Chapter 10

The Quaternions and the Spaces S^3 , SU(2), SO(3), and \mathbb{RP}^3

10.1 The Algebra \mathbb{H} of Quaternions

In this chapter, we discuss the representation of rotations of \mathbb{R}^3 and \mathbb{R}^4 in terms of quaternions.

Such a representation is not only concise and elegant, it also yields a very efficient way of handling composition of rotations.

It also tends to be numerically more stable than the representation in terms of orthogonal matrices.

The group of rotations $\mathbf{SO}(2)$ is isomorphic to the group $\mathbf{U}(1)$ of complex numbers $e^{i\theta} = \cos\theta + i\sin\theta$ of unit length. This follows imediately from the fact that the map

$$e^{i\theta} \mapsto \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

is a group isomorphism.

Geometrically, observe that $\mathbf{U}(1)$ is the unit circle S^1 .

We can identify the plane \mathbb{R}^2 with the complex plane \mathbb{C} , letting $z = x + iy \in \mathbb{C}$ represent $(x, y) \in \mathbb{R}^2$.

Then, every plane rotation ρ_{θ} by an angle θ is represented by multiplication by the complex number $e^{i\theta} \in \mathbf{U}(1)$, in the sense that for all $z, z' \in \mathbb{C}$,

$$z' = \rho_{\theta}(z)$$
 iff $z' = e^{i\theta}z$.

In some sense, the quaternions generalize the complex numbers in such a way that rotations of \mathbb{R}^3 are represented by multiplication by quaternions of unit length. This is basically true with some twists.

For instance, quaternion multiplication is not commutative, and a rotation in $\mathbf{SO}(3)$ requires conjugation with a (unit) quaternion for its representation.

Instead of the unit circle S^1 , we need to consider the sphere S^3 in \mathbb{R}^4 , and $\mathbf{U}(1)$ is replaced by $\mathbf{SU}(2)$.

Recall that the 3-sphere S^3 is the set of points $(x,y,z,t)\in \mathbb{R}^4$ such that

$$x^2 + y^2 + z^2 + t^2 = 1,$$

and that the real projective space \mathbb{RP}^3 is the quotient of S^3 modulo the equivalence relation that identifies antipodal points (where (x, y, z, t) and (-x, -y, -z, -t) are antipodal points). The group $\mathbf{SO}(3)$ of rotations of \mathbb{R}^3 is intimately related to the 3-sphere S^3 and to the real projective space \mathbb{RP}^3 .

The key to this relationship is the fact that rotations can be represented by quaternions, discovered by Hamilton in 1843.

Historically, the quaternions were the first instance of a noncommutative field. As we shall see, quaternions represent rotations in \mathbb{R}^3 very concisely.

It will be convenient to define the quaternions as certain 2×2 complex matrices.

We write a complex number z as z = a + ib, where $a, b \in \mathbb{R}$, and the *conjugate* \overline{z} of z is $\overline{z} = a - ib$.

Let $\mathbf{1}$, \mathbf{i} , \mathbf{j} , and \mathbf{k} be the following matrices:

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
$$\mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Consider the set $\mathbb H$ of all matrices of the form

$$a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k},$$

where $(a, b, c, d) \in \mathbb{R}^4$. Every matrix in \mathbb{H} is of the form

$$A = \begin{pmatrix} x & y \\ -\overline{y} & \overline{x} \end{pmatrix},$$

where x = a + ib and y = c + id. The matrices in \mathbb{H} are called *quaternions*.

436 CHAPTER 10. THE QUATERNIONS, THE SPACES S^3 , SU(2), SO(3), AND \mathbb{RP}^3

The null quaternion is denoted as 0 (or $\mathbf{0}$, if confusions arise).

Quaternions of the form $b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ are called *pure quaternions*. The set of pure quaternions is denoted as \mathbb{H}_p .

Note that the rows (and columns) of such matrices are vectors in \mathbb{C}^2 that are orthogonal with respect to the Hermitian inner product of \mathbb{C}^2 given by

$$(x_1, y_1).(x_2, y_2) = x_1\overline{x_2} + y_1\overline{y_2}.$$

Furthermore, their norm is

$$\sqrt{x\overline{x} + y\overline{y}} = \sqrt{a^2 + b^2 + c^2 + d^2},$$

and the determinant of A is $a^2 + b^2 + c^2 + d^2$.

It is easily seen that the following famous identities (discovered by Hamilton) hold:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -\mathbf{1}$$

 $\mathbf{i}\mathbf{j} = -\mathbf{j}\mathbf{i} = \mathbf{k}$
 $\mathbf{j}\mathbf{k} = -\mathbf{k}\mathbf{j} = \mathbf{i}$
 $\mathbf{k}\mathbf{i} = -\mathbf{i}\mathbf{k} = \mathbf{j}.$

Using these identities, it can be verified that \mathbb{H} is a ring (with multiplicative identity 1) and a real vector space of dimension 4 with basis (1, i, j, k).

In fact, III is an associative algebra. For details, see Berger [?], Veblen and Young [?], Dieudonné [?], Bertin [?].

2 The quaternions \mathbb{H} are often defined as the real algebra generated by the four elements $\mathbf{1}$, \mathbf{i} , \mathbf{j} , \mathbf{k} , and satisfying the identities just stated above.

The problem with such a definition is that it is not obvious that the algebraic structure \mathbb{H} actually exists.

A rigorous justification requires the notions of freely generated algebra and of quotient of an algebra by an ideal.

Our definition in terms of matrices makes the existence of \mathbb{H} trivial (but requires showing that the identities hold, which is an easy matter).

Given any two quaternions $X = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ and $Y = a'\mathbf{1} + b'\mathbf{i} + c'\mathbf{j} + d'\mathbf{k}$, it can be verified that

$$XY = (aa' - bb' - cc' - dd')\mathbf{1} + (ab' + ba' + cd' - dc')\mathbf{i} + (ac' + ca' + db' - bd')\mathbf{j} + (ad' + da' + bc' - cb')\mathbf{k}.$$

It is worth noting that these formulae were discovered independently by Olinde Rodrigues in 1840, a few years before Hamilton (Veblen and Young [?]).

However, Rodrigues was working with a different formalism, homogeneous transformations, and he did not discover the quaternions. 440 CHAPTER 10. THE QUATERNIONS, THE SPACES S^3 , SU(2), SO(3), AND \mathbb{RP}^3

The map from \mathbb{R} to \mathbb{H} defined such that $a \mapsto a\mathbf{1}$ is an injection which allows us to view \mathbb{R} as a subring $\mathbb{R}\mathbf{1}$ (in fact, a field) of \mathbb{H} .

Similarly, the map from \mathbb{R}^3 to \mathbb{H} defined such that $(b, c, d) \mapsto b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ is an injection which allows us to view \mathbb{R}^3 as a subspace of \mathbb{H} , in fact, the hyperplane \mathbb{H}_p .

Given a quaternion $X = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$, we define its *conjugate* \overline{X} as

$$\overline{X} = a\mathbf{1} - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}.$$

It is easily verified that

$$X\overline{X} = (a^2 + b^2 + c^2 + d^2)\mathbf{1}.$$

The quantity $a^2 + b^2 + c^2 + d^2$, also denoted as N(X), is called the *reduced norm* of X.

Clearly, X is nonnull iff $N(X) \neq 0$, in which case $\overline{X}/N(X)$ is the multiplicative inverse of X.

Thus, \mathbb{H} is a noncommutative field.

Since $X + \overline{X} = 2a\mathbf{1}$, we also call 2a the *reduced trace* of X, and we denote it as Tr(X).

A quaternion X is a pure quaternion iff $\overline{X} = -X$ iff Tr(X) = 0. The following identities can be shown (see Berger [?], Dieudonné [?], Bertin [?]):

$$\label{eq:XY} \begin{split} \overline{XY} &= \overline{Y}\,\overline{X},\\ Tr(XY) &= Tr(YX),\\ N(XY) &= N(X)N(Y),\\ Tr(ZXZ^{-1}) &= Tr(X), \end{split}$$

whenever $Z \neq 0$.

If $X = b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ and $Y = b'\mathbf{i} + c'\mathbf{j} + d'\mathbf{k}$, are pure quaternions, identifying X and Y with the corresponding vectors in \mathbb{R}^3 , the inner product $X \cdot Y$ and the crossproduct $X \times Y$ make sense, and letting $[0, X \times Y]$ denote the quaternion whose first component is 0 and whose last three components are those of $X \times Y$, we have the remarkable identity

$$XY = -(X \cdot Y)\mathbf{1} + [0, X \times Y].$$

More generally, given a quaternion $X = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$, we can write it as

$$X = [a, (b, c, d)],$$

where a is called the *scalar part* of X and (b, c, d) the *pure part* of X.

Then, if X = [a, U] and Y = [a', U'], it is easily seen that the quaternion product XY can be expressed as

$$XY = [aa' - U \cdot U', aU' + a'U + U \times U'].$$

The above formula for quaternion multiplication allows us to show the following fact.

Let $Z \in \mathbb{H}$, and assume that ZX = XZ for all $X \in \mathbb{H}$. Then, the pure part of Z is null, i.e., $Z = a\mathbf{1}$ for some $a \in \mathbb{R}$.

Remark: It is easy to check that for arbitrary quaternions X = [a, U] and Y = [a', U'],

$$XY - YX = [0, 2(U \times U')],$$

and that for pure quaternion $X, Y \in \mathbb{H}_p$,

$$2(X \cdot Y)\mathbf{1} = -(XY + YX).$$

Since quaternion multiplication is bilinear, for a given X, the map $Y \mapsto XY$ is linear, and similarly for a given Y, the map $X \mapsto XY$ is linear. If the matrix of the first map is L_X and the matrix of the second map is R_Y , then

$$XY = L_XY = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \begin{pmatrix} a' \\ b' \\ c' \\ d' \end{pmatrix}$$

and

$$XY = R_Y X = \begin{pmatrix} a' & -b' & -c' & -d' \\ b' & a' & d' & -c' \\ c' & -d' & a' & b' \\ d' & c' & -b' & a' \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

Observe that the columns (and the rows) of the above matrices are orthogonal.

Thus, when X and Y are unit quaternions, both L_X and R_Y are orthogonal matrices. Furthermore, it is obvious that $L_{\overline{X}} = L_X^{\top}$, the transpose of L_X , and similarly $R_{\overline{Y}} = R_Y^{\top}$.

It is easily shown that

$$\det(L_X) = (a^2 + b^2 + c^2 + d^2)^2.$$

This shows that when X is a unit quaternion, L_X is a rotation matrix, and similarly when Y is a unit quaternion, R_Y is a rotation matrix (see Veblen and Young [?]).

Define the map $\varphi \colon \mathbb{H} \times \mathbb{H} \to \mathbb{R}$ as follows:

$$\varphi(X,Y) = \frac{1}{2}Tr(X\overline{Y}) = aa' + bb' + cc' + dd'.$$

446 CHAPTER 10. THE QUATERNIONS, THE SPACES S^3 , SU(2), SO(3), AND \mathbb{RP}^3

It is easily verified that φ is bilinear, symmetric, and definite positive. Thus, the quaternions form a Euclidean space under the inner product defined by φ (see Berger [?], Dieudonné [?], Bertin [?]).

It is immediate that under this inner product, the norm of a quaternion X is just $\sqrt{N(X)}$.

It is also immediate that the set of pure quaternions is orthogonal to the space of "real quaternions" $\mathbb{R}\mathbf{1}$.

As a Euclidean space, \mathbb{H} is isomorphic to \mathbb{E}^4 .

The subspace \mathbb{H}_p of pure quaternions inherits a Euclidean structure, and this subspace is isomorphic to the Euclidean space \mathbb{E}^3 .

Since \mathbb{H} and \mathbb{E}^4 are isomorphic Euclidean spaces, their groups of rotations $\mathbf{SO}(\mathbb{H})$ and $\mathbf{SO}(4)$ are isomorphic, and we will identify them.

Similarly, we will identify $\mathbf{SO}(\mathbb{H}_p)$ and $\mathbf{SO}(3)$.

10.2 Quaternions and Rotations in SO(3)

We just observed that for any nonnull quaternion X, both maps $Y \mapsto XY$ and $Y \mapsto YX$ (where $Y \in \mathbb{H}$) are linear maps, and that when N(X) = 1, these linear maps are in **SO**(4).

This suggests looking at maps $\rho_{Y,Z}: \mathbb{H} \to \mathbb{H}$ of the form $X \mapsto YXZ$, where $Y, Z \in \mathbb{H}$ are any two fixed nonnull quaternions such that N(Y)N(Z) = 1.

In view of the identity N(UV) = N(U)N(V) for all $U, V \in \mathbb{H}$, we see that $\rho_{Y,Z}$ is an isometry.

In fact, since

 $\rho_{Y,Z} = \rho_{Y,1} \circ \rho_{1,Z},$

 $\rho_{Y,Z}$ itself is a rotation, i.e. $\rho_{Y,Z} \in \mathbf{SO}(4)$.

We will prove that every rotation in $\mathbf{SO}(4)$ arises in this fashion.

Also, observe that when $Z = Y^{-1}$, the map $\rho_{Y,Y^{-1}}$, denoted more simply as ρ_Y , is the identity on $\mathbf{1}\mathbb{R}$, and maps \mathbb{H}_p into itself.

Thus, $\rho_Z \in \mathbf{SO}(3)$, i.e., ρ_Z is a rotation of \mathbb{E}^3 .

We will prove that every rotation in $\mathbf{SO}(3)$ arises in this fashion.

The quaternions of norm 1, also called *unit quaternions*, are in bijection with points of the real 3-sphere S^3 .

It is easy to verify that the unit quaternions form a subgroup of the multiplicative group \mathbb{H}^* of nonnull quaternions. In terms of complex matrices, the unit quaternions correspond to the group of unitary complex 2×2 matrices of determinant 1 (i.e., $x\overline{x} + y\overline{y} = 1$)

$$A = \begin{pmatrix} x & y \\ -\overline{y} & \overline{x} \end{pmatrix},$$

with respect to the Hermitian inner product in \mathbb{C}^2 .

This group is denoted as $\mathbf{SU}(2)$.

The obvious bijection between $\mathbf{SU}(2)$ and S^3 is in fact a homeomorphism, and it can be used to transfer the group structure on $\mathbf{SU}(2)$ to S^3 , which becomes a topological group isomorphic to the topological group $\mathbf{SU}(2)$ of unit quaternions.

It should also be noted that the fact that the shere S^3 has a group structure is quite exceptional.

As a matter of fact, the only spheres for which a continuous group structure is definable are S^1 and S^3 .

One of the most important properties of the quaternions is that they can be used to represent rotations of \mathbb{R}^3 , as stated in the following lemma.

Lemma 10.2.1 For every quaternion $Z \neq 0$, the map

 $\rho_Z: X \mapsto ZXZ^{-1}$

(where $X \in \mathbb{H}$) is a rotation in $\mathbf{SO}(\mathbb{H}) = \mathbf{SO}(4)$ whose restriction to the space \mathbb{H}_p of pure quaternions is a rotation in $\mathbf{SO}(\mathbb{H}_p) = \mathbf{SO}(3)$. Conversely, every rotation in $\mathbf{SO}(3)$ is of the form

 $\rho_Z: X \mapsto ZXZ^{-1},$

for some quaternion $Z \neq 0$, and for all $X \in \mathbb{H}_p$. Furthermore, if two nonnull quaternions Z and Z' represent the same rotation, then $Z' = \lambda Z$ for some $\lambda \neq 0$ in \mathbb{R} . 452 CHAPTER 10. THE QUATERNIONS, THE SPACES S^3 , SU(2), SO(3), AND \mathbb{RP}^3 As a corollary of

$$\rho_{YX} = \rho_Y \circ \rho_X,$$

it is easy to show that the map

$$\rho: \mathbf{SU}(2) \to \mathbf{SO}(3)$$

defined such that $\rho(Z) = \rho_Z$ is a surjective and continuous homomorphism whose kernel is $\{1, -1\}$.

Since $\mathbf{SU}(2)$ and S^3 are homeomorphic as topological spaces, this shows that $\mathbf{SO}(3)$ is homeomorphic to the quotient of the sphere S^3 modulo the antipodal map.

But the real projective space \mathbb{RP}^3 is defined precisely this way in terms of the antipodal map $\pi: S^3 \to \mathbb{RP}^3$, and thus **SO**(3) and \mathbb{RP}^3 are homeomorphic. This homeomorphism can then be used to transfer the group structure on $\mathbf{SO}(3)$ to \mathbb{RP}^3 which becomes a topological group.

Moreover, it can be shown that $\mathbf{SO}(3)$ and \mathbb{RP}^3 are diffeomorphic manifolds (see Marsden and Ratiu [?]).

Thus, $\mathbf{SO}(3)$ and \mathbb{RP}^3 are at the same time, groups, topological spaces, and manifolds, and in fact they are Lie groups (see Marsden and Ratiu [?] or Bryant [?]).

The axis and the angle of a rotation can also be extracted from a quaternion representing that rotation. **Lemma 10.2.2** For every quaternion $Z = a\mathbf{1}+t$ where t is a nonnull pure quaternion, the axis of the rotation ρ_Z associated with Z is determined by the vector in \mathbb{R}^3 corresponding to t, and the angle of rotation θ is equal to π when a = 0, or when $a \neq 0$, given a suitable orientation of the plane orthogonal to the axis of rotation, by

$$\tan\frac{\theta}{2} = \frac{\sqrt{N(t)}}{|a|},$$

with $0 < \theta \leq \pi$.

We can write the unit quaternion Z as

$$Z = \left[\cos\frac{\theta}{2}, \, \sin\frac{\theta}{2} \, V\right],\,$$

where V is the unit vector $\frac{t}{\sqrt{N(t)}}$ (with $-\pi \le \theta \le \pi$).

Also note that VV = -1, and thus, formally, every unit quaternion looks like a complex number $\cos \varphi + i \sin \varphi$, except that *i* is replaced by a unit vector, and multiplication is quaternion multiplication.

In order to explain the homomorphism $\rho: \mathbf{SU}(2) \to \mathbf{SO}(3)$ more concretely, we now derive the formula for the rotation matrix of a rotation ρ whose axis D is determined by the nonnull vector w and whose angle of rotation is θ .

For simplicity, we may assume that w is a unit vector.

Letting W = (b, c, d) be the column vector representing w and H be the plane orthogonal to w, recall that the matrices representing the projections p_D and p_H are

$$WW^{\top}$$
 and $I - WW^{\top}$.

Given any vector $u \in \mathbb{R}^3$, the vector $\rho(u)$ can be expressed in terms of the vectors $p_D(u)$, $p_H(u)$, and $w \times p_H(u)$, as

$$\rho(u) = p_D(u) + \cos\theta \, p_H(u) + \sin\theta \, w \times p_H(u).$$

However, it is obvious that

$$w \times p_H(u) = w \times u,$$

so that

$$\rho(u) = p_D(u) + \cos\theta \, p_H(u) + \sin\theta \, w \times u,$$

and we know from Section 5.9 that the cross-product $w \times u$ can be expressed in terms of the multiplication on the left by the matrix

$$A = \begin{pmatrix} 0 & -d & c \\ d & 0 & -b \\ -c & b & 0 \end{pmatrix}$$

Then, letting

$$B = WW^{\top} = \begin{pmatrix} b^2 & bc & bd \\ bc & c^2 & cd \\ bd & cd & d^2 \end{pmatrix},$$

the matrix R representing the rotation ρ is

$$R = WW^{\top} + \cos\theta(I - WW^{\top}) + \sin\theta A,$$

= $\cos\theta I + \sin\theta A + (1 - \cos\theta)WW^{\top},$
= $\cos\theta I + \sin\theta A + (1 - \cos\theta)B.$

Thus,

$$R = \cos \theta I + \sin \theta A + (1 - \cos \theta) B.$$

with

$$A = \begin{pmatrix} 0 & -d & c \\ d & 0 & -b \\ -c & b & 0 \end{pmatrix}.$$

458 CHAPTER 10. THE QUATERNIONS, THE SPACES S^3 , SU(2), SO(3), AND \mathbb{RP}^3 It is immediately verified that

$$A^2 = B - I,$$

and thus, R is also given by

$$R = I + \sin \theta A + (1 - \cos \theta) A^2,$$

with

$$A = \begin{pmatrix} 0 & -d & c \\ d & 0 & -b \\ -c & b & 0 \end{pmatrix}.$$

Then, the nonnull unit quaternion

$$Z = \left[\cos\frac{\theta}{2}, \, \sin\frac{\theta}{2} \, V\right],\,$$

where V = (b, c, d) is a unit vector, corresponds to the rotation ρ_Z of matrix

$$R = I + \sin \theta A + (1 - \cos \theta) A^2.$$

with

$$A = \begin{pmatrix} 0 & -d & c \\ d & 0 & -b \\ -c & b & 0 \end{pmatrix}.$$

Remark: A related formula known as Rodrigues' formula (1840) gives an expression for a rotation matrix in terms of the exponential of a matrix (the exponential map).

Indeed, given $(b, c, d) \in \mathbb{R}^3$, letting $\theta = \sqrt{b^2 + c^2 + d^2}$, we have

$$e^{A} = \cos \theta I + \frac{\sin \theta}{\theta} A + \frac{(1 - \cos \theta)}{\theta^{2}} B,$$

with A and B as above, but (b, c, d) not necessarily a unit vector. We will study exponential maps later on.

Using the matrices L_X and R_Y introduced earlier, since $XY = L_XY = R_YX$, from $Y = ZXZ^{-1} = ZX\overline{Z}/N(Z)$, we get

$$Y = \frac{1}{N(Z)} L_Z R_{\overline{Z}} X.$$

Thus, if we want to see the effect of the rotation specified by the quaternion Z in terms of matrices, we simply have to compute the matrix

$$\frac{1}{N(Z)} L_Z R_{\overline{Z}} = \frac{1}{N(Z)} \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}$$

which yields

$$\frac{1}{N(Z)} \begin{pmatrix} N(Z) & 0 & 0 & 0\\ 0 & a^2 + b^2 - c^2 - d^2 & 2bc - 2ad & 2ac + 2bd\\ 0 & 2bc + 2ad & a^2 - b^2 + c^2 - d^2 & -2ab + 2cd\\ 0 & -2ac + 2bd & 2ab + 2cd & a^2 - b^2 - c^2 + d^2 \end{pmatrix}$$

where $N(Z) = a^2 + b^2 + c^2 + d^2$.

But since every pure quaternion X is a vector whose first component is 0, we see that the rotation matrix R(Z)associated with the quaternion Z is

$$R(Z) = \frac{1}{N(Z)} \begin{pmatrix} a^2 + b^2 - c^2 - d^2 & 2bc - 2ad & 2ac + 2bd \\ 2bc + 2ad & a^2 - b^2 + c^2 - d^2 & -2ab + 2cd \\ -2ac + 2bd & 2ab + 2cd & a^2 - b^2 - c^2 + d^2 \end{pmatrix}$$

This expression for a rotation matrix is due to Euler (see Veblen and Young [?]).

It is remarkable that this matrix only contains quadratic polynomials in a, b, c, d. This makes it possible to compute easily a quaternion from a rotation matrix.

From a computational point of view, it is worth noting that computing the composition of two rotations ρ_Y and ρ_Z specified by two quaternions Y, Z using quaternion multiplication (i.e. $\rho_Y \circ \rho_Z = \rho_{YZ}$) is cheaper than using rotation matrices and matrix multiplication.

On the other hand, computing the image of a point X under a rotation ρ_Z is more expensive in terms of quaternions (it requires computing ZXZ^{-1}) than it is in terms of rotation matrices (where only AX needs to be computed, where A is a rotation matrix).

Thus, if many points need to be rotated and the rotation is specified by a quaternion, it is advantageous to precompute the Euler matrix.

10.3 Quaternions and Rotations in SO(4)

For every nonnull quaternion Z, the map $X \mapsto ZXZ^{-1}$ (where X is a pure quaternion) defines a rotation of \mathbb{H}_p , and conversely every rotation of \mathbb{H}_p is of the above form.

What happens if we consider a map of the form

$$X \mapsto YXZ,$$

where $X \in \mathbb{H}$, and N(Y)N(Z) = 1?

Remarkably, it turns out that we get all the rotations of $\mathbb H.$

Lemma 10.3.1 For every pair (Y, Z) of quaternions such that N(Y)N(Z) = 1, the map

$$\rho_{Y,Z}: X \mapsto YXZ$$

(where $X \in \mathbb{H}$) is a rotation in $\mathbf{SO}(\mathbb{H}) = \mathbf{SO}(4)$. Conversely, every rotation in $\mathbf{SO}(4)$ is of the form

$$\rho_{Y,Z}: X \mapsto YXZ,$$

for some quaternions Y, Z, such that N(Y)N(Z) = 1. Furthermore, if two nonnull pairs of quaternions (Y, Z) and (Y', Z') represent the same rotation, then $Y' = \lambda Y$ and $Z' = \lambda^{-1}Z$, for some $\lambda \neq 0$ in \mathbb{R} .

It is easily seen that

$$\rho_{(Y'Y,ZZ')} = \rho_{Y',Z'} \circ \rho_{Y,Z},$$

and as a corollary, it is it easy to show that the map

$$\eta: S^3 \times S^3 \to \mathbf{SO}(4)$$

defined such that $\eta(Y, Z) = \rho_{Y,\overline{Z}}$ is a surjective homomorphism whose kernel is $\{(\mathbf{1}, \mathbf{1}), (-\mathbf{1}, -\mathbf{1})\}$. 466 CHAPTER 10. THE QUATERNIONS, THE SPACES S^3 , SU(2), SO(3), AND \mathbb{RP}^3

We conclude this Section with a mention of the exponential map, since it has applications to quaternion interpolation, which, in turn, has applications to motion interpolation.

Observe that the quaternions $\mathbf{i},\mathbf{j},\mathbf{k}$ can also be written as

$$\mathbf{i} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
$$\mathbf{j} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$
$$\mathbf{k} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

so that, if we define the matrices $\sigma_1, \sigma_2, \sigma_3$ such that

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

we can write

$$Z = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} = a\mathbf{1} + i(d\sigma_1 + c\sigma_2 + b\sigma_3).$$

The matrices $\sigma_1, \sigma_2, \sigma_3$ are called the *Pauli spin matrices*.

Note that their traces are null and that they are Hermitian (recall that a complex matrix is Hermitian iff it is equal to the transpose of its conjugate, i.e., $A^* = A$).

The somewhat unfortunate order reversal of b, c, d has to do with the traditional convention for listing the Pauli matrices.

If we let $e_0 = a$, $e_1 = d$, $e_2 = c$ and $e_3 = b$, then Z can be written as

$$Z = e_0 \mathbf{1} + i(e_1 \sigma_1 + e_2 \sigma_2 + e_3 \sigma_3),$$

and e_0, e_1, e_2, e_3 are called the *Euler parameters* of the rotation specified by Z.

468 CHAPTER 10. THE QUATERNIONS, THE SPACES S³, SU(2), SO(3), AND \mathbb{RP}^3 If N(Z) = 1, then we can also write

$$Z = \cos\frac{\theta}{2}\mathbf{1} + i\sin\frac{\theta}{2}(\beta\sigma_3 + \gamma\sigma_2 + \delta\sigma_1),$$

where

$$(\beta, \gamma, \delta) = \frac{1}{\sin \frac{\theta}{2}} (b, c, d).$$

Letting $A = \beta \sigma_3 + \gamma \sigma_2 + \delta \sigma_1$, it can be shown that

$$e^{i\theta A} = \cos\theta \,\mathbf{1} + i\sin\theta \,A,$$

where the exponential is the usual exponential of matrices, i.e., for a square $n \times n$ matrix M,

$$\exp(M) = I_n + \sum_{k \ge 1} \frac{M^k}{k!}.$$

Note that since A is Hermitian of null trace, iA is skew Hermitian of null trace. The above formula turns out to define the exponential map from the Lie Algebra of $\mathbf{SU}(2)$ to $\mathbf{SU}(2)$. The Lie algebra of $\mathbf{SU}(2)$ is a real vector space having $i\sigma_1$, $i\sigma_2$, and $i\sigma_3$, as a basis.

Now, the vector space \mathbb{R}^3 is a Lie algebra if we define the Lie bracket on \mathbb{R}^3 as the usual cross-product $u \times v$ of vectors.

Then, the Lie algebra of $\mathbf{SU}(2)$ is isomorphic to (\mathbb{R}^3, \times) , and the exponential map can be viewed as a map

$$\exp:(\mathbb{R}^3,\times)\to\mathbf{SU}(2)$$

given by the formula

$$\exp(\theta v) = \left[\cos\frac{\theta}{2}, \sin\frac{\theta}{2}v\right],$$

for every vector θv , where v is a unit vector in \mathbb{R}^3 , and $\theta \in \mathbb{R}$.

10.4 Applications of Euclidean Geometry to Motion Interpolation

The exponential map can be used for quaternion interpolation.

Given two unit quaternions X, Y, suppose we want to find a quaternion Z "interpolating" between X and Y.

We have to clarify what this means.

Since SU(2) is topologically the same as the sphere S^3 , we define an *interpolant* of X and Y as a quaternion Z on the great circle (on the sphere S^3) determined by the intersection of S^3 with the (2-)plane defined by the two points X and Y (viewed as points on S^3) and the orgin (0, 0, 0, 0).

Then, the points (quaternions) on this great circle can be defined by first rotating X and Y so that X goes to **1** and Y goes to $X^{-1}Y$, by multiplying (on the left) by X^{-1} . Letting

$$X^{-1}Y = \left[\cos\Omega, \,\sin\Omega\,w\right],\,$$

where $-\pi < \Omega \leq \pi$, the points on the great circle from **1** to $X^{-1}Y$ are given by the quaternions

$$(X^{-1}Y)^{\lambda} = [\cos \lambda \Omega, \sin \lambda \Omega w],$$

where $\lambda \in \mathbb{R}$.

This is because $X^{-1}Y = \exp(2\Omega w)$, and since an interpolant between (0, 0, 0) and $2\Omega w$ is $2\lambda\Omega w$ in the Lie algebra of **SU**(2), the corresponding quaternion is indeed

$$\exp(2\lambda\Omega) = \left[\cos\lambda\Omega, \,\sin\lambda\Omega\,w\right].$$

We can't justify all this here, but it is indeed correct.

472 CHAPTER 10. THE QUATERNIONS, THE SPACES S^3 , $\mathbf{SU}(2)$, $\mathbf{SO}(3)$, AND \mathbb{RP}^3

If $\Omega \neq \pi$, then the shortest arc between X and Y is unique, and it corresponds to those λ such that $0 \leq \lambda \leq 1$ (it is a geodesic arc).

However, if $\Omega = \pi$, then X and Y are antipodal, and there are infinitely many half circles from X to Y. In this case, w can be chosen arbitrarily.

Finally, having the arc of great circle between $\mathbf{1}$ and $X^{-1}Y$ (assuming $\Omega \neq \pi$), we get the arc of interpolants $Z(\lambda)$ between X and Y by performing the inverse rotation from $\mathbf{1}$ to X and from $X^{-1}Y$ to Y, i.e., by multiplying (on the left) by X, and we get

$$Z(\lambda) = X(X^{-1}Y)^{\lambda}.$$

It is remarkable that a closed-form formula for $Z(\lambda)$ can be given, as shown by Shoemake [?, ?].

If $X = [\cos \theta, \sin \theta u]$, and $Y = [\cos \varphi, \sin \varphi v]$ (where u and v are unit vectors in \mathbb{R}^3), letting

$$\cos \Omega = \cos \theta \cos \varphi + \sin \theta \sin \varphi \left(u \cdot v \right)$$

be the inner product of X and Y viewed as vectors in \mathbb{R}^4 , it is a bit laborious to show that

$$Z(\lambda) = \frac{\sin(1-\lambda)\Omega}{\sin\Omega} X + \frac{\sin\lambda\Omega}{\sin\Omega} Y.$$