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Agenda

n Transmission Control Protocol
n Congestion control
n Fairness
n ACK Clocking
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Review
n Why AIMD instead of AIAD, MIMD, or MIAD?

n Who computes the RWND?

n Who computes the CWND?
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Efficiency vs. Fairness

n Cannot always have both!
n Example network with traffic AàB, BàC and AàC
n All three flows want to use 1 Gbps 
n How much traffic can we carry?

A B C
1 Gbps
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1 Gbps



Fairness?

n How would you allocate if you only cared about 
fairness?
n Give equal bandwidth to each flow
n AàB: 500 Mbps unit, BàC: 500 Mbps, and AàC, 500 Mbps 
n Total traffic carried is 1.5 Gbps
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Efficiency?

n How would you allocate if you only cared about 
efficiency?
n Maximize total traffic in network
n AàB: 1 Gbps, BàC: 1 Gbps, and AàC: 0
n Total traffic rises to 2 Gbps!
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Max-Min fairness

n For a single link, given set of bandwidth demands ri 
and total bandwidth C
n Allocation ai = min(f, ri)
n where f is the unique value such that Sum(ai) = C

n If you don’t get full demand, no one gets more than 
you

n For a single bottleneck, this is what round-robin 
service gives if all packets are the same size
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Computing Max-Min Fairness

n To find it given a network, imagine “pouring water 
into the network”
1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows
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Agenda

n Transmission Control Protocol
n Congestion control
n Fairness
n ACK Clocking
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ACK Clocking

n Consider what happens when sender injects a burst 
of segments into the network

Fast link Fast linkSlow (bottleneck) link

Queue
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ACK Clocking

n Segments are buffered and spread out on slow link

Fast link Fast linkSlow (bottleneck) link

Segments 
“spread out”
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ACK Clocking

n ACKs maintain the spread back to the original sender

Slow link
Acks maintain spread
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ACK Clocking

n Sender clocks new segments with the spread
n Now sending at the bottleneck link without queuing!

Slow link

Segments spread Queue no longer builds
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ACK Clocking

n Helps the network run with low levels of loss and 
delay!

n The network has smoothed out the burst of data 
segments

n ACK clock transfers this smooth timing back to the 
sender

n Subsequent data segments are not sent in bursts so 
do not queue up in the network
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Fast Recovery

n Losses destroy ACK Clocking!

n On 3 duplicate ACKs:
n Fast retransmit
n ssthresh = CWND = CWND / 2

n Enter fast recovery phase
n Pretend further duplicate ACKs are the expected ACKs
n Exit recovery when the pre-loss window is fully ACKed
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Fast Recovery Visualized
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Timeouts and Idle Periods

n After a timeout or idle period:
n We lose ACK clocking!
n Also, network conditions change
n Maybe many more flows are traversing the link

n Dangerous to start transmitting at the old rate
n Previously-idle TCP sender might blast network
n … causing excessive congestion and packet loss

n So, some TCP implementations repeat slow start
n Slow-start restart after an idle period
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Repeating Slow Start After Idleness

t

Window

Slow-start restart: Go back to CWND of 1, but take 
advantage of knowing the previous value of CWND.

Slow start until 
reaching half of 
previous cwnd.

timeout
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Relationship with buffer sizing

n Demo + chalkboard
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TCP flavors 
n TCP-Tahoe

n CWND = 1 on timeout or 3 dupACKs ß loss detection, slow start, 
        congestion avoidance

n TCP-Reno 
n CWND = 1 on timeout
n CWND = CWND/2 on 3 dupACKs ß fast retransmit
n Early version of fast recovery

n TCP-newReno (Our default assumption)
n TCP-Reno + Fast recovery for multiple drops ß fast recovery

n Modern variants: TCP CUBIC in Linux, DCTCP for data 
centers, SPDY, QUIC (Google’s UDP transport layer)

20
University of Pennsylvania



How can they coexist? 

n All follow the same principle
n Increase CWND on good news
n Decrease CWND on bad news

n Notion of TCP-friendliness
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