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Preface

These lecture notes grew out of an M.Sc. course on differential
geometry which I gave at the University of Leeds 1992. Their main
purpose is to introduce the beautiful theory of Riemannian Geometry
a still very active research area of mathematics. This is a subject with
no lack of interesting examples. They are indeed the key to a good
understanding of it and will therefore play a major role throughout
this work. Of special interest are the classical Lie groups allowing
concrete calculations of many of the abstract notions on the menu.

The study of Riemannian Geometry is rather meaningless without
some basic knowledge on Gaussian Geometry that is the differential
geometry of curves and surfaces in 3-dimensional space. For this we
recommend the excellent textbook: M. P. do Carmo, Differential ge-
ometry of curves and surfaces, Prentice Hall (1976).

These lecture notes are written for students with a good under-
standing of linear algebra, real analysis of several variables, the clas-
sical theory of ordinary differential equations and some topology. The
most important results stated in the text are also proved there. Other
smaller ones are left to the reader as exercises, which follow at the end
of each chapter. This format is aimed at students willing to put hard
work into the course.

For further reading we recommend the very interesting textbook: M.
P. do Carmo, Riemannian Geometry, Birkhäuser (1992).

I am very grateful to my many students who throughout the years have
contributed to the text by finding numerous typing errors and giving
many useful comments on the presentation.

It is my intention to extend this very incomplete draft version and
include some of the differential geometry of the Riemannian symmetric
spaces.

Lund University, 15 January 2004

Sigmundur Gudmundsson





Contents

Chapter 1. Introduction 5

Chapter 2. Differentiable Manifolds 7

Chapter 3. The Tangent Space 19

Chapter 4. The Tangent Bundle 33

Chapter 5. Riemannian Manifolds 43

Chapter 6. The Levi-Civita Connection 55

Chapter 7. Geodesics 63

Chapter 8. The Curvature Tensor 75

Chapter 9. Curvature and Local Geometry 83

3





CHAPTER 1

Introduction

On the 10th of June 1854 Riemann gave his famous ”Habilita-
tionsvortrag” in the Colloquium of the Philosophical Faculty at Gött-
ingen. His talk with the title ”Über die Hypothesen, welche der Ge-
ometrie zu Grunde liegen” is often said to be the most important in
the history of differential geometry. Gauss, at the age of 76, was in the
audience and is said to have been very impressed by his former student.

Riemann’s revolutionary ideas generalized the geometry of surfaces
which had been studied earlier by Gauss, Bolyai and Lobachevsky.
Later this lead to an exact definition of the modern concept of an
abstract Riemannian manifold.
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CHAPTER 2

Differentiable Manifolds

The main purpose of this chapter is to introduce the concepts of a
differentiable manifold, a submanifold and a differentiable map between
manifolds. By this we generalize notions from the classical theory of
curves and surfaces studied in most introductory courses on differential
geometry.

For a natural number m let Rm be the m-dimensional real vector
space equipped with the topology induced by the standard Euclidean
metric d on Rm given by

d(x, y) =
√

(x1 − y1)2 + . . .+ (xm − ym)2.

For positive natural numbers n, r and an open subset U of Rm we
shall by Cr(U,Rn) denote the r-times continuously differentiable maps
U → Rn. By smooth maps U → Rn we mean the elements of

C∞(U,Rn) =
∞⋂

r=1

Cr(U,Rn).

The set of real analytic maps U → Rn will be denoted by Cω(U,Rn).
For the theory of real analytic maps we recommend the book: S.
G. Krantz and H. R. Parks, A Primer of Real Analytic Functions,
Birkhäuser (1992).

Definition 2.1. Let (M, T ) be a topological Hausdorff space with
a countable basis. Then M is said to be a topological manifold if
there exists a natural number m and for each point p ∈ M an open
neighbourhood U of p and a continuous map x : U → Rm which is a
homeomorphism onto its image x(U) which is an open subset of Rm.
The pair (U, x) is called a chart (or local coordinates) on M . The
natural number m is called the dimension of M . To denote that the
dimension of M is m we write Mm.

Following Definition 2.1 a topological manifold M is locally home-
omorphic to the standard Rm for some natural number m. We shall
now use the charts on M to define a differentiable structure and make
M into a differentiable manifold.
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8 2. DIFFERENTIABLE MANIFOLDS

Definition 2.2. Let M be a topological manifold. Then a Cr-atlas
for M is a collection of charts

A = {(Uα, xα)| α ∈ I}
such that A covers the whole of M i.e.

M =
⋃

α

Uα

and for all α, β ∈ I the corresponding transition map

xβ ◦ x−1
α |xα(Uα∩Uβ) : xα(Uα ∩ Uβ)→ Rm

is r-times continuously differentiable.
A chart (U, x) on M is said to be compatible with a Cr-atlas A on

M if A ∪ {(U, x)} is a Cr-atlas. A Cr-atlas Â is said to be maximal
if it contains all the charts that are compatible with it. A maximal
atlas Â on M is also called a Cr-structure on M . The pair (M, Â)
is said to be a Cr-manifold, or a differentiable manifold of class
Cr, if M is a topological manifold and Â is a Cr-structure on M . A
differentiable manifold is said to be smooth if its transition maps are
C∞ and real analytic if they are Cω.

It should be noted that a given Cr-atlas A on M determines a
unique Cr-structure Â on M containing A. It simply consists of all
charts compatible with A. For the standard topological space (Rm, T )
we have the trivial Cω-atlas

A = {(Rm, x)| x : p 7→ p}
inducing the standard Cω-structure Â on Rm.

Example 2.3. Let Sm denote the unit sphere in Rm+1 i.e.

Sm = {p ∈ Rm+1| p2
1 + · · ·+ p2

m+1 = 1}
equipped with the subset topology induced by the standard T on Rm+1.
Let N be the north pole N = (1, 0) ∈ R×Rm and S be the south pole
S = (−1, 0) on Sm, respectively. Put UN = Sm−{N}, US = Sm−{S}
and define xN : UN → Rm, xS : US → Rm by

xN : (p1, . . . , pm+1) 7→ 1

1− p1
(p2, . . . , pm+1),

xS : (p1, . . . , pm+1) 7→ 1

1 + p1
(p2, . . . , pm+1).

Then the transition maps

xS ◦ x−1
N , xN ◦ x−1

S : Rm − {0} → Rm − {0}
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are given by

p 7→ p

|p|2
so A = {(UN , xN ), (US, xS)} is a Cω-atlas on Sm. The Cω-manifold

(Sm, Â) is called the standard m-dimensional sphere.

Another interesting example of a differentiable manifold is the m-
dimensional real projective space RPm.

Example 2.4. On the set Rm+1 − {0} we define the equivalence
relation ≡ by p ≡ q if and only if there exists a λ ∈ R∗ = R−{0} such
that p = λq. Let RPm be the quotient space (Rm+1 − {0})/ ≡ and

π : Rm+1 − {0} → RPm

be the natural projection, mapping a point p ∈ Rm+1 − {0} to the
equivalence class [p] ∈ RPm containing p. Equip RPm with the quo-
tient topology induced by π and T on Rm+1. For k ∈ {1, . . . , m + 1}
put

Uk = {[p] ∈ RPm| pk 6= 0}
and define the charts xk : Uk → Rm on RPm by

xk : [p] 7→ (
p1

pk
, . . . ,

pk−1

pk
, 1,

pk+1

pk
, . . . ,

pm+1

pk
).

If [p] ≡ [q] then p = λq for some λ ∈ R∗ so pl/pk = ql/qk for all l. This
means that the map xk is well defined for all k. The corresponding
transition maps

xk ◦ x−1
l |xl(Ul∩Uk) : xl(Ul ∩ Uk)→ Rm

are given by

(
p1

pl
, . . . ,

pl−1

pl
, 1,

pl+1

pl
, . . . ,

pm+1

pl
) 7→ (

p1

pk
, . . . ,

pk−1

pk
, 1,

pk+1

pk
, . . . ,

pm+1

pk
)

so the collection

A = {(Uk, xk)| k = 1, . . . , m+ 1}
is a Cω-atlas on RPm. The differentiable manifold (RPm, Â) is called
the m-dimensional real projective space.

Example 2.5. Let Ĉ be the extended complex plane given by

Ĉ = C ∪ {∞}
and define C∗ = C− {0}, U0 = C and U∞ = Ĉ− {0}. Then define the

local coordinates x0 : U0 → C and x∞ : U∞ → C on Ĉ by x0 : z 7→ z
and x∞ : w 7→ 1/w, respectively. The corresponding transition maps

x∞ ◦ x−1
0 , x0 ◦ x−1

∞ : C∗ → C∗
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are both given by z 7→ 1/z so A = {(U0, x0), (U∞, x∞)} is a Cω-atlas on

Ĉ. The real analytic manifold (Ĉ, Â) is called the Riemann sphere.

For the product of two differentiable manifolds we have the following
interesting result.

Proposition 2.6. Let (M1, Â1) and (M2, Â2) be two differentiable
manifolds of class Cr. Let M = M1×M2 be the product space with the
product topology. Then there exists an atlas A on M making (M, Â)
into a differentiable manifold of class Cr and the dimension of M sat-
isfies

dimM = dimM1 + dimM2.

Proof. See Exercise 2.1. �

The concept of a submanifold of a given differentiable manifold
will play an important role as we go along and we shall be especially
interested in the connection between the geometry of a submanifold
and that of its ambient space.

Definition 2.7. Let m,n be natural numbers such that n ≥ m,
n ≥ 1 and (Nn, B̂) be a Cr-manifold. A subset M of N is said to
be a submanifold of N if for each point p ∈ M there exists a chart
(Up, xp) ∈ B̂ such that p ∈ Up and xp : Up → Rm × Rn−m satisfies

xp(Up ∩M) = xp(Up) ∩ (Rm × {0}).
The natural number (n−m) is called the codimension of M in N .

Proposition 2.8. Let m,n be natural numbers such that n ≥ m,
n ≥ 1 and (Nn, B̂) be a Cr-manifold. Let M be a submanifold of N
equipped with the subset topology and π : Rm × Rn−m → Rm be the
natural projection onto the first factor. Then

A = {(Up ∩M, (π ◦ xp)|Up∩M)| p ∈M}

is a Cr-atlas for M . In particular, the pair (M, Â) is an m-dimensional

Cr-manifold. The differentiable structure Â on the submanifold M of
N is called the induced structure of B.

Proof. See Exercise 2.2. �

Our next step is to prove the implicit function theorem which is a
useful tool for constructing submanifolds of Rn. For this we use the
classical inverse function theorem stated below. Note that if F : U →
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Rm is a differentiable map defined on an open subset U of Rn then its
derivative DFp at a point p ∈ U is the m× n matrix given by

DFp =




∂F1/∂x1(p) . . . ∂F1/∂xn(p)
...

...
∂Fm/∂x1(p) . . . ∂Fm/∂xn(p)


 .

Fact 2.9 (The Inverse Function Theorem). Let U be an open subset
of Rn and F : U → Rn be a Cr-map. If p ∈ U and the derivative

DFp : Rn → Rn

of F at p is invertible then there exist open neighbourhoods Up around

p and Uq around q = F (p) such that F̂ = F |Up : Up → Uq is bijective

and the inverse (F̂ )−1 : Uq → Up is a Cr-map. The derivative D(F̂−1)q
of F̂−1 at q satisfies

D(F̂−1)q = (DFp)
−1

i.e. it is the inverse of the derivative DFp of F at p.

Before stating the implicit function theorem we remind the reader
of the definition of the following notions.

Definition 2.10. Let m,n be positive natural numbers, U be an
open subset of Rn and F : U → Rm be a Cr-map. A point p ∈ U is
said to be critical for F if the derivative

DFp : Rn → Rm

is not of full rank, and regular if it is not critical. A point q ∈ F (U)
is said to be a regular value of F if every point of the pre-image
∈ F−1({q}) of {q} is regular and a critical value otherwise.

Note that if n ≥ m then p ∈ U is a regular point of

F = (F1, . . . , Fm) : U → Rm

if and only if the gradients ∇F1, . . . ,∇Fm of the coordinate functions
F1, . . . , Fm : U → R are linearly independent at p, or equivalently, the
derivative DFp of F at p satisfies the following condition

det[DFp · (DFp)t] 6= 0.

Theorem 2.11 (The Implicit Function Theorem). Let m,n be nat-
ural numbers such that n > m and F : U → Rm be a Cr-map from
an open subset U of Rn. If q ∈ F (U) is a regular value of F then the
pre-image F−1({q}) of q is an (n−m)-dimensional submanifold of Rn
of class Cr.
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Proof. Let p be an element of F−1({q}) and Kp be the kernel of
the derivative DFp i.e. the (n−m)-dimensional subspace of Rn given by
Kp = {v ∈ Rn| DFp ·v = 0}. Let πp : Rn → Rn−m be a linear map such
that πp|Kp : Kp → Rn−m is bijective and define Gp : U → Rm × Rn−m
by

Gp : x 7→ (F (x), πp(x)).

Then the derivative (DGp)p : Rn → Rn of Gp, with respect to the
decomposition Rn = K⊥p ⊕Kp, is given by

(DGp)p =

(
DFp|K⊥p 0

0 πp

)
,

hence bijective. It now follows from the inverse function theorem that
there exist open neighbourhoods Vp around p and Wp around Gp(p)

such that Ĝp = Gp|Vp : Vp →Wp is bijective, the inverse Ĝ−1
p : Wp → Vp

is Cr, D(Ĝ−1
p )Gp(p) = (DGp)

−1
p and D(Ĝ−1

p )y is bijective for all y ∈ Wp.

Now put Ũp = F−1({q}) ∩ Vp then

Ũp = Ĝ−1
p (({q} × Rn−m) ∩Wp)

so if π : Rm×Rn−m → Rn−m is the natural projection onto the second
factor, then the map

x̃p = π ◦Gp : Ũp → ({q} × Rn−m) ∩Wp → Rn−m

is a chart on the open neighbourhood Ũp of p. The point q ∈ F (U) is
a regular value so the set

B = {(Ũp, x̃p)| p ∈ F−1({q})}
is a Cr-atlas for F−1({q}). �

As a direct consequence of the implicit function theorem we have
the following examples of the m-dimensional sphere Sm and its 2m-
dimensional tangent bundle TSm as differentiable submanifolds of Rm+1

and R2m+2, respectively.

Example 2.12. Let F : Rm+1 → R be the Cω-map given by

F : (p1, . . . , pm+1) 7→
m+1∑

i=1

p2
i .

The derivative DFp of F at p is given by DFp = 2p, so

DFp · (DFp)t = 4|p|2 ∈ R.
This means that 1 ∈ R is a regular value of F so the fibre

Sm = {p ∈ Rm+1| |p|2 = 1} = F−1({1})
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of F is an m-dimensional submanifold of Rm+1. It is of course the
standard m-dimensional sphere introduced in Example 2.3.

Example 2.13. Let F : Rm+1×Rm+1 → R2 be the Cω-map defined
by F : (p, v) 7→ ((|p|2 − 1)/2, 〈p, v〉). The derivative DF(p,v) of F at
(p, v) satisfies

DF(p,v) =

(
p 0
v p

)
.

Hence

det[DF · (DF )t] = |p|2(|p|2 + |v|2) = 1 + |v|2 > 0

on F−1({0}). This means that

F−1({0}) = {(p, v) ∈ Rm+1 × Rm+1| |p|2 = 1 and 〈p, v〉 = 0}
which we denote by TSm is a 2m-dimensional submanifold of R2m+2.
We shall see later that TSm is what is called the tangent bundle of the
m-dimensional sphere.

We shall now use the implicit function theorem to construct the
important orthogonal group O(m) as a submanifold of the set of real
m×m matrices Rm×m.

Example 2.14. Let Sym(Rm) be the linear subspace of Rm×m con-
sisting of all symmetric m×m-matrices

Sym(Rm) = {A ∈ Rm×m| A = At}.
Then it is easily seen that the dimension of Sym(Rm) is m(m + 1)/2.
Let F : Rm×m → Sym(Rm) be the map defined by F : A 7→ AAt. Then
the differential DFA of F at A ∈ Rm×m satisfies

DFA : X 7→ AX t +XAt.

This means that for an arbitrary element A of

O(m) = F−1({e}) = {A ∈ Rm×m| AAt = e}
and Y ∈ Sym(Rm) we have DFA(Y A/2) = Y . Hence the differential
DFA is surjective, so the identity matrix e ∈ Sym(Rm) is a regular value
of F . Following the implicit function theorem O(m) is an m(m−1)/2-
dimensional submanifold of Rm×m. The set O(m) is the well known
orthogonal group.

The concept of a differentiable map U → Rn, defined on an open
subset of Rm, can be generalized to mappings between manifolds. We
shall see that the most important properties of these objects in the
classical case are also valid in the manifold setting.
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Definition 2.15. Let (Mm, Â) and (Nn, B̂) be two Cr-manifolds.
A map φ : M → N is said to be differentiable of class Cr if for all
charts (U, x) ∈ Â and (V, y) ∈ B̂ the map

y ◦ φ ◦ x−1|x(U∩φ−1(V )) : x(U ∩ φ−1(V )) ⊂ Rm → Rn

is of class Cr. A differentiable map γ : I → M defined on an open
interval of R is called a differentiable curve in M . A differentiable
map f : M → R with values in R is called a differentiable function on
M . The set of smooth functions defined on M is denoted by C∞(M).

It is an easy exercise, using Definition 2.15, to prove the follow-
ing result concerning the composition of differentiable maps between
manifolds.

Proposition 2.16. Let (M1, Â1), (M2, Â2), (M3, Â3) be Cr-mani-

folds and φ : (M1, Â1) → (M2, Â2), ψ : (M2, Â2) → (M3, Â3) be dif-

ferentiable maps of class Cr, then the composition ψ ◦ φ : (M1, Â1) →
(M3, Â3) is a differentiable map of class Cr.

Proof. See Exercise 2.5. �
Definition 2.17. Two manifolds (M1, Â1) and (M2, Â2) of class

Cr are said to be diffeomorphic if there exists a bijective Cr-map
φ : M1 → M2, such that the inverse φ−1 : M2 → M1 is of class Cr. In
that case the map φ is said to be a diffeomorphism between (M1, Â1)

and (M2, Â2).

It can be shown that the 2-dimensional sphere S2 in R3 and the
Riemann sphere, introduced earlier, are diffeomorphic, see Exercise
2.7.

Definition 2.18. Two Cr-structures Â and B̂ on the same topo-
logical manifold M are said to be different if the identity map idM :
(M, Â)→ (M, B̂) is not a diffeomorphism.

It can be seen that even the real line R carries different differentiable
structures, see Exercise 2.6.

Deep Result 2.19. Let (Mm
1 , Â1), (Mm

2 , Â2) be two differentiable
manifolds of class Cr and of equal dimensions. If M and N are home-
omorphic as topological spaces and m ≤ 3 then (M1, Â1) and (M2, Â2)
are diffeomorphic.

The following remarkable result was proved by John Milnor in his
famous paper: Differentiable structures on spheres, Amer. J. Math.
81 (1959), 962-972.
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Deep Result 2.20. The 7-dimensional sphere S7 has exactly 28
different differentiable structures.

The next very useful proposition generalizes a classical result from
the real analysis of several variables.

Proposition 2.21. Let (N1, B̂1) and (N2, B̂2) be two differentiable
manifolds of class Cr and M1, M2 be submanifolds of N1 and N2, re-
spectively. If φ : N1 → N2 is a differentiable map of class Cr such
that φ(M1) is contained in M2, then the restriction φ|M1 : M1 →M2 is
differentiable of class Cr.

Proof. See Exercise 2.8. �
Example 2.22. The result of Proposition 2.21 can be used to show

that the following maps are all smooth.

(i) φ1 : S2 ⊂ R3 → S3 ⊂ R4, φ1 : (x, y, z) 7→ (x, y, z, 0),
(ii) φ2 : S3 ⊂ C2 → S2 ⊂ C×R, φ2 : (z1, z2) 7→ (2z1z̄2, |z1|2−|z2|2),

(iii) φ3 : R1 → S1 ⊂ C, φ3 : t 7→ eit,
(iv) φ4 : Rm+1 − {0} → Sm, φ4 : x 7→ x/|x|,
(v) φ6 : Rm+1 − {0} → RPm, φ6 : x 7→ [x].
(vi) φ5 : Sm → RPm, φ5 : x 7→ [x],

In differential geometry we are especially interested in differentiable
manifolds carrying a group structure compatible with their differen-
tiable structure. Such manifolds are named after the famous math-
ematician Sophus Lie (1842-1899) and will play an important role
throughout this work.

Definition 2.23. A Lie group is a smooth manifold G with a
group structure · such that the map ρ : G×G→ G with

ρ : (p, q) 7→ p · q−1

is smooth. For an element p of G the left translation by p is the map
Lp : G→ G defined by Lp : q 7→ p · q.

Note that the standard differentiable Rm equipped with the usual
addition + forms an abelian Lie group (Rm,+).

Corollary 2.24. Let G be a Lie group and p be an element of G.
Then the left translation Lp : G→ G is a smooth diffeomorphism.

Proof. See Exercise 2.10 �
Proposition 2.25. Let (G, ·) be a Lie group and K be a submani-

fold of G which is a subgroup. Then (K, ·) is a Lie group.
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Proof. The statement is a direct consequence of Definition 2.23
and Proposition 2.21. �

The set of non-zero complex numbers C∗ together with the standard
multiplication · forms a Lie group (C∗, ·). The unit circle (S1, ·) is an
interesting compact Lie subgroup of (C∗, ·). Another subgroup is the
set of the non-zero real numbers (R∗, ·) containing the positive real
numbers (R+, ·) and the 0-dimensional sphere (S0, ·) as subgroups.

Example 2.26. Let H be the set of quaternions defined by

H = {z + wj| z, w ∈ C}
equipped with the conjugation ,̄ addition + and multiplication ·

(i) (z + wj) = z̄ − wj,
(ii) (z1 + w1j) + (z2 + w2j) = (z1 + z2) + (w1 + w2)j,

(iii) (z1 + w1j) · (z2 + w2j) = (z1z2 − w1w̄2) + (z1w2 + w1z̄2)j

extending the standard operations on R and C as subsets of H. Then
it is easily easily seen that the non-zero quaternions (H∗, ·) equipped
with the multiplication · form a Lie group. On H we define a scalar
product

H×H→ H, (p, q) 7→ p · q̄
and a real valued norm given by |p|2 = p · p̄. Then the 3-dimensional
unit sphere S3 in H ∼= R4 with the restricted multiplication forms a
compact Lie subgroup (S3, ·) of (H∗, ·). They are both non-abelian.

We shall now introduce some of the classical real and complex
matrix Lie groups. As a reference on this topic we recommend the
wonderful book: A. W. Knapp, Lie Groups Beyond an Introduction,
Birkhäuser (2002).

Example 2.27. The set of invertible real m×m matrices

GL(Rm) = {A ∈ Rm×m| detA 6= 0}
equipped with the standard matrix multiplication has the structure of
a Lie group. It is called the real general linear group and its neutral
element e is the identity matrix. The subset GL(Rm) of Rm×m is open
so dim GL(Rm) = m2.

As a subgroup of GL(Rm) we have the real special linear group
SL(Rm) given by

SL(Rm) = {A ∈ Rm×m| detA = 1}.
We will show in Example 3.13 that the dimension of the submanifold
SL(Rm) of Rm×m is m2 − 1.
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Another subgroup of GL(Rm) is the orthogonal group

O(m) = {A ∈ Rm×m| At · A = e}.
As we have already seen in Example 2.14 the dimension of O(m) is
m(m− 1)/2.

As a subgroup of O(m) and SL(Rm) we have the special orthogonal
group SO(m) which is defined as

SO(m) = O(m) ∩ SL(Rm).

It can be shown that O(m) is diffeomorphic to SO(m) × O(1), see
Exercise 2.9. Note that O(1) = {±1} so O(m) can be seen as two
copies of SO(m). This means that

dim SO(m) = dim O(m) = m(m− 1)/2.

Example 2.28. The set of invertible complex m×m matrices

GL(Cm) = {A ∈ Cm×m| detA 6= 0}
equipped with the standard matrix multiplication has the structure
of a Lie group. It is called the complex general linear group and its
neutral element e is the identity matrix. The subset GL(Cm) of Cm×m
is open so dim(GL(Cm)) = 2m2.

As a subgroup of GL(Cm) we have the complex special linear group
SL(Cm) given by

SL(Cm) = {A ∈ Cm×m| detA = 1}.
The dimension of the submanifold SL(Cm) of Cm×m is 2(m2 − 1).

Another subgroup of GL(Cm) is the unitary group U(m) given by

U(m) = {A ∈ Cm×m| Āt · A = e}.
Calculations similar to those for the orthogonal group show that the
dimension of U(m) is m2.

As a subgroup of U(m) and SL(Cm) we have the special unitary
group SU(m) which is defined as

SU(m) = U(m) ∩ SL(Cm).

It can be shown that U(1) is diffeomorphic to the circle S1 and that
U(m) is diffeomorphic to SU(m)×U(1), see Exercise 2.9. This means
that dim SU(m) = m2 − 1.

For the rest of this manuscript we shall assume, when not stating
otherwise, that our manifolds and maps are smooth i.e. in the C∞-
category.
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Exercises

Exercise 2.1. Find a proof for Proposition 2.6.

Exercise 2.2. Find a proof for Proposition 2.8.

Exercise 2.3. Let S1 be the unit circle in the complex plane C
given by S1 = {z ∈ C| |z|2 = 1}. Use the maps x : C − {1} → C and
y : C− {−1} → C with

x : z 7→ 1 + z

i(1− z)) , y : z 7→ i(1− z)
z + 1

to show that S1 is a 1-dimensional submanifold of C ∼= R2.

Exercise 2.4. Use the implicit function theorem to show that the
m-dimensional torus

Tm = {z ∈ Cm| |z1| = · · · = |zm| = 1}
is a differentiable submanifold of Cm ∼= R2m.

Exercise 2.5. Find a proof of Proposition 2.16.

Exercise 2.6. Let the real line R be equipped with the standard
topology and the two Cω-structures Â and B̂ defined by the following
atlases

A = {(R, idR)| idR : x 7→ x} and B = {(R, ψ)| ψ : x 7→ x3}.
Prove that the differentiable structures Â and B̂ are different but that
the differentiable manifolds (R, Â) and (R, B̂) diffeomorphic.

Exercise 2.7. Prove that the 2-dimensional sphere S2 as a differ-
entiable submanifold of the standard R3 and the Riemann sphere Ĉ are
diffeomorphic.

Exercise 2.8. Find a proof of Proposition 2.21.

Exercise 2.9. Let the spheres S1, S3 and the Lie groups SO(n),
O(n), SU(n), U(n) be equipped with their standard differentiable
structures introduced above. Use Proposition 2.21 to prove the fol-
lowing diffeomorphisms

S1 ∼= SO(2), S3 ∼= SU(2),

SO(n)×O(1) ∼= O(n), SU(n)×U(1) ∼= U(n).

Exercise 2.10. Find a proof of Corollary 2.24.

Exercise 2.11. Let (G, ∗) and (H, ·) be two Lie groups. Prove that
the product manifold G×H has the structure of a Lie group.



CHAPTER 3

The Tangent Space

In this chapter we show how a tangent vector at a point p ∈ Rm can
be interpreted as a first order linear differential operator, annihilating
constants, acting on real valued functions locally defined around p.
This idea is then used to define the notion of the tangent space TpM
of a manifold M at a point p of M . It turns out that this is a vector
space isomorphic to Rm where m is the dimension of M .

Let Rm be the m-dimensional real vector space with the standard
differentiable structure. If p is a point in Rm and γ : I → Rm is a
C1-curve such that γ(0) = p then the tangent vector

γ̇(0) = lim
t→0

γ(t)− γ(0)

t
of γ at 0 is an element of Rm. Conversely, for an arbitrary element v
of Rm we can easily find curves γ : I → Rm such that γ(0) = p and
γ̇(0) = v. One example is given by

γ : t 7→ p+ t · v.
This shows that the tangent space, i.e. the space of tangent vectors,
at the point p ∈ Rm can be identified with Rm.

We shall now describe how first order differential operators annihi-
lating constants can be interpreted as tangent vectors. For a point p
in Rm we denote by ε(p) the set of differentiable real-valued functions
defined locally around p. Then it is well known from multi-variable
analysis that if v ∈ Rm and f ∈ ε(p) then the directional derivative
∂vf of f at p in the direction of v is given by

∂vf = lim
t→0

f(p+ tv)− f(p)

t
.

Furthermore the directional derivative ∂ has the following properties:

∂v(λ · f + µ · g) = λ · ∂vf + µ · ∂vg,
∂v(f · g) = ∂vf · g(p) + f(p) · ∂vg,

∂(λ·v+µ·w)f = λ · ∂vf + µ · ∂wf
for all λ, µ ∈ R, v, w ∈ Rm and f, g ∈ ε(p).

19
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Definition 3.1. For a point p in Rm let TpRm be the set of first
order linear differential operators at p annihilating constants i.e. the
set of mappings α : ε(p)→ R such that

(i) α(λ · f + µ · g) = λ · α(f) + µ · α(g),
(ii) α(f · g) = α(f) · g(p) + f(p) · α(g)

for all λ, µ ∈ R and f, g ∈ ε(p).
The set TpRm carries the natural operations + and · transforming

it into a real vector space i.e. for all α, β ∈ TpM , f ∈ ε(p) and λ ∈ R
we have

(α + β)(f) = α(f) + β(f),

(λ · α)(f) = λ · α(f).

The above mentioned properties of the directional derivative ∂ show
that we have a well defined linear map Φ : Rm → TpRm given by

Φ : v 7→ ∂v.

The next result shows that the tangent space at p can be identified
with TpRm i.e. the space of first order linear operators annihilating
constants.

Theorem 3.2. For a point p in Rm the map Φ : Rm → TpRm
defined by Φ : v 7→ ∂v is a vector space isomorphism.

Proof. Let v, w ∈ Rm such that v 6= w. Choose an element u ∈
Rm such that 〈u, v〉 6= 〈u, w〉 and define f : Rm → R by f(x) = 〈u, x〉.
Then ∂vf = 〈u, v〉 6= 〈u, w〉 = ∂wf so ∂v 6= ∂w. This proves that the
map Φ is injective.

Let α be an arbitrary element of TpRm. For k = 1, . . . , m let x̂k :
Rm → R be the map given by

x̂k : (x1, . . . , xm) 7→ xk

and put vk = α(x̂k). For the constant function 1 : (x1, . . . , xm) 7→ 1 we
have

α(1) = α(1 · 1) = 1 · α(1) + 1 · α(1) = 2 · α(1),

so α(1) = 0. By the linearity of α it follows that α(c) = 0 for any
constant c ∈ R. Let f ∈ ε(p) and following Lemma 3.3 locally write

f(x) = f(p) +

m∑

k=1

(x̂k(x)− pk) · ψk(x),

where ψk ∈ ε(p) with

ψk(p) =
∂f

∂xk
(p).
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We can now apply the differential operator α ∈ TpRm and yield

α(f) = α(f(p) +

m∑

k=1

(x̂k − pk) · ψk)

= α(f(p)) +
m∑

k=1

α(x̂k − pk) · ψk(p) +
m∑

k=1

(x̂k(p)− pk) · α(ψk)

=
m∑

k=1

vk
∂f

∂xk
(p)

= ∂vf,

where v = (v1, . . . , vm) ∈ Rm. This means that Φ(v) = ∂v = α so the
map Φ : Rm → TpRm is surjective and hence a vector space isomor-
phism. �

Lemma 3.3. Let p be a point in Rm and f : U → R be a function
defined on an open ball around p. Then for each k = 1, 2, . . . , m there
exist functions ψk : U → R such that

f(x) = f(p) +

m∑

k=1

(xk − pk) · ψk(x) and ψk(p) =
∂f

∂xk
(p)

for all x ∈ U .

Proof. It follows from the fundamental theorem of calculus that

f(x)− f(p) =

∫ 1

0

∂

∂t
(f(p+ t(x− p)))dt

=

m∑

k=1

(xk − pk) ·
∫ 1

0

∂f

∂xk
(p+ t(x− p))dt.

The statement then immediately follows by setting

ψk(x) =

∫ 1

0

∂f

∂xk
(p+ t(x− p))dt.

�
Let p be a point in Rm, v ∈ Rm be a tangent vector at p and

f : U → R be a C1-function defined on an open subset U of Rm
containing p. Let γ : I → U be a curve such that γ(0) = p and
γ̇(0) = v. The identification given by Theorem 3.2 tells us that v acts
on f by

v(f) =
d

dt
(f ◦ γ(t))|t=0 = dfp(γ̇(0)) = 〈gradfp, γ̇(0)〉 = 〈gradfp, v〉.
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Note that the real number v(f) is independent of the choice of the
curve γ as long as γ(0) = p and γ̇(0) = v. As a direct consequence of
Theorem 3.2 we have the following useful result.

Corollary 3.4. Let p be a point in Rm and {ek| k = 1, . . . , m} be
a basis for Rm. Then the set {∂ek | k = 1, . . . , m} is a basis for the
tangent space TpRm at p.

We shall now use the ideas presented above to generalize to the
manifold setting. Let M be a differentiable manifold and for a point
p ∈ M let ε(p) denote the set of differentiable functions defined on an
open neighborhood of p.

Definition 3.5. Let M be a differentiable manifold and p be a
point on M . A tangent vector Xp at p is a map Xp : ε(p)→ R such
that

(i) Xp(λ · f + µ · g) = λ ·Xp(f) + µ ·Xp(g),
(ii) Xp(f · g) = Xp(f) · g(p) + f(p) ·Xp(g)

for all λ, µ ∈ R and f, g ∈ ε(p). The set of tangent vectors at p is called
the tangent space at p and denoted by TpM .

The tangent space TpM carries the natural operations + and · turn-
ing it into a real vector space i.e. for all Xp, Yp ∈ TpM , f ∈ ε(p) and
λ ∈ R we have

(Xp + Yp)(f) = Xp(f) + Yp(f),

(λ ·Xp)(f) = λ ·Xp(f).

Definition 3.6. Let φ : M → N be a differentiable map between
manifolds. Then the differential dφp of φ at a point p in M is the
map dφp : TpM → Tφ(p)N such that for all Xp ∈ TpM and f ∈ ε(φ(p))

(dφp(Xp))(f) = Xp(f ◦ φ).

We shall now use charts to give some motivations for the above
definitions and hopefully convince the reader that they are not only
abstract nonsense.

Proposition 3.7. Let φ : M → N and ψ : N → N̄ be differentiable
maps between manifolds, then for each p ∈M we have

(i) the map dφp : TpM → Tφ(p)N is linear,
(ii) if idM : M →M is the identity map, then d(idM)p = idTpM ,

(iii) d(ψ ◦ φ)p = dψφ(p) ◦ dφp.
Proof. The only non-trivial statement is the relation (iii) which

is called the chain rule. If Xp ∈ TpM and f ∈ ε(ψ ◦ φ(p)), then

(dψφ(p) ◦ dφp)(Xp)(f) = (dψφ(p)(dφp(Xp)))(f)
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= (dφp(Xp))(f ◦ ψ)

= Xp(f ◦ ψ ◦ φ)

= d(ψ ◦ φ)p(Xp)(f).

�
Corollary 3.8. Let φ : M → N be a diffeomorphism with inverse

ψ = φ−1 : N → M . Then the differential dφp : TpM → Tφ(p)N at p is
bijective and (dφp)

−1 = dψφ(p).

Proof. The statement is a direct consequence of the following re-
lations

dψφ(p) ◦ dφp = d(ψ ◦ φ)p = d(idM)p = idTpM ,

dφp ◦ dψφ(p) = d(φ ◦ ψ)φ(p) = d(idN)φ(p) = idTφ(p)N .

�
We are now ready to prove the following interesting result. This

is of course a direct generalization of the corresponding result in the
classical theory for surfaces in R3.

Theorem 3.9. Let Mm be an m-dimensional differentable manifold
and p be a point on M . Then the tangent space TpM at p is an m-
dimensional real vector space.

Proof. Let (U, x) be a chart on M . Then the linear map dxp :
TpM → Tx(p)Rm is a vector space isomorphism. The statement now
follows from Theorem 3.2 and Corollary 3.8. �

Let p be a point on an m-dimensional manifold M , Xp be an ele-
ment of the tangent space TpM and (U, x) be a chart around p. The
differential dxp : TpM → Tx(p)Rm is a bijective linear map so there
exists a tangent vector v in Rm such that dxp(Xp) = v. The image
x(U) is an open subset of Rm containing x(p) so we can find a curve
c : (−ε, ε) → x(U) with c(0) = x(p) and ċ(0) = v. Then the composi-
tion γ = x−1 ◦c : (−ε, ε)→ U is a curve in M through p since γ(0) = p.
The element d(x−1)x(p)(v) of the tangent space TpM denoted by γ̇(0) is
called the tangent to the curve γ at p. It follows from the relation

γ̇(0) = d(x−1)x(p)(v) = Xp

that the tangent space TpM can be thought of as the set of tangents
to curves through the point p.

If f : U → R is a C1-function defined locally on U then it follows
from Definition 3.6 that

Xp(f) = (dxp(Xp))(f ◦ x−1)
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=
d

dt
(f ◦ x−1 ◦ c(t))|t=0

=
d

dt
(f ◦ γ(t))|t=0

It should be noted that the value Xp(f) is independent of the choice
of the chart (U, x) around p and the curve c : I → x(U) as long as
γ(0) = p and γ̇(0) = Xp. This leads to the following construction of a
basis for tangent spaces.

Proposition 3.10. Let Mm be a differentiable manifold, (U, x) be
local coordinates on M and {ek| k = 1, . . . , m} be the canonical basis
for Rm. For an arbitrary point p in U we define ( ∂

∂xk
)p in TpM by

( ∂

∂xk

)
p

: f 7→ ∂f

∂xk
(p) = ∂ek(f ◦ x−1)(x(p)).

Then the set

{( ∂

∂xk
)p | k = 1, 2, . . . , m}

is a basis for the tangent space TpM of M at p.

Proof. The local chart x : U → x(U) is a diffeomorphism and the
differential (dx−1)x(p) : Tx(p)Rm → TpM of its inverse x−1 : x(U) → U
satisfies

(dx−1)x(p)(∂ek)(f) = ∂ek(f ◦ x−1)(x(p))

=
( ∂

∂xk

)
p
(f)

for all f ∈ ε(p). The statement is then a direct consequence of Corollary
3.4. �

We can now determine the tangent spaces to some of the explicit
differentiable manifolds introduced in Chapter 2. We start with the
sphere.

Example 3.11. Let γ : (−ε, ε) → Sm be a curve into the m-
dimensional unit sphere in Rm+1 with γ(0) = p and γ̇(0) = v. The
curve satisfies

〈γ(t), γ(t)〉 = 1

and differentiation yields

〈γ̇(t), γ(t)〉+ 〈γ(t), γ̇(t)〉 = 0.

This means that 〈v, p〉 = 0 so every tangent vector v ∈ TpSm must be
orthogonal to p. On the other hand if v 6= 0 satisfies 〈v, p〉 = 0 then
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γ : R→ Sm with

γ : t 7→ cos(t|v|) · p+ sin(t|v|) · v/|v|
is a curve into Sm with γ(0) = p and γ̇(0) = v. This shows that the
tangent space TpS

m is given by

TpS
m = {v ∈ Rm+1|〈p, v〉 = 0}.

In order to determine the tangent spaces of the classical Lie groups
we need the differentiable exponential map Exp : Cm×m → Cm×m for
matrices given by the following converging power series

Exp : X 7→
∞∑

k=0

Xk

k!
.

For this map we have the following well-known result.

Proposition 3.12. Let Exp : Cm×m → Cm×m be the exponential
map for matrices. If X, Y ∈ Cm×m, then

(i) det(Exp(X)) = etrace(X),

(ii) Exp(X̄ t) = Exp(X)
t
, and

(ii) Exp(X + Y ) = Exp(X) · Exp(Y ) whenever XY = Y X.

Proof. See Exercise 3.2 �
The real general linear group GL(Rm) is an open subset of Rm×m

so its tangent space TpGL(Rm) at any point p is simply Rm×m. The
tangent space TeSL(Rm) of the special linear group SL(Rm) at the
neutral element e can be determined as follows.

Example 3.13. For a real m × m matrix X with trace(X) = 0
define a curve A : R→ Rm×m by

A : s 7→ Exp(s ·X).

Then A(0) = e, A′(0) = X and

det(A(s)) = det(Exp(s ·X)) = etrace(s·X) = e0 = 1.

This shows that A is a curve into the special linear group SL(Rm) and
that X is an element of the tangent space TeSL(Rm) of SL(Rm) at the
neutral element e. Hence the linear space

{X ∈ Rm×m| trace(X) = 0}
of dimension m2 − 1 is contained in the tangent space TeSL(Rm).

The curve given by s 7→ Exp(se) = exp(s)e is not contained in
SL(Rm) so the dimension of TeSL(Rm) is at most m2 − 1. This shows
that

TeSL(Rm) = {X ∈ Rm×m| trace(X) = 0}.
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Example 3.14. Let A : (−ε, ε) → O(m) be a curve into the or-
thogonal group O(m) such that A(0) = e. Then A(s) · A(s)t = e for
all s ∈ (−ε, ε) and differentiation yields

{A′(s) · A(s)t + A(s) · A′(s)t}|s=0 = 0

or equivalently A′(0)+A′(0)t = 0. This means that each tangent vector
of O(m) at e is a skew-symmetric matrix.

On the other hand, for an arbitrary real skew-symmetric matrix X
define the curve B : R → Rm×m by B : s 7→ Exp(s ·X), where Exp is
the exponential map for matrices defined in Exercise 3.2. Then

B(s) ·B(s)t = Exp(s ·X) · Exp(s ·X)t

= Exp(s ·X) · Exp(s ·X t)

= Exp(s(X +X t))

= Exp(0)

= e.

This shows that B is a curve on the orthogonal group, B(0) = e and
B′(0) = X so X is an element of TeO(m). Hence

TeO(m) = {X ∈ Rm×m| X +X t = 0}.
The dimension of TeO(m) is therefore m(m − 1)/2. This confirms
our calculations of the dimension of O(m) in Example 2.14 since we
know that dim(O(m)) = dim(TeO(m)). The orthogonal group O(m) is
diffeomorphic to SO(m)× {±1} so dim(SO(m)) = dim(O(m)) hence

TeSO(m) = TeO(m) = {X ∈ Rm×m| X +X t = 0}.
We have proved the following result.

Proposition 3.15. Let e be the neutral element of the classical
real Lie groups GL(Rm), SL(Rm), O(m), SO(m). Then their tangent
spaces at e are given by

TeGL(Rm) = Rm×m

TeSL(Rm) = {X ∈ Rm×m| trace(X) = 0}
TeO(m) = {X ∈ Rm×m| X t +X = 0}
TeSO(m) = TeO(m) ∩ TeSL(Rm) = TeO(m)

For the classical complex Lie groups similar methods can be used
to prove the following.
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Proposition 3.16. Let e be the neutral element of the classical
complex Lie groups GL(Cm), SL(Cm), U(m), and SU(m). Then their
tangent spaces at e are given by

TeGL(Cm) = Cm×m

TeSL(Cm) = {Z ∈ Cm×m| trace(Z) = 0}
TeU(m) = {Z ∈ Cm×m| Z̄t + Z = 0}
TeSU(m) = TeU(m) ∩ TeSL(Cm).

Proof. See Exercise 3.4 �

The rest of this chapter is devoted to the introduction of special
types of differentiable maps, the so called immersions, embeddings and
submersions. If γM : (−ε, ε)→M is a curve on M such that γM(0) = p
then a differentiable map φ : M → N takes γM to a curve

γN = φ ◦ γM : (−ε, ε)→ N

on N with γN(0) = φ(p). The interpretation of the tangent spaces
given above shows that the differential dφp : TpM → Tφ(p)N of φ at p
maps the tangent γ̇M(0) at p to the tangent γ̇N(0) at φ(p) i. e.

dφp(γ̇M(0)) = γ̇N(0).

Definition 3.17. A differentiable map φ : M → N between man-
ifolds is said to be an immersion if for each p ∈ M the differential
dφp : TpM → Tφ(p)N is injective. An embedding is an immersion
φ : M → N which is a homeomorphism onto its image φ(M).

For positive integers m,n with m < n we have the inclusion map φ :
Rm+1 → Rn+1 given by φ : (x1, . . . , xm+1) 7→ (x1, . . . , xm+1, 0, . . . , 0).
The differential dφx at x is injective since dφx(v) = (v, 0). The map
φ is obviously a homeomorphism onto its image φ(Rm+1) hence an
embedding. It is easily seen that even the restriction φ|Sm : Sm → Sn

of φ to the m-dimensional unit sphere Sm in Rm+1 is an embedding.

Definition 3.18. Let M be an m-dimensional differentiable man-
ifold and U be an open subset of Rm. An immersion ψ : U → M is
called a local parametrization of M .

If M is a differentiable manifold and (U, x) a chart on M then the
inverse x−1 : x(U)→ U of x is a parametrization of the subset U of M .

Example 3.19. Let S1 be the unit circle in the complex plane C.
For a non-zero integer k ∈ Z define φk : S1 → C by φk : z 7→ zk. For a
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point w ∈ S1 let γw : R → S1 be the curve with γw : t 7→ weit. Then
γw(0) = w and γ̇w(0) = iw. For the differential of φk we have

(dφk)w(γ̇w(0)) =
d

dt
(φk ◦ γw(t))|t=0 =

d

dt
(wkeikt)|t=0 = kiwk.

This shows that the differential (dφk)w : TwS
1 ∼= R → TwkC ∼= R2 is

injective, so the map φk is an immersion. It is easily seen that φk is an
embedding if and only if k = ±1.

Example 3.20. Let q ∈ S3 be a quaternion of unit length and
φq : S1 → S3 be the map defined by φq : z 7→ qz. For w ∈ S1 let
γw : R → S1 be the curve given by γw(t) = weit. Then γw(0) = w,
γ̇w(0) = iw and φq(γw(t)) = qweit. By differentiating we yield

dφq(γ̇w(0)) =
d

dt
(φq(γw(t)))|t=0 =

d

dt
(qweit)|t=0 = qiw.

Then |dφq(γ̇w(0))| = |qwi| = |q||w| = 1 implies that the differential dφq
is injective. It is easily checked that the immersion φq is an embedding.

In the next example we construct an interesting embedding of the
real projective space RPm into the vector space Sym(Rm+1) of the real
symmetric (m + 1)× (m + 1) matrices.

Example 3.21. Let m be a positive integer and Sm be the m-
dimensional unit sphere in Rm+1. For a point p ∈ Sm let

Lp = {(s · p) ∈ Rm+1| s ∈ R}
be the line through the origin generated by p and ρp : Rm+1 → Rm+1 be
the reflection about the line Lp. Then ρp is an element of End(Rm+1)
i.e. the set of linear endomorphisms of Rm+1 which can be identified
with R(m+1)×(m+1). It is easily checked that the reflection about the
line Lp is given by

ρp : q 7→ 2〈q, p〉p− q.
It then follows from the equations

ρp(q) = 2〈q, p〉p− q = 2p〈p, q〉 − q = (2ppt − e)q
that the matrix in R(m+1)×(m+1) corresponding to ρp is just

(2ppt − e).
We shall now show that the map φ : Sm → R(m+1)×(m+1) given by

φ : p 7→ ρp
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is an immersion. Let p be an arbitrary point on Sm and α, β : I → Sm

be two curves meeting at p, that is α(0) = p = β(0), with a = α̇(0)

and b = β̇(0). For γ ∈ {α, β} we have

φ ◦ γ : t 7→ (q 7→ 2〈q, γ(t)〉γ(t)− q)
so

(dφ)p(γ̇(0)) =
d

dt
(φ ◦ γ(t))|t=0

= (q 7→ 2〈q, γ̇(0)〉γ(0) + 2〈q, γ(0)〉γ̇(0)).

This means that

dφp(a) = (q 7→ 2〈q, a〉p+ 2〈q, p〉a)

and

dφp(b) = (q 7→ 2〈q, b〉p+ 2〈q, p〉b).
If a 6= b then dφp(a) 6= dφp(b) so the differential dφp is injective, hence
the map φ : Sm → R(m+1)×(m+1) is an immersion.

If the points p, q ∈ Sm are linearly independent, then the lines
Lp and Lq are different. But these are just the eigenspaces of ρp and
ρq with the eigenvalue +1, respectively. This shows that the linear
endomorphisms ρp, ρq of Rm+1 are different in this case.

On the other hand, if p and q are parallel then p = ±q hence
ρp = ρq. This means that the image φ(Sm) can be identified with the
quotient space Sm/ ≡ where ≡ is the equivalence relation defined by

x ≡ y if and only if x = ±y.
This of course is the real projective space RPm so the map φ induces
an embedding ψ : RPm → Sym(Rm+1) with

ψ : [p]→ ρp.

For each p ∈ Sm the reflection ρp : Rm+1 → Rm+1 about the line Lp
satisfies

ρp · ρtp = e.

This shows that the image ψ(RPm) = φ(Sm) is not only contained in
the linear space Sym(Rm+1) but also in the orthogonal group O(m+1)
which we know is a submanifold of R(m+1)×(m+1)

The following result was proved by Hassler Whitney in his famous
paper, Differentiable Manifolds, Ann. of Math. 37 (1936), 645-680.

Deep Result 3.22. For 1 ≤ r ≤ ∞ let M be an m-dimensional
Cr-manifold. Then there exists a Cr-embedding φ : M → R2m+1 into
the (2m + 1)-dimensional real vector space R2m+1.
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The classical inverse function theorem generalizes to the manifold
setting as follows.

Theorem 3.23 (The Inverse Function Theorem). Let φ : M → N
be a differentiable map between manifolds with dimM = dimN . If
p is a point in M such that the differential dφp : TpM → Tφ(p)N at
p is bijective then there exist open neighborhoods Up around p and Uq
around q = φ(p) such that ψ = φ|Up : Up → Uq is bijective and the
inverse ψ−1 : Uq → Up is differentiable.

Proof. See Exercise 3.8 �
We shall now use Theorem 3.23 to generalize the classical implicit

function theorem to manifolds. For this we need the following defini-
tion.

Definition 3.24. Let m,n be positive natural numbers and φ :
Nn →Mm be a differentiable map between manifolds. A point p ∈ N
is said to be critical for φ if the differential

dφp : TpN → Tφ(p)M

is not of full rank, and regular if it is not critical. A point q ∈ φ(N) is
said to be a regular value of φ if every point of the pre-image φ−1({q})
of {q} is regular and a critical value otherwise.

Theorem 3.25 (The Implicit Function Theorem). Let φ : Nn →
Mm be a differentiable map between manifolds such that n > m. If
q ∈ φ(N) is a regular value, then the pre-image φ−1({q}) of q is an
(n−m)-dimensional submanifold of Nn. The tangent space Tpφ

−1({q})
of φ−1({q}) at p is the kernel of the differential dφp i.e. Tpφ

−1({q}) =
Ker dφp.

Proof. Let (Vq, ψq) be a chart on M with q ∈ Vq and ψq(q) = 0.
For a point p ∈ φ−1({q}) we choose a chart (Up, ψp) on N such that
p ∈ Up, ψp(p) = 0 and φ(Up) ⊂ Vq. The differential of the map

φ̂ = ψq ◦ φ ◦ ψ−1
p |ψp(Up) : ψp(Up)→ Rm

at the point 0 is given by

dφ̂0 = (dψq)q ◦ dφp ◦ (dψ−1
p )0 : T0Rn → T0Rm.

The pairs (Up, ψp) and (Vq, ψq) are charts so the differentials (dψq)q and

(dψ−1
p )0 are bijective. This means that the differential dφ̂0 is surjective

since dφp is. It then follows from the implicit function theorem 2.11
that ψp(φ

−1({q})∩Up) is an (n−m)-dimensional submanifold of ψp(Up).
Hence φ−1({q})∩Up is an (n−m)-dimensional submanifold of Up. This
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is true for each point p ∈ φ−1({q}) so we have proven that φ−1({q}) is
an (n−m)-dimensional submanifold of Nn.

Let γ : (−ε, ε)→ φ−1({q}) be a curve, such that γ(0) = p. Then

(dφ)p(γ̇(0)) =
d

dt
(φ ◦ γ(t))|t=0 =

dq

dt
|t=0 = 0.

This implies that Tpφ
−1({q}) is contained in and has the same dimen-

sion as the kernel of dφp, so Tpφ
−1({q}) = Ker dφp. �

Definition 3.26. For positive integers m,n with n ≥ m a map
φ : Nn → Mm between two manifolds is called a submersion if for
each p ∈ n the differential dφp : TpN → Tφ(p)M is surjective.

If m,n ∈ N such that m < n then we have the projection map
π : Rn → Rm given by π : (x1, . . . , xn) 7→ (x1, . . . , xm). Its differential
dπx at a point x is surjective since

dπx(v1, . . . , vn) = (v1, . . . , vm).

This means that the projection is a submersion. An important sub-
mersion between spheres is given by the following.

Example 3.27. Let S3 and S2 be the unit spheres in C2 and C×
R ∼= R3, respectively. The Hopf map φ : S3 → S2 is given by

φ : (x, y) 7→ (2xȳ, |x|2 − |y|2).
The map φ and its differential dφp : TpS

3 → Tφ(p)S
2 are surjective for

each p ∈ S3. This implies that each point q ∈ S2 is a regular value and
the fibres of φ are 1-dimensional submanifolds of S3. They are actually
the great circles given by

φ−1({(2xȳ, |x|2 − |y|2)}) = {eiθ(x, y)| θ ∈ R}.
This means that the 3-dimensional sphere S3 is disjoint union of great
circles

S3 =
⋃

q∈S2

φ−1({q}).
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Exercises

Exercise 3.1. Let p be an arbitrary point on the unit sphere S2n+1

of Cn+1 ∼= R2n+2. Determine the tangent space TpS
2n+1 and show that

it contains an n-dimensional complex subspace of Cn+1.

Exercise 3.2. Find a proof for Proposition 3.12

Exercise 3.3. Prove that the matrices

X1 =

(
1 0
0 −1

)
, X2 =

(
0 −1
1 0

)
, X3 =

(
0 1
1 0

)

form a basis for the tangent space TeSL(R2) of the real special linear
group SL(R2) at e. For each k = 1, 2, 3 find an explicit formula for the
curve γk : R→ SL(R2) given by

γk : s 7→ Exp(s ·Xk).

Exercise 3.4. Find a proof for Proposition 3.16.

Exercise 3.5. Prove that the matrices

Z1 =

(
i 0
0 −i

)
, Z2 =

(
0 −1
1 0

)
, Z3 =

(
0 i
i 0

)

form a basis for the tangent space TeSU(2) of the special unitary group
SU(2) at e. For each k = 1, 2, 3 find an explicit formula for the curve
γk : R→ SU(2) given by

γk : s 7→ Exp(s · Zk).
Exercise 3.6. For each k ∈ N0 define φk : C → C and ψk : C∗ →

C by φk, ψk : z 7→ zk. For which k ∈ N0 are φk, ψk immersions,
submersions or embeddings.

Exercise 3.7. Prove that the map φ : Rm → Cm given by

φ : (x1, . . . , xm) 7→ (eix1 , . . . , eixm)

is a parametrization of the m-dimensional torus Tm in Cm

Exercise 3.8. Find a proof for Theorem 3.23

Exercise 3.9. Prove that the Hopf-map φ : S3 → S2 with φ :
(x, y) 7→ (2xȳ, |x|2 − |y|2) is a submersion.



CHAPTER 4

The Tangent Bundle

The main aim of this chapter is to introduce the tangent bundle TM
of a differentiable manifold Mm. Intuitively this is the object we get
by glueing at each point p ∈M the corresponding tangent space TpM .
The differentiable structure on M induces a differentiable structure on
TM making it into a differentiable manifold of dimension 2m. The
tangent bundle TM is the most important example of what is called a
vector bundle over M .

Definition 4.1. Let E and M be topological manifolds and π :
E →M be a continuous surjective map. The triple (E,M, π) is called
an n-dimensional topological vector bundle over M if

(i) for each p ∈ M the fibre Ep = π−1(p) is an n-dimensional
vector space,

(ii) for each p ∈ M there exists a bundle chart (π−1(U), ψ) con-
sisting of the pre-image π−1(U) of an open neighbourhood U
of p and a homeomorphism ψ : π−1(U) → U × Rn such that
for all q ∈ U the map ψq = ψ|Eq : Eq → {q} × Rn is a vector
space isomorphism.

The n-dimensional topological vector bundle (E,M, π) over M is said
to be trivial if there exists a global bundle chart ψ : E →M ×Rn. A
continuous map σ : M → E is called a section of the bundle (E,M, π)
if π ◦ σ(p) = p for each p ∈M .

For each positive integer n and topological manifold M we have the
n-dimensional vector bundle (M × Rn,M, π) where π : M × Rn → M
is the projection map π : (x, v) 7→ x. The identity map ψ : M × Rn →
M × Rn is a global bundle chart so the bundle is trivial.

Definition 4.2. Let (E,M, π) be an n-dimensional topological vec-
tor bundle over M . A collection

B = {(π−1(Uα), ψα)| α ∈ I}
of bundle charts is called a bundle atlas for (E,M, π) if M = ∪αUα.
For each pair (α, β) there exists a function Aα,β : Uα ∩ Uβ → GL(Rn)

33
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such that the corresponding continuous map

ψβ ◦ ψ−1
α |(Uα∩Uβ)×Rn : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

is given by

(p, v) 7→ (p, (Aα,β(p))(v)).

The elements of {Aα,β| α, β ∈ I} are called the transition maps of
the bundle atlas B.

Definition 4.3. Let E and M be differentiable manifolds and
π : E → M be a differentiable map such that (E,M, π) is an n-
dimensional topological vector bundle. A bundle atlas B for (E,M, π)
is said to be differentiable if the corresponding transition maps are
differentiable. A differentiable vector bundle is a topological vector
bundle together with a maximal differentiable bundle atlas. A differ-
entiable section of (E,M, π) is called a vector field. By C∞(E) we
denote the set of all smooth vector fields of (E,M, π).

¿From now on we shall, when not stating otherwise, assume that
all our vector bundles are smooth.

Definition 4.4. Let (E,M, π) be a vector bundle over a manifold
M . Then we define the operations + and · on the set C∞(E) of smooth
sections of (E,M, π) by

(i) (v + w)p = vp + wp,
(ii) (f · v)p = f(p) · vp

for all v, w ∈ C∞(E) and f ∈ C∞(M). If U is an open subset of M
then a set {v1, . . . , vn} of vector fields v1, . . . , vn : U → E on U is called
a local frame for E if for each p ∈ U the set {(v1)p, . . . , (vn)p} is a
basis for the vector space Ep.

The above defined operations make C∞(E) into a module over
C∞(M) and in particular a vector space over the real numbers as the
constant functions in C∞(M).

Example 4.5 (The Tangent Bundle). Let Mm be a differentiable

manifold with maximal atlas Â, the set TM be given by

TM = {(p, v)| p ∈M, v ∈ TpM}
and π : TM → M be the projection map with π : (p, v) 7→ p. For a
given point p ∈M the fibre π−1({p}) of π is the m-dimensional tangent
space TpM at p. The triple (TM,M, π) is called the tangent bundle
of M . We shall show how (TM,M, π) can be given the structure of a
differentiable vector bundle.
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For a chart x : U → Rm in Â we define x∗ : π−1(U)→ Rm×Rm by

x∗ : (p,

m∑

k=1

vk
( ∂

∂xk

)
p
) 7→ (x(p), (v1, . . . , vm)).

Note that it is a direct consequence of Proposition 3.10 that the map
x∗ is well-defined. The collection

{(x∗)−1(W ) ⊂ TM | (U, x) ∈ Â and W ⊂ x(U) × Rm open}
is a basis for a topology TTM on TM and (π−1(U), x∗) is a chart on the
2m-dimensional topological manifold (TM, TTM). If (U, x) and (V, y)

are two charts in Â such that p ∈ U ∩ V , then the transition map

(y∗) ◦ (x∗)−1 : x∗(π−1(U ∩ V ))→ Rm × Rm

is given by

(a, b) 7→ (y ◦ x−1(a),

m∑

k=1

∂y1

∂xk
(x−1(a))bk, . . . ,

m∑

k=1

∂ym
∂xk

(x−1(a))bk).

We are assuming that y ◦ x−1 is differentiable so it follows that (y∗) ◦
(x∗)−1 is also differentiable. This means that

A∗ = {(π−1(U), x∗)| (U, x) ∈ Â}
is a Cr-atlas on TM so (TM, Â∗) is a differentiable manifold. It is
trivial that the surjective projection map π : TM →M is differentiable.

For each point p ∈ M the fibre π−1({p}) of π is the tangent space
TpM of M at p hence an m-dimensional vector space. For a chart

x : U → Rm in Â we define x̄ : π−1(U)→ U × Rm by

x̄ : (p,

m∑

k=1

vk
( ∂

∂xk

)
p
) 7→ (p, (v1, . . . , vm)).

The restriction x̄p = x̄|TpM : TpM → {p} × Rm to the tangent space
TpM is given by

x̄p :

m∑

k=1

vk
( ∂

∂xk

)
p
7→ (v1, . . . , vm),

so it is a vector space isomorphism. This implies that the map x̄ :
π−1(U)→ U × Rm is a bundle chart. It is not difficult to see that

B = {(π−1(U), x̄)| (U, x) ∈ Â}
is a bundle atlas making (TM,M, π) into an m-dimensional topologi-
cal vector bundle. It immediately follows from above that (TM,M, π)
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together with the maximal bundle atlas B̂ defined by B is a differen-
tiable vector bundle. The set of smooth vector fields X : M → TM is
denoted by C∞(TM).

Example 4.6. We have seen earlier that the 3-sphere S3 in H ∼= C2

carries a group structure · given by

(z, w) · (α, β) = (zα − wβ̄, zβ + wᾱ).

This makes (S3, ·) into a Lie group with neutral element e = (1, 0).
Put v1 = (i, 0), v2 = (0, 1) and v3 = (0, i) and for k = 1, 2, 3 define the
curves γk : R→ S3 with

γk : t 7→ cos t · (1, 0) + sin t · vk.
Then γk(0) = e and γ̇k(0) = vk so v1, v2, v3 are elements of the tangent
space TeS

3. They are linearily independent so they generate TeS
3.

The group structure on S3 can be used to extend vectors in TeS
3 to

vector fields on S3 as follows. For p ∈ S3 let Lp : S3 → S3 be the left
translation on S3 by p given by Lp : q 7→ p · q. Then define the vector
fields X1, X2, X3 ∈ C∞(TS3) by

(Xk)p = (dLp)e(vk) =
d

dt
(Lp(γk(t)))|t=0.

It is left as an exercise for the reader to show that at a point p =
(z, w) ∈ S3 the values of Xk at p is given by

(X1)p = (z, w) · (i, 0) = (iz,−iw),

(X2)p = (z, w) · (0, 1) = (−w, z),
(X3)p = (z, w) · (0, i) = (iw, iz).

Our next aim is to introduce the Lie bracket on the set of vector
fields C∞(TM) on M .

Definition 4.7. Let M be a smooth manifold. For two vector fields
X, Y ∈ C∞(TM) we define the Lie bracket [X, Y ]p : C∞(M)→ R of
X and Y at p ∈M by

[X, Y ]p(f) = Xp(Y (f))− Yp(X(f)).

The next result shows that the Lie bracket [X, Y ]p actually is an
element of the tangent space TpM .

Proposition 4.8. Let M be a smooth manifold, X, Y ∈ C∞(TM)
be vector fields on M , f, g ∈ C∞(M,R) and λ, µ ∈ R. Then

(i) [X, Y ]p(λ · f + µ · g) = λ · [X, Y ]p(f) + µ · [X, Y ]p(g),
(ii) [X, Y ]p(f · g) = [X, Y ]p(f) · g(p) + f(p) · [X, Y ]p(g).
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Proof.

[X, Y ]p(λf + µg)

= Xp(Y (λf + µg))− Yp(X(λf + µg))

= λXp(Y (f)) + µXp(Y (g))− λYp(X(f))− µYp(X(g))

= λ[X, Y ]p(f) + µ[X, Y ]p(g).

[X, Y ]p(f · g)

= Xp(Y (f · g))− Yp(X(f · g))

= Xp(f · Y (g) + g · Y (f))− Yp(f ·X(g) + g ·X(f))

= Xp(f)Yp(g) + f(p)Xp(Y (g)) +Xp(g)Yp(f) + g(p)Xp(Y (f))

−Yp(f)Xp(g)− f(p)Yp(X(g))− Yp(g)Xp(f)− g(p)Yp(X(f))

= f(p){Xp(Y (g))− Yp(X(g))}+ g(p){Xp(Y (f))− Yp(X(f))}
= f(p)[X, Y ]p(g) + g(p)[X, Y ]p(f).

�

Proposition 4.8 implies that if X, Y are vector fields on M then the
map [X, Y ] : M → TM given by [X, Y ] : p 7→ [X, Y ]p is a section of the
tangent bundle. In Proposition 4.10 we shall prove that this section is
smooth. For this we need the following technical lemma.

Lemma 4.9. Let Mm be a smooth manifold and X : M → TM be
a section of TM . Then the following conditions are equivalent

(i) the section X is smooth,
(ii) if (U, x) is a chart on M then the functions a1, . . . , am : U → R

given by
m∑

k=1

ak
∂

∂xk
= X|U ,

are smooth,
(iii) if f : V → R defined on an open subset V of M is smooth, then

the function X(f) : V → R with X(f)(p) = Xp(f) is smooth.

Proof. (i) ⇒ (ii): The functions ak = πm+k ◦ x∗ ◦ X|U : U →
TM → x(U) × Rm → R are restrictions of compositions of smooth
maps so therefore smooth.

(ii) ⇒ (iii): Let (U, x) be a chart on M such that U is contained
in V . By assumption the map

X(f |U) =

m∑

i=1

ai
∂f

∂xi
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is smooth. This is true for each such chart (U, x) so the function X(f)
is smooth.

(iii)⇒ (i): Note that the smoothness of the section X is equivalent
to x∗ ◦ X|U : U → R2m being smooth for all charts (U, x) on M . On
the other hand, this is equivalent to x∗k = πk ◦ x∗ ◦X|U : U → R being
smooth for all k = 1, 2, . . . , 2m and all charts (U, x) on M . It is trivial
that the coordinates x∗k = xk for k = 1, . . . , m are smooth. But x∗m+k =
ak = X(xk) for k = 1, . . . , m hence also smooth by assumption. �

Proposition 4.10. Let M be a manifold and X, Y ∈ C∞(TM) be
vector fields on M . Then the section [X, Y ] : M → TM of the tangent
bundle given by [X, Y ] : p 7→ [X, Y ]p is smooth.

Proof. Let f : M → R be an arbitrary smooth function on M
then [X, Y ](f) = X(Y (f)) − Y (X(f)) is smooth so it follows from
Lemma 4.9 that the section [X, Y ] is smooth. �

For later use we prove the following useful result.

Lemma 4.11. Let M be a smooth manifold and [, ] be the Lie
bracket on the tangent bundle TM . Then

(i) [X, f · Y ] = X(f) · Y + f · [X, Y ],
(ii) [f ·X, Y ] = f · [X, Y ]− Y (f) ·X

for all X, Y ∈ C∞(TM) and f ∈ C∞(M),

Proof. If g ∈ C∞(M), then

[X, f · Y ](g) = X(f · Y (g))− f · Y (X(g))

= X(f) · Y (g) + f ·X(Y (g))− f · Y (X(g))

= (X(f) · Y + f · [X, Y ])(g)

This proves the first statement and the second follows from the skew-
symmetry of the Lie bracket. �

Definition 4.12. A real vector space (V,+, ·) equipped with an
operation [, ] : V × V → V is said to be a real Lie algebra if the
following relations hold

(i) [λX + µY, Z] = λ[X,Z] + µ[Y, Z],
(ii) [X, Y ] = −[Y,X],

(iii) [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

for all X, Y, Z ∈ V and λ, µ ∈ R. The equation (iii) is called the Jacobi
identity.

Theorem 4.13. Let M be a smooth manifold. The vector space
C∞(TM) of smooth vector fields on M equipped with the Lie bracket
[, ] : C∞(TM)× C∞(TM)→ C∞(TM) is a real Lie algebra.
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Proof. See exercise 4.4. �
If φ : M → N is a surjective map between differentiable manifolds

then two vector fields X ∈ C∞(TM), X̄ ∈ C∞(TN) are said to be
φ-related if dφp(X) = X̄φ(p) for all p ∈ M . In that case we write
X̄ = dφ(X).

Proposition 4.14. Let φ : M → N be a map between differentiable
manifolds, X, Y ∈ C∞(TM), X̄, Ȳ ∈ C∞(TN) such that X̄ = dφ(X)
and Ȳ = dφ(Y ). Then

[X̄, Ȳ ] = dφ([X, Y ]).

Proof. Let f : N → R be a smooth function, then

[X̄, Ȳ ](f) = dφ(X)(dφ(Y )(f))− dφ(Y )(dφ(X)(f))

= X(dφ(Y )(f) ◦ φ)− Y (dφ(X)(f) ◦ φ)

= X(Y (f ◦ φ))− Y (X(f ◦ φ))

= [X, Y ](f ◦ φ)

= dφ([X, Y ])(f).

�
Proposition 4.15. Let φ : M → N be a smooth bijective map

between differentiable manifolds. If X, Y ∈ C∞(TM) are vector fields
on M , then

(i) dφ(X) ∈ C∞(TN),
(ii) the map dφ : C∞(TM)→ C∞(TN) is a Lie algebra homomor-

phism i.e. [dφ(X), dφ(Y )] = dφ([X, Y ]).

Proof. The fact that the map φ is bijective implies that dφ(X)
is a section of the tangent bundle. That dφ(X) ∈ C∞(TN) follows
directly from the fact that

dφ(X)(f)(φ(p)) = X(f ◦ φ)(p).

The last statement is a direct consequence of Proposition 4.14. �
Definition 4.16. Let M be a smooth manifold. Two vector fields

X, Y ∈ C∞(TM) are said to commute if [X, Y ] = 0.

Let (U, x) be local coordinates on a manifold M and let

{ ∂

∂xk
| k = 1, 2, . . . , m}

be the induced local frame for the tangent bundle. For k = 1, 2, . . . , m
the vector field ∂/∂xk is x-related to the constant coordinate vector
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field ek in Rm. This implies that

dx([
∂

∂xk
,
∂

∂xl
]) = [ek, el] = 0.

Hence the local frame fields commute.

Definition 4.17. Let G be a Lie group with neutral element e. For
p ∈ G let Lp : G→ G be the left translation by p with Lp : q 7→ pq. A
vector field X ∈ C∞(TG) is said to be left invariant if dLp(X) = X
for all p ∈ G, or equivalently, Xpq = (dLp)q(Xq) for all p, q ∈ G. The
set of all left invariant vector fields on G is called the Lie algebra of
G and is denoted by g.

The Lie algebras of the classical Lie groups introduced earlier are
denoted by gl(Rm), sl(Rm), o(m), so(m), gl(Cm), sl(Cm), u(m) and
su(m), respectively.

Proposition 4.18. Let G be a Lie group and g be the Lie algebra
of G. Then g is a Lie subalgebra of C∞(TG) i.e. if X, Y ∈ g then
[X, Y ] ∈ g,

Proof. If p ∈ G then

dLp([X, Y ]) = [dLp(X), dLp(Y )] = [X, Y ]

for all X, Y ∈ g. This proves that the Lie bracket [X, Y ] of two left
invariant vector fields X, Y is left invariant and thereby that g is a Lie
subalgebra of C∞(TG). �

Note that if X is a left invariant vector field on G then

Xp = (dLp)e(Xe)

so the value Xp of X at p ∈ G is completely determined by the value
Xe of X at e. This means that the map ∗ : TeG→ g given by

∗ : X 7→ (X∗ : p 7→ (dLp)e(X))

is a vector space isomorphism and that we can define a Lie bracket
[, ] : TeG× TeG→ TeG on the tangent space TeG by

[X, Y ] = [X∗, Y ∗]e.

Proposition 4.19. Let G be one of the classical Lie groups and
TeG be the tangent space of G at the neutral element e. Then the Lie
bracket on TeG

[, ] : TeG× TeG→ TeG

is given by
[Xe, Ye] = Xe · Ye − Ye ·Xe

where · is the usual matrix multiplication.
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Proof. We shall prove the result for the case when G is the real
general linear group GL(Rm). For the other real classical Lie groups
the result follows from the fact that they are all subgroups of GL(Rm).
The same proof can be used for the complex cases.

Let X, Y ∈ gl(Rm) be left invariant vector fields on GL(Rm), f :
U → R be a function defined locally around the identity element e ∈
GL(Rm) and p be an arbitrary point in U . Then the derivative Xp(f)
is given by

Xp(f) =
d

ds
(f(p · Exp(sXe)))|s=0 = dfp(p ·Xe) = dfp(Xp).

The real general linear group GL(Rm) is an open subset of Rm×m so
we can use well-known rules from calculus and the second derivative
Ye(X(f)) is obtained as follows:

Ye(X(f)) =
d

dt
(XExp(tYe)(f))|t=0

=
d

dt
(dfExp(tYe)(Exp(tYe) ·Xe))|t=0

= d2fe(Ye, Xe) + dfe(Ye ·Xe).

The Hessian d2fe of f is symmetric, hence

[X, Y ]e(f) = Xe(Y (f))− Ye(X(f)) = dfe(Xe · Ye − Ye ·Xe).

�
Theorem 4.20. Let G be a Lie group. Then the tangent bundle

TG of G is trivial.

Proof. Let {X1, . . . , Xm} be a basis for TeG. Then the map ψ :
TG→ G× Rm given by

ψ : (p,
m∑

k=1

vk · (X∗k)p) 7→ (p, (v1, . . . , vm))

is a global bundle chart so the tangent bundle TG is trivial. �
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Exercises

Exercise 4.1. Let (Mm, Â) be a smooth manifold and (U, x), (V, y)

be two charts in Â such that U ∩ V 6= ∅. Let

f = y ◦ x−1 : x(U ∩ V )→ Rm

be the corresponding transition map. Show that the local frames

{ ∂
∂xi
| i = 1, . . . , m} and { ∂

∂yj
| j = 1, . . . , m}

for TM on U ∩ V are related by

∂

∂xi
=

m∑

j=1

∂(fj ◦ x)

∂xi
· ∂
∂yj

.

Exercise 4.2. Let m be a positive integer an SO(m) be the corre-
sponding special orthogonal group.

(i) Find a basis for the tangent space TeSO(m),
(ii) construct a non-vanishing vector field Z ∈ C∞(TSO(m)),

(iii) determine all smooth vector fields on SO(2).

The Hairy Ball Theorem. Let m be a positive integer. Then there
does not exist a continuous non-vanishing vector field X ∈ C0(TS2m)
on the even dimensional sphere S2m.

Exercise 4.3. Let m be a positive integer. Use the Hairy Ball The-
orem to prove that the tangent bundles TS2m of the even-dimensional
spheres S2m are not trivial. Construct a non-vanishing vector field
X ∈ C∞(TS2m+1) on the odd-dimensional sphere S2m+1.

Exercise 4.4. Find a proof for Theorem 4.13.

Exercise 4.5. Let {∂/∂xk| k = 1, . . . , m} be the standard global
frame for TRm. Let X, Y ∈ C∞(TRm) be two vector fields given by

X =
m∑

k=1

αk
∂

∂xk
and Y =

m∑

k=1

βk
∂

∂xk
,

where αk, βk ∈ C∞(Rm). Calculate the Lie bracket [X, Y ].



CHAPTER 5

Riemannian Manifolds

In this chapter we introduce the important notion of a Riemannian
metric on a differentiable manifold. This is the most important example
of what is called a tensor field. The metric provides us with an inner
product on each tangent space and can be used to measure the length
of curves in the manifold. It defines a distance function on the manifold
and turns it into a metric space.

Let M be a smooth manifold, C∞(M) denote the commutative
ring of smooth functions on M and C∞(TM) be the set of smooth
vector fields on M forming a module over C∞(M). Define C∞0 (TM) =
C∞(M) and for each k ∈ Z+ let

C∞k (TM) = C∞(TM)⊗ · · · ⊗ C∞(TM)

be the k-fold tensor product of C∞(TM). A tensor field B on M of
type (r, s) is a map B : C∞r (TM)→ C∞s (TM) satisfying

B(X1 ⊗ · · · ⊗Xl−1 ⊗ (f · Y + g · Z)⊗Xl+1 ⊗ · · · ⊗Xr)

= f ·B(X1 ⊗ · · · ⊗Xl−1 ⊗ Y ⊗Xl+1 ⊗ · · · ⊗Xr)

+g ·B(X1 ⊗ · · · ⊗Xl−1 ⊗ Z ⊗Xl+1 ⊗ · · · ⊗Xr)

for all X1, . . . , Xr, Y, Z ∈ C∞(TM), f, g ∈ C∞(M) and l = 1, . . . , r.
For the rest of this work we shall use the notation B(X1, . . . , Xr) for
B(X1 ⊗ · · · ⊗Xr).

The next result provides us with the most important property con-
cerning tensor fields. It shows that the value of

B(X1, . . . , Xr)

at the point p ∈ M only depends on the values of the vector fields
X1, . . . , Xr at p and is independent of their values away from p.

Proposition 5.1. Let B : C∞r (TM) → C∞s (TM) be a tensor field
of type (r, s) and p ∈ M . Let X1, . . . , Xr and Y1, . . . , Yr be smooth
vector fields on M such that (Xk)p = (Yk)p for each k = 1, . . . , r. Then

B(X1, . . . , Xr)(p) = B(Y1, . . . , Yr)(p).

43
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Proof. We shall prove the statement for r = 1, the rest follows by
induction. Put X = X1 and Y = Y1 and let (U, x) be local coordinates
on M . Choose a function f ∈ C∞(M) such that f(p) = 1,

support(f) = {p ∈M | f(p) 6= 0}
is contained in U and define the vector fields v1, . . . , vm ∈ C∞(TM) on
M by

(vk)q =

{
f(q) · ( ∂

∂xk
)q if q ∈ U

0 if q /∈ U
Then there exist functions ρk, σk ∈ C∞(M) such that

f ·X =

m∑

k=1

ρkvk and f · Y =

m∑

k=1

σkvk.

This implies that

B(X)(p) = f(p)B(X)(p) = B(f ·X)(p) =

m∑

k=1

ρk(p)B(vk)(p)

and similarily

B(Y )(p) =

m∑

k=1

σk(p)B(vk)(p).

The fact that Xp = Yp shows that ρk(p) = σk(p) for all k. As a direct
consequence we see that

B(X)(p) = B(Y )(p).

�
We shall by Bp denote the multi-linear restriction of the tensor field

B to the r-fold tensor product
r⊗

l=1

TpM

of the vector space TpM given by

Bp : ((X1)p, . . . , (Xr)p) 7→ B(X1, . . . , Xr)(p).

Definition 5.2. Let M be a smooth manifold. A Riemannian
metric g on M is a tensor field

g : C∞2 (TM)→ C∞0 (TM)

such that for each p ∈M the restriction

gp = g|TpM⊗TpM : TpM ⊗ TpM → R
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with
gp : (Xp, Yp) 7→ g(X, Y )(p)

is an inner product on the tangent space TpM . The pair (M, g) is
called a Riemannian manifold. The study of Riemannian manifolds
is called Riemannian Geometry. Geometric properties of (M, g) which
only depend on the metric g are called intrinsic or metric properties.

The standard inner product on the vector space Rm given by

〈u, v〉Rm =
m∑

k=1

ukvk

defines a Riemannian metric on Rm. The Riemannian manifold

Em = (Rm, 〈, 〉Rm)

is called the m-dimensional Euclidean space.

Definition 5.3. Let γ : I → M be a C1-curve in M . Then the
length L(γ) of γ is defined by

L(γ) =

∫

I

√
g(γ̇(t), γ̇(t))dt.

By multiplying the Euclidean metric on subsets of Rm by a factor
we obtain important examples of Riemannian manifolds.

Example 5.4. For a positive integer m equip the real vector space
Rm with the Riemannian metric g given by

gx(X, Y ) =
4

(1 + |x|2Rm)2
〈X, Y 〉Rm .

The Riemannian manifold Σm = (Rn, g) is called the m-dimensional
punctured round sphere. Let γ : R+ → Σm be the curve with
γ : t 7→ (t, 0, . . . , 0). Then the length L(γ) of γ can be determined as
follows

L(γ) = 2

∫ ∞

0

√
〈γ̇, γ̇〉

1 + |γ|2 dt = 2

∫ ∞

0

dt

1 + t2
= 2[arctan(t)]∞0 = π.

Example 5.5. Let Bm
1 (0) be the m-dimensional open unit ball

given by
Bm

1 (0) = {x ∈ Rm| |x|Rm < 1}.
By the hyperbolic space Hm we mean Bm

1 (0) equipped with the
Riemannian metric

gx(X, Y ) =
4

(1− |x|2Rm)2
〈X, Y 〉Rm.
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Let γ : (0, 1)→ Hm be a curve given by γ : t 7→ (t, 0, . . . , 0). Then

L(γ) = 2

∫ 1

0

√
〈γ̇, γ̇〉

1− |γ|2 dt = 2

∫ 1

0

dt

1− t2 = [log(
1 + t

1− t)]
1
0 =∞

As we shall now see a Riemannian manifold (M, g) has the structure
of a metric space (M, d) in a natural way.

Proposition 5.6. Let (M, g) be a Riemannian manifold. For two
points p, q ∈M let Cpq denote the set of C1-curves γ : [0, 1]→M such
that γ(0) = p and γ(1) = q and define the function d : M ×M → R+

0

by
d(p, q) = inf{L(γ)|γ ∈ Cpq}.

Then (M, d) is a metric space i.e. for all p, q, r ∈M we have

(i) d(p, q) ≥ 0,
(ii) d(p, q) = 0 if and only if p = q,

(iii) d(p, q) = d(q, p),
(iv) d(p, q) ≤ d(p, r) + d(r, q).

The topology on M induced by the metric d is identical to the one M
carries as a topological manifold (M, T ), see Definition 2.1.

Proof. See for example: Peter Petersen, Riemannian Geometry,
Graduate Texts in Mathematics 171, Springer (1998). �

A Riemannian metric on a differentiable manifold induces a Rie-
mannian metric on any of its submanifolds as follows.

Definition 5.7. Let (N, h) be a Riemannian manifold and M be
a submanifold of N . Then the smooth tensor field g : C∞2 (TM) →
C∞0 (M) given by

g(X, Y ) : p 7→ hp(Xp, Yp).

is a Riemannian metric on M called the induced metric on M in
(N, h).

The Euclidean metric 〈, 〉 on Rn induces Riemannian metrics on the
following submanifolds.

(i) the m-dimensional sphere Sm ⊂ Rm+1,
(ii) the tangent bundle TSm ⊂ Rn where n = 2m + 2,

(iii) the m-dimensional torus Tm ⊂ Rn, where n = 2m
(iv) the m-dimensional real projective space RPm ⊂ Sym(Rm+1) ⊂

Rn where n = (m+ 2)(m+ 1)/2.

The set of complex m × m matrices Cm×m carries a natural Eu-
clidean metric 〈, 〉 given by

〈Z,W 〉 = Re{trace(Z̄t ·W )}.
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This induces metrics on the submanifolds of Cm×m such as Rm×m and
the classical Lie groups GL(Cm), SL(Cm), U(m), SU(m), GL(Rm),
SL(Rm), O(m) and SO(m).

Our next important step is to prove that every differentiable mani-
fold M can be equipped with a Riemannian metric g. For this we need
the following fact from topology.

Fact 5.8. Every locally compact Hausdorff space with countable
basis is paracompact.

Corollary 5.9. Let (M, Â) be a topological manifold. Let the col-
lection (Uα)α∈I be an open covering of M such that for each α ∈ I the
pair (Uα, ψα) is a chart on M . Then there exists

(i) a locally finite open refinement (Wβ)β∈J such that for all β ∈ J ,

Wβ is an open neighbourhood for a chart (Wβ, ψβ) ∈ Â, and
(ii) a partition of unity (fβ)β∈J such that support(fβ) ⊂ Wβ.

Theorem 5.10. Let (Mm, Â) be a differentiable manifold. Then
there exists a Riemannian metric g on M .

Proof. For each point p ∈ M let (Up, φp) be a chart such that
p ∈ Up. Then (Up)p∈M is an open covering as in Corollary 5.9. Let
(Wβ)β∈J be a locally finite open refinement, (Wβ, xβ) be charts on M
and (fβ)β∈J be a partition of unity such that support(fβ) is contained
in Wβ. Let 〈, 〉Rm be the Euclidean metric on Rm. Then for β ∈ J
define gβ : C∞2 (TM)→ C∞0 (TM) by

gβ(
∂

∂xβk
,
∂

∂xβl
)(p) =

{
fβ(p) · 〈ek, el〉Rm if p ∈ Wβ

0 if p /∈ Wβ

Then g : C∞2 (TM)→ C∞0 (TM) given by g =
∑

β∈J gβ is a Riemannian
metric on M . �

Definition 5.11. Let (M, g) and (N, h) be Riemannian manifolds.
A map φ : (M, g) → (N, h) is said to be conformal if there exists a
function λ : M → R such that

eλ(p)gp(Xp, Yp) = hφ(p)(dφp(Xp), dφp(Yp)),

for all X, Y ∈ C∞(TM) and p ∈ M . The function eλ is called the
conformal factor of φ. A conformal map with λ ≡ 0 is said to be
isometric. An isometric diffeomeorphism is called an isometry.

On the standard unit sphere Sm we have an action O(m)× Sm →
Sm of the orthogonal group O(m) given by

(A, x) 7→ A · x
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where · is the standard matrix multiplication. The following shows
that the O(m)-action on Sm is isometric

〈Ax,Ay〉 = xtAtAy = xty = 〈x, y〉.
Example 5.12. Equip the orthogonal group O(m) as a submani-

fold of Rm×m with the induced metric given by

〈X, Y 〉 = trace(X t · Y ).

For x ∈ O(m) the left translation Lx : O(m)→ O(m) by x is given by
Lx : y 7→ xy. The tangent space TyO(m) of O(m) at y is

TyO(m) = {y ·X| X +X t = 0}
and the differential (dLx)y : TyO(m)→ TxyO(m) of Lx is given by

(dLx)y : yX 7→ xyX.

We then have

〈(dLx)y(yX), (dLx)y(yY )〉xy = trace((xyX)txyY )

= trace(X tytxtxyY )

= trace(yX)t(yY ).

= 〈yX, yY 〉y.
This shows that the left translation Lx : O(m)→ O(m) is an isometry
for each x ∈ O(m).

Definition 5.13. Let G be a Lie group. A Riemannian metric g
on G is said to be left invariant if for each x ∈ G the left translation
Lx : G→ G is an isometry.

As for the orthogonal group O(m) an inner product on the tangent
space at the neutral element of any Lie group can be transported via
the left translations to obtain a left invariant Riemannian metric on
the group.

Proposition 5.14. Let G be a Lie group and 〈, 〉e be an inner
product on the tangent space TeG at the neutral element e. Then for
each x ∈ G the bilinear map gx(, ) : TxG× TxG→ R with

gx(Xx, Yx) = 〈dLx−1(Xx), dLx−1(Yx)〉e
is an inner product on the tangent space TxG. The smooth tensor field
g : C∞2 (TG)→ C∞0 (G) given by

g : (X, Y ) 7→ (g(X, Y ) : x 7→ gx(Xx, Yx))

is a left invariant Riemannian metric on G.

Proof. See Exercise 5.4. �
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We shall now equip the real projective space RPm with a Riemann-
ian metric.

Example 5.15. Let Sm be the unit sphere in Rm+1 and Sym(Rm+1)
be the linear space of symmetric real (m+1)×(m+1) matrices equipped
with the metric g given by

g(A,B) = trace(At ·B)/8.

As in Example 3.21 we define a map φ : Sm → Sym(Rm+1) by

φ : p 7→ (ρp : q 7→ 2〈q, p〉p− q).
Let α, β : R → Sn be two curves such that α(0) = p = β(0) and put
a = α′(0), b = β ′(0). Then for γ ∈ {α, β} we have

dφp(γ
′(0)) = (q 7→ 2〈q, γ ′(0)〉p+ 2〈q, p〉γ ′(0)).

If B is an orthonormal basis for Rm+1, then

g(dφp(a), dφp(b)) = trace(dφp(a)t · dφp(b))/8
=

∑

q∈B
〈〈q, a〉p+ 〈q, p〉a, 〈q, b〉p+ 〈q, p〉b〉/2

=
∑

q∈B
{〈p, p〉〈a, q〉〈q, b〉+ 〈a, b〉〈p, q〉〈p, q〉}/2

= {〈a, b〉+ 〈a, b〉}/2
= 〈a, b〉

This proves that the immersion φ is isometric. In Example 3.21 we have
seen that the image φ(Sm) can be identified with the real projective
space RPm. This inherits the induced metric from R(m+1)×(m+1) and
the map φ : Sm → RPm is what is called an isometric double cover of
RPm.

Long before John Nash became famous in Hollywood he proved
the next remarkable result in his paper The embedding problem for
Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. It implies
that every Riemannian manifold can be realized as a submanifold of a
Euclidean space. The original proof of Nash was later simplified, see
for example Matthias Gunther, On the perturbation problem associated
to isometric embeddings of Riemannian manifolds, Annals of Global
Analysis and Geometry 7 (1989), 69-77.

Deep Result 5.16. For 3 ≤ r ≤ ∞ let (M, g) be a Riemannian
Cr-manifold. Then there exists an isometric Cr-embedding of (M, g)
into a Euclidean space Rn.
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We shall now see that parametrizations can be very useful tools for
studying the intrinsic geometry of a Riemannian manifold (M, g). Let

p be a point of M and ψ̂ : U → M be a local parametrization of M
with q ∈ U and ψ̂(q) = p. The differential dψ̂q : TqRm → TpM is
bijective so there exist neighbourhoods Uq of q and Up of p such that

the restriction ψ = ψ̂|Uq : Uq → Up is a diffeomorphism. On Uq we
have the canonical frame {e1, . . . , em} for TUq so {dψ(e1), . . . , dψ(em)}
is a local frame for TM over Up. We then define the pull-back metric
g̃ = ψ∗g on Uq by

g̃(ek, el) = g(dψ(ek), dψ(el)).

Then ψ : (Uq, g̃) → (Up, g) is an isometry so the intrinsic geometry of
(Uq, g̃) and that of (Up, g) are exactly the same.

Example 5.17. Let G be one of the classical Lie groups and e
be the neutral element of G. Let {X1, . . . , Xm} be a basis for the Lie
algebra g of G. For x ∈ G define ψx : Rm → G by

ψx : (t1, . . . , tm) 7→ Lx(
m∏

k=1

Exp(tkXk))

where Lx : G→ G is the left-translation given by Lx(y) = xy. Then

(dψx)0(ek) = Xk(x)

for all k. This means that the differential (dψx)0 : T0Rm → TxG is an
isomorphism so there exist open neighbourhoods U0 of 0 and Ux of x
such that the restriction of ψ to U0 is bijective onto its image Ux and
hence a local parametrization of G around x.

We shall now study the normal bundle of a submanifold of a given
Riemannian manifold. This is an important example of the notion of
a vector bundle over a manifold.

Definition 5.18. Let (N, h) be a Riemannian manifold and M be
a submanifold of N . For a point p ∈ M we define the normal space
NpM of M at p by

NpM = {v ∈ TpN | hp(v, w) = 0 for all w ∈ TpM}.
For all p we have the orthogonal decomposition

TpN = TpM ⊕NpM.

The normal bundle of M in N is defined by

NM = {(p, v)| p ∈M, v ∈ NpM}.
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Example 5.19. Let Sm be the unit sphere in Rm+1 equipped with
its standard Euclidean metric 〈, 〉. If p ∈ Sm then the tangent space
TpS

m of Sm at p is

TpS
m = {v ∈ Rm+1|〈v, p〉 = 0}

so the normal space NpS
m of Sm at p satisfies

NpS
m = {t · p ∈ Rm+1|t ∈ R}.

This shows that the normal bundle NSm of Sm in Rm+1 is given by

NSm = {(p, t · p) ∈ R2m+2|p ∈ Sm, t ∈ R}.
Theorem 5.20. Let (Nn, h) be a Riemannian manifold and Mm

be a smooth submanifold of N . Then the normal bundle (NM,M, π)
is a smooth (n−m)-dimensional vector bundle over M .

Proof. See Exercise 5.6. �
We shall now determine the normal bundle NO(m) of the orthog-

onal group O(m) as a submanifold of Rm×m.

Example 5.21. The orthogonal group O(m) is a subset of the
linear space Rm×m equipped with the Riemannian metric

〈X, Y 〉 = trace(X t · Y )

inducing a left invariant metric on O(m). We have already seen that
the tangent space TeO(m) of O(m) at the neutral element e is

TeO(m) = {X ∈ Rm×m|X +X t = 0}
and that the tangent bundle TO(m) of O(m) is given by

TO(m) = {(x, xX)| x ∈ O(m), X ∈ TeO(m)}.
The space Rm×m of real m×m matrices has a linear decomposition

Rm×m = Sym(Rm)⊕ TeO(m)

and every element X ∈ Rm×m can be decomposed X = X> + X⊥ in
its symmetric and skew-symmetric parts given by

X> = (X −X t)/2 and X⊥ = (X +X t)/2.

If X ∈ TeO(m) and Y ∈ Sym(Rm) then

〈X, Y 〉 = trace(X tY )

= trace(Y tX)

= trace(XY t)

= trace(−X tY )

= −〈X, Y 〉.
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This means that the normal bundle NO(m) of O(m) in Rm×m is given
by

NO(m) = {(x, xY )| x ∈ O(m), Y ∈ Sym(Rm)}.

A given Riemannian metric g on M can be used to construct a
family of natural metrics on the tangent bundle TM of M . The best
known such examples are the Sasaki and Cheeger-Gromoll metrics. For
a detailed survey on the geometry of tangent bundles equipped with
these metrics we recommend the paper S. Gudmundsson, E. Kappos,
On the geometry of tangent bundles, Expo. Math. 20 (2002), 1-41.
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Exercises

Exercise 5.1. Let m be a positive integer and φ : Rm → Cm be the
standard parametrization of the m-dimensional torus Tm in Cm given
by φ : (x1, . . . , xm) 7→ (eix1 , . . . , eixm). Prove that φ is an isometric
parametrization.

Exercise 5.2. Let m be a positive integer and

πm : (Sm − {(1, 0, . . . , 0)}, 〈, 〉Rm+1)→ (Rm,
4

(1 + |x|2)2
〈, 〉Rm)

be the stereographic projection given by

πm : (x0, . . . , xm) 7→ 1

1− x0
(x1, . . . , xm).

Prove that πm is an isometry.

Exercise 5.3. Let B2
1(0) be the open unit disk in the complex plane

equipped with the hyperbolic metric given by

g(X, Y ) = 4/(1− |z|2)2〈X, Y 〉R2 .

Prove that the map

π : B2
1(0)→ ({z ∈ C| Im(z) > 0}, 1

Im(z)2
〈, 〉R2)

with

π : z 7→ i + z

1 + iz
is an isometry.

Exercise 5.4. Find a proof for Proposition 5.14.

Exercise 5.5. Let m be a positive integer and GL(Rm) be the
corresponding real general linear group. Let g, h be two Riemannian
metrics on GL(Rm) defined by

gx(xZ, xW ) = trace((xZ)t · xW ), hx(xZ, xW ) = trace(Z t ·W ).

Further let ĝ, ĥ be the induced metrics on the special linear group
SL(Rm) as a subset of GL(Rm).

(i) Which of the metrics g, h, ĝ, ĥ are left-invariant?
(ii) Determine the normal space NeSL(Rm) of SL(Rm) in GL(Rm)

with respect to g
(iii) Determine the normal bundle NSL(Rm) of SL(Rm) in GL(Rm)

with respect to h.

Exercise 5.6. Find a proof for Theorem 5.20.





CHAPTER 6

The Levi-Civita Connection

In this chapter we introduce the notion of a connection in a smooth
vector bundle. We study, in detail, the important case of the tangent
bundle (TM,M, π) of a smooth Riemannian manifold (M, g). We in-
troduce the Levi-Civita connection on TM and prove that this is the
unique connection on the tangent bundle which is both metric and ’tor-
sion free’. We deduce an explicit formula for the Levi-Civita connection
for certain Lie groups. Finally we give an example of a connection in
the normal bundle of a submanifold of a Riemannian manifold and
study its properties.

On the m-dimensional real vector space Rm we have the well-known
differential operator

∂ : C∞(TRm)× C∞(TRm)→ C∞(TRm)

mapping a pair of vector fields X, Y on Rm to the directional derivative
∂XY of Y in the direction of X given by

(∂XY )(x) = lim
t→0

Y (x + tX(x))− Y (x)

t
.

The most fundamental properties of the operator ∂ are expressed by
the following. If λ, µ ∈ R, f, g ∈ C∞(Rm) and X, Y, Z ∈ C∞(TRm)
then

(i) ∂X(λ · Y + µ · Z) = λ · ∂XY + µ · ∂XZ,

(ii) ∂X(f · Y ) = ∂X(f) · Y + f · ∂XY ,

(iii) ∂(f ·X + g · Y )Z = f · ∂XZ + g · ∂YZ.

Further well-known properties of the differential operator ∂ are given
by the next result.

Proposition 6.1. Let the real vector space Rm be equipped with
the standard Euclidean metric 〈, 〉 and X, Y, Z ∈ C∞(TRm) be smooth
vector fields. Then

(iv) ∂XY − ∂YX = [X, Y ],

(v) ∂X(〈Y, Z〉) = 〈∂XY , Z〉+ 〈Y, ∂XZ〉.
55
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We shall generalize the operator ∂ on the Euclidean space to any
Riemannian manifold (M, g). First we define the concept of a connec-
tion in a smooth vector bundle.

Definition 6.2. Let (E,M, π) be a smooth vector bundle over M .

A connection on (E,M, π) is a map ∇̂ : C∞(TM)×C∞(E)→ C∞(E)
such that

(i) ∇̂X(λ · v + µ · w) = λ · ∇̂Xv + µ · ∇̂Xw,

(ii) ∇̂X(f · v) = X(f) · v + f · ∇̂Xv,

(iii) ∇̂(f ·X + g · Y )v = f · ∇̂Xv + g · ∇̂Yv.

for all λ, µ ∈ R, X, Y ∈ C∞(TM), v, w ∈ C∞(E) and f, g ∈ C∞(M). A
section v ∈ C∞(E) is said to be parallel with respect to the connection

∇̂ if ∇̂Xv = 0 for all X ∈ C∞(TM).

Definition 6.3. Let M be a smooth manifold and ∇̂ be a con-
nection on the tangent bundle (TM,M, π). Then the torsion of ∇̂
T : C∞2 (TM)→ C∞1 (TM) is defined by

T (X, Y ) = ∇̂XY − ∇̂YX − [X, Y ],

where [, ] is the Lie bracket on C∞(TM). A connection ∇̂ on the tan-
gent bundle (TM,M, π) is said to be torsion-free if the corresponding
torsion T vanishes i.e.

[X, Y ] = ∇̂XY − ∇̂YX

for all X, Y ∈ C∞(TM). If g is a Riemannian metric on M then ∇̂ is
said to be metric or compatible with g if

X(g(Y, Z)) = g(∇̂XY ,Z) + g(Y, ∇̂XZ)

for all X, Y, Z ∈ C∞(TM).

Let us now assume that ∇ is a metric and torsion-free connection
on the tangent bundle TM of a differentiable manifold M . Then it is
easily seen that the following equations hold

g(∇XY ,Z) = X(g(Y, Z))− g(Y,∇XZ),

g(∇XY ,Z) = g([X, Y ], Z) + g(∇YX,Z)

= g([X, Y ], Z) + Y (g(X,Z))− g(X,∇YZ),

0 = −Z(g(X, Y )) + g(∇ZX, Y ) + g(X,∇ZY )

= −Z(g(X, Y )) + g(∇XZ + [Z,X], Y ) + g(X,∇YZ − [Y, Z]).
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By adding these relations we yield

2 · g(∇XY ,Z) = {X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+g(Z, [X, Y ]) + g(Y, [Z,X])− g(X, [Y, Z])}.
If {E1, . . . , Em} is a local orthonormal frame for the tangent bundle
then

∇XY =

m∑

k=1

g(∇XY ,Ei)Ei.

This implies that there exists at most one metric and torsion free con-
nection on the tangent bundle.

Definition 6.4. Let (M, g) be a Riemannian manifold then the
map ∇ : C∞(TM)× C∞(TM)→ C∞(TM) given by

g(∇XY ,Z) =
1

2
{X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+g(Z, [X, Y ]) + g(Y, [Z,X])− g(X, [Y, Z])}.
is called the Levi-Civita connection on M .

It should be noted that the Levi-Civita connection is an intrinsic
object on (M, g) only depending on the differentiable structure of the
manifold and its Riemannian metric.

Proposition 6.5. Let (M, g) be a Riemannian manifold. Then the
Levi-Civita connection ∇ is a connection on the tangent bundle TM of
M .

Proof. It follows from Definition 3.5, Theorem 4.13 and the fact
that g is a tensor field that

g(∇X(λ · Y1 + µ · Y2), Z) = λ · g(∇XY1, Z) + µ · g(∇XY2, Z)

and
g(∇Y1 + Y2

X,Z) = g(∇Y1
X,Z) + g(∇Y2

X,Z)

for all λ, µ ∈ R and X, Y1, Y2, Z ∈ C∞(TM). Furthermore we have for
all f ∈ C∞(M)

g(∇XfY , Z)

=
1

2
{X(f · g(Y, Z)) + f · Y (g(Z,X))− Z(f · g(X, Y ))

+g(Z, [X, f · Y ]) + f · g(Y, [Z,X])− g(X, [f · Y, Z])}

=
1

2
{X(f) · g(Y, Z) + f ·X(g(Y, Z)) + f · Y (g(Z,X))

−Z(f) · g(X, Y )− f · Z(g(X, Y )) + g(Z,X(f) · Y + f · [X, Y ])
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+f · g(Y, [Z,X])− g(X,−Z(f) · Y + f · [Y, Z])}
= X(f) · g(Y, Z) + f · g(∇XY ,Z)

= g(X(f) · Y + f · ∇XY ,Z)

and

g(∇f ·XY ,Z)

=
1

2
{f ·X(g(Y, Z)) + Y (f · g(Z,X))− Z(f · g(X, Y ))

+g(Z, [f ·X, Y ]) + g(Y, [Z, f ·X])− f · g(X, [Y, Z])}

=
1

2
{f ·X(g(Y, Z)) + Y (f) · g(Z,X) + f · Y (g(Z,X))

−Z(f) · g(X, Y )− f · Z(g(X, Y ))

+g(Z,−Y (f) ·X) + g(Z, f · [X, Y ]) + g(Y, Z(f) ·X)

f · g(Y, [Z,X])− f · g(X, [Y, Z])}
= f · g(∇XY ,Z).

This proves that ∇ is a connection on the tangent bundle (TM,M, π).
�

The next result is called the fundamental theorem of Riemannian
geometry.

Theorem 6.6. Let (M, g) be a Riemannian manifold. Then the
Levi-Civita connection is a unique metric and torsion free connection
on the tangent bundle (TM,M, π).

Proof. The difference g(∇XY ,Z) − g(∇YX,Z) equals twice the

skew-symmetric part (w.r.t the pair (X, Y )) of the right hand side of
the equation in Definition 6.4. This is the same as

=
1

2
{g(Z, [X, Y ])− g(Z, [Y,X])} = g(Z, [X, Y ]).

This proves that the Levi-Civita connection is torsion-free.
The sum g(∇XY ,Z) + g(∇XZ, Y ) equals twice the symmetric part

(w.r.t the pair (Y, Z)) on the right hand side of Definition 6.4. This is
exactly

=
1

2
{X(g(Y, Z)) +X(g(Z, Y ))} = X(g(Y, Z)).

This shows that the Levi-Civita connection is compatible with the Rie-
mannian metric g on M . �
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Definition 6.7. Let G be a Lie group. For a left invariant vector
field Z ∈ g we define the map ad(Z) : g→ g by

ad(Z) : X 7→ [Z,X].

Proposition 6.8. Let (G, g) be a Lie group equipped with a left
invariant metric. Then the Levi-Civita connection ∇ satisfies

g(∇XY ,Z) =
1

2
{g(Z, [X, Y ]) + g(Y, ad(Z)(X)) + g(X, ad(Z)(Y ))}

for all X, Y, Z ∈ g. In particular, if for all Z ∈ g the map ad(Z) is
skew symmetric with respect to g then

∇XY =
1

2
[X, Y ].

Proof. See Exercise 6.2. �
Proposition 6.9. Let G be one of the compact classical Lie groups

O(m), SO(m), U(m) or SU(m) equipped with the metric

g(Z,W ) = Re (trace(Z̄t ·W )).

Then for each X ∈ g the operator ad(X) : g→ g is skew symmetric.

Proof. See Exercise 6.3. �
Example 6.10. Let (M, g) be a Riemannian manifold with Levi-

Civita connection ∇. Further let (U, x) be local coordinates on M and
put Xi = ∂/∂xi ∈ C∞(TU). Then {X1, . . . , Xm} is a local frame of
TM on U . For (U, x) we define the Christoffel symbols Γkij : U → R
of the connection ∇ with respect to (U, x) by

m∑

k=1

ΓkijXk = ∇Xi
Xj.

On the subset x(U) of Rm we define the metric g̃ by

g̃(ei, ej) = gij = g(Xi, Xj).

The differential dx is bijective so Proposition 4.15 implies that

dx([Xi, Xj]) = [dx(Xi), dx(Xj)] = [ei, ej] = 0

and hence [Xi, Xj] = 0. From the definition of the Levi-Civita connec-
tion we now yield

m∑

k=1

Γkijgkl = 〈
m∑

k=1

ΓkijXk, Xl〉

= 〈∇Xi
Xj, Xl〉
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=
1

2
{Xi〈Xj, Xl〉+Xj〈Xl, Xi〉 −Xl〈Xi, Xj〉}

=
1

2
{∂gjl
∂xi

+
∂gli
∂xj
− ∂gij
∂xl
}.

If gkl = (g−1)kl then

Γkij =
1

2

m∑

l=1

gkl{∂gjl
∂xi

+
∂gli
∂xj
− ∂gij
∂xl
}.

Definition 6.11. Let N be a smooth manifold, M be a submanifold
of N and X̃ ∈ C∞(TM) be a vector field on M . Let U be an open
subset of N such that U ∩M 6= ∅. A local extension of X̃ to U is a
vector field X ∈ C∞(TU) such that X̃p = Xp for all p ∈ M . If U = N
then X is called a global extension.

Fact 6.12. Every vector field X̃ ∈ C∞(TM) has a global extension
X ∈ C∞(TN).

Let (N, h) be a Riemannian manifold and M be a submanifold
equipped with the induced metric g. Let X ∈ C∞(TN) be a vector
field on N and X̃ = X|M : M → TN be the restriction of X to M .

Note that X̃ is not necessarily an element of C∞(TM) i.e. a vector field
on the submanifold M . For each p ∈ M the tangent vector X̃p ∈ TpN
can be decomposed

X̃p = X̃>p + X̃⊥p

in a unique way into its tangential part (X̃p)
> ∈ TpM and its normal

part (X̃p)
⊥ ∈ NpM . For this we write X̃ = X̃> + X̃⊥.

Let X̃, Ỹ ∈ C∞(TM) be vector fields on M and X, Y ∈ C∞(TN)
be their extensions to N . If p ∈ M then (∇XY )p only depends on the

value Xp = X̃p and the value of Y along some curve γ : (−ε, ε) → N

such that γ(0) = p and γ̇(0) = Xp = X̃p. For this see Remark 7.3. Since
Xp ∈ TpM we may choose the curve γ such that the image γ((−ε, ε))
is contained in M . Then Ỹγ(t) = Yγ(t) for t ∈ (−ε, ε). This means

that (∇XY )p only depends on X̃p and the value of Ỹ along γ, hence

independent of the way X̃ and Ỹ are extended. This shows that the
following maps ∇̃ and B are well defined.

Definition 6.13. Let (N, h) be a Riemannian manifold and M be
a submanifold equipped with the induced metric g. Then we define

∇̃ : C∞(TM)× C∞(TM)→ C∞(TM)
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by
∇̃X̃Ỹ = (∇XY )>,

where X, Y ∈ C∞(TN) are any extensions of X̃, Ỹ . Furthermore let

B : C∞2 (TM)→ C∞(NM)

be given by
B(X̃, Ỹ ) = (∇XY )⊥.

It is easily proved that B is symmetric and hence tensorial in both
its arguments, see Exercise 6.6. The operator B is called the second
fundamental form of M in (N, h).

Theorem 6.14. Let (N, h) be a Riemannian manifold and M be a

submanifold of N with the induced metric g. Then ∇̃ is the Levi-Civita
connection of the submanifold (M, g).

Proof. See Exercise 6.7. �
The Levi-Civita connection on (N, h) induces a metric connection

∇̄ on the normal bundle NM of M in N as follows.

Proposition 6.15. Let (N, h) be a Riemannian manifold and M
be a submanifold with the induced metric g. Let X, Y ∈ C∞(TN) be

vector fields extending X̃ ∈ C∞(TM) and Ỹ ∈ C∞(NM). Then the
map ∇̄ : C∞(TM)× C∞(NM)→ C∞(NM) given by

∇̄X̃Ỹ = (∇XY )⊥

is a well-defined connection on the normal bundle NM satisfying

X̃(g(Ỹ , Z̃)) = g(∇̄X̃Ỹ , Z̃) + g(Ỹ , ∇̄X̃Z̃)

for all X̃ ∈ C∞(TM) and Ỹ , Z̃ ∈ C∞(NM).

Proof. See Exercise 6.8. �
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Exercises

Exercise 6.1. Let M be a smooth manifold and ∇̂ be a con-
nection on the tangent bundle (TM,M, π). Prove that the torsion

T : C∞2 (TM)→ C∞1 (TM) of ∇̂ is a tensor field of type (2, 1).

Exercise 6.2. Find a proof for Proposition 6.8.

Exercise 6.3. Find a proof for Proposition 6.9.

Exercise 6.4. Let SO(m) be the special orthogonal group equipped
with the metric

〈X, Y 〉 =
1

2
trace(X t · Y ).

Prove that 〈, 〉 is left-invariant and that for left-invariant vector fields
X, Y ∈ so(m) we have ∇XY = 1

2
[X, Y ]. Let A,B,C be elements of the

Lie algebra so(3) with

Ae =




0 −1 0
1 0 0
0 0 0


 , Be =




0 0 −1
0 0 0
1 0 0


 , Ce =




0 0 0
0 0 −1
0 1 0


 .

Prove that {A,B,C} is an orthonormal basis for so(3) and calculate
(∇AB)e, (∇BC)e and (∇CA)e.

Exercise 6.5. Let SL(R2) be the real special linear group equipped
with the metric

〈X, Y 〉p = trace((p−1X)t · (p−1Y )).

Calculate (∇AB)e, (∇BC)e and (∇CA)e where A,B,C ∈ sl(R2) are given
by

Ae =

(
0 −1
1 0

)
, Be =

(
0 1
1 0

)
, Ce =

(
1 0
0 −1

)
.

Exercise 6.6. Let (N, h) be a Riemannian manifold with Levi-
Civita connection ∇ and (M, g) be a submanifold with the induced
metric. Prove that the second fundamental form B of M in N is
symmetric and tensorial in both its arguments.

Exercise 6.7. Find a proof for Theorem 6.14.

Exercise 6.8. Find a proof for Proposition 6.15.



CHAPTER 7

Geodesics

In this chapter we introduce the notion of a geodesic on a smooth
manifold as a solution to a non-linear system of ordinary differential
equations. We then show that geodesics are solutions to two different
variational problems. They are critical points to the so called energy
functional and furthermore locally shortest paths between their end-
points.

Definition 7.1. Let M be a smooth manifold and (TM,M, π) be
its tangent bundle. A vector field X along a curve γ : I → M is
a curve X : I → TM such that π ◦ X = γ. By C∞γ (TM) we denote
the set of all smooth vector fields along γ. For X, Y ∈ C∞γ (TM) and
f ∈ C∞(I) we define the operations · and + by

(i) (f ·X)(t) = f(t) ·X(t),
(ii) (X + Y )(t) = X(t) + Y (t),

These make (C∞γ (TM),+, ·) into a module over C∞(I) and a real vector
space over the constant functions on M in particular. For a given
smooth curve γ : I → M in M the smooth vector field X : I → TM
with X : t 7→ (γ(t), γ̇(t)) is called the tangent field along γ.

The next result gives a rule for differentiating a vector field along a
given curve and shows how this is related to the Levi-Civita connection.

Proposition 7.2. Let (M, g) be a smooth Riemannian manifold
and γ : I →M be a curve in M . Then there exists a unique operator

D

dt
: C∞γ (TM)→ C∞γ (TM)

such that for all λ, µ ∈ R and f ∈ C∞(I),

(i) D(λ ·X + µ · Y )/dt = λ · (DX/dt) + µ · (DY/dt),
(ii) D(f · Y )/dt = df/dt · Y + f · (DY /dt), and

(iii) for each t0 ∈ I there exists an open subinterval J0 of I such that
t0 ∈ J0 and if X ∈ C∞(TM) is a vector field with Xγ(t) = Y (t)
for all t ∈ J0 then

(DY
dt

)
(t0) = (∇̇γX)γ(t0).

63
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Proof. Let us first prove the uniqueness, so for the moment we
assume that such an operator exists. For a point t0 ∈ I choose a chart
(U, x) on M and open interval J0 such that t0 ∈ J0, γ(J0) ⊂ U and put
Xi = ∂/∂xi ∈ C∞(TU). Then a vector field Y along γ can be written
in the form

Y (t) =

m∑

k=1

αk(t)
(
Xk

)
γ(t)

for some functions αk ∈ C∞(J0). The second condition means that

(1)
(DY
dt

)
(t) =

m∑

k=1

αk(t)
(DXk

dt

)
γ(t)

+

m∑

k=1

α̇k(t)
(
Xk

)
γ(t)
.

Let x ◦ γ(t) = (γ1(t), . . . , γm(t)) then

γ̇(t) =
m∑

k=1

γ̇k(t)
(
Xk

)
γ(t)

and the third condition for D/dt imply that

(2)
(DXj

dt

)
γ(t)

= (∇̇γXj)γ(t) =

m∑

k=1

γ̇k(t)(∇Xk
Xj)γ(t).

Together equations (1) and (2) give

(3)
(DY
dt

)
(t) =

m∑

k=1

{α̇k(t) +

m∑

i,j=1

Γkij(γ(t))γ̇i(t)αj(t)}
(
Xk

)
γ(t)
.

This shows that the operator D/dt is uniquely determined.
It is easily seen that if we use equation (3) for defining an operator

D/dt then it satisfies the necessary conditions of Proposition 7.2. This
proves the existence of the operator D/dt. �

Remark 7.3. It follows from the fact that the Levi-Civita connec-
tion is tensorial in its first argument i.e.

∇f · ZX = f · ∇ZX

and the equation
(DY
dt

)
(t0) = (∇̇γX)γ(t0)

in Proposition 7.2 that the value (∇ZX)p of ∇ZX at p only depends
on the value of Zp of Z at p and the values of Y along some curve γ
satisfying γ(0) = p and γ̇(0) = Zp. This allows us to use the notation
∇γ̇Y for DY/dt.
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The Levi-Civita connection can now be used to define a parallel
vector field and a geodesic on a manifold as solutions to ordinary dif-
ferential equations

Definition 7.4. Let (M, g) be a Riemannian manifold and γ : I →
M be a C1-curve. A vector field X along γ is said to be parallel along
γ if

∇̇γX = 0.

A C2-curve γ : I →M is said to be a geodesic if the vector field γ̇ is
parallel along γ i.e.

∇̇γγ̇ = 0.

The next result shows that for given initial values at a point p ∈M
we get a parallel vector field globally defined along any curve through
that point.

Theorem 7.5. Let (M, g) be a Riemannian manifold and I = (a, b)
be an open interval on the real line R. Further let γ : I → M be a
smooth curve, t0 ∈ I and X0 ∈ Tγ(t0)M . Then there exists a unique
parallel vector field Y along γ such that X0 = Y (t0).

Proof. Without loss of generality we may assume that the image
of γ lies in a chart (U, x). We put Xi = ∂/∂xi so on the interval I the
tangent field γ̇ is represented in our local coordinates by

γ̇(t) =

m∑

i=1

ρi(t)
(
Xi

)
γ(t)

with some functions ρi ∈ C∞(I). Similarly let Y be a vector field along
γ represented by

Y (t) =
m∑

j=1

σj(t)
(
Xj

)
γ(t)
.

Then

(
∇̇γY

)
(t) =

m∑

j=1

{σ̇j(t)
(
Xj

)
γ(t)

+ σj(t)
(
∇̇γXj

)
γ(t)
}

=

m∑

k=1

{σ̇k(t) +

m∑

i,j=1

σj(t)ρi(t)Γ
k
ij(γ(t))}

(
Xk

)
γ(t)
.

This implies that the vector field Y is parallel i.e. ∇̇γY ≡ 0 if and

only if the following linear system of ordinary differential equations is
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satisfied:

σ̇k(t) +
m∑

i,j=1

σj(t)ρi(t)Γ
k
ij(γ(t)) = 0

for all k = 1, . . . , m. It follows from classical results on ordinary dif-
ferential equations that to each initial value σ(t0) = (v1, . . . , vm) ∈ Rm
with

X0 =

m∑

k=1

vk
(
Xk

)
γ(t0)

there exists a unique solution σ = (σ1, . . . , σm) to the above system.
This gives us the unique parallel vector field Y

Y (t) =

m∑

k=1

σk(t)
(
Xk

)
γ(t)

along I. �

The following result shows that parallel vector fields are useful tools
in Riemannian geometry.

Lemma 7.6. Let (M, g) be a Riemannian manifold, γ : I → M
be a smooth curve and X, Y be parallel vector fields along γ. Then the
function g(X, Y ) : I → R given by t 7→ gγ(t)(Xγ(t), Yγ(t)) is constant.
In particular if γ is a geodesic then g(γ̇, γ̇) is constant along γ.

Proof. Using the fact that the Levi-Civita connection is metric
we obtain

d

dt
(g(X, Y )) = g(∇̇γX, Y ) + g(X, ∇̇γY ) = 0.

This proves that the function g(X, Y ) is constant along γ. �

Proposition 7.7. Let (M, g) be a Riemannian manifold, p ∈ M
and {v1, . . . , vm} be an orthonormal basis for the tangent space TpM .
Let γ : I →M be a smooth curve such that γ(0) = p and X1, . . . , Xm be
parallel vector fields along γ such that Xk(0) = vk for k = 1, 2, . . . , m.
Then the set {X1(t), . . . , Xm(t)} is a orthonormal basis for the tangent
space Tγ(t)M for all t ∈ I.

Proof. This is a direct consequence of Lemma 7.6. �

The important geodesic equation is in general a non-linear ordinary
differential equation. For this we have the following local existence
result.
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Theorem 7.8. Let (M, g) be a Riemannian manifold. If p ∈ M
and v ∈ TpM then there exists an open interval I = (−ε, ε) and a
unique geodesic γ : I →M such that γ(0) = p and γ̇(0) = v.

Proof. Let (U, x) be a chart on M such that p ∈ U and put
Xi = ∂/∂xi. For an open subinterval J of I and a C2-curve γ : J → U
we put γi = xi ◦γ : J → R. The curve x ◦γ : J → Rm is C2 so we have

(dx)γ(t)(γ̇(t)) =

m∑

i=1

γ̇i(t)ei

giving

γ̇(t) =

m∑

i=1

γ̇i(t)
(
Xi

)
γ(t)
.

By differentiation we then obtain

∇̇γγ̇ =
m∑

j=1

∇̇γ
(
γ̇j(t)

(
Xj

)
γ(t)

)

=
m∑

j=1

{γ̈j(t)
(
Xj

)
γ(t)

+
m∑

i=1

γ̇j(t)γ̇i(t)
(
∇Xi

Xj

)
γ(t)
}

=

m∑

k=1

{γ̈k(t) +

m∑

i,j=1

γ̇j(t)γ̇i(t)Γ
k
ij ◦ γ(t)}

(
Xk

)
γ(t)
.

Hence the curve γ is a geodesic if and only if

γ̈k(t) +
m∑

i,j=1

γ̇j(t)γ̇i(t)Γ
k
ij(γ(t)) = 0

for all k = 1, . . . , m. It follows from classical results on ordinary dif-
ferential equations that for initial values q0 = x(p) and w0 = (dx)p(v)
there exists an open interval (−ε, ε) and a unique solution (γ1, . . . , γm)
satisfying the initial conditions

(γ1(0), . . . , γm(0)) = q0 and (γ̇1(0), . . . , γ̇m(0)) = w0.

�

Let Em = (Rm, 〈, 〉Rm) be the Euclidean space. For the trivial chart
idRm : Rm → Rm the metric is given by gij = δij, so Γkij = 0 for all
i, j, k = 1, . . . , m. This means that γ : I → Rm is a geodesic if and
only if γ̈(t) = 0 or equivalently γ(t) = t ·a+ b for some a, b ∈ Rm. This
proves that the geodesics are the straight lines.
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Definition 7.9. A geodesic γ : I → (M, g) in a Riemannian man-
ifold is said to be maximal if it cannot be extended to a geodesic
defined on an interval J strictly containing I. The manifold (M, g)
is said to be complete if for each point (p, v) ∈ TM there exists a
geodesic γ : R→M defined on the whole of R such that γ(0) = p and
γ̇(0) = v.

Proposition 7.10. Let (N, h) be a Riemannian manifold and M be
a submanifold equipped with the induced metric g. A curve γ : I →M
is a geodesic in M if and only if (∇̇γγ̇)> = 0.

Proof. The statement follows directly from the fact that ∇̃̇γγ̇ =

(∇̇γγ̇)>. �

Example 7.11. Let Em+1 be the (m + 1)-dimensional Euclidean
space and Sm be the unit sphere in Em+1 with the induced metric. At
a point p ∈ Sm the normal space NpS

m of Sm in Em+1 is simply the
line spanned by p. If γ : I → Sm is a curve on the sphere, then

∇̃̇γγ̇ = γ̈> = γ̈ − γ̈⊥ = γ̈ − 〈γ̈, γ〉γ.

This shows that γ is a geodesic on the sphere Sm if and only if

(4) γ̈ = 〈γ̈, γ〉γ.
For a point (p, v) ∈ TSm define the curve γ = γ(p,v) : R→ Sm by

γ : t 7→
{

p if v = 0
cos(|v|t) · p+ sin(|v|t) · v/|v| if v 6= 0.

Then one easily checks that γ(0) = p, γ̇(0) = v and that γ satisfies the
geodesic equation (4). This shows that the non-constant geodesics on
Sm are precisely the great circles and the sphere is complete.

Example 7.12. Let Sym(Rm+1) be equipped with the metric

〈A,B〉 =
1

8
trace(At ·B).

Then we know that the map φ : Sm → Sym(Rm+1) with

φ : p 7→ (2ppt − e)
is an isometric immersion and that the image φ(Sm) is isometric to
the m-dimensional real projective space RPm. This means that the
geodesics on RPm are exactly the images of geodesics on Sm. This
shows that the real projective spaces are complete.
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Definition 7.13. Let (M, g) be a Riemannian manifold and γ :
I → M be a Cr-curve on M . A variation of γ is a Cr-map Φ :
(−ε, ε)× I →M such that for all s ∈ I, Φ0(s) = Φ(0, s) = γ(s). If the
interval is compact i.e. of the form I = [a, b], then the variation Φ is
called proper if for all t ∈ (−ε, ε), Φt(a) = γ(a) and Φt(b) = γ(b).

Definition 7.14. Let (M, g) be a Riemannian manifold and γ :
I → M be a C2-curve on M . For every compact interval [a, b] ⊂ I we
define the energy functional E[a,b] by

E[a,b](γ) =
1

2

∫ b

a

g(γ̇(t), γ̇(t))dt.

A C2-curve γ : I → M is called a critical point for the energy
functional if every proper variation Φ of γ|[a,b] satisfies

d

dt
(E[a,b](Φt))|t=0 = 0.

We shall now prove that the geodesics can be characterized as being
the critical points of the energy functional.

Theorem 7.15. A C2-curve γ is a critical point for the energy
functional if and only if it is a geodesic.

Proof. For a C2-map Φ : (−ε, ε) × I → M , Φ : (t, s) 7→ Φ(t, s)
we define the vector fields X = dΦ(∂/∂s) and Y = dΦ(∂/∂t) along Φ.
The following shows that the vector fields X and Y commute:

∇XY −∇YX = [X, Y ] = [dΦ(∂/∂s), dΦ(∂/∂t)] = dΦ([∂/∂s, ∂/∂t]) = 0,

since [∂/∂s, ∂/∂t] = 0.
We now assume that Φ is a proper variation of γ|[a,b]. Then

d

dt
(E[a,b](Φt)) =

1

2

d

dt
(

∫ b

a

g(X,X)ds)

=
1

2

∫ b

a

d

dt
(g(X,X))ds

=

∫ b

a

g(∇YX,X)ds

=

∫ b

a

g(∇XY ,X)ds

=

∫ b

a

(
d

ds
(g(Y,X))− g(Y,∇XX))ds

= [g(Y,X)]ba −
∫ b

a

g(Y,∇XX)ds.
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The variation is proper, so Y (a) = Y (b) = 0. Furthermore X(0, s) =
∂Φ/∂s(0, s) = γ̇(s), so

d

dt
(E[a,b](Φt))|t=0 = −

∫ b

a

g(Y (0, s), (∇̇γγ̇)(s))ds.

The last integral vanishes for every proper variation Φ of γ if and only
if ∇̇γγ̇ = 0. �

A geodesic γ : I → (M, g) is a special case of what is called a
harmonic map φ : (M, g) → (N, h) between Riemannian manifolds.
Other examples are conformal immersions ψ : (M 2, g)→ (N, h) which
parametrize the so called minimal surfaces in (N, h). For a reference on
harmonic maps see H. Urakawa, Calculus of Variations and Harmonic
Maps, Translations of Mathematical Monographs 132, AMS(1993).

Let (Mm, g) be an m-dimensional Riemannian manifold, p ∈ M
and

Sm−1
p = {v ∈ TpM | gp(v, v) = 1}

be the unit sphere in the tangent space TpM at p. Then every point
w ∈ TpM − {0} can be written as w = rw · vw, where rw = |w| and
vw = w/|w| ∈ Sm−1

p . For v ∈ Sm−1
p let γv : (−αv, βv) → M be

the maximal geodesic such that αv, βv ∈ R+ ∪ {∞}, γv(0) = p and
γ̇v(0) = v. It can be shown that the real number

εp = inf{αv, βv| v ∈ Sm−1
p }.

is positive so the open ball

Bm
εp(0) = {v ∈ TpM | gp(v, v) < ε2p}

is non-empty. The exponential map expp : Bm
εp(0) → M at p is

defined by

expp : w 7→
{

p if w = 0
γvw(rw) if w 6= 0.

Note that for v ∈ Sm−1
p the line segment λv : (−εp, εp) → TpM

with λv : t 7→ t · v is mapped onto the geodesic γv i.e. locally we
have γv = expp ◦λv. One can prove that the map expp is smooth and
it follows from its definition that the differential d(expp)p : TpM →
TpM is the identity map for the tangent space TpM . Then the inverse
mapping theorem tells us that there exists an rp ∈ R+ such that if Up =
Bm
rp(0) and Vp = expp(Up) then expp |Up : Up → Vp is a diffeomorphism

parametrizing the open subset Vp of M .
The next result shows that the geodesics are locally the shortest

paths between their endpoints.
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Theorem 7.16. Let (M, g) be a Riemannian manifold, p ∈M and
γ : [0, ε] → M be a geodesic with γ(0) = p. Then there exists an
α ∈ (0, ε) such that for each q ∈ γ([0, α]), γ is the shortest path from p
to q.

Proof. Let p ∈ M , U = Bm
r (0) ⊂ TpM and V = expp(U) be such

that the restriction φ = expp |U : U → V of the exponential map at p
is a diffeomorphism. On V we have the metric g which we pull back
via φ to obtain g̃ = φ∗g on U . This makes φ : (U, g̃) → (V, g) into an
isometry. It then follows from the construction of the exponential map,
that the geodesics in (U, g̃) through the point 0 = φ−1(p) are exactly
the lines λv : t 7→ t · v where v ∈ TpM . Now let q ∈ Bm

r (0) − {0}
and λq : [0, 1] → Bm

r (0) be the curve λq : t 7→ t · q. Further let
σ : [0, 1] → Bm

r (0) be any curve such that σ(0) = 0 and σ(1) = q.
Along σ we define two vector fields σ̂ and σ̇rad by σ̂ : t 7→ (σ(t), σ(t))
and

σ̇rad : t 7→ (σ(t),
g̃σ(t)(σ̇(t), σ̂(t))

g̃σ(t)(σ̂(t), σ̂(t))
· σ(t)).

Then it is easily checked that

|σ̇rad(t)| = |g̃σ(t)(σ̇(t), σ̂(t))|
|σ̂| ,

and
d

dt
|σ̂(t)| = d

dt

√
g̃σ(t)(σ̂(t), σ̂(t)) =

g̃σ(σ̇, σ̂)

|σ̂| .

Combining these two relations we obtain

|σ̇rad(t)| = d

dt
|σ̂(t)|.

This means that

L(σ) =

∫ 1

0

|σ̇|dt

≥
∫ 1

0

|σ̇rad|dt

=

∫ 1

0

d

dt
|σ̂(t)|dt

= |σ̂(1)| − |σ̂(0)|
= |q|
= L(λq).

This proves that in fact γ is the shortest path connecting p and q. �
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Definition 7.17. Let (N, h) be a Riemannian manifold and M be
a submanifold with the induced metric g. Then the mean curvature
vector field of M in N is the smooth section H : M → NM of the
normal bundle NM given by

H =
1

m
traceB =

1

m

m∑

k=1

B(Xk, Xk).

Here B is the second fundamental form of M in N and {X1, . . . , Xm}
is any local orthonormal frame for the tangent bundle TM of M . The
submanifold M is said to be minimal in N if H ≡ 0 and totally
geodesic in N if B ≡ 0.

Proposition 7.18. Let (N, h) be a Riemannian manifold and M be
a submanifold equipped with the induced metric g. Then the following
conditions are equivalent:

(i) M is totally geodesic in N
(ii) if γ : I → M is a curve, then the following conditions are

equivalent
(a) γ : I →M is a geodesic in M ,
(b) γ : I →M is a geodesic in N .

Proof. The result is a direct consequence of the following decom-
position formula

∇̇γγ̇ = (∇̇γγ̇)T + (∇̇γγ̇)⊥ = ∇̃̇γγ̇ +B(γ̇, γ̇).

�
Proposition 7.19. Let (N, h) be a Riemannian manifold and M

be a submanifold of N . For a point (p, v) of the tangent bundle TM let
γ(p,v) : I → N be the maximal geodesic in N with γ(0) = p and γ̇(0) =
v. Then M is totally geodesic in (N, h) if and only if γ(p,v)(I) ⊂M for
all (p, v) ∈ TM .

Proof. See Exercise 7.3. �
Proposition 7.20. Let (N, h) be a Riemannian manifold and M be

a submanifold of N which is the fixpoint set of an isometry φ : N → N .
Then M is totally geodesic in N .

Proof. Let p ∈ M , v ∈ TpM and γ : I → N be the maximal
geodesic with γ(0) = p and γ̇(0) = v. The map φ : N → N is an
isometry so φ ◦ γ : I → N is a geodesic. The uniqueness result of
Theorem 7.8, φ(γ(0)) = γ(0) and dφ(γ̇(0)) = γ̇(0) then imply that
φ(γ) = γ. Hence the image of the geodesic γ : I → N is contained in
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M , so following Proposition 7.19 the submanifold M is totally geodesic
in N . �

Corollary 7.21. If m < n then the m-dimensional sphere

Sm = {(x, 0) ∈ Rm+1 × Rn−m| |x|2 = 1}
is totally geodesic in

Sn = {(x, y) ∈ Rm+1 × Rn−m| |x|2 + |y|2 = 1}.
Proof. The statement is a direct consequence of the fact that Sm

is the fixpoint set of the isometry φ : Sn → Sn of Sn with (x, y) 7→
(x,−y). �



74 7. GEODESICS

Exercises

Exercise 7.1. The result of Exercise 5.3 shows that the two di-
mensional hyperbolic disc H2 introduced in Example 5.5 is isometric
to the upper half plane M = ({(x, y) ∈ R2| y ∈ R+} equipped with the
Riemannian metric

g(X, Y ) =
1

y2
〈X, Y 〉R2 .

Use your local library to find all geodesics in (M, g).

Exercise 7.2. Let n be a positive integer and O(n) be the orthog-
onal group equipped with the standard left-invariant metric

g(A,B) = trace(AtB).

Prove that a C2-curve γ : (−ε, ε)→ O(n) is a geodesic if and only if

γt · γ̈ = γ̈t · γ.
Exercise 7.3. Find a proof for Proposition 7.19.

Exercise 7.4. For the real parameter θ ∈ (0, π/2) define the 2-
dimensional torus T 2

θ by

T 2
θ = {(cos θeiα, sin θeiβ) ∈ S3| α, β ∈ R}.

Determine for which θ ∈ (0, π/2) the torus T 2
θ is a minimal submanifold

of the 3-dimensional sphere

S3 = {(z1, z2) ∈ C2| |z1|2 + |z2|2 = 1}.
Exercise 7.5. Show that the m-dimensional hyperbolic space

Hm = {(x, 0) ∈ Rm × Rn−m| |x| < 1}
is a totally geodesic submanifold of the n-dimensional hyperbolic space
Hn.

Exercise 7.6. Determine the totally geodesic submanifolds of the
m-dimensional real projective space RPm.

Exercise 7.7. Let the orthogonal group O(n) be equipped with
the left-invariant metric g(A,B) = trace(AtB) and let K ⊂ O(n) be a
Lie subgroup. Prove that K is totally geodesic in O(n).



CHAPTER 8

The Curvature Tensor

In this chapter we introduce the Riemann curvature tensor as twice
the skew-symmetric part of the second derivative ∇2. This leads to
the notion of the sectional curvature which is a fundamental tool for
the study of the geometry of manifolds. We prove that the spheres,
Euclidean spaces and hyperbolic spaces all have constant sectional cur-
vatures. We calculate the curvature tensor for manifolds of constant
curvature and for certain Lie groups. Finally we prove the famous
Gauss equation comparing the sectional curvature of a submanifold
and that of its ambient space.

Definition 8.1. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. For tensor fields A : C∞r (TM) → C∞0 (M) and
B : C∞r (TM) → C∞1 (TM) we define their covariant derivatives
∇A : C∞r+1(TM)→ C∞0 (M) and ∇B : C∞r+1(TM)→ C∞1 (TM) by

∇A : (X,X1, . . . , Xr) 7→ (∇XA)(X1, . . . , Xr) =

X(A(X1, . . . , Xr))−
r∑

i=1

A(X1, . . . , Xi−1,∇XXi, Xi+1, . . . , Xr)

and

∇B : (X,X1, . . . , Xr) 7→ (∇XB)(X1, . . . , Xr) =

∇X(B(X1, . . . , Xr))−
r∑

i=1

B(X1, . . . , Xi−1,∇XXi, Xi+1, . . . , Xr).

A tensor field E of type (r, 0) or (r, 1) is said to be parallel if ∇E ≡ 0.

An example of a parallel tensor field of type (2, 0) is the Riemannian
metric g of (M, g). For this see Exercise 8.1. A vector field Z ∈
C∞(TM) defines a smooth tensor field Ẑ : C∞1 (TM) → C∞1 (TM)
given by

Ẑ : X 7→ ∇XZ.
75
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For two vector fields X, Y ∈ C∞(TM) we define the second covariant
derivative ∇2

X, Y : C∞(TM)→ C∞(TM) by

∇2
X, Y : Z 7→ (∇XẐ)(Y ).

It then follows from the definition above that

∇2
X, YZ = ∇X(Ẑ(Y ))− Ẑ(∇XY ) = ∇X∇YZ −∇∇XY

Z.

Definition 8.2. Let (M, g) be a Riemannian manifold with Levi-
Civita connection ∇. Let R : C∞3 (TM) → C∞1 (TM) be twice the
skew-symmetric part of the second covariant derivative ∇2 i.e.

R(X, Y )Z = ∇2
X, YZ −∇

2
Y,XZ = ∇X∇YZ −∇Y∇XZ −∇[X, Y ]Z.

Then R is a smooth tensor field of type (3, 1) called the curvature
tensor of the Riemannian manifold (M, g).

Proof. See Exercise 8.2. �
Note that the curvature tensor R only depends on the intrinsic

object ∇ and hence it is intrinsic itself. The following shows that it
has many nice properties of symmetry.

Proposition 8.3. Let (M, g) be a smooth Riemannian manifold.
For vector fields X, Y, Z,W on M we then have

(i) R(X, Y )Z = −R(Y,X)Z,
(ii) g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z),

(iii) g(R(X, Y )Z,W ) + g(R(Z,X)Y,W ) + g(R(Y, Z)X,W ) = 0,
(iv) g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ),
(v) 6 ·R(X, Y )Z = R(X, Y + Z)(Y + Z)− R(X, Y − Z)(Y − Z)

+R(X + Z, Y )(X + Z)−R(X − Z, Y )(X − Z).

Proof. See Exercise 8.3. �
For a point p ∈ M let G2(TpM) denote the Grassmannian of 2-

planes in TpM i.e. the set of all 2-dimensional subspaces of TpM

G2(TpM) = {V ⊂ TpM | V is a 2-dimensional subspace of TpM}.
Definition 8.4. For a point p ∈ M the function Kp : G2(TpM)→

R given by

Kp : spanR{X, Y } 7→
g(R(X, Y )Y,X)

|X|2|Y |2 − g(X, Y )2

is called the sectional curvature at p. Furthermore define the func-
tions δ,∆ : M → R by

δ : p 7→ min
V ∈G2(TpM)

Kp(V ) and ∆ : p 7→ max
V ∈G2(TpM)

Kp(V ).
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The Riemannian manifold (M, g) is said to be

(i) of (strictly) positive curvature if δ(p) ≥ 0 (> 0) for all p,
(ii) of (strictly) negative curvature if ∆(p) ≤ 0 (< 0) for all p,

(iii) of constant curvature if δ = ∆ is constant,
(iv) flat if δ ≡ ∆ ≡ 0.

The statement of Lemma 8.5 shows that the sectional curvature
just introduced is well-defined.

Lemma 8.5. Let X, Y, Z,W ∈ TpM be tangent vectors at p such
that the two 2-dimensional subspaces spanR{X, Y }, spanR{Z,W} are
equal. Then

g(R(X, Y )Y,X)

|X|2|Y |2 − g(X, Y )2
=

g(R(Z,W )W,Z)

|Z|2|W |2 − g(Z,W )2
.

Proof. See Exercise 8.4. �

We have the following way of expressing the curvature tensor in
local coordinates.

Proposition 8.6. Let (M, g) be a Riemannian manifold and let
(U, x) be local coordinates on M . For i, j, k, l = 1, . . . , m put Xi =
∂/∂xi and Rijkl = g(R(Xi, Xj)Xk, Xl). Then

Rijkl =
m∑

s=1

gsl

(
∂Γsjk
∂xi
− ∂Γsik

∂xj
+

m∑

r=1

{Γrjk · Γsir − Γrik · Γsjr}
)

Proof. Using the fact that [Xi, Xj] = 0 we obtain

R(Xi, Xj)Xk = ∇Xi
∇Xj

Xk −∇Xj
∇Xi

Xk

= ∇Xi
(
∑m

s=1 Γsjk ·Xs)−∇Xj
(
∑m

s=1 Γsik ·Xs)

=

m∑

s=1

(
∂Γsjk
∂xi
·Xs +

m∑

r=1

ΓsjkΓ
r
isXr −

∂Γsik
∂xj
·Xs −

m∑

r=1

ΓsikΓ
r
jsXr

)

=

m∑

s=1

(
∂Γsjk
∂xi
− ∂Γsik

∂xj
+

m∑

r=1

{ΓrjkΓsir − ΓrikΓ
s
jr}
)
Xs.

�

For the m-dimensional vector space Rm equipped with the Eu-
clidean metric 〈, 〉Rm the set {∂/∂x1, . . . , ∂/∂xm} is a global frame for
the tangent bundle TRm. We have gij = δij, so Γkij ≡ 0. This implies
that R ≡ 0 so Em is flat.
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Example 8.7. The standard sphere Sm has constant sectional cur-
vature +1 (see Exercises 8.7 and 8.8) and the hyperbolic space Hm has
constant sectional curvature −1 (see Exercise 8.9).

Our next goal is Corollary 8.11 where we obtain a formula for the
curvature tensor of the manifolds of constant sectional curvature κ.
This turns out to be very useful in the study of Jacobi fields later on.

Lemma 8.8. Let (M, g) be a Riemannian manifold and (p, Y ) ∈
TM . Then the map Ỹ : TpM → TpM with Ỹ : X 7→ R(X, Y )Y is a
symmetric endomorphism of the tangent space TpM .

Proof. For Z ∈ TpM we have

g(Ỹ (X), Z) = g(R(X, Y )Y, Z) = g(R(Y, Z)X, Y )

= g(R(Z, Y )Y,X) = g(X, Ỹ (Z)).

�
Let (p, Y ) ∈ TpM be an element of the tangent bundle TM of M

such that |Y | = 1 and define

N (Y ) = {X ∈ TpM | g(X, Y ) = 0}.
The fact that Ỹ (Y ) = 0 and Lemma 8.8 ensure the existence of an or-
thonormal basis of eigenvectors X1, . . . , Xm−1 for the restriction of the
symmetric endomorphism Ỹ to N (Y ). The corresponding eigenvalues
satisfy

δ(p) ≤ λ1(p) ≤ · · · ≤ λm−1(p) ≤ ∆(p).

Definition 8.9. Let (M, g) be a Riemannian manifold. Then define
the smooth tensor field R1 : C∞3 (TM)→ C∞1 (TM) of type (3, 1) by

R1(X, Y )Z = g(Y, Z)X − g(X,Z)Y.

Proposition 8.10. Let (M, g) be a smooth Riemannian manifold
and X, Y, Z be vector fields on M . Then

(i) |R(X, Y )Y − δ+∆
2
R1(X, Y )Y | ≤ 1

2
(∆− δ)|X||Y |2

(ii) |R(X, Y )Z − δ+∆
2
R1(X, Y )Z| ≤ 2

3
(∆− δ)|X||Y ||Z|

Proof. Without loss of generality we can assume that |X| = |Y | =
|Z| = 1. If X = X⊥ + X> with X⊥ ⊥ Y and X> is a multiple of Y
then R(X, Y )Z = R(X⊥, Y )Z and |X⊥| ≤ |X| so we can also assume
that X ⊥ Y . Then R1(X, Y )Y = 〈Y, Y 〉X − 〈X, Y 〉Y = X.

The first statement follows from the fact that the symmetric endo-
morphism of TpM with

X 7→ {R(X, Y )Y − ∆ + δ

2
·X}
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restricted to N (Y ) has eigenvalues in the interval [ δ−∆
2
, ∆−δ

2
].

It is easily checked that the operator R1 satisfies the conditions of
Proposition 8.3 and hence D = R− ∆+δ

2
·R1 as well. This implies that

6 ·D(X, Y )Z = D(X, Y + Z)(Y + Z)−D(X, Y − Z)(Y − Z)

+ D(X + Z, Y )(X + Z)−D(X − Z, Y )(X − Z).

The second statement then follows from

6|D(X, Y )Z| ≤ 1

2
(∆− δ){|X|(|Y + Z|2 + |Y − Z|2)

+|Y |(|X + Z|2 + |X − Z|2)}

=
1

2
(∆− δ){2|X|(|Y |2 + |Z|2) + 2|Y |(|X|2 + |Z|2)}

= 4(∆− δ).
�

As a direct consequence we have the following useful result.

Corollary 8.11. Let (M, g) be a Riemannian manifold of constant
curvature κ. Then the curvature tensor R is given by

R(X, Y )Z = κ(〈Y, Z〉X − 〈X,Z〉Y ).

Proof. This follows directly from Proposition 8.10 by using ∆ =
δ = κ. �

Proposition 8.12. Let (G, 〈, 〉) be a Lie group equipped with a left-
invariant metric such that for all X ∈ g the endomorphism ad(X) :
g → g is skew-symmetric with respect to 〈, 〉. Then for any left-
invariant vector fields X, Y, Z ∈ g the curvature tensor R is given
by

R(X, Y )Z = −1

4
[[X, Y ], Z].

Proof. See Exercise 8.6. �

We shall now define the Ricci and scalar curvatures of a Riemannian
manifold. These are obtained by taking traces over the curvature tensor
and play an important role in Riemannian geometry.

Definition 8.13. Let (M, g) be a Riemannian manifold, then

(i) the Ricci operator r : C∞1 (TM)→ C∞1 (M) is defined by

r(X) =
m∑

i=1

R(X, ei)ei,
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(ii) the Ricci curvature Ric : C∞2 (TM)→ C∞0 (TM) by

Ric(X, Y ) =
m∑

i=1

g(R(X, ei)ei, Y ), and

(iii) the scalar curvature σ ∈ C∞(M) by

σ =

m∑

j=1

Ric(ej, ej) =

m∑

j=1

m∑

i=1

g(R(ei, ej)ej, ei).

Here {e1, . . . , em} is any local orthonormal frame for the tangent bun-
dle.

Corollary 8.14. Let (M, g) be a Riemannian manifold of constant
sectional curvature κ. Then the following holds

σ(p) = m · (m− 1) · κ.
Proof. Let {e1, . . . , em} be an orthonormal basis, then Corollary

8.11 implies that

Ricp(ej, ej) =

m∑

i=1

g(R(ej, ei)ei, ej)

=
m∑

i=1

g(κ(g(ei, ei)ej − g(ej, ei)ei), ej)

= κ(

m∑

i=1

g(ei, ei)g(ej, ej)−
m∑

i=1

g(ei, ej)g(ei, ej))

= κ(

m∑

i=1

1−
m∑

i=1

δij) = (m− 1) · κ.

To obtain the formula for the scalar curvature σ we only have to mul-
tiply the constant Ricci curvature Ricp(ej, ej) by m. �

We complete this chapter by proving the famous Gauss equation
comparing the curvature tensors of a submanifold and its ambient space
in terms of the second fundamental form.

Theorem 8.15 (The Gauss Equation). Let (N, h) be a Riemannian
manifold and M be a submanifold of N equipped with the induced metric
g. Let X, Y, Z,W ∈ C∞(TN) be vector fields extending X̃, Ỹ , Z̃, W̃ ∈
C∞(TM). Then

〈R̃(X̃, Ỹ )Z̃, W̃ 〉 = 〈R(X, Y )Z,W 〉+ 〈B(Ỹ , Z̃), B(X̃, W̃ )〉
−〈B(X̃, Z̃), B(Ỹ , W̃ )〉.
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Proof. Using the definitions of the curvature tensors R, R̃, the
Levi-Civita connection ∇̃ and the second fundamental form of M̃ in
M we obtain

〈R̃(X̃, Ỹ )Z̃, W̃ 〉
= 〈∇̃X̃∇̃̃YZ̃ − ∇̃̃Y∇̃X̃Z̃ − ∇̃[X̃, Ỹ ]Z̃, W̃ 〉
= 〈(∇X(∇YZ −B(Y, Z)))T − (∇Y(∇XZ −B(X,Z)))T ,W 〉
−〈(∇[X, Y ]Z − B([X, Y ], Z))T ,W 〉

= 〈∇X∇YZ −∇Y∇XZ −∇[X, Y ]Z,W 〉
−〈∇X(B(Y, Z))−∇Y(B(X,Z)),W 〉

= 〈R(X, Y )Z,W 〉+ 〈B(Y, Z), B(X,W )〉 − 〈B(X,Z), B(Y,W )〉.
�

As a direct consequence of the Gauss equation we have the following
useful formula.

Corollary 8.16. Let (N, h) be a Riemannian manifold and M be a
totally geodesic submanifold of N . Let X, Y, Z,W ∈ C∞(TN) be vector

fields extending X̃, Ỹ , Z̃, W̃ ∈ C∞(TM̃). Then

〈R̃(X̃, Ỹ )Z̃, W̃ 〉 = 〈R(X, Y )Z,W 〉.
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Exercises

Exercise 8.1. Let (M, g) be a Riemannian manifold. Prove that
the tensor field g of type (2, 0) is parallel with respect to the Levi-Civita
connection.

Exercise 8.2. Let (M, g) be a Riemannian manifold. Prove that
R is a smooth tensor field of type (3, 1).

Exercise 8.3. Find a proof for Proposition 8.3.

Exercise 8.4. Find a proof for Lemma 8.5.

Exercise 8.5. Let Rm be equipped with the standard Euclidean
metric and Cm with the Euclidean metric g given by

g(z, w) =
m∑

k=1

Re(zkw̄k).

Let Tm be the m-dimensional torus {z ∈ Cm| |z1| = ... = |zm| = 1} in
Cm with the induced metric g̃. Find an isometric immersion φ : Rm →
Tm, determine all geodesics on (Tm, g) and prove that (Tm, g) is flat.

Exercise 8.6. Find a proof for Proposition 8.12.

Exercise 8.7. Let the Lie group S3 ∼= SU(2) be equipped with the
metric 〈X, Y 〉 = 1

2
Re{trace(X̄ t · Y )}.

(i) Find an orthonormal basis for TeSU(2).
(ii) Show that (SU(2), g) has constant sectional curvature +1.

Exercise 8.8. Let Sm be the unit sphere in Rm+1 equipped with
the standard Euclidean metric 〈, 〉Rm+1. Use the results of Corollaries
7.21, 8.16 and Exercise 8.7 to prove that (Sm, 〈, 〉Rm+1) has constant
sectional curvature +1

Exercise 8.9. Let Hm = (R+ × Rm−1, 1
x2

1
〈, 〉Rm) be the m-dimen-

sional hyperbolic space. On Hm we define the operation ∗ by (α, x) ∗
(β, y) = (α · β, α · y + x). For k = 1, . . . , m define the vector field
Xk ∈ C∞(THm) by (Xk)x = x1 · ∂

∂xk
. Prove that,

(i) (Hm, ∗) is a Lie group,
(ii) the vector fields X1, . . . , Xm are left-invariant,

(iii) the metric g is left-invariant,
(iv) (Hm, g) has constant curvature −1.



CHAPTER 9

Curvature and Local Geometry

This chapter is devoted to the study of the local geometry of Rie-
mannian manifolds and how this is controlled by the curvature tensor.
For this we introduce the notion of a Jacobi field which is a useful tool
in differential geometry. With this in hand we yield a fundamental com-
parison result describing the curvature dependence of local distances.

Let (M, g) be a smooth Riemannian manifold. By a smooth 1-
parameter family of geodesics we mean a C∞-map

Φ : (−ε, ε)× I →M

such that the curve γt : I →M given by γt : s 7→ Φ(t, s) is a geodesic for
all t ∈ (−ε, ε). The variable t ∈ (−ε, ε) is called the family parameter
of Φ.

Proposition 9.1. Let (M, g) be a Riemannian manifold and Φ :
(−ε, ε) × I → M be a 1-parameter family of geodesics. Then for each
t ∈ (−ε, ε) the vector field Jt : I → C∞(TM) along γt given by

Jt(s) =
∂Φ

∂t
(t, s)

satisfies the second order ordinary differential equation

∇̇γt∇̇γtJt +R(Jt, γ̇t)γ̇t = 0.

Proof. Along Φ we put X(t, s) = ∂Φ/∂s and J(t, s) = ∂Φ/∂t.
The fact that [∂/∂t, ∂/∂s] = 0 implies that

[J,X] = [dΦ(∂/∂t), dΦ(∂/∂s)] = dΦ([∂/∂t, ∂/∂s]) = 0.

Since Φ is a family of geodesics we have ∇XX = 0 and the definition
of the curvature tensor then gives

R(J,X)X = ∇J∇XX −∇X∇JX −∇[J,X]X

= −∇X∇JX
= −∇X∇XJ.

83
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Hence for each t ∈ (−ε, ε) we have

∇̇γt∇̇γtJt +R(Jt, γ̇t)γ̇t = 0.

�

This leads to the following definition.

Definition 9.2. Let (M, g) be a Riemannian manifold, γ : I →M
be a geodesic and X = γ̇. A C2 vector field J along γ is called a
Jacobi field if

(5) ∇X∇XJ +R(J,X)X = 0

along γ. We denote the space of all Jacobi fields along γ by Jγ(TM).

We shall now give an example of a 1-parameter family of geodesics
in the (m + 1)-dimensional Euclidean space Em+1.

Example 9.3. Let c, n : R → Em+1 be smooth curves such that
the image n(R) of n is contained in the unit sphere Sm. If we define a
map Φ : R× R→ Em+1 by

Φ : (t, s) 7→ c(t) + s · n(t)

then for each t ∈ R the curve γt : s 7→ Φ(t, s) is a straight line and
hence a geodesic in Em+1. By differentiating with respect to the family
parameter t we yield the Jacobi field J ∈ Jγ0(TE

m+1) along γ0 with

J(s) =
d

dt
Φ(t, s)|t=0 = ċ(0) + s · ṅ(0).

The Jacobi equation (5) on a Riemannian manifold is linear in J .
This means that the space of Jacobi fields Jγ(TM) along γ is a vector
space. We are now interested in determining the dimension of this
space

Proposition 9.4. Let γ : I → M be a geodesic, 0 ∈ I, p = γ(0)
and X = γ̇ along γ. If v, w ∈ TpM are two tangent vectors at p then
there exists a unique Jacobi field J along γ, such that Jp = v and
(∇XJ)p = w.

Proof. Let {X1, . . . , Xm} be an orthonormal frame of parallel vec-
tor fields along γ. If J is a vector field along γ, then

J =

m∑

i=1

aiXi
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where ai = 〈J,Xi〉 are smooth functions on I. The vector fields
X1, . . . , Xm are parallel so

∇XJ =

m∑

i=1

ȧiXi and ∇X∇XJ =

m∑

i=1

äiXi.

For the curvature tensor we have

R(Xi, X)X =
m∑

k=1

bkiXk,

where bki = 〈R(Xi, X)X,Xk〉 are smooth functions on I depending on
the geometry of (M, g). This means that R(J,X)X is given by

R(J,X)X =
m∑

i,k=1

aib
k
iXk.

and that J is a Jacobi field if and only if
m∑

i=1

(äi +
m∑

k=1

akb
i
k)Xi = 0.

This is equivalent to the second order system

äi +
m∑

k=1

akb
i
k = 0 for all i = 1, 2, . . . , m

of linear ordinary differential equations in a = (a1, . . . , am). A global
solution will always exist and is uniquely determined by a(0) and ȧ(0).
This implies that J exists globally and is uniquely determined by the
initial conditions

J(0) = v and (∇XJ)(0) = w.

�
The last result has the following interesting consequence.

Corollary 9.5. Let (M, g) be an m-dimensional Riemannian man-
ifold and γ : I →M be a geodesic in M . Then the vector space Jγ(TM)
of all Jacobi fields along γ has the dimension 2m.

The following Lemma shows that when proving results about Ja-
cobi fields along a geodesic γ we can always assume, without loss of
generality, that |γ̇| = 1.

Lemma 9.6. Let (M, g) be a Riemannian manifold, γ : I →M be
a geodesic and J be a Jacobi field along γ. If λ ∈ R∗ and σ : λI → I
is given by σ : t 7→ t/λ, then γ ◦ σ : λI →M is a geodesic and J ◦ σ is
a Jacobi field along γ ◦ σ.
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Proof. See Exercise 9.1. �

Next we determine the Jacobi fields which are tangential to a given
geodesic.

Proposition 9.7. Let (M, g) be a Riemannian manifold, γ : I →
M be a geodesic with |γ̇| = 1 and J be a Jacobi field along γ. Let J>

be the tangential part of J given by J> = 〈J, γ̇〉γ̇ and J⊥ = J − J> be
its normal part. Then J> and J⊥ are Jacobi fields along γ and there
exist a, b ∈ R such that J>(s) = (as + b)γ̇(s) for all s ∈ I.

Proof. We now have

∇̇γ∇̇γJ
> +R(J>, γ̇)γ̇ = ∇̇γ∇̇γ(〈J, γ̇〉γ̇) +R(〈J, γ̇〉γ̇, γ̇)γ̇

= 〈∇̇γ∇̇γJ, γ̇〉γ̇
= −〈R(J, γ̇)γ̇, γ̇〉γ̇
= 0.

This shows that the tangential part J> of J is a Jacobi field. The
fact that Jγ(TM) is a vector space implies that the normal part J⊥ =
J − J> of J also is a Jacobi field.

By differentiating 〈J, γ̇〉 twice along γ we obtain

d2

ds2
〈J, γ̇〉 = 〈∇̇γ∇̇γJ, γ̇〉 = −〈R(J, γ̇)γ̇, γ̇〉 = 0

so 〈J, γ̇〉(s) = (as+ b) for some a, b ∈ R. �

Corollary 9.8. Let (M, g) be a Riemannian manifold, γ : I → M
be a geodesic and J be a Jacobi field along γ. If g(J(t0), γ̇(t0)) = 0 and
g((∇̇γJ)(t0), γ̇(t0)) = 0 for some t0 ∈ I, then g(J(t), γ̇(t)) = 0 for all

t ∈ I.

Proof. This is a direct consequence of the fact that the function
g(J, γ̇) satisfies the second order ODE f̈ = 0 and the initial values

f(0) = 0 and ḟ(0) = 0. �

Our next aim is to show that if the Riemannian manifold (M, g)
has constant sectional curvature then we can solve the Jacobi equation

∇X∇XJ +R(J,X)X = 0

along any given geodesic γ : I →M . For this we introduce the follow-
ing notation. For a real number κ ∈ R we define the cκ, sκ : R → R
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by

cκ(s) =





cosh(
√
|κ|s) if κ < 0,

1 if κ = 0,

cos(
√
κs) if κ > 0.

and

sκ(s) =





sinh(
√
|κ|s)/

√
|κ| if κ < 0,

s if κ = 0,

sin(
√
κs)/
√
κ if κ > 0.

It is a well known fact that the unique solution to the initial value
problem

f̈ + κ · f = 0, f(0) = a and ḟ(0) = b

is the function f : R→ R satisfying f(s) = acκ(s) + bsκ(s).

Example 9.9. Let C be the complex plane with the standard Eu-
clidean metric 〈, 〉R2 of constant sectional curvature κ = 0. The ro-
tations about the origin produce a 1-parameter family of geodesics
Φt : s 7→ seit. Along the geodesic γ0 : s 7→ s we get the Jacobi field
J0(s) = ∂Φt/∂t(0, s) = is with |J0(s)| = |s| = |sκ(s)|.

Example 9.10. Let S2 be the unit sphere in the standard Eu-
clidean 3-space C × R with the induced metric of constant sectional
curvature κ = +1. Rotations about the R-axis produce a 1-parameter
family of geodesics Φt : s 7→ (sin(s)eit, cos(s)). Along the geodesic
γ0 : s 7→ (sin(s), cos(s)) we get the Jacobi field J0(s) = ∂Φt/∂t(0, s) =
(isin(s), 0) with |J0(s)|2 = sin2(s) = |sκ(s)|2.

Example 9.11. Let B2
1(0) be the open unit disk in the complex

plane with the hyperbolic metric 4/(1−|z|2)2〈, 〉R2 of constant sectional
curvature κ = −1. Rotations about the origin produce a 1-parameter
family of geodesics Φt : s 7→ tanh(s/2)eit. Along the geodesic γ0 : s 7→
tanh(s/2) we get the Jacobi field J0(s) = i · tanh(s/2) with

|J0(s)|2 =
4 · tanh2(s/2)

1− tanh2(s/2)
= sinh2(s) = |sκ(s)|2.

Let (M, g) be a Riemannian manifold of constant sectional curva-
ture κ and γ : I → M be a geodesic with |X| = 1 where X = γ̇.
Further let P1, P2, . . . , Pm−1 be parallel vector fields along γ such that
g(Pi, Pj) = δij and g(Pi, X) = 0. Any vector field J along γ may now
be written as

J(s) =

m−1∑

i=1

fi(s)Pi(s) + fm(s)X(s).
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This means that J is a Jacobi field if and only if
m−1∑

i=1

f̈i(s)Pi(s) + f̈m(s)X(s) = ∇X∇XJ

= −R(J,X)X

= −R(J⊥, X)X

= −κ(g(X,X)J⊥ − g(J⊥, X)X)

= −κJ⊥

= −κ
m−1∑

i=1

fi(s)Pi(s).

This is equivalent to the following system of ordinary differential equa-
tions

(6) f̈m(s) = 0 and f̈i(s) + κfi(s) = 0 for all i = 1, 2, . . . , m− 1.

It is clear that for the initial values

J(s0) =
m−1∑

i=1

viPi(s0) + vmX(s0),

(∇XJ)(s0) =
m−1∑

i=1

wiPi(s0) + wmX(s0)

or equivalently

fi(s0) = vi and ḟi(s0) = wi for all i = 1, 2, . . . , m

we have a unique and explicit solution to the system (6) on the whole
of I.

In the next example we give a complete description of the Jacobi
fields along a geodesic on the 2-dimensional sphere.

Example 9.12. Let S2 be the unit sphere in the standard Eu-
clidean 3-space C × R with the induced metric of constant curvature
κ = +1 and γ : R→ S2 be the geodesic given by γ : s 7→ (eis, 0). Then
γ̇(s) = (ieis, 0) so it follows from Proposition (9.7) that all Jacobi fields
tangential to γ are given by

JT(a,b)(s) = (as + b)(ieis, 0) for some a, b ∈ R.
The vector field P : R → TS2 given by s 7→ ((eis, 0), (0, 1)) satisfies
〈P, γ̇〉 = 0 and |P | = 1. The sphere S2 is 2-dimensional and γ̇ is parallel
along γ so P must be parallel. This implies that all the Jacobi fields
orthogonal to γ̇ are given by

JN(a,b)(s) = (0, a cos s+ b sin s) for some a, b ∈ R.
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In more general situations, where we do not have constant curvature
the exponential map can be used to produce Jacobi fields as follows. Let
(M, g) be a complete Riemannian manifold, p ∈ M and v, w ∈ TpM .
Then s 7→ s(v+tw) defines a 1-parameter family of lines in the tangent
space TpM which all pass through the origin 0 ∈ TpM . Remember that
the exponential map

(exp)p|Bm
εp(0)

: Bm
εp(0) → exp(Bm

εp(0))

maps lines in TpM through the origin onto geodesics on M . Hence the
map

Φt : s 7→ (exp)p(s(v + tw))

is a 1-parameter family of geodesics through p ∈M , as long as s(v+tw)
is an element of Bm

εp(0). This means that

J : s 7→ (∂Φt/∂t)(0, s)

is a Jacobi field along the geodesic γ : s 7→ Φ0(s) with γ(0) = p and
γ̇(0) = v. It is easily verified that J satisfies the initial conditions

J(0) = 0 and (∇XJ)(0) = w.

The following technical result is needed for the proof of the main
theorem at the end of this chapter.

Lemma 9.13. Let (M, g) be a Riemannian manifold with sectional
curvature uniformly bounded above by ∆ and γ : [0, α] → M be a
geodesic on M with |X| = 1 where X = γ̇. Further let J : [0, α]→ TM
be a Jacobi field along γ such that g(J,X) = 0 and |J | 6= 0 on (0, α).
Then

(i) d2(|J |)/ds2 + ∆ · |J | ≥ 0,
(ii) if f : [0, α]→ R is a C2-function such that

(a) f̈ + ∆ · f = 0 and f > 0 on (0, α),
(b) f(0) = |J(0)|, and

(c) ḟ(0) = |∇XJ(0)|,
then f(s) ≤ |J(s)| on (0, α),

(iii) if J(0) = 0, then |∇XJ(0)| · s∆(s) ≤ |J(s)| for all s ∈ (0, α).

Proof. (i) Using the facts that |X| = 1 and 〈X, J〉 = 0 we obtain

d2

ds2
(|J |) =

d2

ds2

√
〈J, J〉 =

d

ds
(
〈∇XJ, J〉
|J | )

=
〈∇X∇XJ, J〉
|J | +

|∇XJ |
2|J |2 − 〈∇XJ, J〉

2

|J |3
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≥
〈∇X∇XJ, J〉
|J |

= −〈R(J,X)X, J〉
|J |

≥ −∆ · |J |.
(ii) Define the function h : [0, α)→ R by

h(s) =

{ |J(s)|
f(s)

if s ∈ (0, α),

lims→0
|J(s)|
f(s)

= 1 if s = 0.

Then

ḣ(s) =
1

f 2(s)
(
d

ds
(|J(s)|)f(s)− |J(s)|ḟ(s))

=
1

f 2(s)

∫ s

0

(
d2

dt2
(|J(t)|)f(t)− |J(t)|f̈(t))dt

=
1

f 2(s)

∫ s

0

f(t)(
d2

dt2
(|J(t)|) + ∆ · |J(t)|)dt

≥ 0.

This implies that ḣ(s) ≥ 0 so f(s) ≤ |J(s)| for all s ∈ (0, α).
(iii) The function f(s) = |(∇XJ)(0)| · s∆(s) satisfies the differential

equation

f̈(s) + ∆f(s) = 0

and the initial conditions f(0) = |J(0)| = 0, ḟ(0) = |(∇XJ)(0)| so it

follows from (ii) that |(∇XJ)(0)| · s∆(s) = f(s) ≤ |J(s)|. �

Let (M, g) be a Riemannian manifold of sectional curvature which is
uniformly bounded above, i.e. there exists a ∆ ∈ R such that Kp(V ) ≤
∆ for all V ∈ G2(TpM) and p ∈ M . Let (M∆, g∆) be another Rie-
mannian manifold which is complete and of constant sectional curva-
ture K ≡ ∆. Let p ∈ M , p∆ ∈M∆ and identify TpM ∼= Rm ∼= Tp∆

M∆.
Let U be an open neighbourhood of Rm around 0 such that the

exponential maps (exp)p and (exp)p∆
are diffeomorphisms from U onto

their images (exp)p(U) and (exp)p∆
(U), respectively. Let (r, p, q) be

a geodesic triangle i.e. a triangle with sides which are shortest paths
between their endpoints. Furthermore let c : [a, b] → M be the side
connecting r and q and v : [a, b] → TpM be the curve defined by
c(t) = (exp)p(v(t)). Put c∆(t) = (exp)p∆

(v(t)) for t ∈ [a, b] and then
it directly follows that c(a) = r and c(b) = q. Finally put r∆ = c∆(a)
and q∆ = c∆(b).
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Theorem 9.14. For the above situation the following inequality for
the distance function d is satisfied

d(q∆, r∆) ≤ d(q, r).

Proof. Define a 1-parameter family s 7→ s · v(t) of straight lines
in TpM through p. Then Φt : s 7→ (exp)p(s · v(t)) and Φ∆

t : s 7→
(exp)p∆

(s · v(t)) are 1-parameter families of geodesics through p ∈ M ,
and p∆ ∈ M∆, respectively. Hence Jt = ∂Φt/∂t and J∆

t = ∂Φ∆
t /∂t are

Jacobi fields satisfying the initial conditions Jt(0) = J∆
t (0) = 0 and

(∇XJ t)(0) = (∇XJ
∆
t )(0) = v̇(t). Using Lemma 9.13 we now obtain

|ċ∆(t)| = |J∆
t (1)|

= |(∇XJ
∆
t )(0)| · s∆(1)

= |(∇XJt)(0)| · s∆(1) ≤ |Jt(1)|
= |ċ(t)|

The curve c is the shortest path between r and q so we have

d(r∆, q∆) ≤ L(c∆) ≤ L(c) = d(r, q).

�
We now add the assumption that the sectional curvature of the

manifold (M, g) is uniformly bounded below i.e. there exists a δ ∈ R
such that δ ≤ Kp(V ) for all V ∈ G2(TpM) and p ∈ M . Let (Mδ, gδ)
be a complete Riemannian manifold of constant sectional curvature δ.
Let p ∈ M and pδ ∈ Mδ and identify TpM ∼= Rm ∼= TpδMδ. Then a
similar construction as above gives two pairs of points q, r ∈ M and
qδ, rδ ∈Mδ and shows that

d(q, r) ≤ d(qδ, rδ).

Combining these two results we obtain locally

d(q∆, r∆) ≤ d(q, r) ≤ d(qδ, rδ).
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Exercises

Exercise 9.1. Find a proof for Lemma 9.6.

Exercise 9.2. Let (M, g) be a Riemannian manifold and γ : I →M
be a geodesic such that X = γ̇ 6= 0. Further let J be a non-vanishing
Jacobi field along γ with g(X, J) = 0. Prove that if g(J, J) is constant
along γ then (M, g) does not have strictly negative curvature.


