let a be b,). Then a will be the
point in I N I; which can be reached equally well through I and through I,. Remove
b, from the event queue, set b, to a, and update c, if necessary. If I, # NIL and a,€ I,
then set b to be the point in I N I, such that d,+|7,b| = d +|7b| (if no such point exists,
let b be a,). Then b will be the point in I NI, which can be reached equally well
through I and through I,. Remove a, from the event queue, set a, to b, and update
¢, if necessary. If a # b, go to (4); otherwise, stop (no interval needs to be inserted).

(4) (Final updates). Compute the frontier point, ¢;, and access point for I =[a, b].
Push I onto the list ILIST and insert it into the interval list of edge e (between intervals
I, and L,). Put the points a, b, and ¢; (if ¢; # a, b) into the event queue, with labels
d +|ra|, d +|7b|, and d +|7c;|, respectively.

The procedure Delete (I) simply deletes I from the ILIST, deletes I from the
interval list of the corresponding edge-face pair, and deletes any entries of points of
I in the event queue.

In step (1) of the above procedure, we must locate a point ¢ in an access channel
of an edge-face pair (e, f). This is easily done in time O(log n) by binary search as
follows: We have for (e, f) an interval list which gives the segments B.c; in sorted order
along edge e. The segments are nonintersecting, so to locate a point ¢ on face f' in an
access channel, we can do binary search in which each test determines on what side
of a segment B;c; the point c lies (see Fig. 8).

6. Proof of correctness. We now begin a proof that the algorithm works. Our first
objective is to prove the following proposition.

PROPOSITION 6.1. After each iteration of the Main Loop of the Algorithm, the current
list of candidate intervals (ILIST) correctly gives the best f-free path so far from s to
points of these intervals, where “best so far” has the following meaning: If xee=fNf’
lies in interval I of root r with respect to (e, f), then an f-free path to x which has root r
and length d(r)+|7x| is optimal among those f-free paths to x that enter face f' through
an interval in the current ILIST.

Proof. The proof proceeds by induction on the iteration count in the Main Loop.
At the first iteration, the claim is true because the only candidate intervals are the
trivial ones on the edges opposite to the source s. Assume now that the claim holds
for the first k iterations (this is the Induction Hypothesis). The inductive step requires
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F1G. 8. Locating point c in a channel.

us to prove that if, at iteration k+1, we introduce interval I for root r with respect
to (e, f), then the best f-free path so far to points of I is through root r. This will be
shown in the following two lemmas. 0O

Assume now that the Induction Hypothesis holds.

A candidate interval will have one of two fates: Either its frontier point gets
permanently labeled (by its becoming the top element in the priority queue), thereby
assuring that some part of it will “survive” and become part of a final interval of
optimality with the same attributes as the candidate; or, the candidate interval gets
deleted in Step (2) of Insert-Interval, in which case we can guarantee that the interval
of optimality corresponding to the candidate will be empty.

LEMMA 6.2. If we delete interval I, in step (2) of procedure Insert-Interval, then the
interval of optimality of root r, with respect to (e, f) has an empty interior. A similar
statement holds if we delete interval I,.

Proof. Assume that a, € I and d,+|F,a,| = d +|7a,|. Then, the best f-free path )
far to point a, is through root r. Let B be the intersection of ra, with edge e’. Since
a, € I, we know that B8 € I, by the method used to construct I from its predecessor, I.
Let us assume that there exists a point y in the interior of the candidate interval of
root r, with respect to (e, f) (so the path p,(y) has root r,). We will then arrive at a
contradiction.

First, note that y is interior to [a,, b,] (otherwise, y is either inaccessible from r,
or can be reached from some other root of (e, f) along a shorter f-free path). Next,
note that interval I, was established when its predecessor, I,, was propagated. Since
point ce I was located in channel (I,, I,), we know that c¢ lies to the right of the
segment 7, c,, and therefore to the right of 7,b, (otherwise, c € I,). Since I is connected,
then, all points of T lie to the right of 7,z for any z€[a,, b1, and lie strictly to the
right of ¥,z for z interior to [a,, b,]. In particular, B lies strictly to the right of the
segment B,y, where B,y is the intersection of 7,y with face f’. But, a, lies strictly to
the left of segment B,y, so segments Ba; and B,y must intersect in some point y which
is interior to both segments (see Fig. 9). Since v lies on the path p,(y), the f-free path
through r, to vy is no longer than the f-free path through r to y. But this means that
we can get a strict improvement to the path to a, by going through root r; directly to
a, (since |7, y|+|ya,|> |F,a,)). This contradicts our assumption that d, + |F,a,| = d + |7a,|.

A similar proof holds if we delete interval I,. 0O

Next, we must prove that the interval that is inserted by procedure Insert-Interval
is “correct” in the following sense.

LEMMA 6.3. When procedure Insert-Interval inserts an interval I between intervals
I, and I, the resulting interval list of edge e correctly subdivides points of e according to
the best f-free paths so far.
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F1G. 9. Illustration of proof of Lemma 6.2.

Proof. Let[a,, b;] and [a,, b,] be the original extents of I, and I,, and let [a,, b}]
and [a), b,] be the resulting intervals after the trimming is done by procedure Insert-
Interval. Now, the best path so far to a point outside [a,, b,] cannot go through r since
it would have to cross some access channel boundary, Bic;.

Now let xe I =[a, b], where [a, b] is the extent of I after any trimming that may
have been done. Since, by construction, I <[a,, b,], the best path so far to x must be
through r, r,, or r,. If x is not in [a,, b,], then it is better to reach x through root r
than through root r;. If x is interior to [a,, b,], then so is a (since [a, b]<[a,, b,]).
But then the path to a through root r is no longer than the path to a through root r,
and is, therefore, optimal so far. If it were better to reach x through root r, than
through root r, then the path to x would intersect the path through r to a (since
segments 7a and 7,x must cross), a contradiction. Likewise, we can show that it is
better to reach x through r than through r,.

If xe[a,, b}] (resp., [a5, b,]), a similar argument shows that it is better to reach
x through r, (resp., r,) than through r (and it is certainly better to reach x through r,
(resp., r,) than through r, (resp., r,) since [a,, bj] < [a,, b;] and [a5, b,]<[a,, b,]). O

This completes the proof of Proposition 6.1.

One can show that during an execution of Dijkstra’s algorithm, when a node is
“permanently labeled” (i.e., put on the “CLOSED?” list), it is labeled with the length
of the shortest path from the source to the node. Analogously, we have the following
lemma.

LEMMA 6.4. When a point interior to an edge is permanently labeled as part of a
candidate interval with respect to (e, f), it is labeled with the shortest f-free path length
to it. When a vertex is permanently labeled, it is labeled with the shortest path length to it.

Proof. Let x be interior to edge e=ff". Assume that the algorithm has just
given x a permanent label of & and that the path p,(x) is a shortest f-free path to x
whose length is less than 8. Now, p,(x) intersects at least one candidate interval (since
we initialized the ILIST to “surround” point s), so we can let I, =[ay, b;] be the last
candidate interval intersected by p,(x), and assume that I, is an interval with respect
to (e, f1). (Note that there will be more than one such interval if p,(x) intersects I, at
one of its endpoints; in that case, pick either interval. In the case that p,(x) NI, =1,
a vertex, pick I, such that p,(x) N f;# v.) Since the length of ps(x) is less than 8, we
know that p,(x) enters face f’ through some point which is in no current candidate
interval (by Proposition 6.1, since x was labeled with the best path length so far).
Thus, f; # f'. Let Bx’ = f; N p;(x). Then, point x’ lies on an edge e,=f;N fo. Let p;(x’)
be the subpath of p;(x) from s to x'. Clearly, p,(x’) is a shortest fo-free path to x'.
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The interval I, must have been propagated (since the distance to the frontier point of
I is =d(B) <d(x) <8, and the algorithm always permanently labels the closest event
point). But then, by Lemma 6.3, there would have been a candidate interval created
on edge e, which includes point x'. This contradicts the fact that I is the last candidate
interval intersected by ps(x).

A similar argument shows that vertices are permanently labeled with the length
of an optimal path to them. [

In our mental picture of the execution of the algorithm, we think of the “wavefront”
moving out from s and imagine that, as the front encounters new edges or boundaries
of candidate intervals, events occur. When an event occurs at a certain distance from
s, then all points closer to s than that distance have already encountered the “wave-
front,” as Lemma 6.5 states.

LEMMA 6.5. If the algorithm has just assigned a permanent label of 5 to some point,
then for any point x on an edge e such that d(x) <8, there is an interval I (for r with
respect to (e, f)) in the current ILIST which contains x such that an optimal path to x
has root r and length d(r)+|#x|.

Proof. Let x € e be an edge point such that d(x) < 8. Assume that x does not lie
in a candidate interval which correctly identifies an optimal path to x. Let p(x) be an
optimal path to x. As in the proof of Lemma 6.4, let I, =[a;, b;] be the last candidate
interval of the current ILIST intersected by p(x), and assume that I, is an interval with
respect to (e, ;). Our assumption on x says that x £ I,. Let Bx’ =f; N p(x). Then, point
x' lies on an edge e, = f;N fo. Let p;(x’) be the subpath of p(x) from s to x'. Clearly,
Pr,(x') is a shortest fo-free path to x'. The interval I, must have been propagated (since
the distance to the frontier point of I, is =d(B8) <d(x) <4, and the algorithm always
permanently labels the closest event point). But then, by Lemma 6.3, there would have
been a candidate interval created on edge e, which includes point x’. This contradicts
the fact that I is the last candidate interval intersected by p(x). 0O

At the conclusion of our algorithm, the wavefront has encountered all points of &:

LEMMA 6.6. At the conclusion of the algorithm, the interval list of (e, f) forms a
covering of the edge e.

Proof. Assume that there is some point x € e =ff’ which is not covered by a
candidate interval with respect to (e, f). Let p;(x) be a shortest f-free path to x. As in
the proof of Lemma 6.4, let I, =[a,, b;] be the last candidate interval intersected by
ps(x), and assume that I is an interval with respect to (e, f;). Since x is not covered,
e # e. Let Bx'= f;N py(x). Then, point x’ lies on an edge e,=f;N fo. Let p;(x’) be the
subpath of p,(x) from s to x'. Clearly, p;(x’) is a shortest f,-free path to x’. The interval
I, must have been propagated (otherwise, its frontier point would still be in the event
queue, and the algorithm would not have concluded). But then, by Lemma 6.3, there
would have been a candidate interval created on edge e, which includes point x'. This
contradicts the fact that I, is the last candidate interval intersected by p;(x). 0O

LEMMA 6.7. The following are equivalent for a point x on edge e of face f.

(1) At the conclusion of the algorithm, x lies in the candidate interval of root r (and
unfolded root F) with respect to (e, f).

(2) There is a shortest f-free path p from s to x with root r and length d(r)+|#x|;
that is, x lies in the interval of optimality of F with respect to (e, f).

Proof. The proof follows immediately from Proposition 6.1 and Lemma 6.6. 0O

7. Complexity analysis. To establish the running time of our algorithm, we first
must bound the number of event points.
LEMMA 7.1. There are at most O(n”) candidate intervals created by the algorithm.
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Proof. Let I,, L, - -, Ix be the interval list for some edge-face pair (e, f). Let x;
be a point interior to interval I;, and let edge e = XoXx ;. Now draw the shortest f-free
paths from s to each x; (0=i= K +1). (Note that none of these paths cross edge e.)
It is clear that this divides the polyhedral surface & into K + 1 subsurfaces (subsurface
i is the region to the right of the cycle from s to x; (along p;(x;)), from x; to x;,, (along
e), and then from x,,, back to s (along the reverse of ps(x;.,)). Note that paths p,(x;)
and p;(x;+,) may have some vertices in common. The interior of each such subsurface
must contain a vertex. Thus, K =n —1. Since there are at most O(n) edge-face pairs,
there can be at most O(n®) candidate intervals.

The above argument applies only to the case of a polyhedron of genus zero, as
we are implicitly using the Jordan curve theorem to say that the surface is partitioned
into K +1 subsurfaces. The case in which the genus may be higher can be handled by
the following alternative proof. We trace back the paths from x; and from Xx;,,, noting
where the paths first diverge by going through different edges (or where one path
encounters a vertex, its root). Define the fork point, v;, to be the vertex responsible for
the divergence. It may be a root of one of the paths, or it may be a vertex between
two adjacent edges whose interiors are crossed by the two paths. Let f; be the face on
which the divergence occurred; that is, both p;(x;) and p/(x;.,) pass through the interior
of f;, and v; is the vertex of f; which “splits” paths p,(x;) and p;(x;,) (and it may lie
on one of the paths). Then, we “charge” the interval I; to the vertex-face pair, (v;, f;).
It is not hard to see that each vertex-face pair can be charged at most twice: If v; is
a root of one path (say p;(x;)), then (v, f;) can be charged at most twice (once for the
pair p,(x;_1), ps(x;), and once for the pair ps(x;), py(x;+1)); otherwise, (v;, f;) is charged
at most once. (The proofs of these claims simply use the fact that shortest f-free paths
do not cross.) There is a one-to-one mapping between vertex-face pairs and edges, so
we get that each edge can be charged at most twice. This gives us a linear bound for
K in terms of the number of edges of & (which seems to be the proper measure of
complexity for higher genus polyhedra). O

We can also bound the number of calls to Delete in procedure Insert Interval.

LEMMA 7.2. There will be at most O(n?) calls to procedure Delete.

Proof. By Lemma 6.2, we never delete an interval which has had some point
permanently labeled. Once an interval is deleted, it can never be propagated. When
an interval is propagated, its frontier point is permanently labeled and there are at
most two new intervals created on the opposite edges. These two new intervals are
candidate intervals which may end up being deleted. But there can be at most O(n”)
such candidates, since, by Lemma 7.1, there can be at most O(n?) intervals with
permanently labeled points. 0O

The size of the data structures needed is easily seen to be quadratic.

LEMMA 7.3. The data structures require at most O(n®) space.

Proof. Each of the O(n?) candidate intervals requires only a constant amount of
storage. (Note that we do not keep the edge sequence corresponding to each interval,
rather only the image of the root.) Since each edge is adjacent to only two faces, there
are only O(n) edge-face pairs, and each of these has associated with it a list of at
most O(n) candidate intervals (by the proof of Lemma 7.1). Thus, the data structure
for the edge-face pairs requires only O(n?) space. The event queue can have at most
three times the number of candidate intervals, so this structure is also bounded in size
by O(n?). O

We are finally ready to assert the validity of our algorithm and its claimed efficiency.

THEOREM 7.4. The algorithm above correctly computes the subdivision of each edge
into intervals of optimality in time O(n>log n) and space O(n?).
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Proof. Correctness is based on Lemma 6.7. The space bound is shown in Lemma
7.3. For the time bound, we know from Lemma 7.1 that there are at most O(n®) events
placed in the event queue. Since each event will be inserted and deleted only once,
the total time needed for operations on the queue is O(n*log n). Also, by Lemma 7.1,
there will be O(n?) calls to the procedure Propagate. If the frontier point being labeled
is not a vertex, Propagate takes time O(log n) (just the time to locate ¢ in an access
channel) and then calls Insert-Interval. Each cell to Insert-Interval requires only
constant time except for the work needed to call Delete. But each call to Delete requires
at most O(log n) time (to delete an element from an interval list), so, by Lemma 7.2,
the total time required is O(n”log n). In the case that the frontier point is a vertex, a
single call to Propagate could potentially take time O(n log n) (since there could be
O(n) faces adjacent to ¢ and each call to Insert-Interval takes O(log n) time). But the
total number of calls to the procedure Insert-Interval cannot exceed the number of
pairs (v, e), where v is a vertex, and e is the edge opposite v. Clearly, there can be at
most O(n) such pairs. Thus, the total time required in making calls to Insert-Interval
is at most O(n?log n). This gives a total time bound of O(n*logn). 0O

8. Building the subdivision. The algorithm we presented allows us to recover the
length, d(x), of the shortest path from s to any point x on any edge e=fNf". If x is
a vertex, then d(x) is just the label that was given it when x was permanently labeled.
Otherwise, we locate x (in time O(log n)) in interval of optimality I (resp., I') for
root r (resp., +') with respect to (e, f) (resp., (e, f')). By Lemma 4.2, the smaller of the
two sums, d(r)+|x7| and d(r')+|x7| is the desired shortest path length.

We can extend our algorithm to find the shortest path length from s to any point
of the polyhedral surface, as follows: Let e;, e,, and e; be the three edges of f We
build three subdivisions (J,;, 7,, and ;) of face f. Subdivision 7; is the planar
subdivision of f into cells associated with the intervals of optimality with respect to
(e, f)

Let I,, I, - - -, I be the interval list for edge-face pair (e,, f). Associated with
each interval of optimality I; (1=j=K) is a cell C; of 7, such that a point x lies in
cell C; if and only if there is a path (on ¥) from s to x through interval I; (that is,
through the root of I; and its edge sequence) which is shortest among all paths (on
&) from s to x which pass through edge e;.

Let interval I; have root r;. Then a point x will be on the boundary of cells C;
and C; if and only if d(r)+|x%;|=d(r;)+|xF,|, where 7, = Ug,o)(r;) is the image of r,
unfolded into the plane of f (this is slightly different from the convention we have
had so far that 7= Ug(r) is the unfolded image of r into the plane on the other side
of e;). Put another way, the weighted distance from x to 7; must equal that from x to
F;, where by weighted distance between a point x and another point y (which has an
associated weight d) we mean the sum d +|xy|. From elementary analytic geometry,
we know that the locus of points whose weighted distances to two points r and r' are
equal is a hyperbola. Thus, the boundaries of cells C; in the subdivision are hyperbolic
arcs.

We now describe a procedure, Build-Subdivision (e, f), which builds the sub-
division of f into cells C; which give the best paths through e to points x on f. The
procedure works by “propagating” the intervals of optimality (I, L, - - -, Ix) with
respect to (e, f) into the interior of face f, keeping track of certain “‘event” points
(which will be crossings of hyperbolic arcs of cell boundaries).

We let h;; be the hyperbola containing the boundary between cell C; (associated
with interval I; =[a;, b;]) and cell C; (associated with interval I, =[a;, b;]). Then h;;
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is defined by the equation d(r;)+|x%|=d(r,)+|xF| in x (in the coordinate system of
face f). Note that h;; is nonempty provided that |d(r,) —d(r,)| =|F|, where the case
of equality yields a hyperbola which degenerates to a line. We truncate h;; to be in
the half-plane defined by the line through e and containing face £ We then think of
h;; being oriented in the direction of increasing distance from r; and r;. We define h,,
as the ray from a, along edge e; and hg k., as the ray from by along edge e,. If cells
C: and C; share a boundary, then we let ¢;; (0=i<j= K +1) be the point of the
boundary of C; and C; which is closest to point r; (and r;). See Fig. 10 for an example
in which K =6. Finally, let u; be the supremum of the distances from s to points of
C; (note that u; may be +0).

G, 11 94212 I3 N Is lg 967

F1G. 10. Extending the subdivision to the interior of f.

PROCEDURE Build-Subdivision (e, f).

(0) Initialize INTLIST to be the list (Iy, I;, I, - - -, Ix, Ix+,). Foreach i (1=i=
K), let u;=d;+|F,w,|, where w; is the point of intersection of h;_,; and h;;, if they
intersect, and let u; = +00 if they do not intersect. Maintain the u;’s in a priority queue,
ULIST.

(1) (Determine Next Event). If ULIST is empty (meaning that INTLIST equals
(I, Ix+1)), then stop. Otherwise, let the elements of INTLIST be indexed
(Io, Iy + + , Iy, Ix4y). Let u = u;, be the minimum value in ULIST (in case of ties, pick
the one with smallest index i;). Delete I;, from INTLIST, and delete u; from ULIST.

(2) (Update u;_, and u,,,). If j#1, modify u;_, to be d,-j_l+|F,.j_le_1[, where w;_,
is the point of intersection of hij—z,i]—l and h;_, ;. if they intersect, and set u;_ =+o0 if
they do not intersect. If j # J, modify u,,, to be d;, +|F;, wj..|, where w;., is the point
of intersection of h;_, ;. and h,, , . if they intersect, and set u;,, = +00 if they do not
intersect. Bisectors h;_ ; and h,;  become “inactive,” and bisector h becomes
““active” at this point.

(3) (Update Subdivision). Let 4i_,.i,,, be the event point which corresponds to u;.
(Point g;_, ; , is the point of C; which is furthest from r,.) Establish g;_, ;, as a vertex
of the subdivision, with incident arcs h;_, ; and h;; , (into g;_,;,,) and h (out of
4_,.i.,)- Go to step (1).

IR 1,441

i 150j41

The procedure works by processing the vertices of J; in the order of increasing
distance from the source. Each event corresponds to “closing off” a cell C;, at which
time we delete I; from the list INTLIST of intervals responsible for the wavefront,
and we consider the effect of the bounding hyperbola between the cells corresponding
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to the intervals on either side of I; in list INTLIST. A typical step of the procedure
is illustrated in Fig. 11. The lemma below shows that the procedure Build-Subdivision
(e, f) does what it claims to do.

LemMaA 8.1. The procedure Build-Subdivision (e, f) correctly constructs the cells C;
corresponding to the intervals of optimality of (e, f).

Proof. The proof is by induction on the iteration count of the main loop. Assume
that 8, is the distance of the event point from s at iteration k. We first note that the
subdivision induced by the initial set of hyperbolic bisectors is correct up to a distance
8, from s (since, up to distance §,, there are no intersections among the bisectors, by
the definition of the event distance). Now assume that it is correct up to distance &,
and consider the effect of the event at distance ;. Event k corresponds to the closing
off of a cell C; and to the cells C; and Cr becoming adjacent after distance 8. (C.
and Cr had been to the left and to the right, respectively, of C; before the event.) If
x is a point at distance & from s, where §; = § < §;,,, then we claim that x is properly
categorized according to the current list of active hyperbolic bisectors, that is, according
to the subdivision created by the procedure for points between event k and event k+ 1.
First, x cannot be reached best through interval I, since it lies on the wrong side of
the bisector between C; and C or between C; and Cg. The newly active bisector
between C; and Cy correctly categorizes x between the corresponding intervals. And
the categorization of x with respect to all other intervals must be correct since all other
bisectors are disjoint for distances from s which are between &, and 8;.,,, and by the
induction all other bisectors are disjoint for distances from s which are between §;
and 8., and by the induction hypothesis, we have assumed that the subdivision is
correct so far. 0

LEMMA 8.2. The procedure Build-Subdivision (e, f) requires time O(K log K) and
space O(K), where K is the number of intervals of optimality with respect to (e, f).

Proof. Since at each iteration of the procedure we delete one of the intervals from
INTLIST, there can be at most K executions of steps (1) and (2). But each such

ija,i5g

wavefront ijegy B2

wavefront

h, .
f IR TIRY]

FIG. 11. The event at point g; _,

s
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execution involves a constant number of insertions and deletions from the list ULIST.
Thus, the total time complexity of the procedure is clearly O(K log K). O

We should remark that it is not necessary to build independently each of the three
subdivisions J,, ,, and J;. (This was done for simplicity of exposition.) Rather, we
could have propagated the intervals for (e, f), (e,, f), and (es, f) all at once into the
interior of f. The procedure would be similar to that given above for a single edge,
but now the INTLIST would be a cyclic list of intervals around the perimeter of f
(eliminating the need for the “dummy” hyperbolas on the edges of f).

We execute the procedure Build-Subdivision (e, f) for every edge-face pair (e, f).
This yields three subdivisions for each face and takes a total time of O(n”log n) (since
there are a total of O(n?) intervals of optimality for all edge-face pairs). To find the
length of the shortest path from s to any x € S we simply locate x in some face f, then
we do three point locations of x within the three subdivisions of f. We now have the
lengths of shortest paths to x through each of the three edges of f. Selecting the shortest
of the three gives us the length of the shortest path to x. All four of the point locations
can be done in time O(log n) by standard point location techniques ([15], [3]). (The
only slight variation to the problem with which we must deal is the fact that the
boundaries of cells are hyperbolic instead of straight. This, however, presents no real
complication.) To determine an actual optimal path to x is straightforward by back-
tracing through the predecessor pointers (from I to T to I, etc.). The back-tracing will,
of course, take time O(k), where k is the number of faces crossed by the optimal path.
We therefore have the following theorem.

THEOREM 8.3. After preprocessing, the length of the shortest path from s to any
point x € & on polyhedral surface & can be found in time O(log n) and a shortest path
can be determined in time O(k+log n), where k is the number of faces crossed by the
path. The preprocessing can be done in time O(n”log n) (and space O(n?)).

9. Conclusion. We have given an O(n” log n) algorithm for subdividing the surface
of an arbitrary polyhedron so that the length of the shortest path from a given source
s to any point ¢ on the surface may be obtained simply by locating ¢ in the subdivision.
The algorithm requires O(n?) space to run. Point location can be done by standard
methods in time O(log n), after which the actual path may be back-traced in time
O(k), where k is the number of faces traversed by the shortest path.

Our algorithm utilizes the continuous Dijkstra technique. The method is very
analogous to Dijkstra’s original shortest path algorithm, but includes the concepts of
an expanding wavefront and discrete events. It is, in a sense, a cross between Dijkstra’s
algorithm and the plane sweep paradigm of computational geometry.

It is easy to extend our algorithm to the case of multiple sources and thereby to
solve the Voronoi problem on the surface of a polyhedron [11]. We simply initialize
the original event queue to be the events associated with the edges opposite to each
source point, and then proceed exactly as before to propagate intervals. For m source
points lying on the surface of a polyhedron, the algorithm builds the Voronoi diagram
in time O(N?log N) and space O(N?), where N =max {n, m}. One can then locate
the closest source to a query point in time O(log N), and one can backtrace the path
to the closest source in time proportional to the number of bends along the path.

It is also not hard to imagine how our algorithm might be generalized to other
types of surfaces (instead of just those that are polyhedral). If we have a surface which
is specified by giving the surface patches which make up its faces, then we can calculate
for a fixed complexity of surface type (provided it is “well-behaved”) how geodesic
paths behave on that surface. For example, on planar patches we get the problem we
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have covered here, and the geodesic paths are straight lines on each face. For a patch
of spherical surface, geodesic paths will be arcs of great circles for the underlying
sphere. We would then have to generalize the local optimality criterion that geodesic
paths that cross patch boundaries unfold into straight lines: Geodesic paths will unfold
such that locally (at the boundary of surface patches) they unfold to be straight. This
is simply a continuity condition on the slope of geodesic paths. The continuous Dijkstra
algorithm allows the propagation of a wavefront across the surface patch boundaries,
while maintaining the local optimality criterion. Some work is needed to figure out
the details of this generalization.

We would like to be able to improve the running time of our algorithm. It may
be possible to reduce the time complexity to O(n?) (the current best time for planar
obstacle avoidance algorithms), but we should not hope to improve it further until the
planar case is solved more efficiently.

It should be possible, however, to reduce the space requirement from O(n?). Our
algorithm is wasteful in that it maintains the points of intersection of the shortest path
map with each edge, and there can be a quadratic number of such points. But the
actual size of the graph whose embedding on the surface yields the subdivision is only
linear (in the number of edges of the original polyhedron). It should be possible to
keep track of bounding hyperbolas (or lines) instead of endpoints of intervals, and
then to propagate the hyperbolas across new edges without creating new structures all
the time. (This also suggests that we could have allowed the algorithm to build the
entire subdivision (including the partitioning of the interiors of faces) “on the fly,”
keeping track of the events of crossing hyperbolic boundaries, just as we did in the
procedure described in § 8.) We must be careful, though, that the subdivision we build
is stored in such a way that point location queries can be answered efficiently (e.g., in
time O(log n)). Mount [12] has shown that a subdivision can be built for a polyhedral
surface and stored in a data structure of size O(n log n), and that point location queries
can then be answered in time O(log n). Can this construction be built “on the fly”
during the execution of continuous Dijkstra? Note that for the special case of convex
polyhedra, Mount [10] has been able to reduce the space requirements to O(n log n).

Another obvious open problem is to find an efficient algorithm for determining
shortest paths in three dimensions in the presence of a general collection of polyhedral
obstacles. The geodesic problem is one special case in which an efficient algorithm
exists, but we conjecture certain that there are other special cases which may have
enough structure to yield simple efficient algorithms.
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