
© 2021 Arm

AMBA AXI4 Bus
Architecture

slides from https://github.com/arm-university/Advanced-System-on-Chip-Design-Education-Kit

https://github.com/arm-university/Advanced-System-on-Chip-Design-Education-Kit

2 © 2021 Arm

Learning Outcomes
At the end of this module, you will be able to:
• Describe the purpose and operation of a bus and communication protocol in an SoC.
• Identify the characteristics of various Arm AMBA System Buses including AMBA 3 and

AMBA 4, AXI4-Lite, and AXI4-stream.
• Outline the functionality and characteristics of the Arm AMBA AXI4-Lite and AXI4-

stream.
• Describe the transaction channels read and write operations for the AMBA AXI protocol.
• Explain the channel timing mechanism for AXI, including the clock, reset, and VALID and

READY handshake mechanism.

3 © 2021 Arm

Inclusive Language Warning
• AMBA/AXI docs used to say Master/Slave instead of Manager/Subordinate terms
• You will likely encounter these references in code or older documentation

4 © 2021 Arm

What Is a Bus?

• Traditionally, a bus is a communication system that allows data to be transferred
between different components in a computer.

• The infrastructures is defined in both hardware and software:
• Hardware infrastructure includes the physical implementation, such as cables or wires. For example,

the PCI uses the PCI cable to connect components inside a desktop.
• Software infrastructure includes the bus protocol, e.g., PCI bus protocol.

PCI socket on a mother board PCI bus cable

5 © 2021 Arm

Bus Types

• External bus
• Used to connect external devices, such as a printer, to a computer
• E.g., USB stands for Universal Serial Bus

• Internal bus
• Used to connect internal components inside a computer, such as a CPU to memory
• Also known as system bus
• Less overhead, e.g., no need for electrical characteristics handling and configuration detection
• Thus, typically runs faster than the external bus
• In an SoC design, the internal bus is integrated onto a single chip; thus, it can also be referred to as an

on-chip system bus.

6 © 2021 Arm

Bus Terminology

Manager

Su
bo

rd
in

at
e

M
ul

tip
le

xo
r

Multiplexor
Select

Address
Decoder

Subordinate 1

Subordinate 2

Subordinate 3

7 © 2021 Arm

Bus Operation in General

• A bus typically consists of three types of signal lines:
• Data bus is used to exchange data information
• Address bus is used to select one of the peripherals (or one register of a peripheral)
• Control signals are used to synchronize and identify transactions, such as ready, write/read, transfer

mode signals

Manager
(Microprocessor)

Subordinate 2 Subordinate 3 Subordinate 4 Subordinate 5Subordinate 1 Subordinate 6

System on Chip

32-bit Address Bus
32-bit Data Bus

Control Signals

8 © 2021 Arm

A Typical Bus Operation Example

• A typical operation to access a peripheral
mainly consists of the following:
• The Manager (e.g., a processor) selects one

peripheral (or one register) by giving the address to
the address bus. At the same time, it sets control
signals, such as read or write, transfer size, and so
forth.

Address bus
Select a peripheral

Processor Peripheral

Control bus
Read operation, transfer size at the
same time

9 © 2021 Arm

A Typical Bus Operation Example

• A typical operation to access a peripheral
mainly consists of the following:
• The Manager (e.g., a processor) selects one

peripheral (or one register) by giving the address to
the address bus. At the same time, it sets control
signals, such as read or write, transfer size, and so
forth.

• The Manager waits for the Subordinate (e.g.,
peripheral) to respond.

Address bus
Select a peripheral

Processor Peripheral

Control bus
Read operation, transfer size at the
same time

10 © 2021 Arm

A Typical Bus Operation Example

• A typical operation to access a peripheral
mainly consists of the following:
• The Manager (e.g., a processor) selects one

peripheral (or one register) by giving the address to
the address bus. At the same time, it sets control
signals, such as read or write, transfer size, and so
forth.

• The Manager waits for the Subordinate (e.g.,
peripheral) to respond.

• Once the Subordinate is ready, it sends back the
requested data to the processor. At the same time,
it sets the ready signal on the control bus.

Address bus
Select a peripheral

Processor

Control bus
Read operation, transfer size at the
same time

Data bus
Send data back to processor

Control bus
Set ready signal at the same time

Peripheral

11 © 2021 Arm

A Typical Bus Operation Example

• A typical operation to access a peripheral
mainly consists of the following:
• The Manager (e.g., a processor) selects one

peripheral (or one register) by giving the address to
the address bus. At the same time, it sets control
signals, such as read or write, transfer size, and so
forth.

• The Manager waits for the Subordinate (e.g.,
peripheral) to respond.

• Once the Subordinate is ready, it sends back the
requested data to the processor. At the same time,
it sets the ready signal on the control bus.

• Finally, the Manager reads the transmitted data and
starts another communication cycle.

Address bus
Select a peripheral

Processor Peripheral

Control bus
Read operation, transfer size at the
same time

Data bus
Send data back to processor

Control bus
Set ready signal at the same time

Processor reads the data and starts
the next operation

Address bus
Select a peripheral

12 © 2021 Arm

Latency-Insensitive Interfaces
• Subordinate may take variable amounts of time to process a request
• Manager must wait until subordinate’s response arrives

• Instead of pre-computing latency, or always waiting for the worst-case latency, etc.

• Common solution: VALID and READY signals
• 1-bit signals for sender and receiver to coordinate
• sender sets VALID signal when it is sending a message to the recipient

– if VALID is not set, sender is not sending a message
• READY signal indicates that recipient is ready to receive a message

– if READY is not set, recipient is busy doing something else
• actual message is not sent via VALID/READY, but on separate wires
• message is sent only when VALID and READY are both high in same cycle
• V/R used for manager to send request to subordinate

– and for subordinate to send responses back to manager

13 © 2021 Arm

Communication Architecture Standards
• Why do we need communication standards?

• Modular design approach
• Allows design reuse
• Facilitates IPs integration into an SoC design

Picture source: http://www.ecs.soton.ac.uk/ (SoC Advance design Technique)

http://www.ecs.soton.ac.uk/

14 © 2021 Arm

Arm AMBA System Bus

• AMBA: Advanced Microcontroller Bus Architecture
• AMBA protocol is an open standard (except AMBA 5), on-chip interconnect specification.
• Used as the on-chip bus in Arm-based SoC designs
• Provides the interface standard that enables IP reuse
• Facilitates right-first-time development of multi-processor designs with large numbers of controllers

and peripherals
• Widely used in modern portable mobile devices, such as tablets and smartphones

15 © 2021 Arm

Arm AMBA Bus Families

AMBA Family Bus Protocol Processor

AMBA 5 CHI Cortex-A57, A53

AMBA 4
ACE, ACE-Lite Cortex-A7, A15

AXI4, AXI4-Lite, AXI4-Stream

AMBA 3

AXI Cortex-A9, A8, R4, R5

AHB (AHB-Lite) Cortex-M0, M3, M4

APB Cortex-M0, M3, M4

ATB

AMBA 2 AHB, APB Arm7, Arm9

AMBA 1 ASB, APB

16 © 2021 Arm

AMBA 3 Specifications
• AXI: Advanced eXtensible Interface

• The most widely used AMBA interface
• Connectivity with up to hundreds of Managers and Subordinates in complex SoCs

• AMBA 3 defines a set of four interface protocols:
• AMBA 3 AXI Interface
• AMBA 3 AHB Interface
• AMBA 3 APB Interface
• AMBA 3 ATB Interface

• Between these, they cover the on-chip data traffic requirements from data intensive
processing components requiring:
• High data throughput
• Low-bandwidth communication requiring low gate count and power
• On-chip test and debug access

17 © 2021 Arm

AMBA 3 AXI Interface

• The AMBA 3 AXI interface specification has the characteristics to support highly
effective data traffic throughput.

• The five unidirectional channels with flexible relative timing between them and
multiple outstanding transactions with out-of-order data capability enable:
• Pipelined interconnect for high-speed operations
• Efficient bridging between frequencies for power management
• Simultaneous read and write transactions
• Efficient support of high initial latency peripherals

18 © 2021 Arm

AMBA 4 Specifications

• The AMBA 4 specifications add another five interface protocols to the AMBA 3
specifications:
• ACE
• ACE-Lite
• AXI4
• AXI4-Lite
• AXI4-Stream

• The AXI and ACE protocol specifications Issue E, released February 2013, adds new
optional properties for AXI ordering, ACE cache behavior, and Armv8 DVM messaging.

19 © 2021 Arm

AMBA 4 Specifications

• AXI4
• Update for AXI3 to enhance the performance and utilization of the interconnect when used by

multiple Managers
• Support for burst lengths up to 256 beats
• Quality of service signalling
• Support for multiple region interfaces

• AXI4-Lite
• Subset of the AXI4 protocol intended for communication with simpler, smaller control register-style

interfaces in components
• All transactions are a burst length of one
• All data accesses are the same size as the width of the data bus
• Exclusive accesses are not supported
• Does not support AXI IDs

20 © 2021 Arm

AMBA 4 Specifications

• AXI4-stream
• Designed for unidirectional data transfers from Manager to Subordinate with greatly reduced signal

routing
• Supports single and multiple data streams using the same set of shared wires
• Support for multiple data widths within the same interconnect
• Ideal for implementation in FPGA

21 © 2021 Arm

AXI Components and Topology

• Manager component
• A component that initiates transactions

• Subordinate component
• A component that receives transactions and responds to them
• Subordinate components include memory Subordinate components and peripheral Subordinate

components

• Interconnect component
• A component with more than one AMBA interface that connects one or more Manager components

to one or more Subordinate components
• An interconnect component can be used to group together either:

– a set of Managers so that they appear as a single Manager interface
– a set of Subordinates so that they appear as a single Subordinate interface

22 © 2021 Arm

23 © 2021 Arm

AXI Components and Topology

• Most systems use one of three topologies:
• shared address and data buses
• shared address buses and multiple data buses
• multilayer, with multiple address and data buses

Manager 1

Subordinate 4Subordinate 3Subordinate 2Subordinate 1

Manager 2 Manager 3

24 © 2021 Arm

Transaction Channels

• When an AXI Manager initiates an AXI operation targeting an AXI Subordinate,
• the complete set of required operations on the AXI bus form the AXI transaction
• any required payload data is transferred as an AXI burst
• a burst can comprise multiple data transfers, or AXI beats

• The AXI protocol is burst-based and defines the following independent transaction
channels:
• read address (AR)
• read data (R)
• write address (AW)
• write data (W)
• write response (B)

25 © 2021 Arm

Channel Architecture of Reads

Manager Subordinate

26 © 2021 Arm

Channel Architecture of Writes

Manager Subordinate

27 © 2021 Arm

Basic AXI4 Signals

• A VALID signal is asserted when valid information is driven by the information
transmitter.

• A READY signal is asserted when the information receiver is ready to receive.
• A LAST signal is to indicate the transfer of the final data item in a transaction (data

channels).
• No LAST signal in AXI-Lite

Signals Read Address Read Data Write Address Write Data Write Response

HANDSHAKE ARVALID
ARREADY

RVALID
RREADY

AWVALID
AWREADY

WVALID
WREADY

BVALID
BREADY

INFORMATION ARADDR RDATA
RLAST

AWADDR WDATA
WLAST

BRESP

GLOBAL ACLK, ARESETn

28 © 2021 Arm

AMBA AXI4-Lite

• AXI4-Lite:
• Suitable for simpler control interfaces, register-style
• Light version of full AXI4

• Key features:
• All transactions are of burst length one

– Hence, no need for LAST signals
• All data accesses are based on full-width data bus (AXI4-Lite supports a data bus of 32-bit width or

64-bit width)
• All accesses are non-modifiable, Non-bufferable
• No support of exclusive accesses

29 © 2021 Arm

30 © 2021 Arm

AXI4-Lite Signals

Global Read Address Read Data Write Address Write Data Write Response

ACLK ARVALID RVALID AWVALID WVALID BVALID

ARESETn ARREADY RREADY AWREADY WREADY BREADY

ARADDR RDATA AWADDR WDATA BRESP

ARPROT RRESP AWPROT WSTRB

31 © 2021 Arm

Clock and Reset
• Clock

• Each AXI component uses a single clock signal, ACLK.
• All input signals are sampled on the rising edge of ACLK.
• All output signal changes must occur after the rising edge of ACLK.

• Reset
• A single active-LOW reset signal, ARESETn
• Can be asserted asynchronously, but de-assertion must be synchronous with a rising edge of ACLK

ACLK

32 © 2021 Arm

Channel Timing Example: VALID with READY Handshake

• After T1, both the source and destination indicate a data transfer.
• The transfer occurs at the rising clock edge (after both VALID and READY signals are

asserted).
• The transfer occurs at T2.

33 © 2021 Arm

Channel Timing Example: VALID before READY Handshake
• After T1, the source presents the address, data, or control information and asserts the

VALID signal.
• The destination asserts the READY signal after T2.
• The source has to keep its information stable until the transfer occurs at T3.

34 © 2021 Arm

Channel Timing Example: READY before VALID Handshake

• After T1, the destination asserts the READY signal (before the address, data, or control
information is valid) to indicate that it can accept the information.

• After T2, the source presents the information and asserts VALID.
• The transfer occurs at T3 (when this assertion is recognized).

35 © 2021 Arm

AXI Read Transaction

36 © 2021 Arm

Multiple AXI Read transactions

37 © 2021 Arm

AXI Write Transaction

38 © 2021 Arm

AXI Write + Read Transactions

39 © 2021 Arm

Relationships Between the Channels

• The AXI protocol requires the following relationships to be maintained:
• A write response must always follow the last write transfer in the write transaction of which it is a

part.
• Read data must always follow the address to which the data relates.
• Channel handshakes must conform to the dependencies defined for the handshake signals.

• Dependencies are shown in the next slide.

40 © 2021 Arm

Relationships Between the Channels
• Dependency rules between the handshake signals that must be observed:

• The VALID signal of the AXI interface sending information must not depend on the READY signal of the
AXI interface receiving that information.

• An AXI interface that is receiving information can wait until it detects a VALID signal before it asserts
its corresponding READY signal.

Read transaction Write transaction

41 © 2021 Arm

HW6 notes
• AXI4-Lite spec says very little about specific timing constraints

• that’s the whole point of latency-insensitive interfaces!

• HW6 manager/subordinate must handle back-to-back transactions
• to avoid pipeline stalls
• makes memory a little more complex

– keeps pipeline simpler
• start by building a memory that can speak AXI4-lite

– then refine it to handle back-to-back reads and writes

