
Chapter 10

The Quaternions and the Spaces S3,
SU(2), SO(3), and RP3

10.1 The Algebra H of Quaternions

In this chapter, we discuss the representation of rotations
of R3 and R4 in terms of quaternions.

Such a representation is not only concise and elegant, it
also yields a very efficient way of handling composition of
rotations.

It also tends to be numerically more stable than the rep-
resentation in terms of orthogonal matrices.
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The group of rotations SO(2) is isomorphic to the group
U(1) of complex numbers eiθ = cos θ + i sin θ of unit
length. This follows imediately from the fact that the
map

eiθ !→
(
cos θ − sin θ
sin θ cos θ

)

is a group isomorphism.

Geometrically, observe that U(1) is the unit circle S1.

We can identify the plane R2 with the complex plane C,
letting z = x + iy ∈ C represent (x, y) ∈ R2.

Then, every plane rotation ρθ by an angle θ is represented
by multiplication by the complex number eiθ ∈ U(1), in
the sense that for all z, z′ ∈ C,

z′ = ρθ(z) iff z′ = eiθz.
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In some sense, the quaternions generalize the complex
numbers in such a way that rotations of R3 are repre-
sented by multiplication by quaternions of unit length.
This is basically true with some twists.

For instance, quaternion multiplication is not commuta-
tive, and a rotation in SO(3) requires conjugation with
a (unit) quaternion for its representation.

Instead of the unit circle S1, we need to consider the
sphere S3 in R4, and U(1) is replaced by SU(2).

Recall that the 3-sphere S3 is the set of points
(x, y, z, t) ∈ R4 such that

x2 + y2 + z2 + t2 = 1,

and that the real projective space RP3 is the quotient of
S3 modulo the equivalence relation that identifies antipo-
dal points (where (x, y, z, t) and (−x,−y,−z,−t) are
antipodal points).



434 CHAPTER 10. THE QUATERNIONS, THE SPACES S3, SU(2), SO(3), AND RP3

The group SO(3) of rotations of R3 is intimately related
to the 3-sphere S3 and to the real projective space RP3.

The key to this relationship is the fact that rotations can
be represented by quaternions, discovered by Hamilton in
1843.

Historically, the quaternions were the first instance of a
noncommutative field. As we shall see, quaternions rep-
resent rotations in R3 very concisely.

It will be convenient to define the quaternions as certain
2× 2 complex matrices.
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We write a complex number z as z = a + ib, where
a, b ∈ R, and the conjugate z of z is z = a− ib.

Let 1, i, j, and k be the following matrices:

1 =

(
1 0
0 1

)
i =

(
i 0
0 −i

)

j =

(
0 1
−1 0

)
k =

(
0 i
i 0

)
.

Consider the set H of all matrices of the form

a1 + bi + cj + dk,

where (a, b, c, d) ∈ R4. Every matrix in H is of the form

A =

(
x y
−y x

)
,

where x = a+ ib and y = c+ id. The matrices in H are
called quaternions .
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The null quaternion is denoted as 0 (or 0, if confusions
arise).

Quaternions of the form bi + cj + dk are called pure
quaternions . The set of pure quaternions is denoted as
Hp.

Note that the rows (and columns) of such matrices are
vectors in C2 that are orthogonal with respect to the Her-
mitian inner product of C2 given by

(x1, y1).(x2, y2) = x1x2 + y1y2.

Furthermore, their norm is
√
xx + yy =

√
a2 + b2 + c2 + d2,

and the determinant of A is a2 + b2 + c2 + d2.
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It is easily seen that the following famous identities (dis-
covered by Hamilton) hold:

i2 = j2 = k2 = ijk = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j.

Using these identities, it can be verified that H is a ring
(with multiplicative identity 1) and a real vector space of
dimension 4 with basis (1, i, j,k).

In fact,H is an associative algebra. For details, see Berger
[?], Veblen and Young [?], Dieudonné [?], Bertin [?].
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! The quaternions H are often defined as the real algebra
generated by the four elements 1, i, j,k, and satisfying

the identities just stated above.

The problem with such a definition is that it is not obvious
that the algebraic structure H actually exists.

A rigorous justification requires the notions of freely gen-
erated algebra and of quotient of an algebra by an ideal.

Our definition in terms of matrices makes the existence of
H trivial (but requires showing that the identities hold,
which is an easy matter).
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Given any two quaternions X = a1 + bi + cj + dk and
Y = a′1 + b′i + c′j + d′k, it can be verified that

XY = (aa′ − bb′ − cc′ − dd′)1 + (ab′ + ba′ + cd′ − dc′)i

+ (ac′ + ca′ + db′ − bd′)j + (ad′ + da′ + bc′ − cb′)k.

It is worth noting that these formulae were discovered
independently by Olinde Rodrigues in 1840, a few years
before Hamilton (Veblen and Young [?]).

However, Rodrigues was working with a different formal-
ism, homogeneous transformations, and he did not dis-
cover the quaternions.
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The map from R to H defined such that a !→ a1 is an
injection which allows us to view R as a subring R1 (in
fact, a field) of H.

Similarly, the map from R3 to H defined such that
(b, c, d) !→ bi+ cj+ dk is an injection which allows us to
view R3 as a subspace of H, in fact, the hyperplane Hp.

Given a quaternion X = a1+ bi+ cj+ dk, we define its
conjugate X as

X = a1− bi− cj− dk.

It is easily verified that

XX = (a2 + b2 + c2 + d2)1.

The quantity a2 + b2 + c2 + d2, also denoted as N(X), is
called the reduced norm of X .
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Clearly,X is nonnull iffN(X) (= 0, in which caseX/N(X)
is the multiplicative inverse of X .

Thus, H is a noncommutative field.

Since X +X = 2a1, we also call 2a the reduced trace of
X , and we denote it as Tr(X).

A quaternion X is a pure quaternion iff X = −X iff
Tr(X) = 0. The following identities can be shown (see
Berger [?], Dieudonné [?], Bertin [?]):

XY = Y X,

Tr(XY ) = Tr(Y X),

N(XY ) = N(X)N(Y ),

T r(ZXZ−1) = Tr(X),

whenever Z (= 0.
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If X = bi + cj + dk and Y = b′i + c′j + d′k, are pure
quaternions, identifying X and Y with the correspond-
ing vectors in R3, the inner product X · Y and the cross-
product X×Y make sense, and letting [0, X×Y ] denote
the quaternion whose first component is 0 and whose last
three components are those of X × Y , we have the re-
markable identity

XY = −(X · Y )1 + [0, X × Y ].

More generally, given a quaternionX = a1+bi+cj+dk,
we can write it as

X = [a, (b, c, d)],

where a is called the scalar part of X and (b, c, d) the
pure part of X .
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Then, if X = [a, U ] and Y = [a′, U ′], it is easily seen
that the quaternion product XY can be expressed as

XY = [aa′ − U · U ′, aU ′ + a′U + U × U ′].

The above formula for quaternion multiplication allows
us to show the following fact.

Let Z ∈ H, and assume that ZX = XZ for all X ∈ H.
Then, the pure part of Z is null, i.e., Z = a1 for some
a ∈ R.

Remark : It is easy to check that for arbitrary quaternions
X = [a, U ] and Y = [a′, U ′],

XY − Y X = [0, 2(U × U ′)],

and that for pure quaternion X, Y ∈ Hp,

2(X · Y )1 = −(XY + Y X).
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Since quaternion multiplication is bilinear, for a given X ,
the map Y !→ XY is linear, and similarly for a given Y ,
the map X !→ XY is linear. If the matrix of the first
map is LX and the matrix of the second map is RY , then

XY = LXY =




a −b −c −d
b a −d c
c d a −b
d −c b a








a′
b′
c′
d′





and

XY = RYX =




a′ −b′ −c′ −d′
b′ a′ d′ −c′
c′ −d′ a′ b′
d′ c′ −b′ a′








a
b
c
d



 .
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Observe that the columns (and the rows) of the above
matrices are orthogonal.

Thus, when X and Y are unit quaternions, both LX and
RY are orthogonal matrices. Furthermore, it is obvious
that LX = L)

X , the transpose of LX , and similarly
RY = R)

Y .

It is easily shown that

det(LX) = (a2 + b2 + c2 + d2)2.

This shows that when X is a unit quaternion, LX is a ro-
tation matrix, and similarly when Y is a unit quaternion,
RY is a rotation matrix (see Veblen and Young [?]).

Define the map ϕ:H×H → R as follows:

ϕ(X, Y ) =
1

2
Tr(X Y ) = aa′ + bb′ + cc′ + dd′.



446 CHAPTER 10. THE QUATERNIONS, THE SPACES S3, SU(2), SO(3), AND RP3

It is easily verified that ϕ is bilinear, symmetric, and
definite positive. Thus, the quaternions form a Euclidean
space under the inner product defined by ϕ (see Berger
[?], Dieudonné [?], Bertin [?]).

It is immediate that under this inner product, the norm
of a quaternion X is just

√
N(X).

It is also immediate that the set of pure quaternions is
orthogonal to the space of “real quaternions” R1.

As a Euclidean space, H is isomorphic to E4.

The subspace Hp of pure quaternions inherits a Euclidean
structure, and this subspace is isomorphic to the Eu-
clidean space E3.
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Since H and E4 are isomorphic Euclidean spaces, their
groups of rotations SO(H) and SO(4) are isomorphic,
and we will identify them.

Similarly, we will identify SO(Hp) and SO(3).
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10.2 Quaternions and Rotations in SO(3)

We just observed that for any nonnull quaternionX , both
maps Y !→ XY and Y !→ Y X (where Y ∈ H) are linear
maps, and that when N(X) = 1, these linear maps are
in SO(4).

This suggests looking at maps ρY,Z:H → H of the form
X !→ Y XZ, where Y, Z ∈ H are any two fixed nonnull
quaternions such that N(Y )N(Z) = 1.

In view of the identity N(UV ) = N(U )N(V ) for all
U, V ∈ H, we see that ρY,Z is an isometry.
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In fact, since
ρY,Z = ρY,1 ◦ ρ1,Z,

ρY,Z itself is a rotation, i.e. ρY,Z ∈ SO(4).

We will prove that every rotation in SO(4) arises in this
fashion.

Also, observe that when Z = Y −1, the map ρY,Y −1, de-
noted more simply as ρY , is the identity on 1R, and maps
Hp into itself.

Thus, ρZ ∈ SO(3), i.e., ρZ is a rotation of E3.

We will prove that every rotation in SO(3) arises in this
fashion.

The quaternions of norm 1, also called unit quaternions ,
are in bijection with points of the real 3-sphere S3.
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It is easy to verify that the unit quaternions form a sub-
group of the multiplicative group H∗ of nonnull quater-
nions. In terms of complex matrices, the unit quaternions
correspond to the group of unitary complex 2×2 matrices
of determinant 1 (i.e., xx + yy = 1)

A =

(
x y
−y x

)
,

with respect to the Hermitian inner product in C2.

This group is denoted as SU(2).

The obvious bijection between SU(2) and S3 is in fact a
homeomorphism, and it can be used to transfer the group
structure on SU(2) to S3, which becomes a topological
group isomorphic to the topological group SU(2) of unit
quaternions.

It should also be noted that the fact that the shere S3

has a group structure is quite exceptional.
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As a matter of fact, the only spheres for which a contin-
uous group structure is definable are S1 and S3.

One of the most important properties of the quaternions
is that they can be used to represent rotations of R3, as
stated in the following lemma.

Lemma 10.2.1 For every quaternion Z (= 0, the map

ρZ :X !→ ZXZ−1

(where X ∈ H) is a rotation in SO(H) = SO(4) whose
restriction to the space Hp of pure quaternions is a
rotation in SO(Hp) = SO(3). Conversely, every rota-
tion in SO(3) is of the form

ρZ :X !→ ZXZ−1,

for some quaternion Z (= 0, and for all X ∈ Hp.
Furthermore, if two nonnull quaternions Z and Z ′

represent the same rotation, then Z ′ = λZ for some
λ (= 0 in R.
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As a corollary of

ρY X = ρY ◦ ρX,

it is easy to show that the map

ρ:SU(2) → SO(3)

defined such that ρ(Z) = ρZ is a surjective and continu-
ous homomorphism whose kernel is {1,−1}.

Since SU(2) and S3 are homeomorphic as topological
spaces, this shows that SO(3) is homeomorphic to the
quotient of the sphere S3 modulo the antipodal map.

But the real projective space RP3 is defined precisely this
way in terms of the antipodal map π:S3 → RP3, and
thus SO(3) and RP3 are homeomorphic.



10.2. QUATERNIONS AND ROTATIONS IN SO(3) 453

This homeomorphism can then be used to transfer the
group structure on SO(3) to RP3 which becomes a topo-
logical group.

Moreover, it can be shown that SO(3) and RP3 are dif-
feomorphic manifolds (see Marsden and Ratiu [?]).

Thus, SO(3) andRP3 are at the same time, groups, topo-
logical spaces, and manifolds, and in fact they are Lie
groups (see Marsden and Ratiu [?] or Bryant [?]).

The axis and the angle of a rotation can also be extracted
from a quaternion representing that rotation.
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Lemma 10.2.2 For every quaternion Z = a1+t where
t is a nonnull pure quaternion, the axis of the rota-
tion ρZ associated with Z is determined by the vector
in R3 corresponding to t, and the angle of rotation θ
is equal to π when a = 0, or when a (= 0, given a suit-
able orientation of the plane orthogonal to the axis of
rotation, by

tan
θ

2
=

√
N(t)

|a| ,

with 0 < θ ≤ π.

We can write the unit quaternion Z as

Z =

[
cos

θ

2
, sin

θ

2
V

]
,

where V is the unit vector t√
N(t)

(with −π ≤ θ ≤ π).
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Also note that V V = −1, and thus, formally, every unit
quaternion looks like a complex number cosϕ + i sinϕ,
except that i is replaced by a unit vector, and multipli-
cation is quaternion multiplication.

In order to explain the homomorphism ρ:SU(2) → SO(3)
more concretely, we now derive the formula for the rota-
tion matrix of a rotation ρ whose axis D is determined
by the nonnull vector w and whose angle of rotation is θ.

For simplicity, we may assume that w is a unit vector.

Letting W = (b, c, d) be the column vector representing
w and H be the plane orthogonal to w, recall that the
matrices representing the projections pD and pH are

WW) and I −WW).
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Given any vector u ∈ R3, the vector ρ(u) can be ex-
pressed in terms of the vectors pD(u), pH(u), and
w × pH(u), as

ρ(u) = pD(u) + cos θ pH(u) + sin θw × pH(u).

However, it is obvious that

w × pH(u) = w × u,

so that

ρ(u) = pD(u) + cos θ pH(u) + sin θw × u,

and we know from Section 5.9 that the cross-product
w× u can be expressed in terms of the multiplication on
the left by the matrix

A =




0 −d c
d 0 −b
−c b 0



 .



10.2. QUATERNIONS AND ROTATIONS IN SO(3) 457

Then, letting

B = WW) =




b2 bc bd
bc c2 cd
bd cd d2



 ,

the matrix R representing the rotation ρ is

R = WW) + cos θ(I −WW)) + sin θA,

= cos θ I + sin θA + (1− cos θ)WW),

= cos θ I + sin θA + (1− cos θ)B.

Thus,

R = cos θ I + sin θA + (1− cos θ)B.

with

A =




0 −d c
d 0 −b
−c b 0



 .
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It is immediately verified that

A2 = B − I,

and thus, R is also given by

R = I + sin θA+ (1− cos θ)A2,

with

A =




0 −d c
d 0 −b
−c b 0



 .
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Then, the nonnull unit quaternion

Z =

[
cos

θ

2
, sin

θ

2
V

]
,

where V = (b, c, d) is a unit vector, corresponds to the
rotation ρZ of matrix

R = I + sin θA+ (1− cos θ)A2.

with

A =




0 −d c
d 0 −b
−c b 0



 .
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Remark : A related formula known as Rodrigues’ formula
(1840) gives an expression for a rotation matrix in terms
of the exponential of a matrix (the exponential map).

Indeed, given (b, c, d) ∈ R3, letting θ =
√
b2 + c2 + d2,

we have

eA = cos θ I +
sin θ

θ
A +

(1− cos θ)

θ2
B,

with A and B as above, but (b, c, d) not necessarily a unit
vector. We will study exponential maps later on.
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Using the matrices LX and RY introduced earlier, since
XY = LXY = RYX , from Y = ZXZ−1 = ZXZ/N(Z),
we get

Y =
1

N(Z)
LZRZX.

Thus, if we want to see the effect of the rotation specified
by the quaternion Z in terms of matrices, we simply have
to compute the matrix

1

N(Z)
LZRZ

=
1

N(Z)




a −b −c −d
b a −d c
c d a −b
d −c b a








a b c d
−b a −d c
−c d a −b
−d −c b a





which yields
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1

N(Z)





N(Z) 0 0 0
0 a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
0 2bc+ 2ad a2 − b2 + c2 − d2 −2ab+ 2cd
0 −2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2





where N(Z) = a2 + b2 + c2 + d2.

But since every pure quaternion X is a vector whose first
component is 0, we see that the rotation matrix R(Z)
associated with the quaternion Z is

R(Z) =

1

N(Z)

(
a2 + b2 − c2 − d2 2bc− 2ad 2ac + 2bd

2bc + 2ad a2 − b2 + c2 − d2 −2ab + 2cd
−2ac + 2bd 2ab + 2cd a2 − b2 − c2 + d2

)

This expression for a rotation matrix is due to Euler (see
Veblen and Young [?]).
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It is remarkable that this matrix only contains quadratic
polynomials in a, b, c, d. This makes it possible to com-
pute easily a quaternion from a rotation matrix.

From a computational point of view, it is worth noting
that computing the composition of two rotations ρY and
ρZ specified by two quaternions Y, Z using quaternion
multiplication (i.e. ρY ◦ ρZ = ρY Z) is cheaper than using
rotation matrices and matrix multiplication.

On the other hand, computing the image of a point X
under a rotation ρZ is more expensive in terms of quater-
nions (it requires computing ZXZ−1) than it is in terms
of rotation matrices (where only AX needs to be com-
puted, where A is a rotation matrix).

Thus, if many points need to be rotated and the rota-
tion is specified by a quaternion, it is advantageous to
precompute the Euler matrix.
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10.3 Quaternions and Rotations in SO(4)

For every nonnull quaternion Z, the map X !→ ZXZ−1

(where X is a pure quaternion) defines a rotation of Hp,
and conversely every rotation of Hp is of the above form.

What happens if we consider a map of the form

X !→ Y XZ,

where X ∈ H, and N(Y )N(Z) = 1?

Remarkably, it turns out that we get all the rotations of
H.
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Lemma 10.3.1 For every pair (Y, Z) of quaternions
such that N(Y )N(Z) = 1, the map

ρY,Z:X !→ Y XZ

(where X ∈ H) is a rotation in SO(H) = SO(4).
Conversely, every rotation in SO(4) is of the form

ρY,Z:X !→ Y XZ,

for some quaternions Y, Z, such that
N(Y )N(Z) = 1. Furthermore, if two nonnull pairs
of quaternions (Y, Z) and (Y ′, Z ′) represent the same
rotation, then Y ′ = λY and Z ′ = λ−1Z, for some
λ (= 0 in R.

It is easily seen that

ρ(Y ′Y,ZZ ′) = ρY ′,Z ′ ◦ ρY,Z,

and as a corollary, it is it easy to show that the map

η:S3 × S3 → SO(4)

defined such that η(Y, Z) = ρY,Z is a surjective homo-
morphism whose kernel is {(1,1), (−1,−1)}.
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We conclude this Section with a mention of the expo-
nential map, since it has applications to quaternion in-
terpolation, which, in turn, has applications to motion
interpolation.

Observe that the quaternions i, j,k can also be written
as

i =

(
i 0
0 −i

)
= i

(
1 0
0 −1

)
,

j =

(
0 1
−1 0

)
= i

(
0 −i
i 0

)
,

k =

(
0 i
i 0

)
= i

(
0 1
1 0

)
,

so that, if we define the matrices σ1, σ2, σ3 such that

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
,

we can write

Z = a1 + bi + cj + dk = a1 + i(dσ1 + cσ2 + bσ3).
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The matrices σ1,σ2,σ3 are called the Pauli spin matri-
ces .

Note that their traces are null and that they are Hermi-
tian (recall that a complex matrix is Hermitian iff it is
equal to the transpose of its conjugate, i.e., A∗ = A).

The somewhat unfortunate order reversal of b, c, d has to
do with the traditional convention for listing the Pauli
matrices.

If we let e0 = a, e1 = d, e2 = c and e3 = b, then Z can
be written as

Z = e01 + i(e1σ1 + e2σ2 + e3σ3),

and e0, e1, e2, e3 are called the Euler parameters of the
rotation specified by Z.
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If N(Z) = 1, then we can also write

Z = cos
θ

2
1 + i sin

θ

2
(βσ3 + γσ2 + δσ1),

where

(β, γ, δ) =
1

sin θ
2

(b, c, d).

Letting A = βσ3 + γσ2 + δσ1, it can be shown that

eiθA = cos θ 1 + i sin θA,

where the exponential is the usual exponential of matri-
ces, i.e., for a square n× n matrix M ,

exp(M) = In +
∑

k≥1

Mk

k!
.

Note that since A is Hermitian of null trace, iA is skew
Hermitian of null trace.
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The above formula turns out to define the exponential
map from the Lie Algebra of SU(2) to SU(2). The Lie
algebra of SU(2) is a real vector space having iσ1, iσ2,
and iσ3, as a basis.

Now, the vector space R3 is a Lie algebra if we define the
Lie bracket on R3 as the usual cross-product u × v of
vectors.

Then, the Lie algebra of SU(2) is isomorphic to (R3,×),
and the exponential map can be viewed as a map

exp: (R3,×) → SU(2)

given by the formula

exp(θv) =

[
cos

θ

2
, sin

θ

2
v

]
,

for every vector θv, where v is a unit vector in R3, and
θ ∈ R.
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10.4 Applications of Euclidean Geometry to Motion
Interpolation

The exponential map can be used for quaternion interpo-
lation.

Given two unit quaternions X, Y , suppose we want to
find a quaternion Z “interpolating” between X and Y .

We have to clarify what this means.

Since SU(2) is topologically the same as the sphere S3,
we define an interpolant of X and Y as a quaternion Z
on the great circle (on the sphere S3) determined by the
intersection of S3 with the (2-)plane defined by the two
points X and Y (viewed as points on S3) and the orgin
(0, 0, 0, 0).

Then, the points (quaternions) on this great circle can
be defined by first rotating X and Y so that X goes to
1 and Y goes to X−1Y , by multiplying (on the left) by
X−1.
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Letting

X−1Y = [cosΩ, sinΩw] ,

where −π < Ω ≤ π, the points on the great circle from
1 to X−1Y are given by the quaternions

(X−1Y )λ = [cosλΩ, sinλΩw] ,

where λ ∈ R.

This is because X−1Y = exp(2Ωw), and since an in-
terpolant between (0, 0, 0) and 2Ωw is 2λΩw in the Lie
algebra of SU(2), the corresponding quaternion is indeed

exp(2λΩ) = [cosλΩ, sinλΩw] .

We can’t justify all this here, but it is indeed correct.
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If Ω (= π, then the shortest arc between X and Y is
unique, and it corresponds to those λ such that 0 ≤ λ ≤ 1
(it is a geodesic arc).

However, if Ω = π, then X and Y are antipodal, and
there are infinitely many half circles from X to Y . In
this case, w can be chosen arbitrarily.

Finally, having the arc of great circle between 1 and
X−1Y (assuming Ω (= π), we get the arc of interpolants
Z(λ) between X and Y by performing the inverse rota-
tion from 1 to X and from X−1Y to Y , i.e., by multiply-
ing (on the left) by X , and we get

Z(λ) = X(X−1Y )λ.
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It is remarkable that a closed-form formula for Z(λ) can
be given, as shown by Shoemake [?, ?].

If X = [cos θ, sin θ u], and Y = [cosϕ, sinϕ v] (where u
and v are unit vectors in R3), letting

cosΩ = cos θ cosϕ + sin θ sinϕ (u · v)

be the inner product of X and Y viewed as vectors in R4,
it is a bit laborious to show that

Z(λ) =
sin(1− λ)Ω

sinΩ
X +

sinλΩ

sinΩ
Y.
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