
Chapter 11

Riemannian Metrics, Riemannian
Manifolds

11.1 Frames

Fortunately, the rich theory of vector spaces endowed with
a Euclidean inner product can, to a great extent, be lifted
to the tangent bundle of a manifold.

The idea is to equip the tangent space TpM at p to the
manifold M with an inner product h�, �ip, in such a
way that these inner products vary smoothly as p varies
on M .

It is then possible to define the length of a curve segment
on a M and to define the distance between two points on
M .
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The notion of local (and global) frame plays an important
technical role.

Definition 11.1. Let M be an n-dimensional smooth
manifold. For any open subset, U ✓ M , an n-tuple of
vector fields, (X1, . . . , Xn), over U is called a frame over
U i↵ (X1(p), . . . , Xn(p)) is a basis of the tangent space,
TpM , for every p 2 U . If U = M , then the Xi are global
sections and (X1, . . . , Xn) is called a frame (of M).

The notion of a frame is due to Élie Cartan who (after
Darboux) made extensive use of them under the name of
moving frame (and the moving frame method).

Cartan’s terminology is intuitively clear: As a point, p,
moves in U , the frame, (X1(p), . . . , Xn(p)), moves from
fibre to fibre. Physicists refer to a frame as a choice of
local gauge .



11.1. FRAMES 571

If dim(M) = n, then for every chart, (U,'), since
d'�1

'(p)
: Rn ! TpM is a bijection for every p 2 U , the

n-tuple of vector fields, (X1, . . . , Xn), with
Xi(p) = d'�1

'(p)
(ei), is a frame of TM over U , where

(e1, . . . , en) is the canonical basis of Rn. See Figure 11.1.
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Figure 11.1: A frame on S2
.
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The following proposition tells us when the tangent bun-
dle is trivial (that is, isomorphic to the product, M ⇥Rn):

Proposition 11.1. The tangent bundle, TM , of a
smooth n-dimensional manifold, M , is trivial i↵ it
possesses a frame of global sections (vector fields de-
fined on M).

As an illustration of Proposition 11.1 we can prove that
the tangent bundle, TS1, of the circle, is trivial.
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Indeed, we can find a section that is everywhere nonzero,
i.e. a non-vanishing vector field, namely

X(cos ✓, sin ✓) = (� sin ✓, cos ✓).

The reader should try proving that TS3 is also trivial (use
the quaternions).

However, TS2 is nontrivial, although this not so easy to
prove.

More generally, it can be shown that TSn is nontrivial
for all even n � 2. It can even be shown that S1, S3 and
S7 are the only spheres whose tangent bundle is trivial.
This is a rather deep theorem and its proof is hard.

Remark: A manifold, M , such that its tangent bundle,
TM , is trivial is called parallelizable .

We now define Riemannian metrics and Riemannian man-
ifolds.
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11.2 Riemannian Metrics

Definition 11.2. Given a smooth n-dimensional man-
ifold, M , a Riemannian metric on M (or TM) is a
family, (h�, �ip)p2M , of inner products on each tangent
space, TpM , such that h�, �ip depends smoothly on p,
which means that for every chart, '↵ : U↵ ! Rn, for
every frame, (X1, . . . , Xn), on U↵, the maps

p 7! hXi(p), Xj(p)ip, p 2 U↵, 1  i, j  n

are smooth. A smooth manifold, M , with a Riemannian
metric is called a Riemannian manifold .

If dim(M) = n, then for every chart, (U,'), we have the
frame, (X1, . . . , Xn), over U , with Xi(p) = d'�1

'(p)
(ei),

where (e1, . . . , en) is the canonical basis of Rn. Since ev-
ery vector field over U is a linear combination,

Pn
i=1

fiXi,
for some smooth functions, fi : U ! R, the condition of
Definition 11.2 is equivalent to the fact that the maps,

p 7! hd'�1

'(p)
(ei), d'

�1

'(p)
(ej)ip, p 2 U, 1  i, j  n,

are smooth.
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If we let x = '(p), the above condition says that the
maps,

x 7! hd'�1

x (ei), d'
�1

x (ej)i'�1(x), x 2 '(U), 1  i, j  n,

are smooth.

IfM is a Riemannian manifold, the metric on TM is often
denoted g = (gp)p2M . In a chart, using local coordinates,
we often use the notation g =

P
ij gijdxi ⌦dxj or simply

g =
P

ij gijdxidxj, where

gij(p) =

*✓
@

@xi

◆

p

,

✓
@

@xj

◆

p

+

p

.



576 CHAPTER 11. RIEMANNIAN METRICS, RIEMANNIAN MANIFOLDS

For every p 2 U , the matrix, (gij(p)), is symmetric, pos-
itive definite.

The standard Euclidean metric on Rn, namely,

g = dx2

1
+ · · · + dx2

n,

makes Rn into a Riemannian manifold.

Then, every submanifold, M , of Rn inherits a metric by
restricting the Euclidean metric to M .

For example, the sphere, Sn�1, inherits a metric that
makes Sn�1 into a Riemannian manifold.

It is instructive to find the local expression of this metric
for S2 in spherical coordinates.
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We can parametrize the sphere S2 in terms of two angles
✓ (the colatitude) and ' (the longitude) as follows:

x = sin ✓ cos'

y = sin ✓ sin'

z = cos ✓.

See Figure 11.2.
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Figure 11.2: The spherical coordinates of S2
.



578 CHAPTER 11. RIEMANNIAN METRICS, RIEMANNIAN MANIFOLDS

In order for the above to be a parametrization, we need
to restrict its domain to V = {(✓,') | 0 < ✓ < ⇡, 0 <
' < 2⇡}.

Then the semicircle from the north pole to the south pole
lying in the xz-plane is omitted from the sphere.

In order to cover the whole sphere, we need another
parametrization obained by choosing the axes in a suit-
able fashion; for example, to omit the semicircle in the
xy-plane from (0, 1, 0) to (0, �1, 0) and with x  0.

To compute the matrix giving the Riemannian metric in
this chart, we need to compute a basis (u(✓,'), v(✓,'))
of the the tangent plane TpS2 at
p = (sin ✓ cos', sin ✓ sin', cos ✓).
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We can use

u(✓,') =
@p

@✓
= (cos ✓ cos', cos ✓ sin', � sin ✓)

v(✓,') =
@p

@'
= (� sin ✓ sin', sin ✓ cos', 0),

and we find that

hu(✓,'), u(✓,')i = 1

hu(✓,'), v(✓,')i = 0

hv(✓,'), v(✓,')i = sin2 ✓,

so the metric on TpS2 w.r.t. the basis (u(✓,'), v(✓,'))
is given by the matrix

gp =

✓
1 0
0 sin2 ✓

◆
.
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Thus, for any tangent vector

w = au(✓,') + bv(✓,'), a, b 2 R,

we have

gp(w, w) = a2 + sin2 ✓ b2.

A nontrivial example of a Riemannian manifold is the
Poincaré upper half-space , namely, the set
H = {(x, y) 2 R2 | y > 0} equipped with the metric

g =
dx2 + dy2

y2
.
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Consider the Lie group SO(n).

We know from Section 7.2 that its tangent space at the
identity TISO(n) is the vector space so(n) of n ⇥ n
skew symmetric matrices, and that the tangent space
TQSO(n) to SO(n) at Q is isomorphic to

Qso(n) = {QB | B 2 so(n)}.

If we give so(n) the inner product

hB1, B2i = tr(B>
1
B2) = �tr(B1B2),

the inner product on TQSO(n) is given by

hQB1, QB2i = tr((QB1)
>QB2) = tr(B>

1
B2).
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We will see in Chapter 13 that the length L(�) of the
curve segment � from I to eB given by t 7! etB (with
B 2 so(n)) is given by

L(�) =

✓
tr(�B2)

◆1

2

.

More generally, given any Lie group G, any inner product
h�, �i on its Lie algebra g induces by left translation an
inner product h�, �ig on TgG for every g 2 G, and this
yields a Riemannian metric on G (which happens to be
left-invariant; see Chapter 18).
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Going back to the second example of Section 7.5, where
we computed the di↵erential dfR of the function
f : SO(3) ! R given by

f (R) = (u>Rv)2,

we found that

dfR(X) = 2u>Xvu>Rv, X 2 Rso(3).

Since each tangent space TRSO(3) is a Euclidean space
under the inner product defined above, by duality (see
Proposition ?? applied to the pairing h�, �i), there is
a unique vector Y 2 TRSO(3) defining the linear form
dfR; that is,

hY, Xi = dfR(X), for all X 2 TRSO(3).

By definition, the vector Y is the gradient of f at R,
denoted (grad(f ))R.
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We leave it as an exercise to prove that the gradient of f
at R is given by

(grad(f ))R = u>RvR(R>uv> � vu>R).

More generally, the notion of gradient is defined as fol-
lows.

Definition 11.3. If (M, h�, �i) is a smooth manifold
with a Riemannian metric and if f : M ! R is a smooth
function onM , then the unique smooth vector field grad(f )
defined such that

h(grad(f ))p, uip = dfp(u),

for all p 2 M and all u 2 TpM

is called the gradient of f .

It is usually complicated to find the gradient of a function.
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If (U,') is a chart of M , with p 2 M , and if
 ✓

@

@x1

◆

p

, . . . ,

✓
@

@xn

◆

p

!

denotes the basis of TpM induced by ', the local expres-
sion of the metric g at p is given by the n ⇥ n matrix
(gij)p, with

(gij)p = gp

 ✓
@

@xi

◆

p

,

✓
@

@xj

◆

p

!
.

The inverse is denoted by (gij)p.

We often omit the subscript p and observe that for every
function f 2 C1(M),

grad f =
X

ij

gij @f

@xj

@

@xi
.
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A way to obtain a metric on a manifold, N , is to pull-
back the metric, g, on another manifold, M , along a local
di↵eomorphism, ' : N ! M .

Recall that ' is a local di↵eomorphism i↵

d'p : TpN ! T'(p)M

is a bijective linear map for every p 2 N .

Given any metric g on M , if ' is a local di↵eomorphism,
we define the pull-back metric, '⇤g, on N induced by g
as follows: For all p 2 N , for all u, v 2 TpN ,

('⇤g)p(u, v) = g'(p)(d'p(u), d'p(v)).

We need to check that ('⇤g)p is an inner product, which
is very easy since d'p is a linear isomorphism.

Our map, ', between the two Riemannian manifolds
(N,'⇤g) and (M, g) is a local isometry, as defined be-
low.
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Definition 11.4. Given two Riemannian manifolds,
(M1, g1) and (M2, g2), a local isometry is a smooth map,
' : M1 ! M2, such that d'p : TpM1 ! T'(p)M2 is an
isometry between the Euclidean spaces (TpM1, (g1)p) and
(T'(p)M2, (g2)'(p)), for every p 2 M1, that is,

(g1)p(u, v) = (g2)'(p)(d'p(u), d'p(v)),

for all u, v 2 TpM1 or, equivalently, '⇤g2 = g1. More-
over, ' is an isometry i↵ it is a local isometry and a
di↵eomorphism.

The isometries of a Riemannian manifold, (M, g), form a
group, Isom(M, g), called the isometry group of (M, g).

An important theorem of Myers and Steenrod asserts that
the isometry group, Isom(M, g), is a Lie group.
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An interesting example of the notion of isometry arises
in machine learning, namely with respect to the multi-
nomial manifold .

Example 11.1. Let �n
+
be the standard open simplex

�n
+
= {(x1, . . . , xn+1) 2 Rn+1 | x1+· · ·+xn+1 = 1, xi > 0}.

This is an open submanifold of the hyperplane of equation
x1+ · · ·+xn+1 = 1, which is itself a submanifold of Rn+1.

The manifold �n
+
is di↵eomorphic to the positive quad-

rant of the unit sphere in Rn+1 given by

Sn
+
= {(x1, . . . , xn+1) 2 Rn+1 | x2

1
+· · ·+x2

n+1
= 1, xi > 0}.

See Figure 11.3.
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∆
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Figure 11.3: The open simplexes �
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+ and �

2
+ along with the di↵eomorphic S1
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The maps ' : Sn
+

! �n
+
and  : �n

+
! Sn

+
given by

'(x1 . . . , xn+1) = (x2

1
, . . . , x2

n+1
)

 (x1 . . . , xn+1) = (
p

x1, . . . ,
p

xn+1)

are clearly inverse di↵eomorphisms. The map ' : Sn
+

!
�n

+
is often called the real moment map.

For any x 2 Sn
+
, the tangent space TxSn

+
is given by

TxS
n
+
= {u 2 Rn+1 | hx, ui = 0}

= {u 2 Rn+1 | x1u1 + · · · + xn+1un+1 = 0},

where h�, �i is the standard Euclidean inner product in
Rn+1, and for any x 2 �n

+
, the tangent space Tx�n

+
is

given by

Tx�
n
+
= {u 2 Rn+1 | u1 + · · · + un+1 = 0}.
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It is easily verified that the derivative d'x of ' at x 2 Sn
+

is given by

d'x(u1, . . . , un+1) = 2(x1u1, . . . , xn+1un+1).

As a consequence, if we give �n
+
the Riemannian metric

defined by

hu, viF
x =

1

4

n+1X

i=1

uivi

xi
, x 2 �n

+
,

then we have

hd'x(u), d'x(v)iF
'(x)

= h2(x1u1, . . . , xn+1un+1),

2(x1v1, . . . , xn+1vn+1)iF
(x2

1
,...,x2

n+1
)

=
1

4

n+1X

i=1

2xiui2xivi

x2

i

=
n+1X

i=1

uivi = hu, vi.
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Therefore, ' is an isometry between the Riemannian man-
ifold (Sn

+
, h�, �i) (equipped with the restriction of the

Euclidean metric of Rn+1) to the manifold (�n
+
, h�, �iF )

equipped with the metric

hu, viF
x =

1

4

n+1X

i=1

uivi

xi
=

1

4

n+1X

i=1

xi
ui

xi

vi

xi

=
1

4

n+1X

i=1

xi
d(log xi)

dxi

d(log xi)

dxi
uivi, x 2 �n

+
,

known as the Fisher information metric (actually, one
fourth of the Fisher information metric).

The above shows that the Fisher information metric is the
pullback of the Euclidean metric on Sn

+
along the inverse

 of the real moment map '.

In machine learning the manifold (�n
+
, h�, �iF ) is called

the multinomial manifold . Unfortunately, it is often
denoted by Pn, which clashes with the standard notation
for projective space.
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Given a map, ' : M1 ! M2, and a metric g1 on M1, in
general, ' does not induce any metric on M2.

However, if ' has some extra properties, it does induce a
metric on M2. This is the case when M2 arises from M1

as a quotient induced by some group of isometries of M1.
For more on this, see Gallot, Hulin and Lafontaine [19],
Chapter 2, Section 2.A.

Now, because a manifold is paracompact (see Section
9.1), a Riemannian metric always exists on M . This is
a consequence of the existence of partitions of unity (see
Theorem 9.4).

Theorem 11.2.Every smooth manifold admits a Rie-
mannian metric.
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