
CIS 5530: Networked Systems

Congestion Control

Novembere 13, 2023 



Agenda

n Transmission Control Protocol
n Congestion control
n Fairness
n ACK Clocking

2
University of Pennsylvania

NEXT



Review
n Why AIMD instead of AIAD, MIMD, or MIAD?

n Who computes the RWND?

n Who computes the CWND?

3
University of Pennsylvania



Efficiency vs. Fairness

n Cannot always have both!
n Example network with traffic AàB, BàC and AàC
n All three flows want to use 1 Gbps 
n How much traffic can we carry?

A B C
1 Gbps

4
University of Pennsylvania

1 Gbps



Fairness?

n How would you allocate if you only cared about 
fairness?
n Give equal bandwidth to each flow
n AàB: 500 Mbps unit, BàC: 500 Mbps, and AàC, 500 Mbps 
n Total traffic carried is 1.5 Gbps

5
University of Pennsylvania

A B C
1 Gbps 1 Gbps

500 500
500



Efficiency?

n How would you allocate if you only cared about 
efficiency?
n Maximize total traffic in network
n AàB: 1 Gbps, BàC: 1 Gbps, and AàC: 0
n Total traffic rises to 2 Gbps!

6
University of Pennsylvania

A B C
1 Gbps 1 Gbps

1 Gbps 1 Gbps

0



Max-Min fairness

n For a single link, given set of bandwidth demands ri 
and total bandwidth C
n Allocation ai = min(f, ri)
n where f is the unique value such that Sum(ai) = C

n If you don’t get full demand, no one gets more than 
you

n For a single bottleneck, this is what round-robin 
service gives if all packets are the same size

7
University of Pennsylvania



Computing Max-Min Fairness

n To find it given a network, imagine “pouring water 
into the network”
1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows

8
University of Pennsylvania



Agenda

n Transmission Control Protocol
n Congestion control
n Fairness
n ACK Clocking

9
University of Pennsylvania

NEXT



ACK Clocking

n Consider what happens when sender injects a burst 
of segments into the network

Fast link Fast linkSlow (bottleneck) link

Queue

10
University of Pennsylvania



ACK Clocking

n Segments are buffered and spread out on slow link

Fast link Fast linkSlow (bottleneck) link

Segments 
“spread out”

11
University of Pennsylvania



ACK Clocking

n ACKs maintain the spread back to the original sender

Slow link
Acks maintain spread

12
University of Pennsylvania



ACK Clocking

n Sender clocks new segments with the spread
n Now sending at the bottleneck link without queuing!

Slow link

Segments spread Queue no longer builds

13
University of Pennsylvania



ACK Clocking

n Helps the network run with low levels of loss and 
delay!

n The network has smoothed out the burst of data 
segments

n ACK clock transfers this smooth timing back to the 
sender

n Subsequent data segments are not sent in bursts so 
do not queue up in the network

14
University of Pennsylvania



Fast Recovery

n Losses destroy ACK Clocking!

n On 3 duplicate ACKs:
n Fast retransmit
n ssthresh = CWND = CWND / 2

n Enter fast recovery phase
n Pretend further duplicate ACKs are the expected ACKs
n Exit recovery when the pre-loss window is fully ACKed

15
University of Pennsylvania



Fast Recovery Visualized

University of Pennsylvania

1

ACK 2
2
3
4
5

Sender Receiver

2

University of Pennsylvania
16

ACK 2 (dup)
ACK 2 (dup)
ACK 2 (dup)

ssthresh=4;
CWND=4;
Est. window=2+[6,9)

6

CWND=8

ACK 2 (dup)

Est. window=2+[7,10)
Est. window=2+[8,11)

7
8

ACK 2 (dup)
ACK 2 (dup)

Est. window=2+[9,12)
ACK 10

Real window=[11,15)

9

ACK 2 (dup)

10

Est. window=2+[10,13)
11

ACK 11
ACK 12

12

ACK 13



Timeouts and Idle Periods

n After a timeout or idle period:
n We lose ACK clocking!
n Also, network conditions change
n Maybe many more flows are traversing the link

n Dangerous to start transmitting at the old rate
n Previously-idle TCP sender might blast network
n … causing excessive congestion and packet loss

n So, some TCP implementations repeat slow start
n Slow-start restart after an idle period

17
University of Pennsylvania



Repeating Slow Start After Idleness

t

Window

Slow-start restart: Go back to CWND of 1, but take 
advantage of knowing the previous value of CWND.

Slow start until 
reaching half of 
previous cwnd.

timeout

18
University of Pennsylvania



Relationship with buffer sizing

n Demo + chalkboard

19
University of Pennsylvania



TCP flavors 
n TCP-Tahoe

n CWND = 1 on timeout or 3 dupACKs ß loss detection, slow start, 
        congestion avoidance

n TCP-Reno 
n CWND = 1 on timeout
n CWND = CWND/2 on 3 dupACKs ß fast retransmit
n Early version of fast recovery

n TCP-newReno (Our default assumption)
n TCP-Reno + Fast recovery for multiple drops ß fast recovery

n Modern variants: TCP CUBIC in Linux, DCTCP for data 
centers, SPDY, QUIC (Google’s UDP transport layer)

20
University of Pennsylvania



How can they coexist? 

n All follow the same principle
n Increase CWND on good news
n Decrease CWND on bad news

n Notion of TCP-friendliness

21
University of Pennsylvania


