
Chapter 15

Isometries, Local Isometries,
Riemannian Coverings and
Submersions, Killing Vector Fields

The goal of this chapter is to understand the behavior of
isometries and local isometries, in particular their action
on geodesics.

15.1 Isometries and Local Isometries

Recall that a local isometry between two Riemannian
manifolds M and N is a smooth map ' : M ! N so
that

h(d')p(u), (d'p)(v)i'(p) = hu, vip,

for all p 2 M and all u, v 2 TpM . An isometry is a
local isometry and a di↵eomorphism.
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By the inverse function theorem, if ' : M ! N is a local
isometry, then for every p 2 M , there is some open subset
U ✓ M with p 2 U so that ' � U is an isometry between
U and '(U).

Also recall that if ' : M ! N is a di↵eomorphism, then
for any vector field X on M , the vector field '⇤X on N
(called the push-forward of X) is given by

('⇤X)q = d''�1(q)X('�1(q)), for all q 2 N,

or equivalently, by

('⇤X)'(p) = d'pX(p), for all p 2 M.

Proposition 15.1. For any smooth function h : N !
R, for any q 2 N , we have

('⇤X)(h)q = X(h � ')'�1(q),

or equivalently

('⇤X)(h)'(p) = X(h � ')p. (⇤)
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It is natural to expect that isometries preserve all “nat-
ural” Riemannian concepts and this is indeed the case.
We begin with the Levi-Civita connection.

Proposition 15.2. If ' : M ! N is an isometry,
then

'⇤(rXY ) = r'⇤X('⇤Y ), for all X, Y 2 X(M),

where rXY is the Levi-Civita connection induced by
the metric on M and similarly on N .

As a corollary of Proposition 15.2, the curvature induced
by the connection is preserved; that is

'⇤R(X, Y )Z = R('⇤X,'⇤Y )'⇤Z,

as well as the parallel transport, the covariant derivative
of a vector field along a curve, the exponential map, sec-
tional curvature, Ricci curvature and geodesics.
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Actually, all concepts that are local in nature are pre-
served by local di↵eomorphisms!

So, except for the Levi-Civita connection and the Rie-
mann tensor on vectors, all the above concepts are pre-
served under local di↵eomorphisms.

Proposition 15.3. If ' : M ! N is a local isometry,
then the following concepts are preserved:

(1) The covariant derivative of vector fields along a
curve �; that is

d'�(t)
DX

dt
=

D'⇤X

dt
,

for any vector field X along �, with ('⇤X)(t) =
d'�(t)Y (t), for all t.

(2) Parallel translation along a curve. If P� denotes
parallel transport along the curve � and if P'��
denotes parallel transport along the curve ' � �,
then

d'�(1) � P� = P'�� � d'�(0).
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(3) Geodesics. If � is a geodesic in M , then ' � � is a
geodesic in N . Thus, if �v is the unique geodesic
with �(0) = p and �0

v(0) = v, then

' � �v = �d'pv,

wherever both sides are defined. Note that the do-
main of �d'pv may be strictly larger than the do-
main of �v. For example, consider the inclusion of
an open disc into R2.

(4) Exponential maps. We have

' � expp = exp'(p) �d'p,

wherever both sides are defined. See Figure 15.1.

(5) Riemannian curvature tensor. We have

d'pR(x, y)z = R(d'px, d'py)d'pz,

for all x, y, z 2 TpM.
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Figure 15.1: An illustration of ' � expp = exp'(p) �d'p. The composition of the black maps

agrees with the composition of the red maps.
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(6) Sectional, Ricci, and Scalar curvature. We have

K(d'px, d'py) = K(x, y)p,

for all linearly independent vectors x, y 2 TpM ;

Ric(d'px, d'py) = Ric(x, y)p

for all x, y 2 TpM ;

SM = SN � '.

where SM is the scalar curvature on M and SN is
the scalar curvature on N .

A useful property of local di↵eomorphisms is stated be-
low. For a proof, see O’Neill [38] (Chapter 3, Proposition
62):

Proposition 15.4. Let ', : M ! N be two local
isometries. If M is connected and if '(p) =  (p) and
d'p = d p for some p 2 M , then ' =  .
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15.2 Riemannian Covering Maps

The notion of covering map discussed in Section 9.2 (see
Definition 9.2) can be extended to Riemannian manifolds.

Definition 15.1. If M and N are two Riemannian man-
ifold, then a map ⇡ : M ! N is a Riemannian covering
i↵ the following conditions hold:

(1) The map ⇡ is a smooth covering map.

(2) The map ⇡ is a local isometry.

Recall from Section 9.2 that a covering map is a local
di↵eomorphism.

A way to obtain a metric on a manifold M is to pull-back
the metric g on a manifold N along a local di↵eomor-
phism ' : M ! N (see Section 11.2).
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If ' is a covering map, then it becomes a Riemannian
covering map.

Proposition 15.5. Let ⇡ : M ! N be a smooth cov-
ering map. For any Riemannian metric g on N , there
is a unique metric ⇡⇤g on M , so that ⇡ is a Rieman-
nian covering.

In general, if ⇡ : M ! N is a smooth covering map, a
metric on M does not induce a metric on N such that ⇡
is a Riemannian covering.

However, if N is obtained from M as a quotient by some
suitable group action (by a group G) on M , then the
projection ⇡ : M ! M/G is a Riemannian covering.
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Because a Riemannian covering map is a local isometry,
we have the following useful result.

Proposition 15.6. Let ⇡ : M ! N be a Riemannian
covering. Then, the geodesics of (M, g) are the pro-
jections of the geodesics of (N, h) (curves of the form
⇡ � �, where � is a geodesic in N), and the geodesics
of (N, h) are the liftings of the geodesics of (M, h)
(curves � in N such that ⇡�� is a geodesic of (M, h)).

As a corollary of Proposition 15.5 and Theorem 9.13, ev-
ery connected Riemannian manifold M has a simply con-
nected covering map ⇡ : fM ! M , where ⇡ is a Rieman-
nian covering.

Furthermore, if ⇡ : M ! N is a Riemannian covering
and ' : P ! N is a local isometry, it is easy to see that
its lift e' : P ! M is also a local isometry.
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In particular, the deck-transformations of a Riemannian
covering are isometries.

In general, a local isometry is not a Riemannian cover-
ing. However, this is the case when the source space is
complete.

Proposition 15.7. Let ⇡ : M ! N be a local isome-
try with N connected. If M is a complete manifold,
then ⇡ is a Riemannian covering map.
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15.3 Riemannian Submersions

Let ⇡ : M ! B be a submersion between two Rieman-
nian manifolds (M, g) and (B, h).

For every b 2 B in the image of ⇡, the fibre ⇡�1(b) is a
Riemannian submanifold of M , and for every p 2 ⇡�1(b),
the tangent space Tp⇡�1(b) to ⇡�1(b) at p is Ker d⇡p.

The tangent space TpM to M at p splits into the two
components

TpM = Ker d⇡p � (Ker d⇡p)
?,

where Vp = Ker d⇡p is the vertical subspace of TpM
and Hp = (Ker d⇡p)? (the orthogonal complement of Vp

with respect to the metric gp on TpM) is the horizontal
subspace of TpM .
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Any tangent vector u 2 TpM can be written uniquely as

u = uH + uV ,

with uH 2 Hp, called the horizontal component of u,
and uV 2 Vp, called the vertical component of u; see
Figure 15.2.
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Figure 15.2: An illustration of a Riemannian submersion. Note Hp is isomorphic to TbB.
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Because ⇡ is a submersion, d⇡p gives a linear isomorphism
between Hp and T⇡(p)B.

If d⇡p is an isometry, then most of the di↵erential geom-
etry of B can be studied by “lifting” from B to M .

Definition 15.2. A map ⇡ : M ! B between two Rie-
mannian manifolds (M, g) and (B, h) is a Riemannian
submersion if the following properties hold:

(1) The map ⇡ is a smooth submersion.

(2) For every p 2 M , the map d⇡p is an isometry between
the horizontal subspace Hp of TpM and T⇡(p)B.

We will see later that Riemannian submersions arise when
B is a reductive homogeneous space, or when B is ob-
tained from a free and proper action of a Lie group acting
by isometries on B.
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If ⇡ : M ! B is a Riemannian submersion which is sur-
jective onto B, then every vector field X on B has a
unique horizontal lift X on M , defined such that for
every b 2 B and every p 2 ⇡�1(b),

X(p) = (d⇡p)
�1X(b).

Since d⇡p is an isomorphism between Hp and TbB, the
above condition can be written

d⇡ � X = X � ⇡,

which means that X and X are ⇡-related (see Definition
8.5).

The following proposition is proved in O’Neill [38] (Chap-
ter 7, Lemma 45) and Gallot, Hulin, Lafontaine [19] (Chap-
ter 2, Proposition 2.109).
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Proposition 15.8. Let ⇡ : M ! B be a Rieman-
nian submersion between two Riemannian manifolds
(M, g) and (B, h).

(1) If � is a geodesic in M such that �0(0) is a hori-
zontal vector, then � is horizontal geodesic in M
(which means that �0(t) is a horizontal vector for
all t), and c = ⇡ �� is a geodesic in B of the same
length than �. See Figure 15.3.

(2) For every p 2 M , if c is a geodesic in B such that
c(0) = ⇡(p), then for some ✏ small enough, there
is a unique horizonal lift � of the restriction of c
to [�✏, ✏], and � is a geodesic of M .

Furthermore, if ⇡ : M ! B is surjective, then:

(3) For any two vector fields X, Y 2 X(B), we have

(a) hX, Y i = hX, Y i � ⇡.
(b) [X, Y ]H = [X, Y ].

(c) (rXY )H = rXY , where r is the Levi–Civita
connection on M .

(4) If M is complete, then B is also complete.
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Figure 15.3: An illustration of Part (1), Proposition 15.8. Both � and c are equal length

geodesics in M and B respectively. All the tangent vectors to � lie in horizontal subspaces.
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In (2), we can’t expect in general that the whole geodesic
c in B can be lifted to M .

This is because the manifold (B, h) may be compete but
(M, g) may not be. For example, consider the inclusion
map ⇡ : (R2 � {0}) ! R2, with the canonical Euclidean
metrics.

An example of a Riemannian submersion is ⇡ : S2n+1 !
CPn, where S2n+1 has the canonical metric and CPn has
the Fubini–Study metric.

Remark: It shown in Petersen [39] (Chapter 3, Section
5), that the connection rXY on M is given by

rXY = rXY +
1

2
[X, Y ]V .
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15.4 Isometries and Killing Vector Fields ~

If X is a vector field on a manifold M , then we saw that
we can define the notion of Lie derivative for vector fields
(LXY = [X, Y ]) and for functions (LXf = X(f )).

It is possible to generalize the notion of Lie derivative
to an arbitrary tensor field S (see Section ??). In this
section, we only need the following definition.

Definition 15.3. If S = g (the metric tensor), then the
Lie derivative LXg is defined by

LXg(Y, Z) = X(hY, Zi) � h[X, Y ], Zi � hY, [X, Z]i,

with X, Y, Z 2 X(M), and where we write hX, Y i and
g(X, Y ) interchangeably.
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If �t is an isometry (on its domain), then �⇤
t (g) = g, so

LXg = 0.

In fact, we have the following result proved in O’Neill [38]
(Chapter 9, Proposition 23).

Proposition 15.9. For any vector field X on a Rie-
mannian manifold (M, g), the di↵eomorphisms �t in-
duced by the flow � of X are isometries (on their
domain) i↵ LXg = 0.

Informally, Proposition 15.9 says that LXg measures how
much the vector field X changes the metric g.

Definition 15.4.Given a Riemannian manifold (M, g),
a vector field X is a Killing vector field i↵ the Lie deriva-
tive of the metric vanishes; that is, LXg = 0.
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Killing vector fields play an important role in the study
of reductive homogeneous spaces; see Section 20.4. They
also interact with the Ricci curvature and play a crucial
role in the Bochner technique; see Petersen [39] (Chapter
7).

As the notion of Lie derivative, the notion of covariant
derivative rXY of a vector field Y in the direction X
can be generalized to tensor fields (see Section ??, and
Proposition ??).

In this section, we only need the following definition.

Definition 15.5. The covariant derivative rXg of the
Riemannian metric g on a manifold M is given by

rX(g)(Y, Z) = X(hY, Zi) � hrXY, Zi � hY, rXZi,

for all X, Y, Z 2 X(M).

Then observe that the connection r on M is compatible
with g i↵ rX(g) = 0 for all X .
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Definition 15.6. We define the covariant derivative
rX of a vector field X as the (1, 1)-tensor defined so
that

(rX)(Y ) = rY X

for all X, Y 2 X(M). For every p 2 M , (rX)p is defined
so that (rX)p(u) = ruX for all u 2 TpM .

The above facts imply the following Proposition.

Proposition 15.10. Let (M, g) be a Riemannian man-
ifold and let r be the Levi–Civita connection on M
induced by g. For every vector field X on M , the
following conditions are equivalent:

(1) X is a Killing vector field; that is, LXg = 0.

(2) X(hY, Zi) = h[X, Y ], Zi+ hY, [X, Z]i for all Y, Z 2
X(M).

(3) hrY X, Zi + hrZX, Y i = 0 for all Y, Z 2 X(M);
that is, rX is skew-adjoint relative to g.
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Condition (3) shows that any parallel vector field is a
Killing vector field.

Remark: It can be shown that if � is any geodesic in
M , then the restriction X� of X to � is a Jacobi field (see
Section 14.5), and that hX, �0i is constant along � (see
O’Neill [38], Chapter 9, Lemma 26).
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