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Classifica&on	Based	on	Probability	
•  Instead	of	just	predic&ng	the	class,	give	the	probability	
of	the	instance	being	that	class	
–  i.e.,	learn	

•  Comparison	to	perceptron:	
–  Perceptron	doesn’t	produce	probability	es&mate	
–  Perceptron	(and	other	discrimina&ve	classifiers)	are	only	
interested	in	producing	a	discrimina&ve	model	

•  Recall	that:	

2	

p(y | x)

p(event) + p(¬event) = 1

0  p(event)  1



Logis&c	Regression	
•  Takes	a	probabilis&c	approach	to	learning	
discrimina&ve	func&ons	(i.e.,	a	classifier)	

•  													should	give	
– Want	

•  Logis&c	regression	model:	
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h✓(x) = g (✓|
x)

g(z) =
1

1 + e�z

0  h✓(x)  1

Can’t	just	use	linear	
regression	with	a	

threshold	

g(z) =
1

1 + e�z

h
✓

(x) =
1

1 + e�✓

T
x

Logis&c	/	Sigmoid	Func&on	

h✓(x) p(y = 1 | x;✓)



Interpreta&on	of	Hypothesis	Output	
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=	es&mated		

à	Tell	pa&ent	that	70%	chance	of	tumor	being	malignant		

Example:		Cancer	diagnosis	from	tumor	size	

h✓(x) p(y = 1 | x;✓)

x =


x0

x1

�
=


1

tumorSize

�

h✓(x) = 0.7

p(y = 0 | x;✓) + p(y = 1 | x;✓) = 1Note	that:	

Based	on	example	by	Andrew	Ng	

Therefore,	 p(y = 0 | x;✓) = 1� p(y = 1 | x;✓)



Another	Interpreta&on	
•  Equivalently,	logis&c	regression	assumes	that	

•  In	other	words,	logis&c	regression	assumes	that	the	
log	odds	is	a	linear	func&on	of		
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log

p(y = 1 | x;✓)
p(y = 0 | x;✓) = ✓0 + ✓1x1 + . . .+ ✓dxd

x

Side	Note:		the	odds	in	favor	of	an	event	is	the	quan&ty			
        p	/	(1	−	p),	where	p	is	the	probability	of	the	event	

	

E.g.,	If	I	toss	a	fair	dice,	what	are	the	odds	that	I	will	have	a	6?	

odds	of	y	=	1	

Based	on	slide	by	Xiaoli	Fern	



Logis&c	Regression	

•  Assume	a	threshold	and...	

– Predict	y	=	1	if			
– Predict	y	=	0	if			
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h✓(x) = g (✓|
x)

g(z) =
1

1 + e�z

g(z) =
1

1 + e�z

h✓(x) � 0.5

h✓(x) < 0.5

y	=	1		

y	=	0		

✓

Based	on	slide	by	Andrew	Ng	

											should	be	large	nega&ve	
values	for	nega&ve	instances	

h✓(x) = g (✓|
x) 											should	be	large	posi&ve	

values	for	posi&ve	instances	
h✓(x) = g (✓|

x)



Non-Linear	Decision	Boundary	
•  Can	apply	basis	func&on	expansion	to	features,	same	
as	with	linear	regression	
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Logis&c	Regression	

•  Given	

where	
	

•  Model:	
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x

| =
⇥
1 x1 . . . xd

⇤
✓ =

2
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✓0
✓1
...
✓d

3

7775

h✓(x) = g (✓|
x)

g(z) =
1

1 + e�z
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(n), y(n)
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x

(i) 2 Rd, y(i) 2 {0, 1}



Logis&c	Regression	Objec&ve	Func&on	
•  Can’t	just	use	squared	loss	as	in	linear	regression:	

	
–  Using	the	logis&c	regression	model	

	
results	in	a	non-convex	op&miza&on	
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J(✓) =
1

2n

nX
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Deriving	the	Cost	Func&on	via	
Maximum	Likelihood	Es&ma&on	

•  Likelihood	of	data	is	given	by:	

•  So,	looking	for	the	θ	that	maximizes	the	likelihood	

•  Can	take	the	log	without	changing	the	solu&on:		
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l(✓) =
nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax

✓
l(✓) = argmax

✓

nY

i=1

p(y(i) | x(i)
;✓)

✓MLE = argmax

✓
log

nY

i=1

p(y(i) | x(i)
;✓)

= argmax

✓

nX

i=1

log p(y(i) | x(i)
;✓)

✓MLE = argmax

✓
log

nY

i=1

p(y(i) | x(i)
;✓)

= argmax

✓

nX

i=1

log p(y(i) | x(i)
;✓)



Deriving	the	Cost	Func&on	via	
Maximum	Likelihood	Es&ma&on	
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•  Expand	as	follows:	

•  Subs&tute	in	model,	and	take	nega&ve	to	yield	
	 	

✓MLE = argmax

✓
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;✓)
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Logis,c	regression	objec,ve:	
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Intui&on	Behind	the	Objec&ve	

•  Cost	of	a	single	instance:	

•  Can	re-write	objec&ve	func&on	as	
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J(✓) = �
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0
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Compare	to	linear	regression:	



Intui&on	Behind	the	Objec&ve	
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

Aside:		Recall	the	plot	of	log(z)	



Intui&on	Behind	the	Objec&ve	

If	y	=	1	
•  Cost	=	0	if	predic&on	is	correct	
•  As	

•  Captures	intui&on	that	larger	
mistakes	should	get	larger	
penal&es	
–  e.g.,	predict																						,	but	y	=	1	
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

h✓(x) ! 0, cost ! 1

h✓(x) = 0

Based	on	example	by	Andrew	Ng	

If	y	=	1	

1	0	

cost	

h✓(x) = 0



Intui&on	Behind	the	Objec&ve	
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

	
If	y	=	0	

1	0	

cost	

If	y	=	1	

If	y	=	0	
•  Cost	=	0	if	predic&on	is	correct	
•  As	

•  Captures	intui&on	that	larger	
mistakes	should	get	larger	
penal&es	

(1� h✓(x)) ! 0, cost ! 1

Based	on	example	by	Andrew	Ng	

h✓(x) = 0



Regularized	Logis&c	Regression	

•  We	can	regularize	logis&c	regression	exactly	as	before:	
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Gradient	Descent	for	Logis&c	Regression	
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•  Ini&alize		
•  Repeat	un&l	convergence	

✓

✓j  ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j	=	0	...	d	

Want	 min
✓

J(✓)

Use	the	natural	logarithm	(ln	=	loge)	to	cancel	with	the	exp()	in		h✓
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T
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Gradient	Descent	for	Logis&c	Regression	
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Want	 min
✓

J(✓)

•  Ini&alize		
•  Repeat	un&l	convergence	

✓
(simultaneous	update	for	j	=	0	...	d) 
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Gradient	Descent	for	Logis&c	Regression	
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•  Ini&alize		
•  Repeat	un&l	convergence	

✓
(simultaneous	update	for	j	=	0	...	d) 

This	looks	IDENTICAL	to	linear	regression!!!	
•  Ignoring	the	1/n	constant	
•  However,	the	form	of	the	model	is	very	different:	
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Mul&-Class	Classifica&on	

Disease	diagnosis:		 	healthy	/	cold	/	flu	/	pneumonia	
	

Object	classifica&on: 	desk	/	chair	/	monitor	/	bookcase	
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x1	

x2	

x1	

x2	

Binary	classifica&on:	 Mul&-class	classifica&on:	



h✓(x) =
1

1 + exp(�✓

T
x)

=

exp(✓

T
x)

1 + exp(✓

T
x)

Mul&-Class	Logis&c	Regression	
•  For	2	classes:	

•  For	C	classes	{1,	...,	C }:	

–  Called	the	so3max	func&on	
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h✓(x) =
1

1 + exp(�✓

T
x)

=

exp(✓

T
x)

1 + exp(✓

T
x)

weight	assigned	
to	y	=	0	

weight	assigned	
to	y	=	1	

p(y = c | x;✓1, . . . ,✓C) =
exp(✓

T
c x)PC

c=1 exp(✓
T
c x)



Mul&-Class	Logis&c	Regression	

•  Train	a	logis&c	regression	classifier	for	each	class		i		
to	predict	the	probability	that	y	=	i 	with 
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x1	

x2	

Split	into	One	vs	Rest:	

hc(x) =
exp(✓

T
c x)PC

c=1 exp(✓
T
c x)



hc(x) =
exp(✓

T
c x)PC

c=1 exp(✓
T
c x)

Implemen&ng	Mul&-Class		
Logis&c	Regression	

•  Use																																																			as	the	model	for	class	c 

•  Gradient	descent	simultaneously	updates	all	parameters	
for	all	models	
–  Same	deriva&ve	as	before,	just	with	the	above	hc(x)	

•  Predict	class	label	as	the	most	probable	label		
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max

c
hc(x)


