
CIS 5520
Advanced Programming

Fall 2024
Welcome!
• Sit at any table
• Introduce yourself to your table
• Pick a team name

Course Staff

Instructor: Stephanie Weirich
sweirich@seas.upenn.edu
OH: Wednesdays, 2-3pm, Levine 510

TAs: Jonathan Chan, Gary Chen, Mayank Keoliya

What is Advanced Programming?

• Good programmers get the job done

• Excellent programmers
– write code that other people can understand, maintain and modify
– rewrite/refactor code to make it clear and simple
– use and create abstractions to capture fundamental designs
– can explain semantics precisely: what their code does and why

Simplicity through Abstraction

• Readable
• Reusable
• Modifiable
• Predictable
• Checkable

• Advanced type structures:
Multiple levels of
abstraction available

Simplicity through Purity

• Readable
• Reusable
• Modifiable
• Predictable
• Checkable

• Functional Programming: Use mathematics to explain what
code means, instead of what it does

• Pure code makes all dependencies explicit, nothing is hidden

λ

CIS 5520

Haskell

Course content
Functional Programming

– Black-belt Haskell
– Mathematical approach to programming
– Focus on semantics and types
– Many small-scale case studies

Advanced Techniques
– Modular design and abstraction
– How to make types work for you
– Test and property driven development
– Collaboration (pair programming)

Lots of programming!
– Small in-class exercises
– Bi-weekly homework assignments
– End of semester project

What this course is not

• CIS 3500/5730, Software Engineering
– Focuses on "Software in the large”
– How to deal with code you didn’t write
– Problems that arise in projects that are too large for one person

• lifecycle models
• project management
• design modeling notations (UML)
• formal specification

• The two courses complement each other

What are you most excited about for CIS 5520?

• Functional Programming (11x)
• Haskell (6x)
• Learning to be a better programmer (5x)
• Learning different programming techniques and new ways to

solve problems
• Learning the fundamentals behind compilers and query

languages
• Fun with monads. Also really looking forward to the project
• Reassociating with what real-world programming is like.

What concerns do you have?

• I have never learned about functional programming languages
before, and I'm worried I can't follow the pace of this class since it
seems advanced

• I am a little bit worried about what projects we are going to do as
well as the workload

• Maybe about it being too hard to manage
• The theory behind functional programming looks intimidating
• Functional programming lol
• a little worried about random partner for homeworks

Audience

• People with strong background in programming and
mathematics

• No experience with FP expected, but helps
• Undergraduates, Masters, and PhD students together

How will this all
work?

General Course Structure

• Every week has a github repo!
– Read module and complete quiz by end of class Monday
– Interactive lecture Monday (module highlights w/live coding)
– In-class exercise Wednesday
– Homework due alternate Thursdays (midnight), covers two topics

• Some weeks are different (Labor day, Fall break, Thanksgiving)
• End-of-semester: final project

Grading Structure
• 15 % Quizzes
– quizzes (usually due Mondays, can complete before or during class)
– first module/quiz available now

• 15 % Active learning / engagement
– in class exercises
– office hours – let's chat!

• 50 % Programming assignments
– in pairs, most randomly assigned
– graded on correctness, style and (asymptotic) efficiency
– first assignment available now

• 20 % Final Projects (your choice)

Because of the active learning
component, in person
participation is essential!

Course Content

• Course content available in two forms
– Formatted reading: on the public course website (under "Schedule")
– IDE experimentation (recommended): public repo in github

• Read module "Basics" before next class
– Part of the "01-intro" project on github
– Fill in the "undefined" parts in your IDE

• Gradescope quiz on material due at the end of next class
– Answers will be provided during class, if needed

Active Learning Goals

• Goal for the semester: create a CIS 5520 community
– You should get to know me and the TAs (they're great!)
– You should get to know each other (you are all great!)

• Forced, random interactions during class time and outside
– Small and large group discussions
– In-class exercises with a partner or table
– Random homework partners
– TODAY: PL-themed icebreaker game

Homework #1

• Based on "Basics" (available now) and "HigherOrder" modules (tba)
• Clone public repo to complete the assignment
• Work alone or with a partner (your choice), only one person should

submit via Gradescope
• Must compile to get any credit, submit early to make sure there are

no problems
• Due Thursday, Sept 12th at midnight
• Late policy (all homework assignments)
– 10 point penalty for up to 24 hours late
– 20 point penalty for up to 48 hours late
– no credit for assignments submitted after 48 hours
– if you have an emergency, please ask for an extension

Academic Integrity Expectations
• CIS 5520 is a course and not a developer job
– we will ask you to refrain from using standard libraries or

referring to (easily accessible) solutions
• Homework solutions must be yours
– Don't ask ChatGPT to solve your homework
– Don't search for solutions online
– Don't ask someone else (other than your partner) to do your

homework for you
• Can make limited use of ChatGPT, but do so with caution
• Ask if you are unsure!

Where to go for more information
• Public site (http://www.seas.upenn.edu/~cis5520)
– Haskell related material, HW instructions

• Github (https://github.com/upenn-cis5520)
– Code repos for lecture content, in-class exercises (public)
– HW repos

• Canvas site (https://canvas.upenn.edu/courses/1741501)
– Syllabus
– Link to Ed (Announcements and questions)
– Link to Gradescope (Quizzes, Homework submission)

http://www.seas.upenn.edu/~cis5520
https://github.com/upenn-cis5520
https://canvas.upenn.edu/courses/1741501

First three weeks

• Today: Introductions/Game

• Wed, Sep 4: Basics module, first quiz

• Mon, Sep 9: HigherOrder module, second quiz
• Wed, Sep 11: Foldr in-class exercise
• Thurs, Sep 12: HW #1 due

Waitlist and registration

• Current status: should be space for everyone
• I will process waitlist requests until September 9th

• If you are not yet registered, tell me today so I can add you to
Canvas

• Let me know if you no longer want to be on the waitlist

Things to do right now

• Read syllabus on Canvas
• Create a github account (if you do not have one)
• Respond to Fall 2024 intro survey (if you haven't already)
• Introduce yourself to the others at your table
• Start reading "Basics" module, install software, clone hw01

repo (after class)
• Office hours:

 Stephanie: Today, 2-3 PM, Levine 510

PL game!

• Each table is a team and must have a team name
• Match each code listing with its algorithm and programming

language
• Each algorithm / language is used only once
• No google / web searching / ChatGPT allowed
• Only one guess per sheet!
• We will calculate scores at 1:15 PM

fin

So, Who Uses FP?

So, Who Uses FP?

So, who uses FP?

So, Who Uses FP?

So, Who uses FP?

Goal: Obviously no deficiencies
• Want code that is so simple, it obviously works

• OK… so what makes code simple?

Readable
Reusable
Modifiable
Predictable
Checkable

simple code is

