
Logis&c	Regression	

Robot	Image	Credit:	Viktoriya	Sukhanova	©	123RF.com	

These	slides	were	assembled	by	Eric	Eaton,	with	grateful	acknowledgement	of	the	many	others	who	made	
their	course	materials	freely	available	online.	Feel	free	to	reuse	or	adapt	these	slides	for	your	own	academic	
purposes,	provided	that	you	include	proper	aIribu&on.	Please	send	comments	and	correc&ons	to	Eric.		

Classifica&on	Based	on	Probability	
•  Instead	of	just	predic&ng	the	class,	give	the	probability	
of	the	instance	being	that	class	
–  i.e.,	learn	

•  Comparison	to	perceptron:	
–  Perceptron	doesn’t	produce	probability	es&mate	
–  Perceptron	(and	other	discrimina&ve	classifiers)	are	only	
interested	in	producing	a	discrimina&ve	model	

•  Recall	that:	

2	

p(y | x)

p(event) + p(¬event) = 1

0  p(event)  1

Logis&c	Regression	
•  Takes	a	probabilis&c	approach	to	learning	
discrimina&ve	func&ons	(i.e.,	a	classifier)	

•  													should	give	
– Want	

•  Logis&c	regression	model:	

3	

h✓(x) = g (✓|
x)

g(z) =
1

1 + e�z

0  h✓(x)  1

Can’t	just	use	linear	
regression	with	a	

threshold	

g(z) =
1

1 + e�z

h
✓

(x) =
1

1 + e�✓

T
x

Logis&c	/	Sigmoid	Func&on	

h✓(x) p(y = 1 | x;✓)

Interpreta&on	of	Hypothesis	Output	

4	

=	es&mated		

à	Tell	pa&ent	that	70%	chance	of	tumor	being	malignant		

Example:		Cancer	diagnosis	from	tumor	size	

h✓(x) p(y = 1 | x;✓)

x =


x0

x1

�
=


1

tumorSize

�

h✓(x) = 0.7

p(y = 0 | x;✓) + p(y = 1 | x;✓) = 1Note	that:	

Based	on	example	by	Andrew	Ng	

Therefore,	 p(y = 0 | x;✓) = 1� p(y = 1 | x;✓)

Another	Interpreta&on	
•  Equivalently,	logis&c	regression	assumes	that	

•  In	other	words,	logis&c	regression	assumes	that	the	
log	odds	is	a	linear	func&on	of		

5	

log

p(y = 1 | x;✓)
p(y = 0 | x;✓) = ✓0 + ✓1x1 + . . .+ ✓dxd

x

Side	Note:		the	odds	in	favor	of	an	event	is	the	quan&ty			
 p	/	(1	−	p),	where	p	is	the	probability	of	the	event	

	

E.g.,	If	I	toss	a	fair	dice,	what	are	the	odds	that	I	will	have	a	6?	

odds	of	y	=	1	

Based	on	slide	by	Xiaoli	Fern	

Logis&c	Regression	

•  Assume	a	threshold	and...	

– Predict	y	=	1	if			
– Predict	y	=	0	if			

6	

h✓(x) = g (✓|
x)

g(z) =
1

1 + e�z

g(z) =
1

1 + e�z

h✓(x) � 0.5

h✓(x) < 0.5

y	=	1		

y	=	0		

✓

Based	on	slide	by	Andrew	Ng	

											should	be	large	nega&ve	
values	for	nega&ve	instances	

h✓(x) = g (✓|
x) 											should	be	large	posi&ve	

values	for	posi&ve	instances	
h✓(x) = g (✓|

x)

Non-Linear	Decision	Boundary	
•  Can	apply	basis	func&on	expansion	to	features,	same	
as	with	linear	regression	

7	

x =

2

4
1
x1

x2

3

5 !

2

6666666666666664

1
x1

x2

x1x2

x

2
1

x

2
2

x

2
1x2

x1x
2
2

...

3

7777777777777775

Logis&c	Regression	

•  Given	

where	
	

•  Model:	
	

	

8	

x

| =
⇥
1 x1 . . . xd

⇤
✓ =

2

6664

✓0
✓1
...
✓d

3

7775

h✓(x) = g (✓|
x)

g(z) =
1

1 + e�z

n⇣

x

(1), y(1)
⌘

,
⇣

x

(2), y(2)
⌘

, . . . ,
⇣

x

(n), y(n)
⌘o

x

(i) 2 Rd, y(i) 2 {0, 1}

Logis&c	Regression	Objec&ve	Func&on	
•  Can’t	just	use	squared	loss	as	in	linear	regression:	

	
–  Using	the	logis&c	regression	model	

	
results	in	a	non-convex	op&miza&on	

9	

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2

h
✓

(x) =
1

1 + e�✓

T
x

Deriving	the	Cost	Func&on	via	
Maximum	Likelihood	Es&ma&on	

•  Likelihood	of	data	is	given	by:	

•  So,	looking	for	the	θ	that	maximizes	the	likelihood	

•  Can	take	the	log	without	changing	the	solu&on:		

10	

l(✓) =
nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax

✓
l(✓) = argmax

✓

nY

i=1

p(y(i) | x(i)
;✓)

✓MLE = argmax

✓
log

nY

i=1

p(y(i) | x(i)
;✓)

= argmax

✓

nX

i=1

log p(y(i) | x(i)
;✓)

✓MLE = argmax

✓
log

nY

i=1

p(y(i) | x(i)
;✓)

= argmax

✓

nX

i=1

log p(y(i) | x(i)
;✓)

Deriving	the	Cost	Func&on	via	
Maximum	Likelihood	Es&ma&on	

11	

•  Expand	as	follows:	

•  Subs&tute	in	model,	and	take	nega&ve	to	yield	
	 	

✓MLE = argmax

✓

nX

i=1

log p(y(i) | x(i)
;✓)

= argmax

✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i)

;✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i)

;✓)

⌘i

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)
) +

⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i)
)

⌘i

Logis,c	regression	objec,ve:	
min
✓

J(✓)

✓MLE = argmax

✓

nX

i=1

log p(y(i) | x(i)
;✓)

= argmax

✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i)

;✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i)

;✓)

⌘i

Intui&on	Behind	the	Objec&ve	

•  Cost	of	a	single	instance:	

•  Can	re-write	objec&ve	func&on	as	

12	

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)
) +

⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i)
)

⌘i

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

J(✓) =
nX

i=1

cost

⇣
h✓(x

(i)
), y(i)

⌘

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y(i)

⌘2

Compare	to	linear	regression:	

Intui&on	Behind	the	Objec&ve	

13	

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

Aside:		Recall	the	plot	of	log(z)	

Intui&on	Behind	the	Objec&ve	

If	y	=	1	
•  Cost	=	0	if	predic&on	is	correct	
•  As	

•  Captures	intui&on	that	larger	
mistakes	should	get	larger	
penal&es	
–  e.g.,	predict																						,	but	y	=	1	

14	

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

h✓(x) ! 0, cost ! 1

h✓(x) = 0

Based	on	example	by	Andrew	Ng	

If	y	=	1	

1	0	

cost	

h✓(x) = 0

Intui&on	Behind	the	Objec&ve	

15	

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

	
If	y	=	0	

1	0	

cost	

If	y	=	1	

If	y	=	0	
•  Cost	=	0	if	predic&on	is	correct	
•  As	

•  Captures	intui&on	that	larger	
mistakes	should	get	larger	
penal&es	

(1� h✓(x)) ! 0, cost ! 1

Based	on	example	by	Andrew	Ng	

h✓(x) = 0

Regularized	Logis&c	Regression	

•  We	can	regularize	logis&c	regression	exactly	as	before:	

16	

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)
) +

⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i)
)

⌘i

Jregularized(✓) = J(✓) +
�

2

dX

j=1

✓2j

= J(✓) +
�

2
k✓[1:d]k22

Gradient	Descent	for	Logis&c	Regression	

17	

•  Ini&alize		
•  Repeat	un&l	convergence	

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j	=	0	...	d	

Want	 min
✓

J(✓)

Use	the	natural	logarithm	(ln	=	loge)	to	cancel	with	the	exp()	in		h✓

(x) =
1

1 + e�✓

T
x

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)
) +

⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i)
)

⌘i
+

�

2

k✓[1:d]k22

Gradient	Descent	for	Logis&c	Regression	

18	

Want	 min
✓

J(✓)

•  Ini&alize		
•  Repeat	un&l	convergence	

✓
(simultaneous	update	for	j	=	0	...	d)

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)
) +

⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i)
)

⌘i
+

�

2

k✓[1:d]k22

✓0 ✓0 � ↵

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘

✓j ✓j � ↵

"
nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j + �✓j

#

Gradient	Descent	for	Logis&c	Regression	

19	

•  Ini&alize		
•  Repeat	un&l	convergence	

✓
(simultaneous	update	for	j	=	0	...	d)

This	looks	IDENTICAL	to	linear	regression!!!	
•  Ignoring	the	1/n	constant	
•  However,	the	form	of	the	model	is	very	different:	

h
✓

(x) =
1

1 + e�✓

T
x

✓0 ✓0 � ↵

nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘

✓j ✓j � ↵

"
nX

i=1

⇣
h✓

⇣
x

(i)
⌘
� y

(i)
⌘
x

(i)
j + �✓j

#

Mul&-Class	Classifica&on	

Disease	diagnosis:		 	healthy	/	cold	/	flu	/	pneumonia	
	

Object	classifica&on: 	desk	/	chair	/	monitor	/	bookcase	
20	

x1	

x2	

x1	

x2	

Binary	classifica&on:	 Mul&-class	classifica&on:	

h✓(x) =
1

1 + exp(�✓

T
x)

=

exp(✓

T
x)

1 + exp(✓

T
x)

Mul&-Class	Logis&c	Regression	
•  For	2	classes:	

•  For	C	classes	{1,	...,	C }:	

–  Called	the	so3max	func&on	

21	

h✓(x) =
1

1 + exp(�✓

T
x)

=

exp(✓

T
x)

1 + exp(✓

T
x)

weight	assigned	
to	y	=	0	

weight	assigned	
to	y	=	1	

p(y = c | x;✓1, . . . ,✓C) =
exp(✓

T
c x)PC

c=1 exp(✓
T
c x)

Mul&-Class	Logis&c	Regression	

•  Train	a	logis&c	regression	classifier	for	each	class		i		
to	predict	the	probability	that	y	=	i 	with

22	

x1	

x2	

Split	into	One	vs	Rest:	

hc(x) =
exp(✓

T
c x)PC

c=1 exp(✓
T
c x)

hc(x) =
exp(✓

T
c x)PC

c=1 exp(✓
T
c x)

Implemen&ng	Mul&-Class		
Logis&c	Regression	

•  Use																																																			as	the	model	for	class	c

•  Gradient	descent	simultaneously	updates	all	parameters	
for	all	models	
–  Same	deriva&ve	as	before,	just	with	the	above	hc(x)	

•  Predict	class	label	as	the	most	probable	label		

23	

max

c
hc(x)

