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3.3 The L-Genus and the Todd Genus

The material in this section and the next two was first published in Hirzebruch [8].

Let B be a commutative ring with 1, and let Z, α1, . . . , αn, . . . be some independent indeterminates, all
of degree 1; make new independent indeterminates

qj = σj(α’s).

(The σj are the symmetric functions in the α’s; for example, q1 = α1 + · · · + αn.) All computations are
carried out in the ring B = B[[Z;α1, . . . , αn, . . .]]. We have the subring P = B[[Z; q1, . . . , qn, . . . , ]] and in
P, we have certain units (so-called one-units), namely

1 +
∑
j≥1

bjZ
j , where bj ∈ B.

If Q(z) is a one-unit, 1 +
∑

j≥1 bjZ
j , write

Q(z) =
∞∏

j=1

(1 + βjZ)

and call the βj ’s the “roots” of Q. In the product
∏∞

l=1 Q(αjZ), the coefficient of Zk is independent of the
order of the α’s and is a formal series in the elementary symmetric functions, qj , of the α’s. In fact, this
coefficient has weight k and begins with bkqk

1 + · · · , call the coefficients KQ
k (q1, q2, . . . , qk). We deduce that

1 +
∞∑

l=1

KQ
l (q1, q2, . . . , ql)zl =

∞∏
l=1

Q(αjZ).

We see that a 1-unit, Q(Z) = 1 +
∑

j≥1 bjZ
j , yields a sequence of polynomials (in the elementary

symmetric functions q1, . . . , qk) of weights, 1, 2, . . ., say {KQ
l }∞l=1, called the multiplicative sequence of the

1-unit.

Conversely, given some sequence of polynomials, {Kl}∞l=1, it defines an operator on 1-units to 1-units,
call it K. Namely,

K(1 +
∑
j≥1

qjZ
j) = 1 +

∞∑
l=1

Kl(q’s)Zl.

So, Q gives the operator KQ; namely,

K(1 +
∑
j≥1

qjZ
j) = 1 +

∞∑
l=1

KQ
l (q’s)Zl.

Claim. When Q is given, the operator KQ is multiplicative:

KQ(1 +
∑
j≥1

q′jZ
j)KQ(1 +

∑
j≥1

q′′j Zj) = KQ((1 +
∑
j≥1

q′jZ
j)(1 +

∑
j≥1

q′′j Zj)).

Now, to see this, the left hand side is

[1 +
∞∑

l=1

KQ
l (q′’s)Zl][1 +

∞∑
m=1

KQ
m(q′′’s)Zm] =

∞∏
r=1

Q(α′
rZ)

∞∏
s=1

Q(α′′
sZ) =

∞∏
t=1

Q(αtZ),
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where we have chosen some enumeration of the α′s and the α′′s, say α1, . . . , αt, . . . = α′
1, α

′′
1 , α′

2, α
′′
2 , . . .. But,

∞∏
t=1

Q(αtZ) = 1 +
∞∑

n=1

KQ
n (elem. symm. functions in α′s and α′′s)Zn,

which is the right hand side of the assertion.

If conversely, we have some endomorphism of the 1-units under multiplication, say K, look at
K(1 + Z) = 1 +

∑
j≥1 ajZ

j = Q(Z), some power series. Compute KQ. We have

KQ(1 +
∑
j≥1

qjZ
j) =

∞∏
l=1

Q(αlZ),

where 1 +
∑

j≥1 qjZ
j =

∏∞
j=1(1 + αjZ). So, as K is multiplicative,

K(1 +
∑
j≥1

qjZ
j) = K(

∞∏
j=1

(1 + αjZ)) =
∞∏

j=1

K(1 + αjZ).

By definition of Q, the right hand side of the latter is

∞∏
l=1

Q(αlZ) = KQ(1 +
∑
j≥1

qjZ
j)

and this proves:

Proposition 3.36 The endomorphisms (under multiplication) of the 1-units are in one-to-one correspon-
dence with the 1-units. The correspondence is

endo K � 1-unit K(1 + Z),

and
1-unit Q� endo KQ.

We can repeat the above with new variables: X (for Z); cj (for qj); γj (for αj); and connect with the
above by the relations

Z = X2;αl = γ2
l .

This means
∞∑

i=0

(−1)iqiZ
i =

( ∞∑
j=0

cjX
j
)( ∞∑

r=0

cr(−X)r
)

(∗)

and if we set Q̃(X) = Q(X2) = Q(Z), then

KQ
l (q1, . . . , ql) = K

eQ
2l(c1, . . . , c2l) and K

eQ
2l+1(c1, . . . , c2l+1) = 0.

For example, (∗) implies that q1 = c2
1 − 2c2, etc.

Proposition 3.37 If B ⊇ Q, then there is one and only one power series, L(Z), so that for all k ≥ 0, the
coefficient of Zk in L(Z)2k+1 is 1. In fact,

L(Z) =
√

Z

tanh
√

Z
= 1 +

∞∑
l=1

(−1)l−1 22l

(2l)!
BlZ

l.
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Proof . For k = 0, we see that L(Z) must be a 1-unit, L(Z) = 1 +
∑∞

j=1 bjZ
j . Consider k = 1; then,

L(Z)3 = (1 + b1Z + O(Z2))3, so

(1 + b1Z)3 + O(Z2) = 1 + 3b1Z + O(Z2),

which implies b1 = 1/3. Now, try for b2: We must have(
1 +

1
3
Z + b2Z + O(Z3)

)5

=
(

1 +
1
3
Z + b2Z

)5

+ O(Z3)

=
(

1 +
1
3
Z

)5

+ 5
(

1 +
1
3
Z

)4

b2Z + O(Z3)

= junk +
(

10
9

+ 5b2

)
Z2 + O(Z3).

Thus,

5b2 = 1 − 10
9

= −1
9
,

i.e., b2 = −1/45. It is clear that we can continue by induction and obtain the existence and uniqueness of
the power series.

Now, let

M(Z) =
√

Z

tanh
√

Z
.

Then, M(Z)2k+1 is a power series and the coefficient of Zk is (by Cauchy)

1
2πi

∫
|Z|=ε

M(Z)2k+1

Zk+1
dZ.

Let t = tanh
√

Z. Then,

dt = sech2
√

Z

(
1

2
√

Z

)
dZ,

so
M(Z)2k+1

zk+1
dZ =

√
Z2

√
Zdt

t2k+1Zsech2
√

Z
=

2dt

t2k+1sech2
√

Z
.

However, sech2Z = 1 − tanh2 Z = 1 − t2, so

M(Z)2k+1

zk+1
dZ =

2dt

t2k+1(1 − t2)
.

When t goes once around the circle |t| = small(ε), Z goes around twice around, so

1
2πi

∫
|t|=small(ε)

2dt

t2k+1(1 − t2)
= twice what we want

and our answer is

1
2πi

∫
|t|=small(ε)

dt

t2k+1(1 − t2)
=

1
2πi

∫
|t|=small(ε)

t2kdt

t2k+1(1 − t2)
+ other zero terms = 1,

as required.
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Recall that
L(Z) = 1 +

1
3
Z − 1

45
Z2 + O(Z3).

Let us find L1(q1) and L2(q1, q2). We have

1 + L1(q1)Z + L2(q1, q2)Z2 + · · · = L(α1Z)L(α2Z)

=
(

1 +
1
3
α1Z − 1

45
α2

1Z
2 + · · ·

)(
1 +

1
3
α2Z − 1

45
α2

2Z
2 + · · ·

)
= 1 +

1
3
(α1 + α2)Z + −

(
1
45

(α2
1 + α2

2) +
1
9
α1α2

)
Z2 + O(Z3).

We deduce that
L1(q1) =

1
3
q1

and since α2
1 + α2

2 = (α1 + α2)2 − 2α1α2 = q2
1 − 2q2, we get

L2(q1, q2) = − 1
45

(7q2 − q2
1) = − 1

32 · 5(7q2 − q2
1).

Here are some more L-polynomials:

L3 =
1

33 · 5 · 7(62q3 − 13q1q2 + 2q3
1)

L4 =
1

34 · 52 · 7(381q4 − 71q3q1 − 19q2
2 + 22q2q

2
1 − 3q4

1)

L5 =
1

35 · 52 · 7 · 11
(5110q5 − 919q4q1 − 336q3q2 + 237q3q

2
1 + 127q2

2q1 − 83q2q
3
1 + 10q5

1).

Geometric application: Let X be an oriented manifold and let TX be its tangent bundle. Take a multi-
plicative sequence, {Kl}, in the Pontrjagin classes of TX : p1, p2, . . ..

Definition 3.3 The K-genus (or K-Pontrjagin genus) of X is{
0 if dimRX �≡ 0 (mod 4),
Kn(p1, . . . , pn)[X] if dimRX = 4n.

(a 4n rational cohomology class applied to a 4n integral homology class gives a rational number). When
Kl = Ll (our unique power series, L(Z)), we get the L-genus of X, denoted L[X].

Look at P2n
C , of course, we mean its tangent bundle, to compute characteristic classes. Write temporarily

Θ = TP2n
C

a U(2n)-bundle. We make ζ(Θ) (remember, ζ : U(2n) → O(4n)), then we know∑
i

pi(ζ(Θ))(−Z)i =
(∑

j

cj(Θ)Xj
)(∑

k

ck(Θ)(−X)k
)
,

with Z = X2. Now, for projective space, P2n
C ,

1 + c1(Θ)t + · · · + c2n(Θ)t2n + t2n+1 = (1 + t)2n+1.

Therefore,

2n∑
i=0

pi(ζ(Θ))(−X2)i + terms in X4n+1,X4n+2 = (1 + X)2n+1(1 − X)2n+1 = (1 − X2)2n+1.
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Hence, we get

pi(ζ(Θ)) =
(

2n + 1
i

)
H2i, 1 ≤ i ≤ n.

Let KL be the multiplicative homomorphism coming from the 1-unit, L. Then

KL(1 +
∑

i

pi(−X2)i) =
∑

j

Ll(p1, . . . , pl)(−X2)l

= KL((1 − X2)2n+1)
= KL(1 − X2)2n+1

= L(−X2)2n+1 = L(−Z)2n+1.

The coefficient of Zn in the latter is (−1)n and by the first equation, it is (−1)nLn(p1, . . . , pn). Therefore,
we have

Ln(p1, . . . , pn) = 1, for every n ≥ 1.

Thus, we’ve proved

Proposition 3.38 On the sequence of real 4n-manifolds: P2n
C , n = 1, 2, . . ., the L-genus of each, namely

Ln(p1, . . . , pn), is 1. The L-genus is the unique genus having this property. Alternate form: If we substitute
pj =

(
2n+1

j

)
in the L-polynomials, we get

Ln

((
2n + 1

1

)
, . . . ,

(
2n + 1

n

))
= 1.

Now, for the Todd genus.

Proposition 3.39 If B ⊇ Q, then there is one and only one power series, T (X), having the property: For
all k ≥ 0, the coefficient of Xk in T (X)k+1 is 1. In fact this power series defines the holomorphic function

X

1 − e−X
.

Proof . It is the usual induction, but we’ll compute the first few terms. We see that k = 0 implies that T is
a 1-unit, ie.,

T (X) = 1 + b1X + b2X
2 + O(X3).

For k = 1, we have
T (X)2 = (1 + b1X)2 + O(X2) = 1 + 2b1X + O(X2),

so
b1 =

1
2
.

For k = 2, we have

T (X)3 =
(

1 +
1
2
X + b2X

2

)3

+ O(X3)

=
(

1 +
1
2
X

)3

+ 3
(

1 +
1
2
X

)2

b2X
2 + O(X3)

= stuff +
3
4
X2 + 3b2X

2 + O(X3).

Therefore, we must have
3
4

+ 3b2 = 1,
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that is,

b2 =
1
12

.

So,

T (X) = 1 +
1
2
X +

1
12

X2 + · · · .

That
T (X) =

X

1 − e−X

comes from Cauchy’s formula.

From T (X), we make the opertor KT , namely,

KT (1 + c1X + c2X
2 + · · · ) = 1 +

∞∑
j=1

Tj(c1, . . . , cj)Xj =
∞∏

i=0

T (γiX),

where

1 + c1X + c2X
2 + · · · =

∞∏
i=0

(1 + γiX).

Let’s work out T1(c1) ans T2(c1, c2). From

1 + c1X + c2X
2 = (1 + γ1X)(1 + γ2X),

we get

1 + T (c1)X + T2(c1, c2)X2 + · · · = T (γ1X)T (γ2X)

=
(

1 +
1
2
γ1X +

1
12

γ2
1X2 + · · ·

)(
1 +

1
2
γ2X +

1
12

γ2
2X2 + · · ·

)
= 1 +

1
2
(γ1 + γ2) +

(
1
12

(γ2
1 + γ2

2) +
1
4
γ1γ2

)
X2 + · · · .

We get

T1(c1) =
1
2
c1

and
T2(c1, c2) =

1
12

(γ2
1 + γ2

2) +
1
4
γ1γ2 =

1
12

(c2
1 − 2c2) +

1
4
c2 =

1
12

(c2
1 + c2).

i.e.,

T2(c1, c2) =
1
12

(c2
1 + c2).

From this T , we make for a complex manifold, X, its Todd genus,

Tn(X) = Tn(c1, . . . , cn)[X],

where c1, . . . , cn = Chern classes of TX (the holomorphic tangent bundle) and [X] = the fundamental
homology class on H2n(X, Z). This is a rational number.

Suppose X and Y are two real oriented manifolds of dimensions n and r. Then

TX
Q

Y = pr∗1TX 
 pr∗2TY .

So, we have

1 + p1(X
∏

Y )Z + · · · = pr∗1(1 + p1(X)Z + · · · )pr∗2(1 + p1(Y )Z + · · · ). (†)
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Further observe that if ξ, η are cohomology classes for X, resp. Y , then ξ ⊗ 1, 1 ⊗ η are pr∗1(ξ), pr∗2(η), by
Künneth and we have

ξ ⊗ η[X
∏

Y ] = ξ[X]η[Y ]. (††)

Now, say K is an endomorphism of the 1-units from a given 1-unit, so it gives the K-genera of X
∏

Y , X,
Y . We have

K(1 + p1(X
∏

Y )Z + · · · ) = K((1 + p1(X)Z + · · · )(1 + p1(Y )Z + · · · ))
= K(1 + p1(X)Z + · · · )K(1 + p1(Y )Z + · · · ).

Now, evaluate on [X
∏

Y ], find a cycle of X
∏

Y ] in Hn+r(X
∏

Y, Z). By (††), we get

Kn+r(p1, . . . , pn+r)[X
∏

Y ] = Kn(p1, . . . , pn)[X]Kr(p1, . . . , pr)[Y ]

and

Proposition 3.40 If K is an endomorphism of 1-units, then the K-genus is multiplicative, i.e.,

K(X
∏

Y ) = K(X)K(Y ).

Interpolation among the genera (of interest).

Let y be a new variable (the interpolation variable). Make a new function, with coefficients in B ⊇ Q[y],

Q(y;x) =
x(y + 1)

1 − e−x(y+1)
− xy

(First form of Q(y;x)). We can also write

Q(y;x) =
x(y + 1)ex(y+1)

ex(y+1) − 1
− xy

=
x(y + 1)(ex(y+1) − 1 + 1)

ex(y+1) − 1
− xy

= x(y + 1) +
x(y + 1)

ex(y+1) − 1
− xy

=
x(y + 1)

ex(y+1) − 1
+ x.

(Second form of Q(y;x)).

Let us compute the first three terms of Q(y;x). As

e−x(y+1) = 1 − x(y + 1) +
(x(y + 1))2

2!
+ · · · + (−1)k (x(y + 1))k

k!
+ · · · ,

we have

1 − e−x(y+1) = x(y + 1) − (x(y + 1))2

2!
+ · · · + (−1)k−1 (x(y + 1))k

k!
+ · · ·

and so,
x(y + 1)

1 − e−x(y+1)
=
[
1 + · · · + (−1)k−1 (x(y + 1))k−1

k!
+ · · ·

]−1

.
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If we denote this power series by 1 + α1x + α2x
2 + · · · , we can solve for α1, α2, etc., by solving the equation

1 = (1 + α1x + α2x
2 + · · · )

[
1 − x(y + 1)

2
+ · · · + (−1)k−1 (x(y + 1))k−1

k!
+ · · ·

]
.

This implies

α1 =
(y + 1)

2
and

α2 =
1
4
(y + 1)2 − 1

6
(y + 1)2 =

1
12

(y + 1)2.

Consequently,

Q(y;x) = 1 +
x(y + 1)

2
+

1
12

x2(y + 1)2 + O(x3(y + 1)3) − xy,

i.e.,

Q(y;x) = 1 +
x(1 − y)

2
+

1
12

x2(y + 1)2 + O(x3(y + 1)3).

Make the corresponding endomorphisms, Ty. Recall,

Ty(1 + c1X + · · · + cnXn + · · · ) =
{∏∞

j=1 Q(y; γjX)∑∞
j=0 Tj(y; c1, . . . , cj)Xj ,

where, of course,

1 + c1X + · · · + cnXn + · · · =
∞∏

j=1

(1 + γiX).

We obtain the Ty-genus. The 1-unit, Q(y;x), satisfies

Proposition 3.41 If B ⊇ Q[y], then there exists one and only one power series (it is our Q(y;x)) in B[[x]]
(actually, Q[y][[x]]) so that, for all k ≥ 0, the coefficient of Xk in Q(y;x)k+1 is

∑k
i=0(−1)iyi.

Proof . The usual (by induction). Let us check for k = 1. We have

Q(y;x)2 =
(

1 +
x(1 − y)

2

)2

+ O(x2) = 1 + (1 − y)x + O(x2).

The coefficient of x is indeed 1 − y =
∑1

i=0(−1)iyi.

Look at Q(y;x) for y = 1,−1, 0. Start with −1. We have

Q(−1;x) = 1 + x.

Now, for y = 0, we get
Q(0; y) = T (X) =

x

1 − e−x
.

Finally, consider y = 1. We have

Q(1;x) =
(

2
1 − e−2x

− 1
)

x

=
(

2e2x

e2x − 1
− 1
)

x

=
(

e2x + 1
e2x − 1

)
x

=
x

tanhx
= L(x2).
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We proved Q(y;x) is the unique power series in Q[y][[x]] so that the coefficient of xk in Q(y;x)k+1 is∑k
i=0(−1)iyi. Therefore, we know (once again) that Q(0;x) = Q(x) = the unique power series in Q[x] so

that the coefficient of xk in Q(x)k+1 is 1. Since, for projective space, Pk
C, we have

1 + c1X + · · · + ckXK + Xk+1 = (1 + X)k+1

and since

KQ((1 + X)k+1) =
{

KQ(1 + X)k+1 = Q(X)k+1∑∞
l=0 Tl(c1, · · · , cl)X l

we get
Tk(c1, . . . , ck) = 1

when the c’s come from Pk
C and if Tk(y; c1, . . . , ck) means the corresponding object for Q(y;x), we get

Proposition 3.42 The Todd genus, Tn(c1, . . . , cn), and the Ty-genus, Tn(y; c1, . . . , cn), are the only genera
so that on all Pn

C (n = 0, 1, 2, . . .) they have values 1, resp.
∑∞

i=0(−1)iyi.

Write Ty for the multiplicative operator obtained from Q(y;x), i.e.,

Ty(1 + c1X + · · · + cjX
j + · · · ) =

∞∑
n=0

Tn(y; c1, . . . , cn)Xn.

Equivalently,

Ty(1 + c1X + · · · + cjX
j + · · · ) =

∞∏
j=1

Q(y; γjX),

where

(1 + c1X + · · · + cjX
j + · · · =

∞∏
j=1

(1 + γjX).

Now, for all n, the expression Tn(y; c1, . . . , cn) is some polynomial (with coefficients in the c’s) of degree at
most n in y. Thus, we can write

Tn(y; c1, . . . , cn) =
n∑

l=0

T (l)
n (y; c1, . . . , cn)yl,

and this is new polynomial invariants, the T
(l)
n (y; c1, . . . , cn).

We have

Tn(−1; c1, . . . , cn) =
n∑

l=0

T (l)
n (c1, . . . , cn) = cn,

by the fact that Q(−1;x) = 1 + x. Next, when y = 0,

Tn(0; c1, . . . , cn) = T (0)
n (c1, . . . , cn) = Tn(c1, . . . , cn).

When y = 1, then

Tn(1; c1, . . . , cn) =
n∑

l=0

T (l)
n (c1, . . . , cn) =

{
0 if n is odd
Ln

2
(p1, . . . , pn

2
) if n is even.

Therefore, we get
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Proposition 3.43 If B ⊇ Q[y], then we have

(A)
∑n

l=0 T
(l)
n (c1, . . . , cn) = cn, for all n.

(B) T
(0)
n (c1, . . . , cn) = td(c1, . . . , cn) (= Tn(c1, . . . , cn)).

(C)
n∑

l=0

T (l)
n (c1, . . . , cn) =

{
0 if n is odd
Ln

2
(p1, . . . , pn

2
) if n is even.

The total Todd class of a vector bundle, ξ, is

td(ξ)(t) =
∞∑

j=0

tdj(c1, . . . , cj)tj = 1 +
1
2
c1(ξ) +

1
12

(c2
1(ξ) + c2(ξ))t2 +

1
24

(c1(ξ)c2(ξ))t3 + · · · .

Here some more Todd polynomials:

T4 =
1

720
(−c4 + c3c1 + 3c2

2 + 4c2c
2
1 − c4

1)

T5 =
1

1440
(−c4c1 + c3c

2
1 + 3c2

2c1 − c2c
3
1)

T6 =
1

60480
(2c6 − 2c5c1 − 9c4c2 − 5c4c

2
1 − c3

3 + 11c3c2c1 + 5c3c
3
1 + 10c3

2 + 11c2
2c

2
1 − 12c2c

4
1 + 2c6

1).

Say
0 −→ ξ′ −→ ξ −→ ξ′′ −→ 0

is an exact sequence of vector bundles. Now,

(1 + c′1t + · · · + c′q′tq
′
)(1 + c′′1 t + · · · + c′′q′′tq

′′
) = 1 + c1t + · · · + cqt

q,

and td is a multiplicative sequence, so

td(ξ′)(t)td(ξ′′)(t) = td(ξ)(t).

Let us define the K-ring of vector bundles. As a group, this is the free abelian group of isomorphism
classes of vector bundles modulo the equivalence relation

[V ] = [V ′] + [V ′′]

iff
0 −→ V ′ −→ V −→ V ′′ −→ 0 is exact.

For the product, define
[V ] · [W ] = [V ⊗ W ].

The ring K is a graded ring by rank (the rank of the vb).

Say ξ is a vector bundle and

1 + c1t + · · · + cqt
q + · · · =

∏
(1 + γjt).

Remember,

1 + td1(c1)t + · · · + tdn(c1, . . . , cn)tn + · · · =
∏

T (γjt) =
∏ γjt

1 − e−γjt
.
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Now, we define the Chern character of a vector bundle. For

1 + c1t + · · · + cqt
q + · · · =

∏
(1 + γjt)

set
ch(ξ)(t) =

∑
j

eγjt = ch0(ξ) + ch1(ξ)t + · · · + chn(ξ)tn + · · · ,

where chj(ξ) is a polynomial in c1, . . . , cj of weight j. Since

eγjt =
∞∑

r=0

(γjt)r

r!
,

we have ∑
j

eγjt =
∑

j

∑
r

eγjt =
∑

r

( 1
r!

∑
j

γr
j

)
tr,

which shows that

chr(c1, . . . , cr) =
1
r!

∑
j

γr
j =

1
r!

sr(γ1, . . . , γq).

The sums, sr, can be computed by induction using Newton’s formulae:

sl − sl−1c1 + sl−2c2 + · · · + (−1)l−1s1cl−1 + (−1)lcl = 0.

(Recall, cj = σj(γ1, . . . , γq).) We have

ch1(c1) = c1

ch2(c1, c2) =
1
2
(c2

1 − 2c2)

ch3(c1, c2, c3) =
1
6
(c3

1 − 3c1c2 + 3c3)

ch4(c1, c2, c3, c4) =
1
24

(c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4).

Say
0 −→ ξ′ −→ ξ −→ ξ′′ −→ 0

is an exact sequence of bundles. The Chern roots of ξ are the Chern roots of ξ′ together with those of ξ′′.
The definition implies

ch(ξ)(t) = ch(ξ′)(t) + ch(ξ′′)(t).

If ξ and η are vector bundles with Chern roots, γ1, . . . , γq and δ1, . . . , δr, then ξ ⊗ η has Chern roots γi + δj ,
for all i, j. By definition,

ch(ξ ⊗ η)(t) =
∑
i,j

e(γj+δj)t =
∑
i,j

eγjteδjt =
(∑

i

eγjt
)(∑

j

eγjt
)

= ch(ξ)(t)ch(η)(t).

The above facts can be summarized in the following proposition:

Proposition 3.44 The Chern character, ch(ξ)(t), is a ring homomorphism from K(vector(X)) to
H∗(X, Q).
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If ξ is a U(q)-vector bundle over a complex analytic manifold, X, write

T (X, ξ)(t) = ch(ξ)(t)td(ξ)(t),

the T -characteristic of ξ over X.

Remark: The T
(l)
n satisfy the duality formula

(−1)nT (l)
n (c1, . . . , cn) = T (n−l)

n (c1, . . . , cn).

To compute them, we can use

T (l)
n (c1, . . . , cn) = κn(ch(

l∧
ξD)(t)td(ξ)(t)),

where c1, . . . , cn are the Chern classes of the v.b., ξ, and κn always means the term of total degree n.
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3.4 Cobordism and the Signature Theorem

Let M be a real oriented manifold. Now, if dim(M) ≡ 0 (4), we have the Pontrjagin classes of M , say
p1, . . . , pn (with dim(M) = 4n). Say j1 + · · · + jr = n (a partition of n) and let P(n) denote all partitions
of n. Write this as (j). Consider pj1 · · · pjr

, the product of weight j1, . . . , jr monomials in the p’s; this is in
H4n(M, Z). Apply pj1 · · · pjr

to [M ] = fundamental cycle, we get an integer. Such an integer is a Pontrjagin
number of M , there are #(P(n)) of them.

Since
(−1)ipiZ

i =
(∑

cjX
j
)(∑

cl(−X)l
)
,

the Pontrjagin classes are independent of the orientation. introduce −M , the manifold M with the opposite
orientation. Then,

pj1 · · · pjr
[−M ] = −pj1 · · · pjr

[M ].

Define the sum, M + N , of two manifolds M and N as M 
N , their disjoint union, again, oriented. We
have

H∗(M + N, Z) = H∗(M, Z)
∏

H∗(N, Z)

and consequently, the Pontrjagin numbers of M + N are the sums of the Pontrjagin numbers of M and N .

We also define M
∏

N , the cartesian product of M and N . By Künnneth,

[M
∏

N ] = [M ⊗ 1][1 ⊗ N ],

so the Pontrjagin numbers of M
∏

N are the products of the Pontrjagin numbers of M and N .

The Pontrjagin numbers of manifolds of dimension n �≡ 0 (4) are all zero.

We make an equivalence relation (Pontrjagin equivalence) on oriented manifolds by saying that

M ≡ N (P )

iff every Pontrjagin number of M is the equal to the corresponding Pontrjagin number of N . Let Ω̃n be the
set of equivalence classes of dimension n manifolds, so that Ω̃n = (0) iff n �≡ 0 (4) and∐

n≥0

Ω̃n =
∐
r≥0

Ω̃4r.

We see that Ω̃ is a graded abelian torsion-free group. For Ω̃ ⊗Z Q, a ring of interest.

Proposition 3.45 For a sequence, {M4k}∞k=0 of manifolds, the following are equivalent:

(1) For every k, sk[M4k] �= 0. Here, write 1 + p1X + · · · + pnZn as a product
∏m≥n

j=1 (1 + βjZ), where
equality means up to terms of degree n if m > n and then

sk = βk
1 + · · · + βk

m(m ≥ k)

a polynomial in p1, . . . , pk, of weight k, so it makes sense on M4k.

(2) The mapping from multiplicative sequences with coefficients in B (⊇ Q) to
∏

ℵ0
B, via

{Kj}∞j=1 �→ (K1[M1], . . . , (Kk[Mk], . . .)

is a bijection. That is, given any sequence a1, . . . , ak, . . . of elements of B, there is one and only one
multiplicative sequence, {Kl} (coeffs in B), so that

Kk(p1, . . . , pk)[M4k] = ak.
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Proof . (1) =⇒ (2). Choose a1, a2, . . . from B. Now, multiplicative sequences with coefficients in B are in
one-to-one correspondence with one-units of B[[z]], say Q(z) is the 1-unit. If

1 + p1Z + · · · + pkZk + · · · =
∏
j

(1 + βjZ),

then
1 + K1(p1)Z + · · · + Kk(1, . . . , pk)Zk + · · · =

∏
j

Q(βjZ).

We must produce a unique 1-unit 1 + b1Z + · · · = Q(Z), so that ak is equal to the coefficient of Zk applied
to M4k in

∏
j Q(βjZ)bk+ some polynomial in b1, . . . , bk−1, of weight k. This polynomial has Z-coefficients

and depends on the M4k. We need

ak = sk[M4k] + poly in b1, . . . , bk−1 (†)

By (1), all sl[M4k] �= 0; by induction we can find unique bk’s from the ak’s.

(2) =⇒ (1). By (2), the equations (†) have a unique b-solution given the a’s. But then, all sk[M4k] �= 0,
else no unique solution or worse, no solution.

Corollary 3.46 The sequence {P2k
C } satisfies (1) and (2). Such a sequence is called a basis sequence for

the n-manifolds.

Proof . We have
1 + p1Z + · · · + pkZk = (1 + h2Z)2k+1,

where h2 ∈ H4(P2k
C , Z) (square of the hyperplane class). But then, βj = h2, for j = 1, . . . , 2k + 1 and

sk(P2k
C ) =

2k+1∑
j=1

h2k(P2k
C ) = 2k + 1 �= 0

establishing the corollary.

Theorem 3.47 Suppose {M4k} is a basis sequence for Ω̃ ⊗ Q. Then, each α ∈ Ω̃ ⊗ Q has the unique form∑
(j) ρ(j)M(j), where

(1) (j) = (j1, . . . , jr); j1 + · · · + jr = k; M(j) = M4j1

∏
· · ·
∏

M4jr
.

(2) ρ(j) ∈ Q. Secondly, given any rational numbers, ρ(j), there is some α ∈ Ω̃ ⊗ Q so that

p(j)(α) = pj1pj2 · · · pjr
(α) = ρ(j).

(3) Given any sequence, {M4k}, of manifolds suppose α =
∑

(j) ρ(j)M(j), then, for every k ≥ 0, we have
sk(α) = ρksk(M4k).

(4) If each α ∈ Ω̃ ⊗ Q is a sum
∑

(j) ρ(j)M(j), then the {M4k} are a basis sequence. So, the {M4k} are a

basis sequence iff the monomials M(j) = M4j1

∏
· · ·
∏

M4jr
(over P(k), all k) form a basis of Ω̃ ⊗ Q

in the usual sense.

Proof . Note that, as abelian group, Ω̃4k has rank #(P(k)) (the number of Pontrjagin numbers of weight k
is #(P(k))).

(1) Pick indeterminates q1, . . . , ql over Q and choose any integer l ≥ 0. By the previous proposition, since
{M4k} is a basis sequence there exists one and only one multiplicative sequence, call it {K(l)

m }∞m=1, so that

K(l)
m [M4m] = ql

m.
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We need only check our conclusion for α ∈ Ω̃4k ⊗ Q for fixed k. Now,

dimQ Ω̃4k ⊗ Q = #(P(k))

and there exist exactly #(P(k)) elements M(j), so all we need to show is∑
(j)

ρ(j)M(j) = 0 implies all ρ(j) = 0.

Suppose
∑

(j) ρ(j)M(j) = 0 and apply the multiplicative sequence {K(l)
m }∞m=1. We get∑

(j)

ρ(j)q
l
j1 · · · q

l
jr

= 0 for all l ≥ 0. (∗)

Write ql
j1
· · · ql

jr
= ql

(l). The ql
(l) are all pairwise distinct, so by choosing enough l, the equation (∗) gives

a system of linear equations (unknowns the ρ(j)) with a Vandermonde determinant. By linear algebra, all
ρ(j) = 0.

(2) This is now clear as the M(j) span Ω̃4k ⊗ Q for all k.

(3) Look at Q(Z) = 1 + Zk and make the corresponding multiplicative sequence. We have

1 + k1(p1)Z + · · · + Kk(p1, . . . , pk)Zk + · · · =
∏
j≥k

(1 + βk
j Zk).

Therefore, Kl(p1, . . . , pl) = 0 if l < k and Kk(p1, . . . , pk) = βk
1 + βk

2 + · · · = sk. Apply this multiplicative
sequence to α, we get sk(α) = ρksk(M4k), as required.

(4) Suppose each α =
∑

(j) ρ(j)M(j), yet, for some k, sk(Mk) = 0. By (3), we have sk(α) = ρksk(M4k) =
0. It follows that sl(α) = 0, for all α. Now, let α = P2k

C . We get

2k + 1 = sk(α) = 0,

a contradiction.

Corollary 3.48 The map M4k �→ Zk (and M(j) �→ Zj1 · · ·Zjr
) gives a Q-algebra isomorphism

Ω̃ ⊗ Q ∼= Q[Z1, Z2, . . .], where deg(Zl) = 4l. (Here, {M4k} is a basis sequence.)

Corollary 3.49 The Q-algebra maps, Ω̃⊗Q −→ Q, are in one-to-one correspondence with the multiplicative
sequences with coefficients in Q (or, what’s the same, with the 1-units of Q[[Z]]). The map is

α ∈ Ω̃ ⊗ Q �→ K(α).

Proof . Multiplicative sequences correspond to 1-units 1 + b1Z + · · ·+ and (†) above shows we know the b’s
iff we know the value of the homomorphism on the M4k, i.e., on the Zk’s and then, use Corollary 3.48.

Note that manifolds with boundary also have a notion of orientation.

An oriented n-dimensional manifold, M , bounds iff there is an oriented manifold, V and an orientation
preserving diffeomorphism, ∂V ∼= M .

Definition 3.4 (R. Thom) Two manifolds, M and N are cobordant if M + (−N) bounds.

Introduce cobordism, the equivalence relation

M ≡ N (C) iff M is cobordant to N.

We see immediately that if M ≡ N (C) and M ′ ≡ N ′ (C), then
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(1) M 
 M ′ ≡ N 
 N ′ (C)

(2) −M ≡ −N (C)

(3) M
∏

M ′ ≡ N
∏

N ′ (C).

Using this equivalence, we have the graded abelian group (under 
)

Ω =
∐
n

Ωn,

where Ωn is the set of equivalence classes of n-dimensional oriented manifolds under cobordism. We make
Ω into a ring as follows: Given α ∈ Ωm and β ∈ Ωn, then

αβ = class of(α
∏

β)

and (use homology), αβ = (−1)mnβα. We call Ω the oriented cobordism ring .

Theorem 3.50 (Pontrjagin) If M bounds (i.e., M ≡ 0 (C)) then all its Pontrjagin numbers vanish (i.e.,
M ≡ 0 (P )). Hence, there is a surjection Ω −→ Ω̃ and hence a surjection Ω ⊗ Q −→ Ω̃ ⊗ Q.

Proof . We have M = ∂V , write i : M ↪→ V for the inclusion. Let p1, . . . , pl, . . . be the Pontrjagin classes of
TV ; note, as M = ∂V ,

i∗TV = TV � ∂V = TV �M = TM 
 I,

where I denotes the trivial bundle. Therefore, the Pontrjagin classes of M are i∗(those of V ). So, for
4k = dimM and j1 + · · · + jr = k,

p(j)[M ] = i∗((pj1 · · · pjr
)[M ]),

where [M ] is the 4k-cycle in H4k(V, Z). But, [M ] = 0 in H4k(V, Z), as M = ∂V . Therefore, the right hand
side is zero.

We will need a deep theorem of René Thom. The proof uses a lot of homotopy theory and is omitted.

Theorem 3.51 (R. Thom, 1954, Commentari) The groups Ωn of oriented n-manifolds are finite if
n �≡ 0 (mod 4) and Ω4k = free abelian group of rank #(P(k))
 finite abelian group. Hence, Ωn ⊗Q = (0) if
n �≡ 0 (mod 4) and dim(Ω4k ⊗ Q) = #(P(k)) = dim(Ω̃4k ⊗ Q). We conclude that the surjection
Ω ⊗ Q −→ Ω̃ ⊗ Q is an isomorphism. Therefore,

Ω ⊗ Q ∼=alg Q[Z1, . . . , Zn, . . .].

We will also need another theorem of Thom. First, recall the notion of index of a manifold, from Section
2.6. The index of M , denoted I(M) is by definition the signature, sgn(Q), where Q is the intersection form
on the middle cohomology, Hn(M, C), when n is even. So, I(M) makes sense if dimR M ≡ 0 (4).

Theorem 3.52 (R. Thom, 1952, Ann. Math. ENS) If the n-dimensional oriented manifold bounds, then
I(M) = 0.

In view of these two theorems we can reformulate our algebraic theorem on HomQ-alg(Ω̃⊗Q, Q) in terms
of Ω ⊗ Q.

Theorem 3.53 Suppose λ is a function from oriented n-manifolds to Q, M �→ λ(M), satisfying

(1) λ(M + N) = λ(M) + λ(N); λ(−M) = −λ(M).
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(2) If M bounds, then λ(M) = 0.

(3) If {M4k} is a basis sequence for Ω, then when j1 + · · · + jr = k, we have

λ
(
M4j1

∏
· · ·
∏

M4jr

)
= λ(M4j1) · · ·λ(M4jr

).

Then, there exists a unique multiplicative sequence, {Kl}, so that for every M of dimension n,

λ(M) = Kn
4
(p1, . . . , pn

4
)[M ].

We get the fundamental theorem:

Theorem 3.54 (Hirzebruch Signature Theorem) For all real differentiable oriented manifolds, M , we have:

(1) If dimR M �≡ 0 (mod 4), then I(M) = 0.

(2) If dimR M = 4k, then
I(M) = Lk(p1, . . . , pk)[M ].

Proof . Recall, I is a function from manifolds to Z and clearly satisfies (1). By Thom’s second Theorem
(Theorem 3.52), I satisfies (2). Take as basis sequence: M4k = P2k

C . We have

I(M4k) =
2k∑

p=0

(−1)php,q(M4k),

by the Hodge Index Theorem (Theorem 2.77). As hp,p = 1 and hp,q = 0 if p �= q, we get

I(M4k) = 1.

Now we further know the Künneth formula for the hp,q of a product (of two, hence any finite number of
complex manifolds). Apply this and get (DX)

I
(
P

j1
C

∏
· · ·
∏

P
jr

C

)
= 1.

Therefore, (3) holds. Then, our previous theorem implies I(M) = K(M) for some K, a multiplicative
sequence. But, K(P2k

C ) = 1, there and we know there is one and only one multiplicative sequence ≡ 1 on all
P2k

C , it is L. Therefore, I(M) = L, as claimed.
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3.5 The Hirzebruch–Riemann–Roch Theorem (HRR)

We can now state and understand the theorem:

Theorem 3.55 (Hirzebruch–Riemann–Roch) Suppose X is a complex, smooth, projective algebraic variety
of complex dimension n. If E is a rank q complex vector bundle on X, then

χ(X,OX(E)) = κn

(
ch(E)(t)td(X)(t)

)
[X].

Here,

χ(X,OX(E)) =
n∑

i=0

(−1)idim Hi(X,OX(E)).

We need to explicate the theorem.

(a) Write it using the Chern roots

1 + c1(E)t + · · · + cq(E)tq =
q∏

i=1

(1 + γit), 1 + c1(X)t + · · · + cq(X)tn =
n∏

j=1

(1 + δjt),

and the theorem says

χ(X,OX(E)) = κn

(
q∑

i=1

eγit
n∏

j=1

δjt

1 − e−δjt

)
[X].

(b) Better explication: Use

td(X)(t) = 1 +
1
2
c1(X)t +

1
12

(c2
1(X) + c2(X))t2 +

1
24

c1(X)c2(X)t3

+
1

720
(−c4(X) + c3(X)c1(X) + 3c2

2(X) + 4c2(X)c2
1(X) − c4

1(X))t4 + O(t5)

and

ch(E)(t) = rk(E) + c1(E)t +
1
2
(c2

1(E) − 2c2(E))t2 +
1
6
(c3

1(E) − 3c1(E)c2(E) + 3c3(E))t3

+
1
24

(c4
1(E) − 4c2

1(E)c2(E) + 4c1(E)c3(E) + 2c2
2(E) − 4c4(E))t4 + O(t5).

(A) Case n = 1, X = Riemann surface = complex curve; E = rank q vector bundle on X. HRR says:

χ(X,OX(E)) =
(

1
2
qc1(X) + c1(E)

)
[X].

Now, c1(X) = χ(X) = Euler-Poincaré(X) = (highest Chern class) = 2 − 2g (where g is the genus of X).
Also, c1(E) = deg(E) (= deg

∧q
E), so

χ(X,OX(E)) = (1 − g)rk(E) + deg E.

Now,
χ(X,OX(E)) = dimH0(X,OX(E)) − dim H1(X,OX(E));

by Serre duality,
dim H1(X,OX(E)) = dimH0(X,OX(ED ⊗ ωX)),



3.5. THE HIRZEBRUCH–RIEMANN–ROCH THEOREM (HRR) 227

so we get
dim H0(X,OX(E)) − dim H0(X,OX(ED ⊗ ωX)) = deg E + (rk(E))(1 − g).

(Note: We proved this before using the Atiyah-Serre Theorem, see Theorem 3.13.)

(i) E = OX = trivial bundle, then deg E = 0 and rkE = 1. We get

dim H0(X,OX) − dim H0(X,Ω1
X) = 1 − g.

Now, X connected implies dim H0(X,OX) = h0,1 = 1, so

g = dim H1(X,OX) = dimH0(X,Ω1
X) = h1,0.

(ii) E = ωX = Ω1
X , rkE = 1 and HRR says

dim H0(X,Ω1
X) − dim H0(X,OX) = deg Ω1

X + 1 − g.

The left hand side is g and dim H0(X,OX) = 1, so

deg Ω1
X = 2g − 2.

(iii) E = TX = Ω1,D
X . Then, rkE = 1, deg E = 2 − 2g and HRR says

dim H0(X,TX) − dim H1(X,TX) = 2 − 2g + 1 − g.

Assume g ≥ 2, then deg TX = 2 − 2g < 0. Therefore, H0(X,TX) = (0) and so,

−dim H1(X,TX) = 3 − 3g,

so that
dim H1(X,TX) = 3g − 3.

Remark: The group H1(X,TX) is the space of infinitesimal analytic deformations of X. Therefore, 3g − 3
is the dimension of the complex space of infinitesimal deformations of X as complex manifold. suppose
we know that there was a “classifying” variety of the genus g Riemann surfaces, say Mg. Then, if X (our
Riemann surface of genus g) corresponds to a smooth point of Mg, then

TMg,X = H1(X,TX).

Therefore, dimC Mg = 3g − 3 (Riemann’s computation).

(B) The case n = 2, an algebraic surface. Here, HRR says

χ(X,OX(E)) =
(

1
12

(c2
1(X) + c2(X))rk(E) +

1
2
c1(X)c1(E) +

1
2
(c2

1(E) − 2c2(E))
)

[X].

The left hand side is

dim H0(X,OX(E)) − dim H1(X,OX(E)) + dim H0(X,OX(ED ⊗ ωX)).

Take E = trivial bundle, rkE = 1, c1(E) = c2(E) = 0, and we get

χ(X,OX) =
1
12

(c2
1(X) + c2(X))[X] =

1
12

(K2
X + χ(X))[X],
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where χ(X) is the Euler-Poincaré characteristic of X. We proved that this holds iff
I(X) = 1

3p1(X) = L1(p1)[X] (see Section 2.6, just after Theorem 2.82). By the Hirzebruch signature
theorem, our formula is OK.

Observe, if we take ωX , not OX , then the left hand side, χ(X,OX), is

dim H0(X,ωX) − dim H1(X,ωX) + dimH2(X,ωX) = dimH2(X,OX) − dim H1(X,OX) + dim H0(X,ωX)

(by Serre duality) and the left hand side stays the same.

Take E = TX ; rkE = 2, c1(E) = c1(X), c2(E) = c2(X) and the right hand side of HRR is(
2
12

(c2
1(X) + c2(X)) +

1
2
c2
1(X) +

1
2
c2
1(E) − c2(X)

)
[X] =

(
7
6
c2
1(X) − 5

6
c2(X)

)
[X]

=
(

7
6
K2

X − 5
6
χ(X)

)
[X].

The left hand side of HRR is

dim H0(X,TX) − dim H1(X,TX) + dimH0(X,TD
X ⊗ ωX).

Now,
TD

X ⊗ TD
X −→ TD

X ∧ TD
X = ωX

gives by duality

TD
X

∼= Hom(TD
X , ωX)

∼= Hom(TD
X ⊗ ωD

X ,OX)
∼= TX ⊗ ωX ,

so the left hand side is

dim(global holo vector fields on X) − dim(infinitesimal deformations of X)
+ dim(global section of TX ⊗ ω⊗2

X ).

Take E = Ω1
X = TD

X , rkE = 2, c1(E) = c1(ωX) = −c1(TX) = −c1(X), c2(E) = c2(X). The right hand side
of HRR is

2
12

(c2
1(X) + c2(X)) − 1

2
c2
1(X) +

1
2
c2
1(X) − c2(X) =

1
6
c2
1(X) − 5

6
c2(X).

The left hand side of HRR is

dim H0(X,Ω1
X)− dim H1(X,Ω1

X) + dimH2(X,Ω1
X) = h1,0 − h1,1 + h1,2 = h1,0 − h1,1 + h1,0 = b1(X)− h1,1.

It follows that

b1(X) − h1,1 =
(

7
6
K2

X − 5
6
χ(X)

)
[X],

so

b1(X) −
(

7
6
K2

X − 5
6
χ(X)

)
[X] = h1,1.

Also,

H0(X,Ω1
X) = H2(X,ωX ⊗ TX)D

H1(X,Ω1
X) = H1(X,ωX ⊗ TX)D

H2(X,Ω1
X) = H0(X,ωX ⊗ TX)D
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and we get no new information.

When we know something about X, we can say more. For example, say X is a hypersurface of degree d
in P3

C. Then, write
H · X = h = i∗H,

where i : X → P3
C. We know

NX↪→P3 = OX(d · h),

so
0 −→ TX −→ TP3 � X −→ OX(dh) −→ 0 is exact.

We have
(1 + c1(X)t + c2(X)t2)(1 + dht) = (1 + Ht)4 � X = (1 + ht)4,

so

1 + c1(X)t + c2(X)t2 = (1 + 4ht + 6h2t2)(1 − dht + d2h2t2) = 1 + (4 − d)ht + (6 − 4d + d2)h2t2.

So c1(X) = (4 − d)h and c2(X) = (6 − 4d + d2)h2. Now,

h2[X] = i∗(H · X)i∗(H · X) = H · H · X = deg X = d.

Consequently,

χ(X,OX(E)) =
1
12

rk(E)((4 − d)2d + (6 − 4d + d2)d) +
1
2
c1(E)(4 − d)h[X] +

1
2
(c2

1(E) − 2c2(E))[X].

Take eH and set E = line bundle eh = eH · X = eH � X = OX(e). In this case, rk(E) = 1, c2(E) = 0 and
c1(E) = eh. We get

χ(X,OX(e)) =
1
6
(11 − 6d + d2)d +

1
2
e(4 − d)d +

1
2
e2d,

i.e.,

χ(X,OX(e)) =
(

1
6
(11 − 6d + d2) +

1
2
(e2 − ed + 4e)

)
d.

(C) X = abelian variety = projective group variety.

As X is a group, TX is the trivial bundle, so c1(X) = c2(X) = 0. When X is an abelian surface we get

χ(X,OX(E)) =
1
2
(c2

1(E) − 2c2(E))[X].

When X is an abelian curve = elliptic curve (g = 1), we get

χ(X,OX(E)) = c1(E) = deg E.

Say the abelian surface is a hypersurface in P3
C. We know c1(X) = 0 and c2(X) = (4 − d)h. This implies

d = 4, but c2(X) = 6h2 �= 0, a contradiction! Therefore, no abelian surface in P3
C is a hypersurface.

Now, assume X ↪→ PN
C , where N > 3 and X is an abelian surface. Set E = OX(h) and compute

χ(X,OX(h)), where h = H · X. We have c1(OX(h)) = h and c2(OX(h)) = 0. Then,

c2
1(E)[X] = h2[X] = H · H · X = deg X

as subvariety of PN
C . HRR for abelian surfaces embedded in PN

C with N > 3 yields

χ(X,OX(1)) =
1
2
deg X.
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As the left hand side is an integer, we deduce that deg X must be even.

(D) X = Pn
C. From

1 + c1(X)t + · · · + cn(X)tn = (1 + Ht)n+1

we deduce
δ1 = · · · = δn+1 = H.

Take
1 + c1(X)t + · · · + cn(X)tn =

∏
j

(1 + γjt)

and look at E ⊗ H⊗r = E(r). We have

χ(Pn,OX(E(r))) = κn

(
q∑

i=1

e(γi+r)t (Ht)n

(1 − e−Ht)n

)
[X]

=
q∑

l=1

1
2πi

∫
C

e(γl+r)Ht

(1 − e−Ht)n+1
d(Ht)

=
q∑

l=1

1
2πi

∫
C

e(γl+r)z

(1 − e−z)n+1
d(z),

where C is a small circle. Let u = 1 − e−z, then du = e−zdz = (1 − u)dz, so

dz =
du

1 − u
.

We also have e(γl+r)z = (e−z)−(γl+r) = (1 − u)−(γl+r). Consequently, the integral is

q∑
l=1

1
2πi

∫ 2π

u=0

du

(1 − u)γl+r+1un+1

where is the path of integration is a segment of the line z = ε + iu. It turns out that

1
2πi

∫ 2π

u=0

du

(1 − u)γl+r+1un+1
= β(γl, n) =

(
n + γl + r

n

)
so HRR implies

χ(Pn,OX(E(r))) =
q∑

l=1

(
n + γl + r

n

)
∈ Q.

But, the right hand side has denominator n! and the left hand side is an integer. We deduce that for all
r ∈ Z, for all n ≥ and all q ≥ 1,

q∑
l=1

(
n + γl + r

n

)
∈ Z.

(Here, 1 + c1(E)Ht + · · · + cq(E)(Ht)q =
∏q

j=1(1 + γjHt).)

Take r = 0, q = 2. We get (
n + γ1

n

)
+
(

n + γ2

n

)
∈ Z.

For n = 2, we must have
(2 + γ1)(1 + γ1) + (2 + γ2)(1 + γ2) ≡ 0 (2),
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i.e.,
2 + 3γ1 + γ2

1 + 2 + 3γ2 + γ2
2 ≡ 0 (2),

which is equivalent to
3c1 + c2

1 − 2c2 ≡ 0 (2).

Thus, we need c1(3 + c1) ≡ 0 (2), which always holds.

Now, take n = 3. We have (
3 + γ1

3

)
+
(

3 + γ2

3

)
∈ Z,

i.e.,
(3 + γ1)(2 + γ1)(1 + γ1) + (3 + γ2)(2 + γ2)(1 + γ2) ≡ 0 (6).

This amounts to
(6 + 5γ1 + γ2

1)(1 + γ1) + (6 + 5γ2 + γ2
2)(1 + γ2) ≡ 0 (6)

which is equivalent to
γ1(5 + γ1)(1 + γ1) + γ2(5 + γ2)(1 + γ2) ≡ 0 (6),

i.e.,
γ1(5 + 6γ1 + γ2

1) + γ2(5 + 6γ2 + γ2
2) ≡ 0 (6)

which can be written in terms of the Chern classes as

5c1 + 6(c2
1 − 2c2) + c3

1 − 3c1c2 ≡ 0 (6),

i.e.,
c1(c2

1 − 3c2 + 5) ≡ 0 (6).

Observe that
c3
1 + 5c1 ≡ 0 (6)

always, so we conclude that c1c2 must be even.

Say i : P2
C → P3

C is an embedding of P2
C into P3

C.

Question: Does there exist a rank 2 bundle on P3
C, say E, so that i∗(E) = TP2

C

.?

If so, E has Chern classes c1 and c2 and

c1(TP2
C

) = i∗(c1), c2(TP2
C

) = i∗(c2).

This implies
c1c2(TP2

C

) = i∗(c1c2(E)),

which is even (case n = 3). But,

c1(TP2
C

) = 3HP2 , c2(TP2
C

) = 3HP2 ,

so
c1c2(TP2

C

) = 9H2,

which is not even! Therefore, the answer is no.
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