CIS 5520
Advanced Programming

Fall 2024

Welcome!

e Sitat any table
* Introduce yourself to your table
* Pick ateam name

Course Staff

Instructor: Stephanie Weirich
sweirich@seas.upenn.edu
OH: Wednesdays, 2-3pm, Levine 510

,,,,,,,

TAs: Jonathan Chan, Gary Chen, Mayank Keoliya

What is Advanced Programming?

* Good programmers get the job done

* Excellent programmers
— write code that other people can understand, maintain and modify
— rewrite/refactor code to make it clear and simple
— use and create abstractions to capture fundamental designs
— can explain semantics precisely: what their code does and why

Simplicity through Abstraction

Readable
Reusable
Modifiable

Predictable
Checkable

Advanced type structures:
Multiple levels of
abstraction available

Simplicity through Purity

Readable

Reusable
Modifiable
Predictable
Checkable

Functional Programming: Use mathematics to explain what
code means, instead of what it does

Pure code makes all dependencies explicit, nothing is hidden

CIS 5520

UNE Mor1BYS

Course content

Functional Programming
— Black-belt Haskell
— Mathematical approach to programming
— Focus on semantics and types
— Many small-scale case studies

Advanced Techniques
— Modular design and abstraction
— How to make types work for you
— Test and property driven development
— Collaboration (pair programming)

Lots of programming!
— Small in-class exercises

— Bi-weekly homework assignments
— End of semester project

What this course is not

» CIS 3500/5730, Software Engineering
— Focuses on "Software in the large”
— How to deal with code you didn’t write

— Problems that arise in projects that are too large for one person
* lifecycle models
e project management
* design modeling notations (UML)
» formal specification

* The two courses complement each other

What are you most excited about for CIS 55207

* Functional Programming (11x)
e Haskell (6x)
* Learning to be a better programmer (5x)

* Learning different programming techniques and new ways to
solve problems

* Learning the fundamentals behind compilers and query
languages

* Fun with monads. Also really looking forward to the project
* Reassociating with what real-world programming is like.

What concerns do you have?

| have never learned about functional programming languages
before, and I'm worried | can't follow the pace of this class since it
seems advanced

| am a little bit worried about what projects we are going to do as
well as the workload

Maybe about it being too hard to manage

The theory behind functional programming looks intimidating
Functional programming lol

a little worried about random partner for homeworks

@00 | 7 L 7 «\7 = ﬁr ™| B3 Move to...

Sebastian Messier B3 Inbox - sweiri...@seas.upenn.edu Yesterday at 8:03 AM @
Re: 6 Years Late

To: Stephanie Weirich
Hey Stephanie, no worries! I'm just glad to hear back from you.

As for their concerns, they are correct that they most likely won’'t write Haskell at their day job. Luckily, languages are

more than their syntax. Just yesterday I was writing an ADT in Typescript. I've used pattern matching in python and swift
(i0S). A1l of which I first experienced in Haskell.

On another, less technical basis, if someone knows what Haskell is, it’s a signal they may be really interesting to talk to.

Most of the smart people at my jobs were familiar with it. It helped start fruitful conversations that showed me things I
didn’t know before.

Hope that's helpful @2

B4 Phil Eaton on X: "So 9 (but i x e Thinking about functional proc X ‘ +

& twitter.com/eatonphil/status/1695839314611974427

&« Post

/4. Phil Eaton &
m @eatonphil
So 9 (but more like 11) revisions later, finally got a working (in-memory)

BTree in Python that passes a few key tests (inserts decreasing,
increasing, and random work correctly).

A chump, | could only get it working when | threw out all mutations and
did the whole thing immutably.

However, this was a super useful way to get a correct implementation. |
was banging my head for a few days while | was messing up mutation
while recursing. And | think just having this correct immutable version is
going to make redoing a mutable version simpler.

Alternatively, | could keep it "immutable" and make a pool of unused
nodes so that I'm not actually recreating nodes all the time (only some of
the time).

-+ BTree git:(main) x ls
btree.py btree3.py btree5.py btree7.py btree9.py test.py
btree2.py btree4.py btree6.py btree8.py inplace.py

-+ BTree git:(main) x I

Audience

* People with strong background in programming and
mathematics

* No experience with FP expected, but helps
* Undergraduates, Masters, and PhD students together

How much experience do you have with functional programming ?
27 responses

15

10 11 (40.7%)

7 (25.9%)

3 (11.1%) 3 (11.1%) 3 (11.1%)

What is your status in Fall 2024

27 responses

@ Undergraduate
@ Submatriculant

@ MSE or MCIT program (non
submatriculant)

@® PhD

How will this all
work?

General Course Structure

* Every week has a github repo!
— Read module and complete quiz by end of class Monday
— Interactive lecture Monday (module highlights w/live coding)
— In-class exercise Wednesday
— Homework due alternate Thursdays (midnight), covers two topics

 Some weeks are different (Labor day, Fall break, Thanksgiving)
* End-of-semester: final project

Grading Structure

15 % Quizzes

— quizzes (usually due Mondays, can complete before or during class)

— first module/quiz available now

15 % Active learning / engagement FEEEEIHReI R a = (AN (SR dalTa T
— in class exercises component, in person

_ office hours — let's chat! participation is essential!

50 % Programming assignments
— in pairs, most randomly assigned
— graded on correctness, style and (asymptotic) efficiency

— first assignment available now

20 % Final Projects (your choice)

Course Content

* Course content available in two forms
— Formatted reading: on the public course website (under "Schedule")
— IDE experimentation (recommended): public repo in github
* Read module "Basics" before next class
— Part of the "01-intro" project on github
— Fill in the "undefined" parts in your IDE
e Gradescope quiz on material due at the end of next class

— Answers will be provided during class, if needed

Active Learning Goals

* Goal for the semester: create a CIS 5520 community
— You should get to know me and the TAs (they're great!)
— You should get to know each other (you are all great!)

* Forced, random interactions during class time and outside
— Small and large group discussions
— In-class exercises with a partner or table
— Random homework partners
— TODAY: PL-themed icebreaker game

Homework #1

Based on "Basics" (available now) and "HigherOrder" modules (tba)
Clone public repo to complete the assignment

Work alone or with a partner (your choice), only one person should
submit via Gradescope

Must compile to get any credit, submit early to make sure there are
no problems

Due Thursday, Sept 12th at midnight
Late policy (all homework assignments)
— 10 point penalty for up to 24 hours late
— 20 point penalty for up to 48 hours late

— no credit for assignments submitted after 48 hours
— if you have an emergency, please ask for an extension

Academic Integrity Expectations

CIS 5520 is a course and not a developer job

— we will ask you to refrain from using standard libraries or
referring to (easily accessible) solutions

Homework solutions must be yours
— Don't ask ChatGPT to solve your homework
— Don't search for solutions online

— Don't ask someone else (other than your partner) to do your
homework for you

Can make limited use of ChatGPT, but do so with caution
Ask (f you are unsure!

Where to go for more information

e Public site (http://www.seas.upenn.edu/~cis5520)
— Haskell related material, HW instructions

e Github (https://github.com/upenn-cis5520)
— Code repos for lecture content, in-class exercises (public)

— HW repos
* Canvas site (https://canvas.upenn.edu/courses/1741501)
— Syllabus

— Link to Ed (Announcements and questions)
— Link to Gradescope (Quizzes, Homework submission)

http://www.seas.upenn.edu/~cis5520
https://github.com/upenn-cis5520
https://canvas.upenn.edu/courses/1741501

First three weeks

Today: Introductions/Game
Wed, Sep 4: Basics module, first quiz
Mon, Sep 9: HigherOrder module, second quiz

Wed, Sep 11: Foldr in-class exercise
Thurs, Sep 12: HW #1 due

Waitlist and registration

Current status: should be space for everyone
| will process waitlist requests until September 9t

If you are not yet registered, tell me today so | can add you to
Canvas

Let me know if you no longer want to be on the waitlist

Things to do right now

Read syllabus on Canvas

Create a github account (if you do not have one)
Respond to Fall 2024 intro survey (if you haven't already)
Introduce yourself to the others at your table

Start reading "Basics" module, install software, clone hw01
repo (after class)

Office hours:
Stephanie: Today, 2-3 PM, Levine 510

PL game!

Each table is a team and must have a team name

Match each code listing with its algorithm and programming
language

Each algorithm / language is used only once

No google / web searching / ChatGPT allowed

Only one guess per sheet!

We will calculate scores at 1:15 PM

So, Who Uses FP?

So, who uses FP?

So, Who Uses FP?

- G U s Y

So, Who uses FP?

Wter
\ (7
\)) 7
s ‘I"‘//'.’ - o=
2 -)

7 = s e NL L

7
(1 v —, a/

o)"mu“ >

I")Vl\\

* BARCLAYS Standard &
Chartered & Q

| “ Bankof America ”3
CREDIT SUISSE Merrill Lynch

Goal: Obviously no deficiencies

 Want code that is so simple, it obviously works

Readable
Reusable

simple code is Modifiable
Predictable
Checkable

* OK... so what makes code simple?

