Chapter 11

Riemannian Metrics, Riemannian Manifolds

11.1 Frames

Fortunately, the rich theory of vector spaces endowed with a Euclidean inner product can, to a great extent, be lifted to the tangent bundle of a manifold.

The idea is to equip the tangent space T_pM at p to the manifold M with an inner product $\langle -, - \rangle_p$, in such a way that these inner products vary smoothly as *p* varies on *M*.

It is then possible to define the length of a curve segment on a *M* and to define the distance between two points on *M*.

The notion of local (and global) frame plays an important technical role.

Definition 11.1. Let *M* be an *n*-dimensional smooth manifold. For any open subset, $U \subseteq M$, an *n*-tuple of vector fields, (X_1, \ldots, X_n) , over *U* is called a *frame over U* iff $(X_1(p),...,X_n(p))$ is a basis of the tangent space, T_pM , for every $p \in U$. If $U = M$, then the X_i are global sections and (X_1, \ldots, X_n) is called a *frame* (of *M*).

The notion of a frame is due to Elie Cartan who (after Darboux) made extensive use of them under the name of *moving frame* (and the *moving frame method*).

Cartan's terminology is intuitively clear: As a point, *p*, moves in U, the frame, $(X_1(p),...,X_n(p))$, moves from fibre to fibre. Physicists refer to a frame as a choice of *local gauge*.

If dim(M) = *n*, then for every chart, (U, φ) , since $d\varphi_{\varphi(p)}^{-1} : \mathbb{R}^n \to T_pM$ is a bijection for every $p \in U$, the *n*-tuple of vector fields, (X_1, \ldots, X_n) , with $X_i(p) = d\varphi_{\varphi(p)}^{-1}(e_i)$, is a frame of *TM* over *U*, where (e_1, \ldots, e_n) is the canonical basis of \mathbb{R}^n . See Figure 11.1.

Figure 11.1: A frame on *S*².

The following proposition tells us when the tangent bundle is trivial (that is, isomorphic to the product, $M \times \mathbb{R}^n$):

Proposition 11.1. *The tangent bundle, TM, of a smooth n*-dimensional manifold, M, is trivial iff it *possesses a frame of global sections (vector fields defined on M).*

As an illustration of Proposition 11.1 we can prove that the tangent bundle, TS^1 , of the circle, is trivial.

Indeed, we can find a section that is everywhere nonzero, *i.e.* a non-vanishing vector field, namely

$$
X(\cos \theta, \sin \theta) = (-\sin \theta, \cos \theta).
$$

The reader should try proving that *T S*³ is also trivial (use the quaternions).

However, TS^2 is nontrivial, although this not so easy to prove.

More generally, it can be shown that TS^n is nontrivial for all even $n \geq 2$. It can even be shown that S^1 , S^3 and *S*⁷ are the only spheres whose tangent bundle is trivial. This is a rather deep theorem and its proof is hard.

Remark: A manifold, *M*, such that its tangent bundle, *TM*, is trivial is called *parallelizable*.

We now define Riemannian metrics and Riemannian manifolds.

11.2 Riemannian Metrics

Definition 11.2. Given a smooth *n*-dimensional manifold, *M*, a *Riemannian metric on M (or TM)* is a family, $(\langle -, - \rangle_p)_{p \in M}$, of inner products on each tangent space, T_pM , such that $\langle -, - \rangle_p$ depends smoothly on *p*, which means that for every chart, $\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$, for every frame, (X_1, \ldots, X_n) , on U_α , the maps

$$
p \mapsto \langle X_i(p), X_j(p) \rangle_p, \qquad p \in U_\alpha, \ 1 \le i, j \le n
$$

are smooth. A smooth manifold, *M*, with a Riemannian metric is called a *Riemannian manifold*.

If dim(M) = *n*, then for every chart, (U, φ) , we have the frame, (X_1, \ldots, X_n) , over U, with $X_i(p) = d\varphi_{\varphi(p)}^{-1}(e_i)$, where (e_1, \ldots, e_n) is the canonical basis of \mathbb{R}^n . Since every vector field over *U* is a linear combination, $\sum_{i=1}^{n} f_i X_i$, for some smooth functions, $f_i: U \to \mathbb{R}$, the condition of Definition 11.2 is equivalent to the fact that the maps,

$$
p \mapsto \langle d\varphi_{\varphi(p)}^{-1}(e_i), d\varphi_{\varphi(p)}^{-1}(e_j) \rangle_p, \qquad p \in U, 1 \le i, j \le n,
$$

are smooth.

If we let $x = \varphi(p)$, the above condition says that the maps,

$$
x \mapsto \langle d\varphi_x^{-1}(e_i), d\varphi_x^{-1}(e_j) \rangle_{\varphi^{-1}(x)}, \quad x \in \varphi(U), 1 \le i, j \le n,
$$

are smooth.

If *M* is a Riemannian manifold, the metric on *TM* is often denoted $g = (g_p)_{p \in M}$. In a chart, using local coordinates, we often use the notation $g = \sum_{ij} g_{ij} dx_i \otimes dx_j$ or simply $g = \sum_{ij} g_{ij} dx_i dx_j$, where

$$
g_{ij}(p) = \left\langle \left(\frac{\partial}{\partial x_i}\right)_p, \left(\frac{\partial}{\partial x_j}\right)_p \right\rangle_p.
$$

For every $p \in U$, the matrix, $(g_{ij}(p))$, is symmetric, positive definite.

The standard Euclidean metric on R*ⁿ*, namely,

$$
g = dx_1^2 + \dots + dx_n^2,
$$

makes \mathbb{R}^n into a Riemannian manifold.

Then, every submanifold, M , of \mathbb{R}^n inherits a metric by restricting the Euclidean metric to *M*.

For example, the sphere, S^{n-1} , inherits a metric that makes S^{n-1} into a Riemannian manifold.

It is instructive to find the local expression of this metric for S^2 in spherical coordinates.

We can parametrize the sphere S^2 in terms of two angles θ (the *colatitude*) and φ (the *longitude*) as follows:

```
x = \sin \theta \cos \varphiy = \sin \theta \sin \varphiz = \cos \theta.
```
See Figure 11.2.

Figure 11.2: The spherical coordinates of *S*².

In order for the above to be a parametrization, we need to restrict its domain to $V = \{(\theta, \varphi) \mid 0 < \theta < \pi, 0 < \pi\}$ $\varphi < 2\pi$.

Then the semicircle from the north pole to the south pole lying in the *xz*-plane is omitted from the sphere.

In order to cover the whole sphere, we need another parametrization obained by choosing the axes in a suitable fashion; for example, to omit the semicircle in the *xy*-plane from $(0, 1, 0)$ to $(0, -1, 0)$ and with $x \leq 0$.

To compute the matrix giving the Riemannian metric in this chart, we need to compute a basis $(u(\theta, \varphi), v(\theta, \varphi))$ of the the tangent plane T_pS^2 at $p = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta).$

We can use

$$
u(\theta, \varphi) = \frac{\partial p}{\partial \theta} = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta)
$$

$$
v(\theta, \varphi) = \frac{\partial p}{\partial \varphi} = (-\sin \theta \sin \varphi, \sin \theta \cos \varphi, 0),
$$

and we find that

$$
\langle u(\theta, \varphi), u(\theta, \varphi) \rangle = 1 \langle u(\theta, \varphi), v(\theta, \varphi) \rangle = 0 \langle v(\theta, \varphi), v(\theta, \varphi) \rangle = \sin^2 \theta,
$$

so the metric on T_pS^2 w.r.t. the basis $(u(\theta, \varphi), v(\theta, \varphi))$ is given by the matrix

$$
g_p = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{pmatrix}.
$$

Thus, for any tangent vector

$$
w = au(\theta, \varphi) + bv(\theta, \varphi), \quad a, b \in \mathbb{R},
$$

we have

$$
g_p(w, w) = a^2 + \sin^2 \theta b^2.
$$

A nontrivial example of a Riemannian manifold is the *Poincaré upper half-space*, namely, the set $H = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ equipped with the metric

$$
g = \frac{dx^2 + dy^2}{y^2}.
$$

Consider the Lie group $SO(n)$.

We know from Section 7.2 that its tangent space at the identity T_I **SO**(*n*) is the vector space $\mathfrak{so}(n)$ of $n \times n$ skew symmetric matrices, and that the tangent space T_Q **SO**(*n*) to **SO**(*n*) at *Q* is isomorphic to

$$
Q\mathfrak{so}(n) = \{QB \mid B \in \mathfrak{so}(n)\}.
$$

If we give $\mathfrak{so}(n)$ the inner product

$$
\langle B_1, B_2 \rangle = \text{tr}(B_1^\top B_2) = -\text{tr}(B_1 B_2),
$$

the inner product on T_Q **SO** (n) is given by

$$
\langle QB_1, QB_2\rangle = \text{tr}((QB_1)^\top QB_2) = \text{tr}(B_1^\top B_2).
$$

We will see in Chapter 13 that the length $L(\gamma)$ of the curve segment γ from *I* to e^B given by $t \mapsto e^{tB}$ (with $B \in \mathfrak{so}(n)$ is given by

$$
L(\gamma) = \left(\text{tr}(-B^2)\right)^{\frac{1}{2}}.
$$

More generally, given any Lie group *G*, any inner product $\langle -, - \rangle$ on its Lie algebra g induces by left translation an inner product $\langle -, - \rangle_g$ on T_gG for every $g \in G$, and this yields a Riemannian metric on *G* (which happens to be left-invariant; see Chapter 18).

Going back to the second example of Section 7.5, where we computed the differential df_R of the function $f: SO(3) \rightarrow \mathbb{R}$ given by

$$
f(R) = (u^{\top} R v)^2,
$$

we found that

$$
df_R(X) = 2u^\top X v u^\top R v, \quad X \in R\mathfrak{so}(3).
$$

Since each tangent space T_R **SO**(3) is a Euclidean space under the inner product defined above, by duality (see Proposition ?? applied to the pairing $\langle -, - \rangle$, there is a unique vector $Y \in T_R$ **SO**(3) defining the linear form *dfR*; that is,

 $\langle Y, X \rangle = df_R(X)$, for all $X \in T_R$ SO(3)*.*

By definition, the vector Y is the *gradient of* f *at* R , denoted $(\text{grad}(f))_R$.

We leave it as an exercise to prove that the gradient of *f* at *R* is given by

$$
(\text{grad}(f))_R = u^\top R v R (R^\top u v^\top - v u^\top R).
$$

More generally, the notion of gradient is defined as follows.

Definition 11.3. If $(M, \langle -, - \rangle)$ is a smooth manifold with a Riemannian metric and if $f: M \to \mathbb{R}$ is a smooth function on M , then the unique smooth vector field $\text{grad}(f)$ defined such that

$$
\langle (\text{grad}(f))_p, u \rangle_p = df_p(u),
$$

for all $p \in M$ and all $u \in T_pM$

is called the *gradient of f*.

It is usually complicated to find the gradient of a function.

If (U, φ) is a chart of M, with $p \in M$, and if

$$
\left(\left(\frac{\partial}{\partial x_1}\right)_p,\ldots,\left(\frac{\partial}{\partial x_n}\right)_p\right)
$$

denotes the basis of T_pM induced by φ , the local expression of the metric g at p is given by the $n \times n$ matrix $(g_{ij})_p$, with

$$
(g_{ij})_p = g_p \left(\left(\frac{\partial}{\partial x_i} \right)_p, \left(\frac{\partial}{\partial x_j} \right)_p \right).
$$

The inverse is denoted by $(g^{ij})_p$.

We often omit the subscript *p* and observe that for every function $f \in C^{\infty}(M)$,

$$
\operatorname{grad} f = \sum_{ij} g^{ij} \frac{\partial f}{\partial x_j} \frac{\partial}{\partial x_i}.
$$

A way to obtain a metric on a manifold, *N*, is to pullback the metric, *g*, on another manifold, *M*, along a local diffeomorphism, $\varphi: N \to M$.

Recall that φ is a local diffeomorphism iff

$$
d\varphi_p\colon T_pN\to T_{\varphi(p)}M
$$

is a bijective linear map for every $p \in N$.

Given any metric g on M , if φ is a local diffeomorphism, we define the *pull-back metric*, $\varphi^* g$, on *N* induced by *g* as follows: For all $p \in N$, for all $u, v \in T_pN$,

$$
(\varphi^*g)_p(u,v) = g_{\varphi(p)}(d\varphi_p(u), d\varphi_p(v)).
$$

We need to check that $(\varphi^*g)_p$ is an inner product, which is very easy since $d\varphi_p$ is a linear isomorphism.

Our map, φ , between the two Riemannian manifolds (N, φ^*g) and (M, g) is a local isometry, as defined below.

Definition 11.4. Given two Riemannian manifolds, (M_1, g_1) and (M_2, g_2) , a *local isometry* is a smooth map, $\varphi: M_1 \to M_2$, such that $d\varphi_p: T_pM_1 \to T_{\varphi(p)}M_2$ is an isometry between the Euclidean spaces $(T_pM_1,(g_1)_p)$ and $(T_{\varphi(p)}M_2,(g_2)_{\varphi(p)})$, for every $p \in M_1$, that is,

$$
(g_1)_p(u,v) = (g_2)_{\varphi(p)}(d\varphi_p(u), d\varphi_p(v)),
$$

for all $u, v \in T_pM_1$ or, equivalently, $\varphi^* g_2 = g_1$. Moreover, φ is an *isometry* iff it is a local isometry and a diffeomorphism.

The isometries of a Riemannian manifold, (*M, g*), form a group, Isom(*M, g*), called the *isometry group of* (*M, g*).

An important theorem of Myers and Steenrod asserts that the isometry group, $\text{Isom}(M, g)$, is a Lie group.

An interesting example of the notion of isometry arises in machine learning, namely with respect to the *multinomial manifold*.

Example 11.1. Let Δ^n_+ be the standard open simplex

$$
\Delta_+^n = \{ (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1 + \cdots + x_{n+1} = 1, x_i > 0 \}.
$$

This is an open submanifold of the hyperplane of equation $x_1 + \cdots + x_{n+1} = 1$, which is itself a submanifold of \mathbb{R}^{n+1} .

The manifold Δ^n_+ is diffeomorphic to the positive quadrant of the unit sphere in \mathbb{R}^{n+1} given by

$$
S_{+}^{n} = \{ (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \cdots + x_{n+1}^2 = 1, x_i > 0 \}.
$$

See Figure 11.3.

Figure 11.3: The open simplexes Δ_+^1 and Δ_+^2 along with the diffeomorphic S_+^1 and S_+^2 .

The maps $\varphi: S^n_+ \to \Delta^n_+$ and $\psi: \Delta^n_+ \to S^n_+$ given by

$$
\varphi(x_1 \dots, x_{n+1}) = (x_1^2, \dots, x_{n+1}^2) \n\psi(x_1 \dots, x_{n+1}) = (\sqrt{x_1}, \dots, \sqrt{x_{n+1}})
$$

are clearly inverse diffeomorphisms. The map $\varphi: S^n_+ \to$ Δ^n_+ is often called the *real moment map*.

For any $x \in S^n_+$, the tangent space $T_x S^n_+$ is given by

$$
T_x S_+^n = \{ u \in \mathbb{R}^{n+1} \mid \langle x, u \rangle = 0 \}
$$

= $\{ u \in \mathbb{R}^{n+1} \mid x_1 u_1 + \dots + x_{n+1} u_{n+1} = 0 \},$

where $\langle -, - \rangle$ is the standard Euclidean inner product in \mathbb{R}^{n+1} , and for any $x \in \Delta^n_+$, the tangent space $T_x \Delta^n_+$ is given by

$$
T_x \Delta_+^n = \{ u \in \mathbb{R}^{n+1} \mid u_1 + \cdots + u_{n+1} = 0 \}.
$$

It is easily verified that the derivative $d\varphi_x$ of φ at $x \in S^n_+$ is given by

$$
d\varphi_x(u_1,\ldots,u_{n+1})=2(x_1u_1,\ldots,x_{n+1}u_{n+1}).
$$

As a consequence, if we give Δ^n_+ the Riemannian metric defined by

$$
\langle u, v \rangle_x^F = \frac{1}{4} \sum_{i=1}^{n+1} \frac{u_i v_i}{x_i}, \quad x \in \Delta_+^n,
$$

then we have

$$
\langle d\varphi_x(u), d\varphi_x(v)\rangle_{\varphi(x)}^F = \langle 2(x_1u_1, \dots, x_{n+1}u_{n+1}),
$$

\n
$$
2(x_1v_1, \dots, x_{n+1}v_{n+1})\rangle_{(x_1^2, \dots, x_{n+1}^2)}^F
$$

\n
$$
= \frac{1}{4} \sum_{i=1}^{n+1} \frac{2x_iu_i 2x_i v_i}{x_i^2}
$$

\n
$$
= \sum_{i=1}^{n+1} u_i v_i = \langle u, v \rangle.
$$

Therefore, φ is an isometry between the Riemannian manifold $(S^n_+, \langle -, - \rangle)$ (equipped with the restriction of the Euclidean metric of \mathbb{R}^{n+1}) to the manifold $(\Delta^n_+, \langle -, - \rangle^F)$ equipped with the metric

$$
\langle u, v \rangle_x^F = \frac{1}{4} \sum_{i=1}^{n+1} \frac{u_i v_i}{x_i} = \frac{1}{4} \sum_{i=1}^{n+1} x_i \frac{u_i}{x_i} \frac{v_i}{x_i}
$$

=
$$
\frac{1}{4} \sum_{i=1}^{n+1} x_i \frac{d(\log x_i)}{dx_i} \frac{d(\log x_i)}{dx_i} u_i v_i, \quad x \in \Delta_+^n,
$$

known as the *Fisher information metric* (actually, one fourth of the Fisher information metric).

The above shows that the Fisher information metric is the pullback of the Euclidean metric on S_+^n along the inverse ψ of the real moment map φ .

In machine learning the manifold $(\Delta^n_+, \langle -, - \rangle^F)$ is called the *multinomial manifold*. Unfortunately, it is often denoted by \mathbb{P}^n , which clashes with the standard notation for projective space.

Given a map, $\varphi: M_1 \to M_2$, and a metric g_1 on M_1 , in general, φ does not induce any metric on M_2 .

However, if φ has some extra properties, it does induce a metric on M_2 . This is the case when M_2 arises from M_1 as a quotient induced by some group of isometries of *M*1. For more on this, see Gallot, Hulin and Lafontaine [19], Chapter 2, Section 2.A.

Now, because a manifold is *paracompact* (see Section 9.1), a Riemannian metric always exists on *M*. This is a consequence of the existence of partitions of unity (see Theorem 9.4).

Theorem 11.2. *Every smooth manifold admits a Riemannian metric.*